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From FORTRAN to NumPy, arrays have revolutionized how we express computation. However, arrays in these,
and almost all prominent systems, can only handle dense rectilinear integer grids. Real world arrays often
contain underlying structure, such as sparsity, runs of repeated values, or symmetry. Support for structured
data is fragmented and incomplete. Existing frameworks limit the array structures and program control flow
they support to better simplify the problem.

In this work, we propose a new programming language, Finch, which supports both flexible control flow
and diverse data structures. Finch facilitates a programming model which resolves the challenges of computing
over structured arrays by combining control flow and data structures into a common representation where
they can be co-optimized. Finch automatically specializes control flow to data so that performance engineers
can focus on experimenting with many algorithms. Finch supports a familiar programming language of loops,
statements, ifs, breaks, etc., over a wide variety of array structures, such as sparsity, run-length-encoding,
symmetry, triangles, padding, or blocks. Finch reliably utilizes the key properties of structure, such as structural
zeros, repeated values, or clustered non-zeros. We show that this leads to dramatic speedups in operations such
as SpMV and SpGEMM, image processing, graph analytics, and a high-level tensor operator fusion interface.

CCS Concepts: • Software and its engineering → Control structures; Data types and structures;
Imperative languages; • Mathematics of computing→Mathematical software.

Additional Key Words and Phrases: Sparse Array, Structured Array, Control Flow, Programming Language

1 INTRODUCTION
Arrays are the most fundamental abstraction in computer science. Arrays and lists are often the
first-taught datastructure [4, Chapter 2.2], [55, Chapter 2.2]. Arrays are also universal across
programming languages, from their introduction in Fortran in 1957 to present-day languages like
Python [10], keeping more-or-less the same semantics. Modern array programming languages
such as NumPy [44], SciPy [88], MatLab [66], TensorFlow [2], PyTorch [68], and Halide [70] have
pushed the limits of productive data processing with arrays, fueling breakthroughs in machine
learning, scientific computing, image processing, and more.
The success and ubiquity of arrays is largely due to their simplicity. Since their introduction,

multidimensional arrays have represented dense, rectilinear, integer grids of points. By dense, we
mean that indices are mapped to value via a simple formula relating multidimensional space to linear
memory. Consequently, dense arrays offer extensive compiler optimizations and many convenient
interfaces. Compilers understand dense computations across many programming constructs, such
as for and while loops, breaks, parallelism, caching, prefetching, multiple outputs, scatters, gathers,
vectorization, loop-carry-dependencies, and more. A myriad of optimizations have been developed

Authors’ addresses: Willow Ahrens, MIT CSAIL, Cambridge, Massachusetts, USA, willow@csail.mit.edu; Teodoro Fields
Collin, MIT CSAIL, Cambridge, Massachusetts, USA, teoc@mit.edu; Radha Patel, MIT CSAIL, Cambridge, Massachusetts,
USA, rrpatel@mit.edu; Kyle Deeds, University of Washington, Seattle, Washington, USA, kdeeds@cs.washington.edu;
Changwan Hong, MIT CSAIL, Cambridge, Massachusetts, USA, changwan@mit.edu; Saman Amarasinghe, MIT CSAIL,
Cambridge, Massachusetts, USA, saman@csail.mit.edu.

ar
X

iv
:2

40
4.

16
73

0v
1 

 [
cs

.M
S]

  2
5 

A
pr

 2
02

4



111:2 Ahrens et al.

Fig. 1. A few examples of matrix structures arising in practice

for dense arrays, such as loop fusion, loop tiling, loop unrolling, and loop interchange. However,
while dense arrays are the easiest way to program for performance, the world is not all dense.

Our world is full of structured data.
Sparse arrays (which store only nonzero elements) describe networks, databases, and simula-

tions [5, 12, 15, 64]. Run-length encoding describes images and masks, geometry, and databases
(such as a list of transactions with the date field all the same) [39, 76]. Symmetry, bands, padding, and
blocks arise due to modeling choices in scientific computing (e.g., higher order FEMs) as well as in
intermediate structures in many linear solvers (e.g., GMRES) [22, 67, 72]. In the context of machine
learning, combinations of sparse and blocked matrices are increasingly under consideration [27].
Even complex operators can be expressed as structured arrays. For example, a convolution with a
filter can be expressed as a matrix multiplication with the Toeplitz matrix of all the circular shifts
of the filter [82].

Currently, support for structured data is fragmented and incomplete. Experts must hand
write variations of even the simplest kernels, like matrix multiply, for each data structure/data
set and architecture to get performance. Implementations must choose a small set of features
to support well, resulting in a compromise between program flexibility and data structure
flexibility. Hand-written solutions are collected in diverse libraries like MKL, OpenCV, LAPACK
or SciPy [9, 20, 69, 88]. However, libraries will only ever support a subset of programs on a subset
of data structure combinations. Even the most advanced libraries, such as the GraphBLAS, which
support a wide variety of sparse operations over various semi-rings always lack support for other
features, such as tensors, fused outputs, or runs of repeated values [21, 63]. While dense array
compilers support an enormous variety of program constructs like early break andmultiple left hand
sides, they only support dense arrays [41, 70]. Special-purpose compilers like TACO [53], Taichi [47],
StructTensor [38], or CoRa [34] which support a select subset of structured data structures (only
sparse, or only ragged arrays) must compromise by greatly constraining the classes of programs
which they support, such as tensor contractions. This trade-off is visualized in Tables 1 and 2.

Prior implementations are incomplete because the abstractions they use are tightly coupled with
the specific data structures that they support. For example, TACO merge lattices represent Boolean
logic over sets of non-zero values on an integer grid [54]. The polyhedral model allows various
compilers to represent dense computations on affine regions [41]. Taichi enriches single static
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Einsums/Contractions ✓ ✓ ✓ ✓ ✓ ✓
Multiple LHS ✓ ✓ ✓ ✓
Affine Indices ✓ ✓ ✓ ✓
Recurrence ✓
If-Conditions and Masks ✓ ✓ ✓ ✓
Scatter Gather ✓ ✓ ✓
Early Break ✓ ✓ ✓
Unrestricted Read/Write ✓

Table 1. Control flow support across various tools.
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Dense ✓ ✓ ✓ ✓ ✓ ✓
Padded ✓ ✓
One Sparse Operand ✓ ✓ ✓
Multiple Sparse Operands ✓ ✓
Run-length ✓
Symmetric ✓ ✓
Regular Sparse Blocks ✓ ✓
Irregular Sparse Blocks ✓
Ragged ✓ ✓

Table 2. Data structure support across various tools.
Finch supports both complex programs and complex
data structures.
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assignment form with a specialized instruction for accessing only a single sparse structure, but it
supports more control flow [47]. These systems tightly couple their control flow to narrow classes
of data structures to avoid the challenges that occur when we intersect complex control flow with
structured data. There are two challenges:
Optimizations are specific to the indirection and patterns in data structures: These

structures break the simple mapping between array elements and where they are stored in memory.
For example, sparse arrays store lists of which coordinates are nonzero, whereas run-length-
encoded arrays map several pixels to the same color value. These zero regions or repeated regions
are optimization opportunities, and we must adapt the program to avoid repetitive work on these
regions by referencing the stored structure.
Performance on structured data is highly algorithm dependent: The landscape of imple-

mentation decisions is dramatically unpredictable. For example, the asymptotic performance of
sparse matrix multiplication can be impacted by the distribution of nonzeros, the sparse format,
and the loop order [8, 97]. This means that performance engineering for such kernels requires the
exploration of a large design space, changing the algorithm as well as the data structures.
In this work, we propose a new programming language, Finch, which supports both

flexible control flow and diverse data structures. Finch facilitates a programming model which
resolves the challenges of computing over structured arrays by combining control flow and data
structures into a common representation where they can be co-optimized. In particular,
Finch automatically specializes the control flow to the data so that performance engineers can
focus on experimenting with many algorithms. Finch supports a familiar programming language
of loops, statements, if conditions, breaks, etc., over a wide variety of array structures, such as
sparsity, run-length-encoding, symmetry, triangles, padding, or blocks. This support would be
useless without the appropriate level of structural specialization; Finch reliably utilizes the key
properties of structure, such as structural zeros, repeated values, or clustered non-zeros.
As an example, a programmer might explore different ways to intersect only the even integers

of two lists (represented as sparse vectors with sorted indices). The control flow here is only useful
if the first example differs from the next two in that it actually selects only even indices as the two
integer lists are merged and different from the last in that it does not require another tensor:

for i = _
if i % 2 == 0

c[i]=a[i]*b[i]
end

end

for i = _
if i % 2 == 0

ap[i] = a[i]
end

end
for i = _

c[i] = ap[i] * b[i]
end

for i = _
cp[i] = a[i] * b[i]

end
for i = _

if i % 2 == 0
c[i] = cp[i]

end
end

for i = _
if i % 2 == 0

f[i] = 1
end

end
for i = _

c[i] = a[i] * b[i] * f[i]
end

1.1 Contributions
(1) More complex array structures than ever before. We are the first to extend level-by-level hi-

erarchical descriptions to capture banded, triangular, run-length-encoded, or sparse datasets,
and any combination thereof. We have chosen a set of level formats that completely captures
all combinations of relevant structural properties (zeros, repeated values, and/or blocks).
Although many systems (TACO, Taichi, SPF, Ebb) [16, 26, 47, 81] feature a flexible structure
description, our level abstraction is more capable and extensible because it uses Looplets
[7] to express the structure of each level.

(2) A rich structured array programming language with for-loops and complex control flow
constructs at the same level of productivity of dense arrays. To our knowledge, the Finch
programming language is the first to support if-conditions, early breaks, and multiple left
hand sides over structured data, as well as complex accesses such as affine indexing or
scatter/gather of sparse or structured operands.
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(3) A compiler that specializes programs to data structures automatically, facilitating an ex-
pressive language that makes it easier to search the complex space of algorithms and data
structures. Finch reliably utilizes four key properties of structure, such as structural zeros,
repeated values, clustered non-zeros, and singletons.

(4) Our compiler is highly extensible, evidenced by the variety of level formats and control
flow constructs that we implement in this work. For example, Finch has been extended to
support real-valued array indices with continuous arrays. Finch is also used as a compiler
backend for the Python PyData/Sparse library [3].

(5) We evaluate the efficiency, flexibility, and expressibility of our language in several case
studies on a wide range of applications, demonstrating speedups over the state of the
art in classic operations such as SpMV (2.51×) and SpGEMM (1.25×), to more complex
applications such as graph analytics (3.53×, reducing lines of code by 4× over GraphBLAS),
image processing (19.5×), and the Python Array API (28×).

