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Abstract

Advances in VLSI technology will enable chips with over a billion transistors within the next
decade. Unfortunately, the centralized-resource architectures of modern microprocessors are ill-
suited to exploit such advances. Achieving a high level of parallelism at a reasonable clock speed
requires distributing the processor resources – a trend already visible in the dual-register-file ar-
chitecture of the Alpha 21264. A Raw microprocessor takes an extreme position in this space by
distributing all its resources such as instruction streams, register files, memory ports, and ALUs over
a pipelined two-dimensional interconnect, and exposing them fully to the compiler. Compilation
for instruction-level parallelism (ILP) on such distributed-resource machines requires both spatial
instruction scheduling and traditional temporal instruction scheduling. This paper describes the tech-
niques used by the Raw compiler to handle these issues. Preliminary results from a SUIF-based
compiler for sequential programs written in C and Fortran indicate that the Raw approach to ex-
ploiting ILP can achieve speedups scalable with the number of processors for applications with such
parallelism. The Raw architecture attempts to provide performance that is at least comparable to that
provided by scaling an existing architecture, but that can achieve orders of magnitude improvement
in performance for applications with a large amount of parallelism. This paper offers some positive
results in this direction.

1 Introduction

Modern microprocessors have evolved while maintaining the faithful representation of a monolithic
uniprocessor. While innovations in the ability to exploit instruction level parallelism have placed greater
demands on processor resources, these resources have remained centralized, creating scalability problem
at every design point in a machine. As processor designers continue in their pursuit of an architecture
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that can exploit more parallelism and thus requires even more resources, the cracks in the view of a
monolithic underlying processor can no longer be concealed.

An early visible effect of the scalability problem in commercial architectures is apparent in the clus-
tered organization of the Multiflow computer [12]. More recently, the Alpha 21264 [8] duplicates its
register file to provide the requisite number of ports at a reasonable clock speed. A cluster is formed by
organizing half of the functional units and half of the cache ports around each register file. Cross-cluster
communication incurs an extra cycle of latency.

As the amount of on-chip processor resources continues to increase, the pressure toward this type of
non-uniform spatial structure will continue to mount. Inevitably, from such hierarchy, resource accesses
will have non-uniform latencies. In particular, register or memory access by a functional unit will have a
gradation of access time. This fundamental change in processor model will necessitate a corresponding
change in compiler technology. Instruction scheduling becomes a spatial problem as well as a temporal
problem.

The Raw machine [17] is a scalable microprocessor architecture with non-uniform register access
latencies (NURA). As such, its compilation problem is similar to that which will be encountered by
extrapolations of existing architectures. In this paper, we describe the compilation techniques used to
exploit ILP on the Raw machine, a NURA machine composed of fully replicated processing units con-
nected via a mostly static programmable network. The fully exposed hardware allows the Raw compiler
to precisely orchestrate computation and communication in order to exploit ILP within basic blocks. The
compiler handles the orchestration by performing spatial and temporal instruction scheduling, as well as
data partitioning using a distributed on-chip memory model.

This paper makes three contributions. First, it describes the space-time instruction scheduling of ILP
on a Raw machine using techniques borrowed from two existing domains: mapping of tasks to MIMD
machines and mapping of circuits to FPGAs. Second, it introduces a new control flow model based on
asynchronous local branches inside a machine with multiple independent instruction streams. Finally, it
shows that independent instruction streams give the Raw machine the ability to tolerate timing variations
due to dynamic events, in terms of both correctness and performance.

The rest of the paper is organized as follows. Section 2 motivates the need for NURA machines,
and it introduces the Raw machine as one such machine. Section 3 describes RAWCC, a compiler for
NURA machines. Section 4 discusses Raw’s decentralized approach to control flow. Section 5 shows the
performance of RAWCC. Section 6 presents related work, and Section 7 concludes. Appendix A gives a
proof of how a mostly static machine can tolerate skews introduced by dynamic events without changing
the behavior of the program.

2 Motivation and Background

This section motivates the Raw architecture. We examine the scalability problem of modern processors,
trace an architectural evolution that overcomes such problems, and show that the Raw architecture is at
an advanced stage of such an evolution. We highlight non-uniform register access as an important feature
in scalable machines. We then describe the Raw machine, with emphasis on features which make it an
attractive scalable machine. Finally, we describe the relationship between a Raw machine and a VLIW
machine.

The Scalability Problem Modern processors are not designed to scale. Because superscalars require
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significant hardware resources to support parallel instruction execution, architects for these machines
face an uncomfortable dilemma. On the one hand, faster machines require additional hardware resources
for both computation and discovery of ILP. On the other hand, these resources often have quadratic area
complexity, quadratic connectivity, and global wiring requirements which can be satisfied only at the cost
of cycle time degradation. VLIW machines address some of these problems by moving the cycle-time
elongating task of discovering ILP from hardware to software, but they still suffer scalability problems
due to issue bandwidth, multi-ported register files, caches, and wire delays.

Up to now, commercial microprocessors have faithfully preserved their monolithic images. As pres-
sure from all sources demands computers to be bigger and more powerful, this image will be difficult to
maintain. A crack is already visible in the Alpha 21264. In order to satisfy timing specification while
providing the register bandwidth needed by its dual-ported cache and four functional units, the Alpha
duplicates its register file. Each physical register file provides half the required ports. A cluster is formed
by organizing two functional units and a cache port around each register file. Communication within a
cluster occurs at normal speed, while communication across clusters takes an additional cycle.

This example suggests an evolutionary path that resolves the scalability problem: impose a hierarchy
on the organization of hardware resources [16]. A processor can be composed from replicated processing
units whose pipelines are coupled together at the register level so that they can exploit ILP cooperatively.
The VLIW Multiflow TRACE machine is a machine which adopts such a solution [12]. On the other
hand, its main motivation for this organization is to provide enough register ports. Communication be-
tween clusters are performed via global busses, which in modern and future-generation technology would
severely degrade the clock speed of the machine. This problem points to the next step in the scalability
evolution – providing a scalable interconnect. For machines of modest sizes, a bus or a full crossbar may
suffice. But as the number of components increases, a point to point network will be necessary to provide
the required latency and bandwidth at the fastest possible clock speed – a progression reminiscent of the
multiprocessor evolution.

The result of the evolution toward scalability is a machine with a distributed register file intercon-
nected via a scalable network. In the spirit of NUMA machines (Non-Uniform Memory Access), we
call such machines NURA machines (Non-Uniform Register Access). Like a NUMA machine, a NURA
machine connects its distributed storage via a scalable interconnect. Unlike NUMA, NURA pools the
shared storage resources at the register level. Because a NURA machine exploits ILP of a single instruc-
tion stream, its interconnect must provide latencies that are much lower than that on a multiprocessor.