This advances the state-of-the-art over the Looplets work [7]. While Looplets presented a way
to merge iterators over multiple single dimensional structures, we go further by combining single-
dimensional looplets into multi-dimensional tensors and operating on them in a programming
language with fully-featured control flow.

lookup(𝑠𝑒𝑒𝑘,𝑏𝑜𝑑𝑦) : The Lookup looplet represents a randomly accessible region of
an iterator. The body of the lookup is understood to have one less dimension than the
lookup itself, as we have already “looked up” that index in the tensor by the time we
reach the body. seek(i) is a function that updates state to the given index.
run(𝑏𝑜𝑑𝑦) : The Run looplet represents a constant region of an iterator. The body of
the run is understood to have one less dimension than the lookup itself, as all of the
bodies are identical.
phase(𝑐 : 𝑑,𝑏𝑜𝑑𝑦) : The Phase looplet represents a restriction of the range on which a
loop should execute, and allows us to succinctly express the ranges on which children
of compound looplets are defined.
switch(𝑐𝑜𝑛𝑑,ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 ) : The Switch looplet allows us to specialize the body of a
looplet based on a condition, evaluated in the embedding context. If the condition is
true, we use ‘head‘, otherwise we use ‘tail‘. Switch has a high lowering priority so we
can see what’s inside of it and lower that appropriately. This also lifts the condition as
high as possible into the loop nest. The condition is assumed to evaluate to a Boolean.
thunk(𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒,𝑏𝑜𝑑𝑦, 𝑒𝑝𝑖𝑙𝑜𝑔𝑢𝑒 ) : The Thunk looplet allows us to cache certain
computations in the state under which the body will execute. This is useful for com-
puting and caching the results of expensive computations.
sequence(ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 ) : The Sequence looplet represents the concatenation of two
looplets. Both arguments must be phase looplets, and are assumed to be non-
overlapping, covering, and in order.
spike(𝑏𝑜𝑑𝑦, 𝑡𝑎𝑖𝑙 ) : The Spike looplet represents a run followed by a single value.
In this paper, Spike will be considered a shorthand for sequence(phase(𝑖 : 𝑗 −
1, run(𝑏𝑜𝑑𝑦) ), phase( 𝑗 : 𝑗, run(𝑡𝑎𝑖𝑙 ) ) ) . In the Finch compiler, spikes are handled
with special care, since they are an opportunity to align the final run to the end of the
root loop extent, without using any special bounds inference.
stepper( [𝑠𝑒𝑒𝑘 ], 𝑛𝑒𝑥𝑡,𝑏𝑜𝑑𝑦) : The stepper looplet represents a variable number of
looplets, concatenated. Since our looplets may be skipped over due to conditions or
various rewrites, the 𝑠𝑒𝑒𝑘 function allows us to fast-forward the state to the start of the
root loop extent when it comes time to lower the stepper. The 𝑛𝑒𝑥𝑡 function advances
the state to the next iteration of the stepper.

Fig. 2. The Looplet language, as understood in a correct execution of a Finch program.
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2 BACKGROUND
2.1 Looplets
Finch represents iteration patterns using Looplets, a language that decomposes datastructure
iterators hierarchically. Looplets represent the control-flow structures needed to iterate over any
given datastructure, or multiple datastructures simultaneously. In particular, Looplets are good at
lifting code to the highest possible loop level and subdividing iteration hierarchically in coordinate
space. Because Looplets are compiled with progressive lowering, structure-specific mathematical
optimizations such as integrals, multiply by zero, etc. can be implemented using simple compiler
passes like term rewriting and constant propagation during the intermediate lowering stages.

The Looplets are described in Figure 2. We simplify the presentation to focus on the semantics,
rather than precise implementation. Several looplets introduce or modify variables in the scope of
the target language. It is assumed that if a looplet introduces a variable, the child looplet will not
modify that variable. For more background on Looplets, we recommend the original work [7].

2.2 Fiber Trees

Fig. 3. Levels in the fiber tree representation of a
sparse matrix in CSC format, with a dense outer
level and a sparse inner level. The element level
holds the leaves of the tree.

Fiber-tree style tensor abstractions have been the
subject of extensive study [25, 26, 82]. The underly-
ing idea is to represent a multi-dimensional tensor
as a nested vector datastructure, where each level of
the nesting corresponds to a dimension of the tensor.
Thus, a matrix would be represented as a vector of
vectors. This kind of abstraction lends itself to repre-
senting sparse tensors if we vary the type of vector
used at each level in a tree. Thus, a sparse matrix
might be represented as a dense vector of sparse
vectors. The vector of subtensors in this abstraction
is referred to as a fiber.

Instead of storing the data for each subfiber separately, most sparse tensor formats such as CSR,
DCSR, and COO usually store the data for all fibers in a level contiguously. In this way, we can
think of a level as a bulk allocator for fibers. Continuing the analogy, we can think of each fiber as
being disambiguated by a position, or an index into the bulk pool of subfibers. The mapping 𝑓
from indices to subfibers is thus a mapping from an index and a position in a level to a subposition
in a sublevel. Figure 3 shows a simple example of a level as a pool of fibers.

When we need to refer to a particular fiber at position 𝑝 in the level 𝑙 , we may write 𝑓 𝑖𝑏𝑒𝑟 (𝑙, 𝑝).
Note that the formation of fibers from levels is lazy, and the data underlying each fiber is managed
entirely by the level, so the level may choose to overlap the storage between different fibers. Thus,
the only unique data associated with 𝑓 𝑖𝑏𝑒𝑟 (𝑙, 𝑝) is the position 𝑝 .

3 BRIDGING LOOPLETS AND FINCH: THE TENSOR INTERFACE
Arrays use multiple dimensions to organize data with respect to orthogonal concepts. Thus, the
Finch language supports multi-dimensional arrays. Unfortunately, the Looplet abstraction is best
suited towards iterators over a single dimension. Our level abstraction provides a bridge between the
single dimensional iterators created from Looplets and the multi-dimensional fiber-tree abstractions
common to tensor compilers. This bridge must address three challenges. First, while Looplets
represent an instance of an iterator over a tensor, we may access the same tensor twice with
different indices. Thus, the 𝑢𝑛𝑓 𝑢𝑟𝑙 function creates separate looplet nests for each iterator. Next,
since Finch programs go beyond just single Einsums, they may read and write to the same data at
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different times. The 𝑑𝑒𝑐𝑙𝑎𝑟𝑒 , 𝑓 𝑟𝑒𝑒𝑧𝑒 , and 𝑡ℎ𝑎𝑤 functions provide machinery to manage transition
between these states. Finally, we must be able to write looplet nests that modify tensors, as well as
reading them. The 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 function manages the allocation of new data in the tensor.

Additionally, prior fiber-tree representations focus on sparsity (where only the nonzero elements
are represented) and treat sparse vectors as sets of represented points. Since our fiber-tree represen-
tation must handle other kinds of structure, such as diagonal, repeated, or constant values, we must
generalize our fiber abstraction to allow arbitrary mappings from indices into a space of subfibers.

In the rest of this section, we discuss how these 5 core functions (𝑑𝑒𝑐𝑙𝑎𝑟𝑒 , 𝑓 𝑟𝑒𝑒𝑧𝑒 , 𝑡ℎ𝑎𝑤 , 𝑢𝑛𝑓 𝑢𝑟𝑙 ,
and 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒) function as part of a life cycle abstraction that defines a level in Finch. These interfaces
add to the level abstraction, expanding the types of data that they can express via mapping to
Looplets and expanding the contexts in which they can be used. We then identify a taxonomy of
four key structural properties exhibited in data. We implement several levels in this abstraction
that capture all combinations of these structures, including specializations to zero dimensional
tensors (scalars) and level structures that support different access patterns.

3.1 Tensor Lifecycle, Declare, Freeze, Thaw, Unfurl
Our simplified view of a level is enabled by our use of Looplets to represent the structure within
each fiber. In fact, our level interface requires only 5 highly general operations, described below.
The first three of these functions, 𝑑𝑒𝑐𝑙𝑎𝑟𝑒 , 𝑓 𝑟𝑒𝑒𝑧𝑒 , and 𝑡ℎ𝑎𝑤 , have to do with managing when

tensors can be assumed mutable or immutable. As we use Looplets to represent iteration over a
tensor, we must restrict the mutability of tensors while we iterate over them. For example, if a
tensor declares it has a constant region from 𝑖 = 2 : 5, but some other part of the computation
modifies the tensor at 𝑖 = 3, this would result in incorrect behavior. It is much easier to write
correct Looplet code if we can assume that the tensor is immutable while we are reading from it.
Thus, we introduce the notion that a tensor can be in read-only mode or update-only mode. In
read-only mode, the tensor may only appear in the right-hand side of assignments . In update-only
mode, the tensor may only appear in the left-hand side of an assignment, either being overwritten
or incremented by some operator. We can switch between these modes using freeze and thaw
functions. The 𝑑𝑒𝑐𝑙𝑎𝑟𝑒 function is used to allocate a tensor, initialize it to some specified size and
value, and leave it in update-only mode.

The 𝑢𝑛𝑓 𝑢𝑟𝑙 function is used to manage iteration over a subfiber. At the point when it comes
time to iterate over a tensor, be in on the left or right hand side of an assignment, we call 𝑢𝑛𝑓 𝑢𝑟𝑙 to
precompute whatever state and datastructures are necessary to return a looplet nest that would
iterate over that level of a tensor. We call 𝑢𝑛𝑓 𝑢𝑟𝑙 directly before iterating over the corresponding
loop, so it has access to any state variables introduced by freezing or thawing the tensor.

𝑑𝑒𝑐𝑙𝑎𝑟𝑒 (𝑙𝑣𝑙, 𝑖𝑛𝑖𝑡, 𝑑𝑖𝑚𝑠...) : Declares the level to hold subtensors of size 𝑑𝑖𝑚𝑠 and an initial value of 𝑖𝑛𝑖𝑡 . Requires the level to be in
read-only mode.

𝑓 𝑟𝑒𝑒𝑧𝑒 (𝑙𝑣𝑙 ) : Finalizes the updates in the level, and readies the level for reading. Requires the level to be in update-only mode.

𝑡ℎ𝑎𝑤 (𝑙𝑣𝑙 ) : Prepares the level to accept updates. Requires the level to be in read-only mode.

𝑢𝑛𝑓 𝑢𝑟𝑙 (𝑓 𝑖𝑏𝑒𝑟 (𝑙𝑣𝑙, 𝑝𝑜𝑠 ), [𝑒𝑥𝑡 ],𝑚𝑜𝑑𝑒, [𝑜𝑝 ], [𝑟ℎ𝑠 ] ) : When 𝑒𝑥𝑡 is given, unfurls the fiber at position 𝑝𝑜𝑠 in the level 𝑙𝑣𝑙 over the extent
𝑒𝑥𝑡 . When𝑚𝑜𝑑𝑒 = read, returns a looplet nest over the values in the read-only fiber. When𝑚𝑜𝑑𝑒 = update, returns a looplet nest over
mutable subfibers in the update-only fiber. When applied to a scalar or leaf node, 𝑒𝑥𝑡 is omitted and we may also use 𝑜𝑝 and 𝑟ℎ𝑠 to update
the scalar value. Often, skipping over mutable locations allows the level to know which locations must be stored. Often, a dirty bit may be
used in 𝑡𝑛𝑠 to communicate whether the mutable subfiber has been written to, which allows the parent fiber to know whether the subfiber
must be stored explicitly.

𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 (𝑙𝑣𝑙, 𝑝𝑜𝑠𝑠𝑡𝑎𝑟𝑡 , 𝑝𝑜𝑠𝑠𝑡𝑜𝑝 ) : Allocates subfibers in the level from positions 𝑝𝑜𝑠𝑠𝑡𝑎𝑟𝑡 to 𝑝𝑜𝑠𝑠𝑡𝑜𝑝 . Usually, this function is only ever
called on unassembled positions, but some levels (such as dense levels or bytemaps) may support reassembly.

Fig. 4. The five functions that define a level.
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Our view of a level as a fiber allocator implies an allocation function 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 (𝑡𝑛𝑠, 𝑝𝑜𝑠𝑠𝑡𝑎𝑟𝑡 :
𝑝𝑜𝑠𝑠𝑡𝑜𝑝 ), which allocates fibers at positions 𝑝𝑜𝑠𝑠𝑡𝑎𝑟𝑡 : 𝑝𝑜𝑠𝑠𝑡𝑜𝑝 in the level. We don’t specify a de-
allocation function, instead relying on initialization to reset the fiber if it needs to be reused. While
all of the previous functions are used to manage the lifecycle and iteration over a general tensor,
𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 is quite specific to the level abstraction, and the notion of positions within sublevels.
Note: it was an intentional choice to hold the parent level responsible for managing the data of the
sublevels, which positions they allocate, etc. This allows the parent level to reuse allocation logic
from internal index datastructures. For example, a sparse level might use a list of indices to store
which nonzeros are present, and when it comes time to resize that list, it could also call 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 to
resize the sublevel, reducing the number of branches in the code. The 𝑎𝑠𝑠𝑒𝑚𝑏𝑙𝑒 function lends itself
particularly to a "vector doubling" allocation approach, which we have found to be effective and
flexible when managing the allocation of sparse left hand sides. This benefit is made clear in our
case studies, where prior systems like TACO do not support all possible loop orderings and format
combinations for sparse matrix multiply because they do not have a flexible enough allocation
strategy, instead using a two-phase approach which requires computing a complicated closed-form
kernel to iterate over the data twice to determine the number of required output nonzeros.

3.2 The 4 Key Structures
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Dense

✓ n/a
✓ DenseRLE
✓ ✓ n/a

✓ n/a
✓ ✓ n/a
✓ ✓ n/a
✓ ✓ ✓ n/a

✓ Sparse
✓ ✓ SparsePinpoint
✓ ✓ SparseRLE
✓ ✓ ✓ SparseInterval
✓ ✓ SparseVBL
✓ ✓ ✓ SparseBand
✓ ✓ ✓ n/a
✓ ✓ ✓ ✓ n/a

Fig. 5. All combinations of our 4 structural
properties and the corresponding formats
we have chosen to represent them. Not all
combinations are relevant. Note that blocks
and runs need not be considered together
because we must store a run length for each
run, so there isn’t a significant storage bene-
fit to combining them. Blocks and singletons
only make sense in the context of sparsity.

In the Finch programming model, the programmer re-
lies on the Finch compiler to specialize to the sequential
properties of the data. In our experience, the main ben-
efits of specializing to structure come from the following
properties of the data:

• Sparsity Sparse data is data that is mostly zero,
or some other fill value. When we specialize on
this data, we can use annihilation (𝑥 ∗ 0 = 0),
identity (𝑥 ∗ 1 = 1), or other constant propagation
properties (𝑖 𝑓 𝑒𝑙𝑠𝑒 (𝑓 𝑎𝑙𝑠𝑒, 𝑥,𝑦) = 𝑦) to simplify the
computation and avoid redundant work.

• Blocks Blocked data is a subset of sparse data
where the nonzeros are clustered and occur ad-
jacent to one another. This provides us with two
opportunities: We can avoid storing the locations
of the nonzeros individually, and we can use more
efficient randomly accessible iterators within the
block. [7, 50, 89].

• Runs Runs of repeated values may occur in dense
or sparse code, cutting down on storage and al-
lowing us to use integration rules such as for i

= 1:n; s += x end→ s += n * x or code motion
to lift operations out of loops [7, 31].

• Singular When we have only one non-fill region
in sparse data, we can avoid a loop entirely and
reduce the complexity of iteration [7, 38].

In the following section, we consider a set of concrete implementations of levels that expose all
combinations of these structures, paying some attention to a few important special cases: random
access, scalars, and leaf levels. We summarize the structures in Table 3 and Table 5.
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Fig. 6. Several examples of matrix structures represented using the level structures identified in Table 5.
Comparing this figure to [7, Figure 3], we see that a level-by-level structural decomposition is diagrammed
together with the Looplets.

3.3 Implementations of Structures
3.3.1 Sequentially Constructed Levels. We consider all combinations of these structural properties
in Table 5, resulting in 8 key level formats that correspond the the 8 resulting situations. While it is
impossible to write code which precisely addresses every possible structure, our level formats can
be combined to express a wide variety of hierarchical structures to a sufficient granularity that
we can generate code which utilizes the four properties. For example, though banded arrays are a
superset of ragged arrays, representing a ragged array using a banded format does not add much
overhead. The structures we consider are exhaustive in the sense that they address all combinations
of sparsity, blocks, runs, and singletons in each level. We can represent a wide variety of hierarchical
tensor structures by combining these level structures in a tree, as shown in Figure 6.

3.3.2 Non-sequentially Constructed Levels. To reduce the implementation burden and improve
efficiency in the common case, the levels we described in the previous section only support bulk,
sequential construction of formats. However, when users want to be able to write out of order
(which is a common requirement arising from loop order or from the problem itself, it occurs in
our SpGEMM algorithms and our histogram example in the evaluation section), we must use more
complicated datastructures like hash tables and trees to support the random writes so that in-order
levels can be constructed later. Because these datastructures are more complex and have a higher
implementation burden and performance overhead, we only support random access construction
of sparse or dense structures. We can use these two more general structures as intermediates to
convert to our more specialized structures later.

3.3.3 Scalars. Because leaf levels are geared towards representingmultiple leaves, we also introduce
a much simpler Scalar format to represent 0-dimensional tensors. Scalars don’t have as much
structure as clearly only two structures apply. Through these structures, scalars can also affect
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Sequentially Constructed Levels
Dense: The dense format is the simplest format, mapping 𝑓 𝑖𝑏𝑒𝑟 (𝑙, 𝑝 ) [𝑖 ] → 𝑓 𝑖𝑏𝑒𝑟 (𝑙 .𝑙𝑣𝑙, 𝑝 × 𝑙 .𝑠ℎ𝑎𝑝𝑒 + 𝑖 ) . This format is used to store
dense data and is often a convenient format for the root level of a tensor. Due to its simplicity, freezing and thawing the level are no-ops.
DenseRLE: Used to represent runs of repeated values, storing two vectors, 𝑟𝑖𝑔ℎ𝑡 and 𝑝𝑡𝑟 , with 𝑞𝑡ℎ run in the 𝑝𝑡ℎ subfiber starting and
ending at 𝑟𝑖𝑔ℎ𝑡 [𝑝𝑡𝑟 [𝑝 ] + 𝑞 ] and 𝑟𝑖𝑔ℎ𝑡 [𝑝𝑡𝑟 [𝑝 ] + 𝑞 + 1] − 1, respectively. A challenge arises for this level: it is difficult to merge duplicate
runs. Such a scenario might arise when merging runs of subfibers of length 3, representing colors in an image. Ideally, we would be able
to detect duplicate subfibers and merge them on the fly, but we cannot determine which subfibers are equal because we cannot read them
while the sublevel is in update-only mode. Instead, we merge the duplicates during the freeze phase. We 𝑓 𝑟𝑒𝑒𝑧𝑒 the sublevel, 𝑑𝑒𝑐𝑙𝑎𝑟𝑒 a
separate sublevel 𝑏𝑢𝑓 as a buffer to store the deduplicated subfibers, and then compare each of the subfibers in the main level, copying the
deduplicated subfibers into the buffer.
SparseList: The simplest sparse format, used to construct popular formats like CSR, CSC, DCSR, DCSC, and CSF. It stores two vectors, 𝑖𝑑𝑥
and 𝑝𝑡𝑟 , such that 𝑖𝑑𝑥 [𝑝𝑡𝑟 [𝑝 ] + 𝑞 ] is the index of the 𝑞𝑡ℎ nonzero in the subfiber at position 𝑝 .
SparsePinpoint: Similar to SparseList, but only one nonzero in each subfiber, eliminating the need for the 𝑝𝑡𝑟 field. It stores a vector 𝑖𝑑𝑥 ,
such that 𝑖𝑑𝑥 [𝑝 ] is the nonzero index in the subfiber at position 𝑝 .
SparseRLE: Similar to DenseRLE level, but because runs are sparse, we must also store the start of each run. It stores three vectors 𝑙𝑒 𝑓 𝑡 ,
𝑟𝑖𝑔ℎ𝑡 , and 𝑝𝑡𝑟 , such that the 𝑞𝑡ℎ run in the 𝑝𝑡ℎ subfiber begins and ends at 𝑙𝑒 𝑓 𝑡 [𝑝𝑡𝑟 [𝑝 ] + 𝑞 ] and 𝑟𝑖𝑔ℎ𝑡 [𝑝𝑡𝑟 [𝑝 ] + 𝑞 ], respectively. Like
DenseRLE, it also stores a duplicate sublevel, 𝑏𝑢𝑓 , for deduplication.
SparseInterval: Similar to SparseRLE, but only stores one run per subfiber, eliminating the need for the 𝑝𝑡𝑟 field. This level does not
deduplicate as it cannot store intermediate results with more than one run. It stores two vectors, such that the run in subfiber 𝑝 begins and
ends at 𝑙𝑒 𝑓 𝑡 [𝑝 ] and 𝑟𝑖𝑔ℎ𝑡 [𝑝 ] respectively.
SparseVBL: Used to represent blocked data. It stores three vectors, 𝑖𝑑𝑥 , 𝑝𝑡𝑟 , and 𝑜 𝑓 𝑠 , such that 𝑜 𝑓 𝑠 [𝑝𝑡𝑟 [𝑝 ] +𝑞 ] : 𝑜 𝑓 𝑠 [𝑝𝑡𝑟 [𝑝 ] +𝑞 + 1] − 1
are the subpositions of block 𝑞 ending at index 𝑖𝑑𝑥 [𝑝𝑡𝑟 [𝑝 ] + 𝑞 ] in the subfiber at position 𝑝 .
SparseBand: Similar to SparseVBL, but stores only one block per subfiber, eliminating the need for the 𝑝𝑡𝑟 field. It stores two vectors 𝑖𝑑𝑥 and
𝑜 𝑓 𝑠 , such that 𝑜 𝑓 𝑠 [𝑝 ] : 𝑜 𝑓 𝑠 [𝑝 + 1] − 1 are the subpositions of the block ending at 𝑖𝑑𝑥 [𝑝 ] in subfiber 𝑝 .
Nonsequentially Constructed Levels
SparseHash: The sparse hash format uses a hash table to store the locations of nonzeros, and sorts the unique indices for iteration during the
freeze phase. This allows for efficient random access, but not incremental construction, as the freeze phase runs in time proportional to the
number of nonzeros in the entire level. It stores two vectors, 𝑖𝑑𝑥 and 𝑝𝑡𝑟 , such that 𝑖𝑑𝑥 [𝑝𝑡𝑟 [𝑝 ] + 𝑞 ] is the index of the 𝑞𝑡ℎ nonzero in the
subfiber at position 𝑝 . Also stores a hash table 𝑡𝑏𝑙 for construction and random access in the level.
SparseBytemap The SparseBytemap format uses a bytemap to store which locations have been written to. Unlike the SparseHash format, the
bytemap assembles the entire space of possible subfibers. This accelerates random access in the format, but requires a high memory overhead.
Because we don’t want to reallocate all of the memory in each iteration, the declaration of this format instead re-assembles only the dirty
locations in the tensor. This format is analogous to the default workspace format used by TACO. It stores two vectors, 𝑖𝑑𝑥 and 𝑝𝑡𝑟 , such that
𝑖𝑑𝑥 [𝑝𝑡𝑟 [𝑝 ] + 𝑞 ] is the index of the 𝑞𝑡ℎ nonzero in the subfiber at position 𝑝 . These vectors are used to collect dirty locations. It also stores
𝑡𝑏𝑙 , a dense array of booleans such that 𝑡𝑏𝑙 [𝑠ℎ𝑎𝑝𝑒 ∗ 𝑝 + 𝑖 ] is true when there is a nonzero at index 𝑖 in the subfiber at position 𝑝 .
Leaf Levels
Element: The element level uses an array 𝑣𝑎𝑙 to store a value for each position 𝑝 . The zero (fill) value is configurable.
Pattern: The pattern level statically represents a leaf level with a fill value of 𝑓 𝑎𝑙𝑠𝑒 and whose stored values are all 𝑡𝑟𝑢𝑒 .
Scalars
Scalar: A dense scalar that, unlike a variable, supports reduction.
SparseScalar: A scalar with a dirty bit which specializes on the fill value when it occurs.
EarlyBreakScalar: A scalar which triggers early breaks in reductions whenever an annihilator is encountered.