As the base element of the storage hierarchy, any change in the register model has profound impli-
cations. The distributed nature of the computational and storage elements on a NURA machine means
that locality should be considered when assigning instructions to functional units. Instruction scheduling
becomes a spatial problem as well as a temporal problem. This extra dimension requires compilation
techniques beyond that which are used to exploit ILP on modern machines.

Raw architecture The Raw machine [17] is a NURA architecture motivated by the need to design
simple and highly scalable processors. As depicted in Figure 1, a Raw machine comprises a simple,
replicated tile, each with its own instruction stream, and a programmable, tightly integrated interconnect
between tiles. A Raw machine also supports multi-granular (bit and byte level) operations as well as
customizable configurable logic, but this paper does not address these features.

Each Raw tile contains a simple five-stage pipeline, interconnected with other tiles over a pipelined,
point-to-point network. The tile is kept simple and devoid of complex hardware resources in order to
maximize the clock rate and the number of tiles that can fit on a chip. Raw’s network resides between
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Figure 1: A Raw microprocessor.

the register files and the functional units to provide fast, register-level communication. Unlike modern
superscalars, the interface to this interconnect is fully exposed to the software.

A switch on a Raw machine is integrated directly into the processor pipeline to support single-
cycle sends and receives of word-sized values. A word of data travels across one tile in one clock
cycle. The switch contains two distinct networks, a static and a dynamic one. The static switch is
programmable, allowing statically inferable communication patterns to be encoded in the instruction
streams of the switches. This approach eliminates the overhead of composing and routing a directional
header, which in turn allows a single word of data to be communicated efficiently. Communication
instructions (send, receive, or route) have blocking semantics that provide near-neighbor flow control; a
processor or switch stalls if it is executing an instruction that attempts to access an empty input port or a
full output port. This specification ensures correctness in the presence of timing variations introduced by
dynamic events such as cache misses, and it obviates the lock-step synchronization of program counters
required by many statically scheduled machines. The dynamic switch is a wormhole router that makes
routing decisions based on the header of each message. It includes additional lines for flow control. We
focus on communication using the static network in this paper.

The Raw prototype we have developed uses an MIPS R2000 processor on its tile. For the switch,
it uses a stripped down R2000 augmented with a route instruction. Communication ports are added as
extensions to the register set. Figure 2 shows the organization of ports for the static network on a single
tile. It takes one cycle to inject a message from the processor to its switch, receive a message from a
switch to its processor, or route a message between neighboring tiles. A single-word message between
neighboring processors would take four cycles. Note, however, that the ability to access the communica-
tion ports as register operands allows useful computation to overlap with the act of performing a send or
a receive. Therefore, the effective overhead of the communication can be as low as two cycles.

In addition to its scalability and simplicity, the Raw machine is an attractive NURA machine for
several reasons:

� Multisequentiality: Multisequentiality, the presence of multiple flows of control, is useful for four
reasons. First, it significantly enhances the potential amount of parallelism a machine can ex-
ploit [11]. Second, it enables control localization, a technique we introduce in Section 4.1 to allow
ILP to be scheduled across branches. Third, it enables asynchronous global branching described
in Section 4.2, a means of implementing global branching without global synchronization and
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Figure 2: Communication ports for the static network on a prototype tile. Each switch on a tile is connected to its
processor and its four neighbors via an input port and an output port. The figure is not drawn to scale.

degradation of clock speed. Finally, it gives a Raw machine better tolerance of dynamic events
compared to a VLIW machine, as shown in Section 5.

� Simple means of expanding the register space: Traditionally, an ISA prevents a processor from
increasing the size of the compiler-visible register set, even if applications can benefit from such
increase. Modern architectures circumvent this problem by providing compiler-invisible registers
which are utilized by complex dynamic renaming logic. This interface, however, undermines static
compiler analysis for discovering ILP, and it requires expensive supporting hardware. Moreover,
compiler-invisible registers cannot be used to reduce register spills. A Raw machine, on the other
hand, adds registers by increasing the number of tiles, without any need to change the ISA on a
tile. The number of register ports increases proportionally as well.

� A compiler interface for locality management: The Raw machine fully exposes its hardware to
the compiler by exporting a simple cost model for communication and computation. In turn, the
compiler is responsible for the assignment of instructions to Raw tiles. We believe instruction par-
titioning should be accomplished at compile time for several reasons: first, it requires sophisticated
analysis of the structure of the program dependence graph, for which the necessary information is
readily available at compile time but not at run-time; second, we can ill-afford its complexity at
run-time.

� Mechanism for precise orchestration: Raw’s programmable static switch is an essential feature
for exploiting ILP on the Raw machine. First, it allows single-word register-level transfer without
the overhead of composing and routing a message header. Second, the Raw compiler can use
its full knowledge of the network status to minimize congestion and route data around hot spots.
Most importantly, the static network gives the Raw compiler the fine-grain control required to
orchestrate computation and communication events to eliminate synchronization overhead.

Relationship between Raw and VLIW The Raw architecture draws much of its inspiration from
VLIW machines. They both share the common goal of statically scheduling ILP. From a macroscopic
point of view, a Raw machine is the result of a natural evolution from a VLIW, driven by the desire to
add more resources.

There are two major distinctions between a VLIW machine and Raw machine. First, they differ in
resource organization. VLIW machines of various degrees of scalability have been proposed, ranging
from completely centralized machines to machines with distributed functional units, register files, and
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memory [12]. The Raw machine, on the other hand, is the first ILP microprocessor that provides a
scalable, two-dimensional interconnect between clusters of resources. This feature makes the space-time
scheduling problem more general for Raw machines than for VLIWs, and it limits the length of all wires
to the distance between neighboring tiles, which in turn enables a higher clock rate.

Second, the two machines differ in their control flow model. A VLIW machine has a single flow of
control, while a Raw machine has multiple flows of control. As explained above, this feature increases
available exploitable parallelism, enables control localization and asynchronous global branching, and
improves tolerance of dynamic events.

3 The Raw compiler

This section describes the Raw compiler which performs the space-time scheduling of ILP on a Raw
machine. Section 3.1 explains its memory model. Section 3.2 describes the compiler itself. Section 3.3
describes the basic block orchestrater, the space-time scheduling component of the compiler.