Table 3. The main level formats supported by Finch. Note that all non-leaf levels store a the dimension of the
subfibers and a child level. Since we must be able to handle the case where a sublevel is not stored because a
parent level is sparse, all of Finch’s sparse formats use a dirty bit during writing to determine whether the
sublevel has been modified from it’s default fill value and thus, whether it needs to be stored.

other tensors in crucial ways. Constant propagation through arrays is known to be a complex
compiler pass [65]. Instead, we provide sparse scalars, which allow reductions but also specialize
read accesses for the possible zero value. We also provide early break scalars, which modify the
stepper looplets to re-specialize the loop whenever a reduction into an early break scalar hits an
annihilator. We don’t need to re-specialize other looplets because the stepper is the only one which
repeats a non-constant number of times. We represent early break as a structural property rather
than a program node because it allows us to represent the tail of a loop where one scalar has hit an
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annihilator but another scalar hasn’t. To our knowledge, sparse and early break scalars are novel
contributions of this work; other systems don’t include them, limiting the impact of sparsity.

3.3.4 Leaf Levels. The leaf level stores the actual entries of the tensor. In most cases, it is sufficient
to store each entry at a separate position in a vector. This is accomplished by the ElementLevel.
However, when all of the values are the same, an additional optimization can be made by storing
the identical value only once. In this work, we introduce the concept of a PatternLevel to handle
this binary case. The PatternLevel has a fill value of 𝑓 𝑎𝑙𝑠𝑒 , and returning 𝑡𝑟𝑢𝑒 for all “stored” values.
The PatternLevel allows us to easily represent unweighted graphs or other Boolean matrices.

4 THE FINCH LANGUAGE

4.1 Syntax EXPR := LITERAL | VALUE | INDEX | VARIABLE | EXTENT | CALL | ACCESSS
STMT := ASSIGN | LOOP | DEFINE | SIEVE | BLOCK

DECLARE := TENSOR .= EXPR(EXPR...) #V is the set of all values
FREEZE := @freeze(TENSOR) #S is the set of all Symbols

THAW := @thaw(TENSOR) #T is the set of all types
ASSIGN := ACCESS <<EXPR>>= EXPR

LOOP := for INDEX = EXPR LITERAL := V
STMT VALUE := S::T

end TENSOR := S
DEFINE := let VARIABLE = EXPR INDEX := S

STMT VARIABLE := S
end EXTENT := EXPR : EXPR

SIEVE := if EXPR CALL := EXPR(EXPR...)
STMT ACCESS := TENSOR[EXPR...]

end MODE := @mode(TENSOR)
BLOCK := begin

STMT...
end

Fig. 7. The syntax of the finch language. Compare this
grammar to the Concrete Index Notation of TACO [53,
Figure 3], noting the addition of multiple left hand sides
through code blocks, access with arbitrary expressions,
and explicit declaration, as well as freeze and thaw.

The syntax of Finch is displayed in Figure 7.
The Finch syntax mirrors most imperative lan-
guages with for-loops and control flow. No-
table statements that have been added to the
language include for, let, blocks of code with
if, and the lifecycle functions that let us de-
clare, freeze, and thaw tensors. At the level
of expressions, we support a wide array of
scalar operations through literals and calls to
functions whose properties and definitions are
defined externally. The expressions can also
interact with indices and extents. Finally, as
detailed in the previous section, tensors are
defined externally via an interface that sup-
ports the 𝑑𝑒𝑐𝑙𝑎𝑟𝑒 , 𝑓 𝑟𝑒𝑒𝑧𝑒 , 𝑡ℎ𝑎𝑤 , and 𝑢𝑛𝑓 𝑢𝑟𝑙
functions. The first three are supported directly in the syntax whereas the four will be introduced
through evaluation of for-loops loops and accesses, in the next section.
Our syntax is highly permissive: by allowing blocks of code with multiple statements, we

implicitly support many features gained through complicated scheduling commands in other
frameworks, such as multiple outputs, masking to avoid work, temporary tensors, and arbitrary
loop fusion and nesting. These features are seen most prominently in our implementation of
Gustavson’s algorithm for sparse-sparse matrix multiply, which simply writes to a temporary
tensor in an inner loop and then reuses it, or in our breadth-first-search, which uses an if statement
to avoid operating on vertices outside the frontier. The only restriction we impose on our syntax is
that it must respect tensor life cycles. In the semantics section, we detail the specifics of how we
compile our syntax to efficient code over structured data.

4.2 Semantics
We present a sketch of a small-step operational semantics, showing how to execute a Finch program
in a host language. We distinguish evaluation of the language by evolving compiler state with ⟨⟩
and evaluation in the host language via ⎷⌄. For example, in Figure 8, we declare the core semantics
of the language and the 𝐷𝑒𝑓 𝑖𝑛𝑒 rule (let) adds a definition to the compiler state whereas the 𝐶𝑎𝑙𝑙
rule passes evaluation off to the host. In Figure 9, we detail the Looplet evaluation semantics, which
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details how accesses within a loop can be replaced with Looplets, which are progressively rewritten
to host code. Due to the use of rewrite rules, our semantics here make use of an evaluation context.

We include the sketch of our semantics to highlight several key design choices. First, we note that
the life cycle rules (in combination with the definition rules) prevent programs that access tensors
on both the left and the right hand side of an incrementing assignment within a loop. Tensors may
only change their mode in the scope in which they were declared. The loop, declare, and sieve
nodes introduce new scopes, and tensors without declarations are assumed to have global scope.
Beyond the simple management of iterator state, these rules allow us to effectively analyze the
propagation of constants, zeros, and repetitive values within a loop, eliminating problems that in a
less restrictive language would require alias analysis. Second, loops enter into a looplet system via
the𝑈𝑛𝑓 𝑢𝑟𝑙 rule. In this system, repeated structures and constants are slowly uncovered as accesses
are lowered in various points in the program (e.g. 𝑅𝑢𝑛 and 𝑆𝑤𝑖𝑡𝑐ℎ, respectively). In this process,
we are able to use rewrite rules in 𝑆𝑖𝑚𝑝𝑙𝑖 𝑓 𝑦 to eliminate cases, unnecessary iterations, and so forth
based on the information provided via Looplets and via the control flow (loops, sieve, definitions).

The next section will detail how the compiler adds additional features on top of this core language.
We rely on the assurance that accesses to tensor values will first unravel to Looplets and then
simplify in the context of the tensor access. We will handle complex index access expressions
involving indirection and arithmetic by transforming complex accesses to additional loop variables
with additional tensor accesses to insert Looplets to provide the structure dictated by the complex
control flow. We will also show how we can similarly exploit the structure of complex conditional
expressions when the structure of the expressions is placed inside a tensor access.

5 THE FINCH COMPILER
5.1 Finch Normal Form
Our semantics in Figure 8 and Figure 9 is only well-defined on some programs.We define a particular
class of programs on which our semantics are well-defined, and refer to it as Finch Normal Form.
The properties of such a program are as follows:

• Access with Indices: Though Finch allows general expressions in an access (i.e. ‘A[i + j]‘
or ‘A[I[i]]‘), the normal form restricts to allow only indices in accesses (i.e. ‘A[i]‘), rather
than more general expressions.

• Evaluable Dimensions: Loop dimensions and declaration dimensions must be evaluable
at the time we compile them, so we restrict the normal form to programs whose loop
dimensions and declaration dimensions are extents with limits defined in the scope of the
corresponding loop or declaration statement.

• Concordant: Finch is column-major by default, and the normal form requires the order of
indices in an access to match the order in which loops are nested around it. For example,
for j = _; for i = _; s[] += A[i, j] end end is concordant but for i = _; for j = _;

s[] += A[i, j] end end is not.
• Lifecycle Constraints: Tensors in read mode may appear on the right hand side only.
Tensors in update mode may appear on the left hand side only. To make it easier to statically
analyze lifecycle constraints, we restrict tensors to only change modes in the same scope in
which they were defined.

The subsequent sections will explain how programs that violate each of these constraints can
be rewritten to programs that satisfy them, and thus how we can support such a wide variety of
programs. For example, we can write non-concordant programs like for i = _; for j = _; s[]

+= A[i, j] end end by adding a loop to randomly access A or adjusting the storage order of A by
adding a lazy transposition wrapper.
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5.2 Wrapperization
for i=_, j=_

if i <= j
s[] += A[i, j]

end
end

↓
for i=_, j=_

if UpTriMask()[i, j]
s[] += A[i, j]

end
end

↓
for i = 1:n

for j = 1:i
s[] += A[i, j]

end
end

Fig. 10. Wrapper-
ization

Many fancy operations on indices can be resolved by introducing equivalent
wrapper arrays which modify the behavior of the tensors they wrap, or by
introducing mask arrays which replace index expressions like i <= j with
their equivalent masks (in this case, a triangular mask tensor). Wrappers and
masks are summarized in 4.
All wrapper arrays are eventually unwrapped by the compiler as we lower

them, some earlier than others. For example, the 𝑠𝑤𝑖𝑧𝑧𝑙𝑒 array wraps a tensor
and permutes the indices of an access when it is unwrapped during the wrap-
perization pass. On the other hand, the 𝑜 𝑓 𝑓 𝑠𝑒𝑡 array wraps a tensor and shifts
all of the ranges declared in Figure 9 by one. The implementation burden for a
wrapper is to implement a suitable program rewrite during the wrapperization
procedure to unwrap the wrapper, or to implement the looplet functions of 9
with some minor modifications to shift dimensions, for example.

Mask arrays have amore straightforward implementation using static looplets
that are constructed during the unfurl step. Mask tensors allow us to lift compu-
tations with masks to the level of the loop, without modifying the loop directly.

⟨𝑣𝑎𝑙, (𝑒, 𝑡, 𝑑 ) ⟩ → 𝑣𝑎𝑙 ′ 𝑣𝑎𝑟 ∉ 𝑑
𝐷𝑒𝑓 𝑖𝑛𝑒

⟨define(𝑣𝑎𝑟, 𝑣𝑎𝑙, 𝑏𝑜𝑑𝑦), (𝑒, 𝑡, 𝑑 ) ⟩
→ ⟨𝑏𝑜𝑑𝑦, (𝑒 [𝑣𝑎𝑟 ↦→ 𝑣𝑎𝑙 ′ ], 𝑡, {}) ⟩

⟨𝑎𝑟𝑔𝑠𝑖 , (𝑒, 𝑡 ) ⟩ ⇒ 𝑣𝑎𝑙𝑠𝑖 ⟨𝑓 , (𝑒, 𝑡 ) ⟩ ⇒ 𝑔
𝐶𝑎𝑙𝑙

⟨call(𝑓 , 𝑎𝑟𝑔𝑠...), (𝑒, 𝑡 ) ⟩ → ⎷𝑔 (𝑣𝑎𝑙𝑠...), 𝑡⌄
𝐿𝑖𝑡𝑒𝑟𝑎𝑙

⟨literal(𝑣𝑎𝑙 ), (𝑒, 𝑡, 𝑑 ) ⟩ → 𝑣𝑎𝑙

𝑉𝑎𝑟𝑖𝑎𝑏𝑙𝑒
⟨variable(𝑛𝑎𝑚𝑒 ), (𝑒, 𝑡, 𝑑 ) ⟩

→ 𝑒 (variable(𝑛𝑎𝑚𝑒 ) )
𝐼𝑛𝑑𝑒𝑥

⟨index(𝑛𝑎𝑚𝑒 ), (𝑒, 𝑡, 𝑑 ) ⟩
→ 𝑒 (index(𝑛𝑎𝑚𝑒 ) )

⟨𝑏𝑜𝑑𝑦, 𝑠 ⟩ → 𝑠′
𝐵𝑙𝑜𝑐𝑘

⟨block(𝑏𝑜𝑑𝑦, 𝑡𝑎𝑖𝑙 ...), 𝑠 ⟩ → ⟨block(𝑡𝑎𝑖𝑙 ...), 𝑠′ ⟩
𝑉𝑎𝑙𝑢𝑒

⟨value(𝑒𝑥, 𝑡𝑦𝑝𝑒 ), (𝑒, 𝑡, 𝑑 ) ⟩ ⇒ ⎷𝑒𝑥, 𝑡⌄
⟨𝑐𝑜𝑛𝑑, (𝑒, 𝑡, 𝑑 ) ⟩ ⇒ 𝑡𝑟𝑢𝑒 ⟨𝑏𝑜𝑑𝑦, (𝑒, 𝑡, {}) ⟩ → (𝑒′, 𝑡 ′, 𝑑 ′ )

𝑆𝑖𝑒𝑣𝑒𝑇𝑟𝑢𝑒
⟨sieve(𝑐𝑜𝑛𝑑,𝑏𝑜𝑑𝑦), (𝑒, 𝑡, 𝑑 ) ⟩ → (𝑒′, 𝑡 ′, 𝑑 )

⟨𝑐𝑜𝑛𝑑, 𝑠 ⟩ ⇒ 𝑓 𝑎𝑙𝑠𝑒
𝑆𝑖𝑒𝑣𝑒𝐹𝑎𝑙𝑠𝑒

⟨sieve(𝑐𝑜𝑛𝑑,𝑏𝑜𝑑𝑦), 𝑠 ⟩ → 𝑠

𝑠 = (𝑒, 𝑡, 𝑑 ) 𝑡𝑛𝑠 ∉ 𝑑 𝑒 (𝑡𝑛𝑠 ) = 𝑡𝑛𝑠′ ⟨𝑖𝑛𝑖𝑡, 𝑠 ⟩ ⇒ 𝑖𝑛𝑖𝑡 ′ ∀𝑖 ⟨𝑖𝑛𝑖𝑡, 𝑑𝑖𝑚𝑠𝑖 ⟩ ⇒ 𝑑𝑖𝑚𝑠′𝑖
𝐷𝑒𝑐𝑙𝑎𝑟𝑒

⟨declare(𝑡𝑛𝑠, 𝑖𝑛𝑖𝑡, 𝑑𝑖𝑚𝑠 ), 𝑠 ⟩ → (𝑒 [mode(𝑡𝑛𝑠 ) ↦→ update], ⎷declare(𝑡𝑛𝑠′, 𝑖𝑛𝑖𝑡 ′, 𝑑𝑖𝑚𝑠′ ...), 𝑡⌄, 𝑑 ∪ {𝑡𝑛𝑠 })
𝑠 = (𝑒, 𝑡, 𝑑 ) 𝑒 (mode(𝑡𝑛𝑠 ) ) = update 𝑡𝑛𝑠 ∈ 𝑑 𝑒 (𝑡𝑛𝑠 ) = 𝑡𝑛𝑠′

𝐹𝑟𝑒𝑒𝑧𝑒
⟨freeze(𝑡𝑛𝑠 ), 𝑠 ⟩ → (𝑒 [mode(𝑡𝑛𝑠 ) ↦→ read], ⎷𝑓 𝑟𝑒𝑒𝑧𝑒 (𝑡𝑛𝑠′ ), 𝑡⌄, 𝑑 )
𝑠 = (𝑒, 𝑡, 𝑑 ) 𝑒 (mode(𝑡𝑛𝑠 ) ) = read 𝑡𝑛𝑠 ∈ 𝑑 𝑒 (𝑡𝑛𝑠 ) = 𝑡𝑛𝑠′

𝑇ℎ𝑎𝑤
⟨thaw(𝑡𝑛𝑠 ), 𝑠 ⟩ → (𝑒 [mode(𝑡𝑛𝑠 ) ↦→ update], ⎷𝑡ℎ𝑎𝑤 (𝑡𝑛𝑠′ ), 𝑡⌄, 𝑑 )

𝑒 (𝑡𝑛𝑠 ) = 𝑡𝑛𝑠′ ⟨𝑜𝑝, 𝑠 ⟩ → 𝑜𝑝′ ⟨𝑟ℎ𝑠, 𝑠 ⟩ → 𝑟ℎ𝑠′

𝑒 (mode(𝑡𝑛𝑠 ) ) = update ⎷𝑢𝑛𝑓 𝑢𝑟𝑙 (𝑡𝑛𝑠′,update, 𝑜𝑝′, 𝑟ℎ𝑠′ ), 𝑡⌄→ 𝑡 ′
𝐴𝑠𝑠𝑖𝑔𝑛

⟨𝐸 [assign(access(𝑡𝑛𝑠 ), 𝑜𝑝, 𝑟ℎ𝑠 ) ], (𝑒, 𝑡, 𝑑 ) ⟩ → (𝑒, 𝑡 ′, 𝑑 )

Fig. 8. Basic evaluation semantics, roughly defining most of these language constructs to function similarly to
their classical definitions. The state 𝑠 of the finch compiler is a tuple (𝑒, 𝑡, 𝑑) of a variable value environment,
another state 𝑡 corresponding to the state in the host language, and finally the set of tensors defined within
the current scope, 𝑑 . This means that rules which modify 𝑡 are running in the host language. Several looplets
introduce variables into the embedding language, which may be read when evaluating the value node. All of
the lifecycle functions are designed to be implemented and executed in the host language, but these semantics
enforce that each of these functions may update state in the host language and flip the mode of the tensor
between read and update.
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𝐸 := [ · ] |loop(𝑖𝑑𝑥, 𝑒𝑥𝑡, 𝐸 |𝑏𝑜𝑑𝑦) |block(𝐸 |ℎ𝑒𝑎𝑑, 𝐸 |𝑡𝑎𝑖𝑙 ) |sieve(𝐸 |𝑐𝑜𝑛𝑑, 𝐸 |𝑏𝑜𝑑𝑦) |assign(𝐸 |𝑙ℎ𝑠, 𝑜𝑝, 𝐸 |𝑟ℎ𝑠 )
declare(𝑣𝑎𝑟, 𝐸 |𝑟ℎ𝑠, 𝐸 |𝑏𝑜𝑑𝑦) |call(𝐸 | 𝑓 , 𝐸 |𝑎𝑟𝑔𝑠...) |access(𝑡𝑛𝑠, 𝐸 |𝑖𝑑𝑥𝑠...)