3.1 Memory model

Memory on a Raw machine is distributed across the tiles. The Raw compiler distributes arrays through
low order interleaving, which interleaves the arrays element-wise across the memory system. The Raw
memory model provides two ways of accessing this memory system, one for static reference and one
for dynamic reference. A reference is static if every invocation of it can be determined to be referring
to memory on one specific tile. We call this property the static reference property. A static reference is
handled by mapping it to the corresponding tile at compile time. A non-static or dynamic reference is
handled by disambiguating the address at run-time either in software or in hardware, using the dynamic
network to handle any necessary communication.

The Raw compiler attempts to identify as many static references as possible. Static references are at-
tractive for two reasons. First, they can proceed without any of the overhead due to dynamic disambigua-
tion and synchronization. Second, they can potentially take advantage of the full memory bandwidth.
For array references which are affine functions of loop indices, we have developed a technique which
uses unrolling to satisfy the static reference property. Our technique is a more fully developed version of
the technique used by the Bulldog compiler to perform memory-bank disambiguation [6]. A description
of this theory is beyond the scope of this paper.

This paper focuses on results which can be attained when the Raw compiler succeeds in identifying
static references. We do not address the issues pertaining to dynamic references in this paper. However,
we observe in Section 5 that decoupled instruction streams allow the Raw machine to tolerate timing
variations due to events such as dynamic memory accesses.

3.2 RAWCC

RAWCC, the Raw compiler, is implemented using SUIF [18], the Stanford University Intermediate For-
mat. It compiles both C and Fortran programs. The Raw compiler consists of three phases. The first
phase performs high level program analysis and transformations, including traditional techniques such as
memory disambiguation, loop unrolling, and array reshape, plus a new control localization technique to
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be discussed in Section 4.1. In the future, this phase can be extended with the advanced ILP-enhancing
techniques discussed in Section 6. The second phase, the basic block orchestrater, performs the space-
time scheduling of ILP on each basic block. It will be discussed in detail below. The final phase generates
code for the processors and the switches. It uses the MIPS back-end developed in Machine SUIF [15],
with a few modifications to handle the communication instructions and communication registers.

3.3 Basic block orchestrater

The basic block orchestrater exploits the ILP within a basic block by distributing the parallelism within
the basic block across the tiles. It transforms a single basic block into an equivalent set of basic blocks that
can be run in parallel on Raw. The orchestrater generates intermediate code for both the processor and the
programmable switch on each tile. It performs four tasks: mapping instructions to processors, mapping
scalar data to processors, generating any necessary communication, and scheduling both computation
and communication.

The basic access model for program variables is as follows. Every variable is assigned to a home
tile, where persistent values of the variable are stored. At the beginning of a basic block, the value of a
variable is transferred from its home to the tiles which use the variable. Within a basic block, references
are strictly on local renamed variables, allocated either in registers or on the stack. At the end of the basic
block, the updated value of a modified variable is transferred from the computing tile to its home tile.

The opportunity to exploit ILP across statically-scheduled, MIMD processing units is unique to Raw.
However, the Raw compiler problem is actually a composition of problems in two previously studied
compiler domains: the task partitioning/scheduling problem and the communication scheduling problem.
Research on the abstract task partitioning and scheduling problem has been extensive in the context
of mapping directed acyclic task graphs onto MIMD multiprocessors (e.g., [14][19]). The Raw task
partitioning and scheduling problem is similar, with tasks defined to be individual instructions. The
communication scheduling problem has been studied in the context of FPGA routing. For example, a
technique called VirtualWires [4] alleviates the pin limitation of FPGAs by multiplexing each pin to
communicate more than one values. Communication events are scheduled on pins over time. In Raw,
the communication ports on the processors and switches serve the same role as pins in FPGAs; the
scheduling problems in the two contexts are analogous.

The following are the implementation details of the basic block orchestrater. Figure 3 shows its task
decomposition. Each task is described in turn below. To facilitate the explanation, Figure 4 shows the
transformations performed by RAWCC on a sample program.

Initial code transformation Initial code transformation massages a basic block into a form suitable
for subsequent analysis phases. Figure 4a shows the transformations performed by this phase. First,
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software renaming converts statements of the basic block to static single assignment form. Such conver-
sion removes anti-dependencies and output-dependencies from the basic block, which in turn exposes
the available parallelism. It is analogous to hardware register renaming performed by superscalars.

Second, two types of dummy instructions are inserted. Read instructions are inserted for variables
which are live-on-entry and read in the basic block. Write instructions are inserted for variables which are
live-on-exit and written within the basic block. These instructions simplify the eventual representation of
stitch code, the communication needed to transfer values between the basic blocks. This representation
in turn allows the event scheduler to overlap the stitch code with other work in the basic block.

Third, expressions in the source program are decomposed into instructions in three-operand form.
Three-operand instructions are convenient because they correspond closely to the final machine instruc-
tions and because their cost attributes can easily be estimated. Therefore, they are logical candidates to
be used as atomic partitioning and scheduling units.

Finally, the dependence graph for the basic block is constructed. A node represents an instruction,
and an edge represents a true flow dependence between two instructions. Each node is labeled with the
estimated cost of running the instruction. For example, the node for a floating point add in the example
is labeled with two cycles. Each edge is labeled with the data size, from which the communication cost
can be computed after the instruction mapping is known. A simple instruction always generates a word
of data; its outgoing edge label is always one word and is implicit.

Instruction partitioner The instruction partitioner partitions the original instruction stream into mul-
tiple instruction streams, one for each tile. It does not bind the resultant instruction streams to specific
tiles – that function is performed by the instruction placer. When generating the instruction streams,
the partitioner attempts to balance the benefits of parallelism against the overheads of communication.
Figure 4b shows a sample output of this phase.

Certain instructions have constraints on where they can be partitioned and placed. Read and write
instructions to the same variable have to be mapped to the processor on which the data resides (see data
partitioner and placer below). Similarly, loads and stores satisfying the static reference property must be
mapped to a specific tile. The instruction partitioner performs its duty without such constraints. These
constraints are taken into account in the global data partitioner and in the data and instruction placer.

Partitioning is performed in two phases called clustering and merging. We describe each in turn:

Clustering: Clustering attempts to partition instructions to minimize run-time, assuming non-zero com-
munication cost but infinite processing resources. It groups together instructions that either have no
parallelism, or whose parallelism is too small to exploit relative to the communication cost. Subsequent
phases guarantee that instructions with no mapping constraints in the same cluster will be mapped to
the same tile. The clustering technique approximates communication cost by assuming an idealized
fully-connected switch with uniform latency.