𝑒 (𝑡𝑛𝑠 ) ↦→ 𝑡𝑛𝑠′ 𝑒 (mode(𝑡𝑛𝑠 ) ) ↦→𝑚 ⎷𝑢𝑛𝑓 𝑢𝑟𝑙 (𝑡𝑛𝑠′, 𝑒𝑥𝑡,𝑚), 𝑡⌄⇒ 𝑡𝑛𝑠′′
𝑈𝑛𝑓 𝑢𝑟𝑙

⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(𝑡𝑛𝑠, 𝑗 ..., 𝑖 ) ] ), 𝑠 ⟩ → ⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(𝑡𝑛𝑠′′, 𝑗 ..., 𝑖 ) ] ), 𝑠 ⟩

𝑅𝑢𝑛
⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(run(𝑏𝑜𝑑𝑦), 𝑗 ..., 𝑖 ) ] ), 𝑠 ⟩

→ ⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(𝑏𝑜𝑑𝑦, 𝑗 ...) ] ), 𝑠 ⟩

𝑒 (𝑖 ) = 𝑖′ ⎷𝑠𝑒𝑒𝑘 (𝑖′ ), 𝑡⌄→ 𝑡 ′
𝐿𝑜𝑜𝑘𝑢𝑝

⟨𝐸 [access(lookup(𝑠𝑒𝑒𝑘,𝑏𝑜𝑑𝑦), 𝑗 ..., 𝑖 ) ], (𝑒, 𝑡, 𝑑 ) ⟩
→ ⟨𝐸 [access(𝑏𝑜𝑑𝑦, 𝑗 ...) ], (𝑒, 𝑡 ′, 𝑑 ) ⟩

𝐴𝑐𝑐𝑒𝑝𝑡𝑅𝑢𝑛
⟨loop(𝑖, extent(𝑎,𝑏 ), 𝐸 [assign(access(run(𝑏𝑜𝑑𝑦), 𝑗 ..., 𝑖 ), 𝑜𝑝, 𝑟ℎ𝑠 ) ] ), 𝑠 ⟩

→ ⟨loop(𝑖, extent(𝑎,𝑏 ), 𝐸 [sieve(𝑖 == 𝑎, assign(access(𝑏𝑜𝑑𝑦, 𝑗 ...), 𝑜𝑝, 𝑟ℎ𝑠 ) ) ] ), 𝑠 ⟩
⎷𝑐𝑜𝑛𝑑, 𝑡⌄⇒ 𝑡𝑟𝑢𝑒

⟨𝐸 [access(𝑠𝑤𝑖𝑡𝑐ℎ (𝑐𝑜𝑛𝑑,ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 ), 𝑖 ...) ], 𝑠 ⟩
→ ⟨𝐸 [access(ℎ𝑒𝑎𝑑, 𝑖...) ], 𝑠 ⟩

⎷𝑐𝑜𝑛𝑑, 𝑡⌄⇒ 𝑓 𝑎𝑙𝑠𝑒
𝑆𝑤𝑖𝑡𝑐ℎ

⟨𝐸 [access(𝑠𝑤𝑖𝑡𝑐ℎ (𝑐𝑜𝑛𝑑,ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 ), 𝑖 ...) ], 𝑠 ⟩
→ ⟨𝐸 [access(𝑡𝑎𝑖𝑙, 𝑖 ...) ], 𝑠 ⟩

𝑃ℎ𝑎𝑠𝑒
⟨loop(𝑖, extent(𝑎,𝑏 ), 𝐸 [access(phase(extent(𝑐,𝑑 ), 𝑏𝑜𝑑𝑦), 𝑗 ..., 𝑖 ) ] ), 𝑠 ⟩

→ ⟨loop(𝑖, extent(𝑚𝑎𝑥 (𝑎, 𝑐 ),𝑚𝑖𝑛 (𝑏,𝑑 ) ), 𝐸 [access(𝑏𝑜𝑑𝑦, 𝑗 ..., 𝑖 ) ] ), 𝑠 ⟩
⎷𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒, 𝑡⌄→ 𝑡 ′ ⟨𝐸 [𝑏𝑜𝑑𝑦 ], (𝑒, 𝑡 ′, 𝑑 ) ⟩ → (𝑒′, 𝑡 ′′, 𝑑 ) ⎷𝑒𝑝𝑖𝑙𝑜𝑔𝑢𝑒, 𝑡 ′′⌄→ 𝑡 ′′′

𝑇ℎ𝑢𝑛𝑘
⟨𝐸 [𝑡ℎ𝑢𝑛𝑘 (𝑝𝑟𝑒𝑎𝑚𝑏𝑙𝑒,𝑏𝑜𝑑𝑦, 𝑒𝑝𝑖𝑙𝑜𝑔𝑢𝑒 ) ], (𝑒, 𝑡 ′, 𝑑 ) ⟩ → (𝑒′, 𝑡 ′′′, 𝑑 )

⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(ℎ𝑒𝑎𝑑, 𝑗 ..., 𝑖 ) ] ), 𝑠 ⟩ → 𝑠′
𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 (ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 ), 𝑗 ..., 𝑖 ) ] ), 𝑠 ⟩
→ ⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(𝑡𝑎𝑖𝑙, 𝑗 ..., 𝑖 ) ] ), 𝑠′ ⟩

⟨𝑛𝑜𝑑𝑒, 𝑎𝑙𝑔𝑒𝑏𝑟𝑎⟩ → 𝑛𝑜𝑑𝑒′
𝑆𝑖𝑚𝑝𝑙𝑖 𝑓 𝑦

⟨𝐸 [𝑛𝑜𝑑𝑒 ], 𝑠 ⟩ → ⟨𝐸 [𝑛𝑜𝑑𝑒′ ], 𝑠 ⟩

⎷𝑠𝑒𝑒𝑘 (𝑎), 𝑡⌄→ 𝑡 ′
𝑆𝑡𝑒𝑝𝑝𝑒𝑟𝑆𝑒𝑒𝑘

⟨loop(𝑖, extent(𝑎,𝑏 ), 𝐸 [access(𝑠𝑡𝑒𝑝𝑝𝑒𝑟 (𝑠𝑒𝑒𝑘,𝑏𝑜𝑑𝑦,𝑛𝑒𝑥𝑡 ), 𝑗 ..., 𝑖 ) ] ), (𝑒, 𝑡, 𝑑 ) ⟩
→ ⟨loop(𝑖, extent(𝑎,𝑏 ), 𝐸 [access(𝑠𝑡𝑒𝑝𝑝𝑒𝑟 (𝑏𝑜𝑑𝑦,𝑛𝑒𝑥𝑡 ), 𝑗 ..., 𝑖 ) ] ), (𝑒, 𝑡 ′, 𝑑 ) ⟩

⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(𝑏𝑜𝑑𝑦, 𝑗 ..., 𝑖 ) ] ), (𝑒, 𝑡, 𝑑 ) ⟩ → (𝑒′, 𝑡 ′, 𝑑 ) ⎷𝑛𝑒𝑥𝑡, 𝑡 ′⌄→ 𝑡 ′′
𝑆𝑡𝑒𝑝𝑝𝑒𝑟𝑁𝑒𝑥𝑡

⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(𝑠𝑡𝑒𝑝𝑝𝑒𝑟 (𝑏𝑜𝑑𝑦,𝑛𝑒𝑥𝑡 ), 𝑗 ..., 𝑖 ) ] ), 𝑠 ⟩
→ ⟨loop(𝑖, 𝑒𝑥𝑡, 𝐸 [access(𝑠𝑡𝑒𝑝𝑝𝑒𝑟 (𝑏𝑜𝑑𝑦,𝑛𝑒𝑥𝑡 ), 𝑗 ..., 𝑖 ) ] ), (𝑒′, 𝑡 ′′, 𝑑 ) ⟩

𝐿𝑜𝑜𝑝
⟨loop(𝑖, extent(𝑎,𝑏 ), 𝑏𝑜𝑑𝑦), 𝑠 ⟩

→ ⟨block(define(𝑖, 𝑎,𝑏𝑜𝑑𝑦), sieve(𝑎 < 𝑏, loop(𝑖, extent(𝑎 + 1, 𝑏 ), 𝑏𝑜𝑑𝑦) ) ), 𝑠 ⟩
𝑒 (𝑡𝑛𝑠 ) ↦→ 𝑡𝑛𝑠′ 𝑒 (mode(𝑡𝑛𝑠 ) ) ↦→ read ⎷𝑢𝑛𝑓 𝑢𝑟𝑙 (𝑡𝑛𝑠′, read), 𝑡⌄→ 𝑡𝑛𝑠′′

𝐴𝑐𝑐𝑒𝑠𝑠
⟨𝐸 [access(𝑡𝑛𝑠 ) ], 𝑠 ⟩ → ⟨𝐸 [𝑡𝑛𝑠′′ ], 𝑠 ⟩

Fig. 9. Looplet evaluation semantics. Basic evaluation semantics, roughly defining most of these language
constructs to function similarly to their classical definitions. The state of the compiler is described in the
previous figure. Note that 𝐸 is an evaluation context that applies anywhere in the syntax tree. The nonlocal
evaluations of Looplets are what allow Looplets to hoist conditions and subranges out of loops. However, this
also means we must specify the priority in which we apply looplet rules, which is as follows:𝑇ℎ𝑢𝑛𝑘 > 𝑃ℎ𝑎𝑠𝑒 >
𝑆𝑤𝑖𝑡𝑐ℎ > 𝑆𝑖𝑚𝑝𝑙𝑖 𝑓 𝑦 > 𝑅𝑢𝑛 > 𝑆𝑝𝑖𝑘𝑒 > 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 > 𝑆𝑡𝑒𝑝𝑝𝑒𝑟𝑆𝑒𝑒𝑘 > 𝑆𝑡𝑒𝑝𝑝𝑒𝑟𝑁𝑒𝑥𝑡 > 𝐿𝑜𝑜𝑘𝑢𝑝 > 𝐴𝑐𝑐𝑒𝑝𝑡𝑅𝑢𝑛 >
𝑈𝑛𝑓 𝑢𝑟𝑙 > 𝐿𝑜𝑜𝑝 > 𝐴𝑐𝑐𝑒𝑠𝑠 . Many looplets, most notably the thunk looplet, introduce variables into the host
language environment. While variables introduced by a looplet may be modified by the looplet itself (steppers
often increment some state variables), we forbid child looplets from modifying any state variables that they
didn’t introduce. This allows us to treat the value node as a constant. Note: the 𝑆𝑖𝑚𝑝𝑙𝑖 𝑓 𝑦 rule references
𝑎𝑙𝑔𝑒𝑏𝑟𝑎, which is our variable defining a set of straightforward simplification rules. These rules include simple
properties like 𝑥 ∗ 0 → 0 to more complicated ones such as constant propagation. We omit the full set of
rules for brevity, but point the curious reader to [7, Figure 5] for some examples.
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Transformation Example Description
A[i + a]→ offset(A, 1)[i] Creates an OffsetArray such that offset(tns, delta...)[i...] == tns[i .+ delta...].

A[i + x]→ toeplitz(A, 1)[i, x]
Creates a ToeplitzArray, adding a dimension that shifts another dimension of the original tensor. The
added dimensions are produced during a call to Unfurl, when a lookup looplet is emitted for the first
dimension.

A[(a:b)(i)]→ window(A, a:b)[i] Creates a WindowedArray, representing a view into another tensor. This wrapper returns a different size
of tensor.

A[ĩ]→ permissive(A)[i] Creates a PermissiveArray, allowing for out-of-bounds access or padding. This tensor returns no
dimensions as its size.