RAWCC employs a greedy, critical path based technique called Dominant Sequent Clustering [19].
Initially, each instruction node belongs to a unit cluster. Communication between clusters is assigned a
uniform cost. The algorithm visits instruction nodes in topological order. At each step, it selects from
the list of candidates the instruction on the longest execution path. It then checks whether the selected
instruction can merge into the cluster of any of its parent instructions to reduce the estimated completion
time of the program. Estimation of the completion time is dynamically updated to take into account the
clustering decisions already made, and it reflects the cost of both computation and communication. The
algorithm completes when all nodes have been visited exactly once.
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Figure 4: An example of the program transformations performed by RAWCC. (a) shows the initial program under-
going transformations made by initial code transformation; (b) shows result of instruction partitioner; (c) shows
result of global data partitioner; (d) shows result of data and instruction placer, (e) shows result of communication
code generator; (f) shows final result after event scheduler.
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Merging: Merging combines clusters to reduce the number of clusters down to the number of tiles,
again assuming an idealized switch interconnect. Two useful heuristics in merging are to maintain load
balance and to minimize communication events. The Raw compiler currently uses a locality-sensitive
load balancing technique which tries to minimize communication events unless the load imbalance ex-
ceeds a certain threshold. It will consider other strategies, including an algorithm based on estimating
completion time, in the future.

The current algorithm is as follows. The Raw compiler initializes N empty partitions (where N is the
number of tiles), and it visits clusters in decreasing order of size. When it visits a cluster, it merges the
cluster into the partition with which it has the highest affinity, unless such merging results in a partition
which is 20% larger than the size of an average partition. If the latter condition occurs, the cluster is
placed into the smallest partition instead.

Global data partitioner To communicate values of data elements between basic blocks, a scalar data
element is assigned a “home” tile location. Within basic blocks, renaming localizes most value refer-
ences, so that only the initial reads and the final write of a variable need to communicate with its home
location. Like instruction mapping, the Raw compiler divides the task of data home assignment into data
partitioning and data placement.

The job of the data partitioner is to group data elements into sets, each of which is to be mapped to
the same processor. To preserve locality as much as possible, data elements which tend to be accessed
by the same thread should be grouped together. To partition data elements into sets which are frequently
accessed together, RAWCC performs global analysis. The algorithm is as follows. For initialization, a
virtual processor number is arbitrarily assigned to each instruction stream on each basic block, as well
as to each scalar data element. In addition, statically analyzable memory references are first assigned
dummy data elements, and then those elements are assigned virtual processor numbers corresponding
to the physical location of the references. Furthermore, the access pattern of each instruction stream
is summarized with its affinity to each data element. An instruction stream is said to have affinity for
a data element if it either accesses the element, or it produces the final value for the element in that
basic block. After initialization, the algorithm attempts to localize as many references as possible by
remapping the instruction streams and data elements. First, it remaps instruction streams to virtualized
processors given fixed mapping of data elements. Then, it remaps data elements to virtualized processors
given fixed mappings of instruction streams. Only the true data elements, not the dummy data elements
corresponding to fixed memory references, are remapped in this phase. This process repeats until no
incremental improvement of locality can be found. In the resulting partition, data elements mapped to
the same virtual processor are likely related based on the access patterns of the instruction streams.

Figure 4c shows the partitioning of data values into such affinity sets. Note that variables introduced
by initial code transformation (e.g., y 1 and tmp 1) do not need to be partitioned because their scopes
are limited to the basic block.

Data and instruction placer The data and instruction placer maps virtualized data sets and instruction
streams to physical processors. Figure 4d shows a sample output of this phase. The placement phase
removes the assumption of the idealized interconnect and takes into account the non-uniform network
latency. Placement of each data partition is currently driven by the those data elements with processor
preferences, i.e., those corresponding to fixed memory references. It is performed before instruction
placement to allow cost estimation during instruction placement to account for the location of data. In
additional to mapping data sets to processors, the data placement phase also locks the dummy read and
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write instructions to the home locations of the corresponding data elements.

For instruction placement, RAWCC uses a swap-based greedy algorithm to minimize the communi-
cation bandwidth. It initially assigns clusters to arbitrary tiles, and it looks for pairs of mappings that
can be swapped to reduce the total number of communication hops. For large configurations, this greedy
algorithm can be replaced by one with simulated annealing for better performance.

Communication code generator The communication code generator translates each non-local edge (an
edge whose source and destination nodes are mapped to different tiles) in the instruction task graph into
communication instructions which route the necessary data value from the source tile to the destination
tile. Figure 4e shows an example of such transformation. To minimize the volume of communication,
edges with the same source are serviced jointly by a single multicast operation. Communication instruc-
tions include send and receive instructions on the processors as well as route instructions on the switches.
New nodes are inserted into the graph to represent the communication instructions, and the edges of the
source and destination nodes are updated to reflect the new dependence relations arising from insertion
of the communication nodes.

The current compilation strategy assumes that network contention is low, so that the choice of mes-
sage routes has less impact on the code quality compared to the choice of instruction partitions or event
schedules. Therefore, communication code generation in RAWCC uses dimension-ordered routing; this
spatial aspect of communication scheduling is completely mechanical. If contention is determined to be
a performance bottleneck, a more flexible technique can be employed.

Event scheduler The event scheduler schedules the computation and communication events within a
basic block with the goal of producing the minimal estimated run-time. Because routing in Raw is itself
specified with explicit switch instructions, all events to be scheduled are instructions. Therefore, the
scheduling problem is a generalization of the traditional instruction scheduling problem.

The task of scheduling communication instructions carries with it the responsibility of ensuring the
absence of deadlocks in the network. If individual communication instructions are scheduled separately,
the Raw compiler would need to explicitly manage the buffering resources on each communication port
to ensure the absence of deadlock. Instead, RAWCC avoids the need for such management by treating a
single-source, multiple-destination communication path as a single scheduling unit. When a communi-
cation path is scheduled, contiguous time slots are reserved for instructions in the path so that the path
incurs no delay in the static schedule. By reserving the appropriate time slot at the node of each commu-
nication instruction, the compiler automatically reserves the corresponding channel resources needed to
ensure that the instruction can eventually make progress.

Though event scheduling is a static problem, the schedule generated should remain deadlock-free
and correct even in the presence of dynamic events such as cache misses. The Raw compiler uses the
static ordering property, implemented through near-neighbor flow control, to ensure this behavior. (See
Appendix A.) The static ordering property states that if a schedule does not deadlock, then any schedule
with the same order of communication events will not deadlock. Because dynamic events like cache
misses only add extra latency but do not change the order of communication events, they do not affect
the correctness of the schedule.

The static ordering property also allows the schedule to be stored as compact instruction streams.
Timing information needs not be preserved in the instruction stream to ensure correctness, thus obviating
the need to insert no-op instructions. Figure 4f shows a sample output of the event scheduler. Note, first,
the proper ordering of the route instructions on the switches, and, second, the successful overlap of
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computation with communication on P0, where the processor computes and writes z while waiting on
the value of y 1.

RAWCC uses a greedy list scheduler. The algorithm keeps track of a ready list of tasks. A task is either
a computation or a communication path. As long as the list is not empty, it selects and schedules the task
on the ready list with the highest priority. The priority scheme is based on the following observation.
The priority of a task should be directly proportional to the impact it has on the completion time of the
program. This impact, in turn, is lower-bounded by two properties of the task: its level, defined to be
its critical path length to an exit node; and its average fertility, defined to be the number of descendent
nodes divided by the number of processors. Therefore, we define the priority of a task to be a weighted
sum of these two properties.

Like a traditional uniprocessor compiler, RAWCC faces a phase ordering problem with event schedul-
ing and register allocation. Currently, the event scheduler runs before register allocation; it has no register
consumption information and does not consider register pressure when performing the scheduling. The
consequence is two-fold. First, instruction costs may be underestimated because they do not include spill
costs. Second, the event scheduler may expose too much parallelism, which cannot be efficiently utilized
but which comes at a cost of increased register pressure. The experimental results for fpppp-kernel in
Section 5 illustrate this problem. We are exploring this issue and have examined a promising approach
which adjusts the priorities of instructions based on how the instructions effect the register pressure. In
addition, we intend to explore the possibility of cooperative inter-tile register allocation.

4 Control flow on Raw

In modern processors, control transition is expensive. Both superscalars and VLIWs employ a centralized
branching model, where only one branch can be taken per cycle. Predicated execution alleviates this
limitation somewhat, but its utility is limited by its processor utilization inefficiency and its need for
hardware support. Furthermore, this centralized model makes the processor non-scalable. It requires
global wires to coordinate the machine for synchronous, lock-step transfer of control. On superscalars,
branching also incurs expensive overhead in the form of pipeline flushes caused by misprediction.

The Raw architecture proposes a different branching model which addresses these issues. The basic
transfer of control is local rather than global. We try to decentralize the control transition when possible
through control localization. When global control transition is required, we employ asynchronous global
branching. These techniques are described below.

4.1 Control Localization

Control localization is the technique of turning global branches between basic blocks into local branches
within an extended basic block. It is implemented by hiding the control flow inside a macroinstruction,
an abstraction of a sequence of instructions for the purpose of partitioning, placement, and scheduling.
Internalizing control flow to within a macroinstruction also allows ILP to be scheduled across it. Once
control flow is hidden inside a macroinstruction, it no longer serves as barrier to instruction scheduling.

The construction of macroinstruction consists of three steps, initial formation, promotion of memory
operations, and interface construction. Figure 5 shows an example of this process. First, initial forma-
tion identifies and groups together sequences of instructions, each to be converted to a macroinstruction.
Then, static memory operations inside this sequence of instructions, along with their associated address
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tmpA = A[i];

tmpB = B[i];

tmpA = A[i];

tmpB = B[i];

(b) (c)(a)

}

} else {

if (key==tmpA) {

  value=tmpB;

if (key==A[i]) {

  value=B[i];

}

} else {

  score=1;

  score=0;

  score=1;

  score=0;

(value, score) = MI(key, value, tmpA, tmpB)
5

Figure 5: An example of macroinstruction formation. (a) initial formation; (b) promotion of memory operations;
(c) interface construction. The superscript next to the macroinstruction indicates the estimated cost of executing
the instruction.

computations, are promoted out of the sequence. This transformation is necessary to allow a macroin-
struction to be treated as an abstract instruction which can be placed on any processor. Finally, interface
construction analyzes the macroinstruction to determine its input variables, output variables, and esti-
mated run-time. Input and output variables for a macroinstruction are computed by taking the union
of their corresponding sets over all possible paths within the macroinstruction. If a variable belongs to
the output set of at least one but not all paths in the macroinstruction, it needs to be considered as an
input variable as well. This case is necessary to enable each path to be able to produce the value of that
variable for subsequent dependent instructions. The estimated run-time is a function of the run-times of
the individual paths. It can be computed with the help of profiling information. Currently, RAWCC uses
the length of the longest path for this purpose.

The Raw compiler currently limits the application of macroinstruction to the control localization of
forward control flow. Regions with backward control flow present complications because static memory
operations cannot be easily extracted while maintaining the static reference property. Even with this re-
striction, two important policy decisions remain. First, RAWCC must decide the scope of the application,
i.e., to which control flow structure should control localization be applied. This decision shares some
similarity with the instruction partitioning problem. By applying control localization to a sequence of
instructions, RAWCC is trading off parallelism within that region for the reduction in global branches.
Global branches are costly for two reasons. They require global synchronization, and they serve as bar-
riers to the scheduling of ILP. We have found this tradeoff to be worthwhile in at least two situations:
in inner loops where global branches prevent unrolling from exposing schedulable parallelism, and for
small control flow constructs containing little parallelism.

Second, RAWCC must decide the granularity of control localization application, i.e., whether to con-
vert a selected control flow structure to a single or multiple macroinstructions. This decision requires
analyzing the cost of the macroinstruction abstraction, arising from the requirement that communication
with other instructions can only occur at the boundaries of the macroinstruction. For example, a large
macroinstruction must wait for the communication of all its input values before it can execute, even if
one of these values is not needed until very late in the execution. Breaking up a control flow structure
into multiple macroinstructions would reduce this overhead, at a cost of executing more local branches.

Currently, RAWCC adapts the simple policy of localizing every forward control flow structure into a
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single macroinstruction. This policy is sufficient to attain the speedup reported in Section 5, but a more
general policy is necessary to handle other applications. We intend to conduct a comprehensive study of
this issue in the future.

It is worthwhile to compare predicated execution to control localization. In terms of flexibility, pred-
icated execution requires fine-grained if-conversion [2], while control localization can support coarse-
grained if-conversion. In terms of execution cost, predicated execution incurs the cost of executing all
paths; an instruction which is nullified still occupies a unit of execution resources. In contrast, control lo-
calization consumes the amount of resources needed for the execution of the path that actually occurs. In
terms of hardware support, predicated execution has two requirements. It requires support from the ISA,
and it requires an extra predicated register file to alleviate the register pressure introduced by predicates.
Control localization, on the other hand, only requires the presence of independent instruction streams.