A[p(i)]→ swizzle(A, perm)[i] A lazily transposed array, swizzle(A, perm)[idx...] is transformed to A[idx[perm]...] during wrapperization.
𝑖 < 𝑗 → UpTriMask()[i, j - 1] Upper triangular mask, true if 𝑖 < 𝑗 .
𝑖 ≥ 𝑗 → LoTriMask()[i, j] Lower triangular mask, true if 𝑖 ≥ 𝑗 .
𝑙 ≤ 𝑖 < 𝑗 → Bandmask()[i, l, h - 1] Banded mask, true for elements within a specified band.
𝑖 == 𝑗 → DiagMask()[i, j] Diagonal mask, true if 𝑖 == 𝑗 .
𝑖 ≠ 𝑗 → !(DiagMask()[i, j]) Inverse diagonal mask, true if 𝑖 ≠ 𝑗 .
chunkmask(b) Chunk mask, for chunked tensor access. True if 𝑏 × ( 𝑗 − 1) < 𝑖 ≤ 𝑏 × 𝑗 .

Table 4. Wrapper arrays, masks, and some example indexing sugar they enable.

5.3 Dimensionalization
Looplets typically require the dimension of the loop extent to match the dimensions of the tensor.
However, it is cumbersome to write the dimensions in loop programs, and most tensor compilers
have a means of specifying the dimensions automatically. In many pure Einsum languages like
TACO, determining dimensions is not needed because any tensor dimensions that share an index
are assumed to be the same [54]. Other languages, such as Halide, perform bounds inference where
known bounds are symbolically propagated to fill in unknown bounds, often from output/input sizes
to intermediates via some approximation such as interval analysis or polyhedral methods [41, 70].
We refer to the process of discovering suitable dimensions as dimensionalization.

In Finch, we use a straightforward dimensionalization algorithm on loops and declaration
statements (output tensors). Finch determines the dimension of a loop index i from all of the
tensors using i in an access, as well as the bounds in the loop itself, and operates similarly for
declarations. Our algorithm uses the following principles, assuming dimension types form a lattice:

#A is 3 x 4
#B is 4 x 5
C .= 0
for i = 1:3

for j = _
for k = _
C[i, j] += A[i, k] * B[k, j]

end
end

end

↓
C .= 0
for i = 1:3

for j = 1:5
for k = 1:4
C[i, j] += A[i, k] * B[k, j]

end
end

end

Fig. 11. Dimensionaliza-
tion.

(1) We assign dimensions to indices.
(2) Using an index in an access “hints” that the index should have

the corresponding dimension.
(3) Loop dimensions are equal to the “meet” of all hints in the loop

body and any existing dimensions in the loop bounds. The meet
usually asserts that dimensions match, but may also e.g. prop-
agate info about parallelization

(4) The _ symbol represents a dimensionless quantity at the bottom
of the dimension lattice.

(5) We assign dimensions to declarations.
(6) Left hand side (updating) accesses “hint” the size of their tensor
(7) The dimensions of a declaration are the “meet” of all hints from

the declaration to the first read.
(8) The new dimensions of the declared tensor are used when the

tensor is on the right hand side (reading) access.
For example, in Figure 11, the second dimension of A must match

the first dimension of B. Also, the first dimension of A must match the i loop dimension, 1:3. Finch
will also resize declared tensors to match indices used in writes, so C is resized to (1:3, 1:5). If no
dimensions are specified elsewhere, then Finch will use the dimension of the declared tensor.
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for i = _
for j = _

s[] += A[i, j]
end

end

↓
for i = _
for j = _

for k = _
if i == k
s[] += A[k, j]

end
end

end
end

for i = _
A[I[i]] += 1

end

↓
for i = _
for j = _
if j == I[i]

A[j] += 1
end

end
end

Fig. 12. Examples of concordization, trans-
forming accesses to normal column major.

Dimensionalization occurs after wrapper arrays are
de-sugared. You can therefore exempt a mode in an access
from dimensionalization by wrapping the corresponding
index in ~ to produce a "PermissiveArray" (e.g. A[~i]).

5.4 Concordization
After wrapperization, all arrays are normalized to column-
major ordering and the unrecognized expressions are
left in the access expressions. At that point, we run a
pass over the code to make the program concordant. We
make expressions concordant by inserting loops with one
iteration. Examples are given in Figure 12.

5.5 Life Cycle Automation

y .= 0
for i = _

y[i] = x[i] + 1
end
for i = _

x[i] += 1
y[i] += 1

end
for i = _

x[i] += y[i]
end

→

y .= 0
for i = _

y[i] = x[i] + 1
end
@thaw(x)
@freeze(y)
for i = _

x[i] += 1
y[i] += 1

end
@freeze(x)
for i = _

x[i] += y[i]
end

Fig. 13. Life cycle automation.

Finally, we introduce a pass to avoid needed to manually insert
the @freeze or @thaw macros. The pass will insert these state-
ments at the appropriate place in the program if they have not
been inserted already, easing the burden on the programmer
and bridging between structured and dense languages.

6 CASE STUDIES
We evaluate Finch on a broad set of applications to showcase
it’s efficiency, flexibility, and expressibility. All of our implemen-
tations highlight the benefits of data structure and algorithm
co-design. Our implementation of sparse-sparse-matrix multi-
ply (SpGEMM) translates classical lessons from sparse performance engineering into the language
of Finch, using temporaries and randomly-accessible workspace formats to efficiently implement
the three main approaches. Our study of sparse-matrix-dense-vector multiply (SpMV) highlights
the benefits of precise structural specialization. Our studies of image morphology and graph applica-
tions show how Finch’s programming model can express more complex real-world kernels. Finally,
we explain how flexible operators, formats, and indexing expressions in Finch have supported a
flexible implementation of the Python Array API, supporting fused execution.
All experiments were run on a single core of a 12-core 2-socket Intel Xeon E5-2695 v2 running

at 2.40GHz with 128GB of memory. Finch is implemented in Julia v1.9, targeting LLVM through
Julia. All timings are the minimum of 10,000 runs or 5s of measurement, whichever happens first.
The Finch compiler is publicly available online at https://github.com/willow-ahrens/Finch.jl.

6.1 Sparse Matrix-Vector Multiply (SpMV) y .= 0
for j = _, i = _
y[i] += A[i, j] * x[j]

end

y .= 0
for j = _, i = _
y[j] += A[i, j] * x[i]

end

y .= 0
for j = _

let x_j = x[j]
y_j .= 0
for i = _

let A_ij = A[i, j]
y[i] += x_j * A_ij
y_j[] += A_ij * x[i]

end
end
#D is the diagonal
y[j] += y_j[] + D[j] * x_j

end
end

Fig. 14. Finch row-major, column-major and
symmetric SpMV Programs

Sparse matrix-vector multiply (SpMV) has a wide range
of applications and has been thoroughly studied [61, 99].
Because SpMV is bandwidth bound, many formats have
been proposed to reduce the footprint [58]. The wide
range of applications unsurprisingly results in a wide
range of array structures, making it an effective kernel to
demonstrate the utility of our programming model. We
varied both the data formats and the SpMV algorithm.
Our formats are shown in Table 15, and our programs
are listed in Figure 14. In varying the program, we consider both row and column-major SpMV
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programs, as well as a symmetric SpMV. Finch enables us to exploit symmetry effectively. Our
program restricts our attention to the canonical triangle (using masks), reuses the reads to the
canonical triangle of the symmetric matrix (using a define statement), and writes the results to both
relevant locations (using multiple outputs). All of our programs apply to all of our level formats,
enabling exploitation of multiple structural patterns concurrently (e.g. sparsity and symmetry).

Format Style of Matrix
Dense(SparseList(Element(0.0))) real, sparse

Dense(SparseList(Pattern())) Boolean, sparse
Dense(SparseVBL(Element(0.0))) real, blocked

Dense(SparseBand(Element(0.0))) real, banded

Fig. 15. SpMV Tensor Formats

Figure 16 displays speedup relative to TACO,
SuiteSparseGraphBLAS, and Julia’s standard
library. We test using sparse matrices from a
large selection of datasets spanning several pre-
vious papers: the datasets used by Vuduc et al.
to test the OSKI interface [90], Ahrens et al. to test a variable block row format partitioning strategy
[6], and Kjolstad et al. to test the TACO library [54]. Additionally, we included the SNAP graph
collection to test with Boolean matrices. We also created some synthetic matrices containing bands
of varying sizes. We tested using the row-major and column-major Finch programs in Figure
14 as well as the symmetric program where applicable; the performance displayed for Finch on
each dataset is the fastest among the formats and programs we tested. For TACO, Column-major
SpMV consistently performs better than row-major SpMV (an average of 1.36x better) so we use
column-major SpMV in TACO as our baseline.

Fig. 16. Performance of SpMV by Finch format. The performance displayed for Finch on each dataset is the fastest among
the formats we tested. Programs are from Figure 14 and formats are from Figure 15. “finch_baseline” is the faster of row
major or column major “SparseList”.

We found that the SpMV performance was superior for the level format that best paralleled the
structure of the tensor. Matrices with a clear blocked structure like exdata_1, TSOPF_RS_b678_c1,
and heart3 performed notably well with the SparseVBL format with speedups of 2.16, 1.55, and 1.30
relative to TACO, while the baseline format had minor slowdowns relative to TACO. Furthermore,
the synthetic banded matrices we constructed performed the best with the SparseBand matrix, in
particular with the large_band and the medium_band matrices having a speedup of 1.98 and 1.64
relative to TACO, while the baseline format had minor slowdowns relative to TACO. The Pattern
format performed better than the Element format for representing the leaf values in the matrices
when these values were Boolean, such as matrices in the SNAP collection which represent graph
datasets are Boolean. For example, the SparseList-Pattern for email-Eu-core resulted in a speedup
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of 2.51, while the SparseList-Element format resulted in a slowdown of 1.84 over TACO. Every
symmetric matrix in the SparseList and SparseList-Pattern formats has better performance when
we use a Finch SpMV program that takes advantage of this symmetry. Symmetric SpMV with the
SparseList level format in Finch results in an average of 1.27x speedup over TACO and symmetric
SpMV with the SparseList-Pattern format in Finch results in an average speedup of 1.21x over
TACO. Notably, there is a 1.91x speedup for the HB/saylr4 matrix over TACO.

6.2 Sparse-Sparse Matrix Multiply (SpGEMM)
We compute the𝑀 ×𝑁 sparse matrix𝐶 as the product of𝑀 ×𝐾 and 𝐾 ×𝑁 sparse matrices𝐴 and

𝐵. There are three main approaches to SpGEMM [97, Section 2.2]. The inner-products algorithm
takes dot products of corresponding rows and columns, while the outer-products algorithm sums
the outer products of corresponding columns and rows. Gustavson’s algorithm sums the rows of 𝐵
scaled by the corresponding nonzero columns in each row of 𝐴. Inner-products is known to be
asymptotically less efficient than the others, as we must do a merge operation to compute each
of the 𝑂 (𝑀𝑁 ) entries in the output [8]. We will show that our ability to implement these latter
methods exceeds that of TACO, translating to asymptotic benefits.