4.2 Asynchronous global branching

The Raw machine implements global branching asynchronously in software by using the static network
and local branches. First, the branch value is broadcasted to all the tiles through the static network. This
communication is exported and scheduled explicitly by the compiler just like any other communication,
so that it can overlap with other computation. Then, each tile and switch individually performs a branch
without synchronization at the end of its basic block execution. The asynchrony is permitted because
it does not change the static ordering of communication, and thus correct semantics is ensured through
the static ordering property. As shown in Section 5, asynchrony gives the Raw machine the ability to
tolerate dynamic events. Since the branch asynchrony is known at compile time, the Raw compiler can
even generate an instruction schedule which explicitly takes advantage of this information.

Asynchronous global branching does not interfere with application of existing ILP enhancing tech-
niques such as trace scheduling. To the first order, it can be treated abstractly as a global branch; the only
difference lies in the cost of this branch relative to other instructions.

The overhead of global branching on the Raw machine is explicit in the broadcast of the branch
condition. This contrasts with the implicit overhead of global wiring incurred by global branching in
VLIWs and superscalars. Raw’s explicit overhead is desirable for two reasons. First, the compiler can
hide the overhead by overlapping it with useful work. Second, the approach is consistent with the Raw
philosophy of eliminating all global wires, which taken as a whole enables a much faster clock speed.

5 Results

This section presents some performance results of the Raw compiler. We show the performance of
the Raw compiler as a whole, and then we measure the portion of the performance due to high level
transformations and advanced locality optimizations. In addition, we study how multisequentiality can
reduce the sensitivity of performance to dynamic disturbances.

Experiments are performed on the Raw simulator, which simulates the Raw prototype described in
Section 2. Latencies of the basic instructions are as follows: 1-cycle integer add or subtract; 12-cycle
integer multiply; 35-cycle integer divide; 2-cycle floating add or subtract; 4-cycle floating multiply; and
12-cycle floating divide. Unless otherwise stated, the simulator assumes a perfect memory system with
a two-cycle latency for a cache hit.
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Benchmark Source Lang. Lines Primary Seq. RT Description
of code Array size (cycles)

fpppp-kernel Spec92 Fortran 735 - 8.98K Electron Interval Derivatives
btrix Nasa7:Spec92 Fortran 236 15�15�15�5 287M Vectorized Block Tri-Diagonal Solver
cholesky Nasa7:Spec92 Fortran 126 3�32�32 34.3M Cholesky Decomposition/Substitution
vpenta Nasa7:Spec92 Fortran 157 32�32 21.0M Inverts 3 Pentadiagonals Simultaneously
tomcatv Spec92 Fortran 254 32�32 78.4M Mesh Generation with Thompson’s Solver
mxm Nasa7:Spec92 Fortran 64 32�64, 64�8 2.01M Matrix Multiplication
life Rawbench C 118 32�32 2.44M Conway’s Game of Life
jacobi Rawbench C 59 32�32 2.38M Jacobi Relaxation

Table 1: Benchmark characteristics. Column Seq. RT shows the run-time for the uniprocessor code generated by
the Machsuif MIPS compiler.

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

fpppp-kernel 0.48 0.68 1.36 3.01 6.02 9.42
btrix 0.83 1.48 2.61 4.40 8.58 9.64
cholsky 0.88 1.68 3.38 5.48 10.30 14.81
vpenta 0.70 1.76 3.31 6.38 10.59 19.20
tomcatv 0.92 1.64 2.76 5.52 9.91 19.31
mxm 0.94 1.97 3.60 6.64 12.20 23.19
life 0.94 1.71 3.00 6.64 12.66 23.86
jacobi 0.89 1.70 3.39 6.89 13.95 38.35

Table 2: Benchmark Speedup. Speedup compares the run-time of the RAWCC-compiled code versus the run-time
of the code generated by the Machsuif MIPS compiler.

The benchmarks we select include programs from the Raw benchmark suite [3], program kernels
from the nasa7 benchmark of Spec92, tomcatv of Spec92, and the kernel basic block which accounts for
50% of the run-time in fpppp of Spec92. Since the Raw prototype currently does not support double-
precision floating point, all floating point operations in the original benchmarks are converted to single
precision. Table 1 gives some basic characteristics of the benchmarks.

Speedup We compare results of the Raw compiler with the results of a MIPS compiler provided by
Machsuif [15] targeted for an R2000. Table 2 shows the speedups attained by the benchmarks for Raw
machines of various sizes. Note that these speedups do not measure the advantage Raw is attaining over
modern architectures due to a faster clock. The results show that the Raw compiler is able to exploit ILP
profitably across the Raw tiles for all the benchmarks. The average speedup on 32 tiles is 19.7.

All the benchmarks except fpppp-kernel are dense matrix applications. These applications perform
particularly well on a Raw machine because arbitrarily large amount of parallelism can be exposed to the
Raw compiler by unrolling the loop. Currently, the Raw compiler unrolls loops by the minimum amount
required to guarantee the static reference property referred to in Section 3.1, which in most of these cases
expose as many copies of the inner loop for scheduling of ILP as there are the number of processors. The
only exception is btrix. Its inner loops process array dimensions of either five or fifteen. Therefore, the
maximum parallelism exposed to the basic block orchestrater is at most five or fifteen.

Many of these benchmarks have been parallelized on multiprocessors by recognizing do-all paral-

15



Application

0

8

16

24

32

40

Sp
ee

du
p

advanced-locality

high-level

raw

bt
ri

x

ch
ol

sk
y

vp
en

ta

m
xm

ja
co

bi lif
e

fp
pp

p

to
m

ca
tv

Figure 6: Breakdown of speedup for 32 processors into raw component, high-level component, and advanced-
locality component.

lelism and distributing such parallelism across the processors. Raw detects the same parallelism by
partially unrolling a loop and distributing individual instructions across tiles. The Raw approach is more
flexible, however, because it can schedule do-across parallelism contained in loops with loop carried de-
pendences. For example, several loops in tomcatv contain reduction operations, which are loop carried
dependences. In multiprocessors, the compiler needs to recognize a reduction and handle it as a special
case. The Raw compiler handles the dependence naturally, the same way it handles other arbitrary loop
carried dependences.

The size of the datasets in these benchmarks is intentionally made to be small to feature the low
communication overhead of Raw. Traditional multiprocessors, with their high overheads, would be
unable to attain speedup for such datasets [1].

Most of the speedup attained can be attributed to the exploitation of ILP, but unrolling plays a ben-
eficiary role as well. Unrolling speeds up a program by reducing its loop overhead and exposing scalar
optimizations across loop iterations. This latter effect is most evident in jacobi and life, where consecu-
tive iterations share loads to same array elements which can be optimized through common subexpression
elimination.

Fpppp-kernel is different from the rest of the applications in that it contains irregular fine-grained
parallelism. This application stresses the locality/parallelism tradeoff capability of the instruction par-
titioner. For the fpppp-kernel on a single tile, the code generated by the Raw compiler is significantly
worse than that generated by the original MIPS compiler. The reason is that the Raw compiler attempts
to expose the maximal amount of parallelism without regard to register pressure. As the number of tiles
increases, however, the number of available registers increases correspondingly, and the spill penalty of
this instruction scheduling policy reduces. The net result is excellent speedup, occasionally attaining
more than a factor of two speedup when doubling the number of tiles.

Speedup breakdown Figure 6 divides the speedup for 32 processors for each application into three
components: raw, high-level, and advanced-locality. The raw speedup is the speedup from a bare com-
piler which uses simple unrolling and moderate locality optimization.

High-level shows the additional speedup when the bare compiler is augmented with high level trans-
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Figure 7: Speedup of applications in the presence of dynamic disturbances for two machine models. The left
graph shows results for a machine with a single pc which must stall synchronously; the right graph shows results
for a Raw machine with multiple pcs which can stall asynchronously.

formations, which include control localization and array reshape.1 Array reshape refers to the technique
of tailoring the layout of an array to avoid memory bank conflicts between accesses in consecutive it-
erations of a loop. It is implemented by allocating a tailored copy of an array to a loop when the loop
has a layout preference which differs from the actual layout. This technique incurs the overhead of array
copying between the global and the tailored array before and after the loop, but most loops do enough
computation on the arrays to make this overhead worthwhile. Btrix, cholesky, and vpenta benefit from
this transformation, while life and tomcatv get their speedups from control localization.

Advanced-locality shows the performance gain from advanced locality optimizations. The optimiza-
tions include the use of locality sensitive algorithms for data partitioning and for the merging phase
during instruction partitioning. The figure shows that all applications except btrix and fpppp attain siz-
able benefits from these optimizations. The average performance gain of all the applications is 60%.

Effects of dynamic events We study the effects of dynamic disturbances such as cache misses on a
Raw machine. We model the disturbances in our simulator as random events which happen on loads and
stores, with a 5% chance of occurrence and an average stall time of 100 cycles. We examine the effects
of such disturbances on two machine models. One is a faithful representation of the Raw machine; the
other models a synchronous machine with a single instruction stream. On a Raw machine, a dynamic
event only directly effects the processor on which the event occurs. Processors on other tiles can proceed
independently until they need to communicate with the blocked processor. On the synchronous machine,
however, a dynamic event stalls the entire machine immediately. 2 This behavior is similar to how a
VLIW responds to a dynamic event. 3

Figure 7 shows the performance of each machine model in the presence of dynamic events. Speedup
is measured relative to the MIPS-compiled code simulated with dynamic disturbances. The results show
that asynchrony on Raw reduces the sensitivity of performance to dynamic disturbances. Speedup for the
Raw machine is on average 2.9 times better than that for the synchronous machine. In absolute terms,

1Array reshape is currently hand-applied; it is in the process of being automated.
2In this experiment, the synchronous architecture is allowed asynchrony arising from communication.
3Many VLIWs support non-blocking stores, as well as loads which block on use instead of blocking on miss. These features

reduce but do not eliminate the adverse effects of stalling the entire machine, and they come with a potential penalty in clock
speed.
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the Raw machine still achieves respectable speedups for all applications. On 32 processors, speedup on
fpppp is 3.0, while speedups for the rest of the applications are at lest 7.6.

6 Related work

Due to space limitations, we only discuss past work that is closely related to the problem of space-time
scheduling of instruction-level parallelism, which is the focus of this paper.

The Bulldog compiler [6] targets a VLIW machine consisting of clusters of functional units, register
files, and memory connected via a partial crossbar. Bulldog adopts a two-step approach for space-time
scheduling in which instructions are first mapped spatially and then temporally. Spatial mapping is
performed by an algorithm called Bottom-Up Greedy (BUG), a critical-path based mapping algorithm
that uses fixed memory and data nodes to guide the placement of other nodes. Like the approach adopted
by the clustering algorithm in RAWCC, BUG visits the instructions topologically, and greedily attempts
to schedule each instruction on the processor that is locally the best choice. Temporal scheduling is then
performed by a greedy list scheduling algorithm.

The key differences between the approaches taken in the Bulldog and RAWCC compilers are as fol-
lows. First, BUG attempts to find a spatial mapping of instructions that simultaneously addresses critical
path, data affinity, and processor preference issues in a single step. RAWCC, on the other hand, performs
spatial mapping in two steps; the Instruction Partitioner divides the available parallelism into threads
and the Instruction Placer considers where the threads should be placed given that some instructions are
locked to specific processors. Second, the spatial mapping performed by BUG is driven by a greedy
depth-first traversal that maps all instructions in a connected subgraph with a common root before pro-
cessing the next subgraph. As observed in [12], such a greedy algorithm is often inappropriate for parallel
computations such as those obtained by unrolling parallel loops. In contrast, instruction partitioning and
placement in RAWCC uses a global priority function that can intermingle instructions from different con-
nected components of the dag. Third, the temporal scheduling performed by RAWCC is more general
than the scheduling in Bulldog because it schedules both computation and communication instructions.

Compilation for some other kinds of clustered VLIW architectures have also been considered in past
work. For example, a brief description of compilation for an LC-VLIW (Limited Connectivity VLIW)
architecture can be found in [5]. This approach includes partitioning of instructions across clusters as
well as insertion of explicit inter-cluster register-to-register data movement instructions. However, there
are significant differences between the LC-VLIW machine model and a Raw machine. Though an LC-
VLIW machine has partitioned/distributed register files, its machine model assumes uniform access to
main memory unlike Raw. Further, an LC-VLIW machine assumes a single VLIW instruction stream,
while Raw is multisequential.

Many ILP-enhancing techniques have been developed to increase the amount of parallelism avail-
able within a basic block. These techniques include control speculation [9], data speculation [16],
trace/superblock scheduling [7] [13], and predicated execution [2]. Several characteristics of Raw affect
the application of these techniques. In Raw, a global branch is more costly relative to other instructions
because it requires an explicit broadcast followed by local branches. This cost is reflected in the side
exits of traces. To apply trace or superblock scheduling to Raw, one needs to reduce these side exits. On
the other hand, control localization obviates the need for predicated execution on Raw: it permits local
execution of more general control flow constructs, and it does not require support from the ISA.

Control localization is similar to the technique of hierarchical reduction [10]. They both share the
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basic idea of collapsing control constructs into a single abstract node. They differ in application and
in details. First, hierarchical reduction is used for software pipelining on VLIWs; control localization
is used for general instruction scheduling on the Raw machine. Second, control localization requires
promotion of memory operations, while hierarchical reduction does not. Third, control localization
uses a more flexible approach which allows control constructs to be converted to multiple nodes. Most
importantly, control localization takes advantage of the presence of independent instruction streams to
schedule the execution of independent control flow constructs in parallel.

7 Conclusion

This paper presents the Raw architecture and compiler system. Together, they exploit instruction-level
parallelism in applications to achieve high levels of performance by physically distributing resources
and exposing them fully. The resulting non-uniform access times create many challenging compiler
problems. This paper focuses on the space-time scheduling of instruction-level parallelism brought about
by the physically distributed register files with non-uniform register access times. The Raw compiler
detects and orchestrates instruction level parallelism within basic blocks by adapting techniques from
MIMD task partitioning and scheduling, as well as from FPGA communication scheduling. It employs
a decentralized control flow model, where control is localized when possible and global branching is
performed explicitly and asynchronously.

A Raw compiler based on SUIF has been implemented. The compiler accepts sequential C or Fortran
programs, discovers instruction-level parallelism, and schedules the parallelism across the Raw substrate.
Reflecting our ILP focus, the compiler currently does not exploit coarse-grain parallelism through SUIF’s
loop-level parallelization passes, although it can be easily extended to do so. This paper presents some
promising results on the potential of the Raw compiler. The compiler is capable of realizing 9-way par-
allelism on 32 tiles for fpppp-kernel, an application with irregular, fine-grained parallelism. We find that
Raw machine’s decoupled control flow enables it to tolerate dynamic events such as cache misses. Since
a Raw microprocessor is already suitable for many other forms of parallelism, including coarse-grain
loop level parallelism, stream processing, and static pipelines, its ability to exploit ILP is an important
step in demonstrating that the Raw machine is an all-purpose parallel machine.
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A Static Ordering Property

Dynamic events such as cache misses prevent one from statically analyzing the precise timing of a
schedule. The Raw compiler relies on the static ordering property of the Raw architecture to generate
correct code in the presence these dynamic events. The static ordering property states that the result
produced by a static schedule is independent of the specific timing of the execution. Moreover, it states
that whether a schedule deadlocks is a timing independent property as well. Either the schedule always
deadlocks, or it never does.

To generate a correct instruction schedule, Raw orders the instructions in a way that obeys the in-
struction dependencies of the program. In addition, it ensures that the schedule is deadlock free assuming
one set of instruction timings. Static ordering property then ensures that the schedule is deadlock free
and correct for any execution of the schedule.
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regular rectangles.

We provide an informal proof of the static ordering property. We restrict the static ordering property
to the practical case: given a schedule that is deadlock free for one set of instruction timings, then for
any set of instruction timings,

1. it is deadlock free.

2. it generates the same results.

First, we show (1). A deadlock occurs when at least one instruction stream on either the processor
or the switch has unexecuted instructions, but no instruction stream can make progress. A non-empty
instruction stream, in turn, can fail to make progress if it is attempting to execute a blocked communi-
cation instruction. A communication instruction blocks when either its input port is empty, or its output
port is full. Computation instructions do not use communication ports; they cannot cause deadlocks and
are only relevant in this discussion for the timing information they represent.

Consider a communication instruction c. We derive the conditions under which it can execute. Three
resources must be available: its input value, its execution node (processor or switch), and its output
ports.4 The resource requirements can also be represented by execution of a set of instructions. First,
note that ports are dedicated connections between two fixed nodes, so that each port has exactly one
reader node and one writer node. Let instruction c be the xth instruction that reads its input port I, the
yth instruction that executes on its node N, and the zth instruction that writes its output port O. Then the
resources for instruction c become available after the following instructions have executed:

1. the xth instruction that writes port I.

2. the y � 1th instruction that executes on node N.

3. the z � 1th instruction that reads (and flushes) port O.

See Figure 8.

The key observation is that once a resource becomes available for instruction c, it will forever remain

4The three resources need not all be applicable. A send instruction only requires an output port and a node, while a receive
instruction only requires the input value and a node.
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available until the instruction has executed. The value on the input port cannot disappear; the execution
node cannot skip over c to run other instructions; the output port cannot be full after the previous value
has been flushed. The reservation of the resources is based on three properties: the single-reader/single-
writer property of the ports, the blocking semantics of the communication instructions, and the in-order
execution of instructions.

Therefore, a communication instruction can execute whenever its dependent instructions, defined by
the enumeration above, have executed.

Now, consider the schedule that is deadlock-free for one known set of timings. Plot the execution
trace for this set of timings in a two dimensional grid, with node-id on the x-axis and time on the y-axis.
Each slot in the execution trace contains the instruction (if any) that is executed for the specified node at
the specified time. The plot is similar to Figure 8, except that real execution times, rather than the static
schedule orders, are used to place the instructions temporally.

Finally, consider a different set of timings for the same schedule. Let tnew be a point in time for the
new timings when the schedule has not been completed, and let Enew(tnew) be the set of instructions
that have executed before time tnew. We use the above deadlock-free execution trace to find a runnable
instruction at time tnew. Find the smallest time t in the deadlock-free execution trace that contains an
instruction not in Enew(tnew). Call the instruction c. The dependent instructions of c must necessarily
be contained in Enew(tnew).5 Therefore, c must be be runnable at time tnew for the new set of timings.

Having found a runnable instruction for any point in time when the schedule is not completed, the
schedule must always make progress, and it will not deadlock.

The second correctness condition, that a deadlock-free schedule generates the same results under two
different sets of timings, is relatively easy to demonstrate. Changes in timings do not affect the order
in which instructions are executed on the same node, nor do they change the order in which values are
injected or consumed at individual ports. The blocking semantics of communication instructions ensures
that no instruction dependence can be violated due to a timing skew between the sender and the receiver.
Therefore, the values produced by two different timings must be the same.

5This statement derives from two facts:
1. All dependent instructions of c must execute before c in the deadlock-free execution trace.
2. Since c executes at time t and all instructions executed before time t are in Enew(tnew), all instructions executed

before c in the deadlock-free execution trace are in Enew(tnew).
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