Figure 17 implements all three approaches in Finch, and Figure 18 compares the performance of
Finch to TACO. Note that these algorithms mainly differ in their loop order, but that different data
structures can be used to support the various access patterns induced. In our Finch implementation of
outer products, we use a sparse hash table, as it is fully-sparse and randomly accessible. Since, TACO

@finch begin
C .= 0
for j=_
for i=_

for k=_
C[i, j] += AT[k, i] * B[k, j]

end
end

end
return C

end

w = Tensor(SparseByteMap(Element(0)))
@finch begin

C .= 0
for j=_
w .= 0
for k=_

for i=_
w[i] += A[i, k] * B[k, j]

end
end
for i=_

C[i, j] = w[i]
end

end
end

w = Tensor(SparseHash(SparseHash(Element(0))))
@finch begin

w .= 0
for k=_
for j=_

for i=_
w[i, j] += A[i, k] * BT[j, k]

end
end

end
C .= 0
for j=_, i=_
C[i, j] = w[i, j]

end
end

Fig. 17. Inner Products, Gustavson’s, and Outer Products matrix multiply in Finch

Fig. 18. A comparison of several matrix multiply algorithms between Finch and Taco. On left, we use smaller
matrices, ordered from small to big dimension. Note that inner-products necessarily requires 𝑂 (𝑀𝑁 ) work
and TACO’s outer-products format is dense. Finch can use a sparse outer products format and thus has an
asymptotic advantage that becomes evident as the output dimensions grow. On right, we use only Gustavson’s
algorithm and compare on larger matrices.
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does not support multidimensional sparse workspaces, its outer products uses a dense intermediate,
which leads to an asymptotic slow down shown in Figure 18. Similarly, although a sparse bytemap
has a dense memory footprint, we use it in our Finch implementation of Gustavson’s for the smaller
𝑂 (𝑁 ) intermediate. We note that the bytemap format in TACO’s Gustavson’s implementation
is hard-wired, whereas Finch’s programming model allows us to write algorithms with explicit
temporaries and transpositions. Without such hard wiring, TACO would have to use a dense
intermediate to support random writes, which TACO would then propagate to the output, turning
it dense and leading to the same asymptotic results as in the case of outer products. As depicted in
Figure 18, Finch achieves comparable performance with TACO on smaller matrices when we use
the same datastructures, and significant improvements when we use better datastructures. Finch
outperforms TACO on larger matrices, with an average speedup of 1.25.

6.3 Graph Analytics
Weused Finch to implement both Breadth-first search (BFS) and Bellman-Ford single-source shortest
path. Our BFS implementation and graphs datasets are taken from Yang et al. [94], including both
road networks and scale-free graphs (bounded node degree vs. power law node degree).
Direction-optimization [14] is crucial for achieving high BFS performance in such scenarios,

switching between push and pull traversals to efficiently explore graphs. Push traversal visits the
neighbors of each frontier node, while pull traversal visits every node and checks to see if it has
a neighbor in the frontier. The advantage of pull traversal is that we may terminate our search
once we find a node in the frontier, saving time in the event the push traversal were to visit most
of the graph anyway. Early break is the critical part of control flow in this algorithm, though the
algorithms also require different loop orders, multiple outputs, and custom operators.
Figure 20 compares performance to Graphs.jl, a Julia library, and the LAGraph Library, which

implements graph algorithms with sparse linear algebra using GraphBLAS [63]. For the BFS
algorithm, direction-optimization notably enhances performance for scale-free graphs. Although
GraphBLAS uses hardwired optimizations, Finch is competitive. On Bellman-Ford (with path lengths
and shortest-path tree), Finch’s support for multiple outputs, sparse inputs, and masks leads to
superior performance over GraphBLAS (average speedup of 3.53). We did not include GAP-road
as it timed out. In Appendix B, we display the code for BFS and Bellman-Ford in Finch (57 and 50
LOC) and LAGraph (215 and 227 LOC), and invite readers to compare the clarity of the algorithms.

V = Tensor(Dense(Element(false)))
P = Tensor(Dense(Element(0)))
F = Tensor(SparseByteMap(Pattern()))
_F = Tensor(SparseByteMap(Pattern()))
A = Tensor(Dense(SparseList(Pattern())))
AT = Tensor(Dense(SparseList(Pattern())))

function bfs_push(_F, F, A, V, P)
@finch begin

_F .= false
for j=_, k=_

if F[j] && A[k, j] && !(V[k])
_F[k] |= true
P[k] <<choose(0)>>= j

end
end
return _F

end
end

function bfs_pull(_F, F, AT, V, P)
p = ShortCircuitScalar{0}()
@finch begin
_F .= false
for k=_

if !V[k]
p .= 0
for j=_

if F[follow(j)] && AT[j, k]
p[] <<choose(0)>>= j

end
end
if p[] != 0

_F[k] |= true
P[k] = p[]

end
end

end
return _F

end
end

_D = Tensor(Dense(Element(Inf)), n)
D = Tensor(Dense(Element(Inf)), n)
function bellmanford(A, _D, D, _F, F)

@finch begin
F .= false
for j = _
if _F[j]

for i = _
let d = _D[j] + A[i, j]
D[i] <<min>>= d
F[i] |= d < _D[i]

end
end

end
end

end

Fig. 19. Graph Applications written in Finch. Note that parents are calculated separately for Bellman-Ford.
The 𝑐ℎ𝑜𝑜𝑠𝑒 (𝑧) operator is a GraphBLAS concept which returns any argument that is not 𝑧.
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Fig. 20. Performance of graph apps across various tools. finch_push_only exclusively utilizes push traversal,
while finch_push_pull applies direction-optimization akin to GraphBLAS. Finch’s support for push/pull
traversal and early break facilitates direction-optimization. Among GraphBLAS’s five variants for Bellman-
Ford, we selected LAGraph_BF_full1a, consistently the fastest with our graphs.

6.4 Image Morphology
Some image processing pipelines stand to benefit from structured data processing [31]. We focus on
binary image morphology and the logical transformation of binary images and masks. We consider
two operations: binary erosion (computing a mask), and a masked histogram (using a mask to avoid
work). We use images are all binary, either by design or having been thresholded.

Finch allows us choose our datastructure, so we may choose to use either a dense representation
with bytes (𝐷𝑒𝑛𝑠𝑒 (𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (0𝑥00))), a bit-packed representation (𝐷𝑒𝑛𝑠𝑒 (𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (𝑈 𝐼𝑛𝑡64))), or a
run-length encoded representation that represents runs of true or false (𝑆𝑝𝑎𝑟𝑠𝑒𝑅𝐿𝐸 (𝑃𝑎𝑡𝑡𝑒𝑟𝑛())). All
of these have their advantages. The dense representation induces the least overhead, the bit-packed
representation can take advantage of bitwise binary ops, and the run-length encoded version only
uses memory and compute when the pattern changes.
Similarly, since Finch let’s us choose our algorithm we can implement erosion in a few ways.

The erosion operation turns off a pixel unless all of it’s neighbors are on. This can be used to shrink
the boundaries of a mask, and remove point instances of noise [35]. This introduces three instances
of structure in the control flow: the mask, the padding of inputs, and the convolutional filter. We
focused on the filter. We might understand the filter as a structured tensor of circular shifts, or we
might understand each shifted view of the data in an unrolled stencil computation as a structured
tensor, or a two part stencil where we compute the horizontal then vertical part of the stencil. We
experimented with these options and found that the last approach performed best, due to fitting
the storage formats while reducing the amount of work with intermediate temporaries. Figure 21
displays example erosion algorithms for bitwise or run-length-encoded algorithms.
We compared against OpenCV. We used four datasets. We randomly selected 100 images from

the MNIST [59] and Omniglot [57] character recognition datasets, as well as a dataset of human line
drawings [33]. We also hand-selected a subset of mask images (these images were less homogeneous,
so we listed them in Appendix C) from a digital image processing textbook [40]. All images
were thresholded, and we also include versions of the images that have been magnified before
thresholding, to induce larger constant regions. In our erosion task, the SparseRLE format performs
the best as it is asymptotically faster and uses less memory, leading to a 19.5X speedup over OpenCV
on the sketches dataset, which becomes arbitrarily large as we magnify the images (here shown as
266X). We believe the 51.6x on MNIST is due to calling overhead in OpenCV. The bitwise kernels
were effective as well, and would be more effective on datasets with less structure. A strength of
Finch is that it supports structured datasets, even over bitwise operations, allowing us to implement
the bitwise kernel and then mask it.
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Wordwise Erosion:
output .= false
for y = _

tmp .= false
for x = _
tmp[x] = coalesce(input[x, ~(y-1)], true) & input[x, y] &

coalesce(input[x, ~(y+1)], true)↩→
end
for x = _
output[x, y] = coalesce(tmp[~(x-1)], true) & tmp[x] &

coalesce(tmp[~(x+1)], true)↩→
end

end

Masked Histogram:
bins .= 0
for x=_

for y=_
if mask[y, x]

bins[div(img[y, x], 16) + 1] += 1
end

end
end

Bitwise Erosion:
output .= 0
for y = _

tmp .= 0
for x = _
if mask[x, y]

tmp[x] = coalesce(input[x, ~(y-1)], 0xFFFFFFFF) & input[x,

y] & coalesce(input[x, ~(y+1)], 0xFFFFFFFF)↩→
end

end
for x = _
if mask[x, y]
let tl = coalesce(tmp[~(x-1)], 0xFFFFFFFF), t = tmp[x], tr =

coalesce(tmp[~(x+1)], 0xFFFFFFFF)↩→
let res = ((tr << (8 * sizeof(UInt) - 1)) | (t >> 1)) & t &

((t << 1) | (tl >> (8 * sizeof(UInt) - 1)))↩→
output[x, y] = res

end
end

end
end

end

Fig. 21. Two approaches to erosion in Finch. The 𝑐𝑜𝑎𝑙𝑒𝑠𝑐𝑒 function defines the out of bounds value. On left,
the naive approach. On 𝑆𝑝𝑎𝑟𝑠𝑒𝑅𝐿𝐸 (𝑃𝑎𝑡𝑡𝑒𝑟𝑛()) inputs, this only performs operations at the boundaries of
constant regions. On right, a bitwise approach, using a mask to limit work to nonzero blocks of bits.

Fig. 22. Performance of Finch on image morphology tasks. On left, we run 2 iterations of erosion. On right,
we run a masked histogram.

We also implemented a histogram kernel. We used an indirect access into the output to implement
this (Figure 21), something not many sparse frameworks support. We compare to OpenCV since the
OpenCV histogram function also accepts a mask. If we use 𝑆𝑝𝑎𝑟𝑠𝑒𝑅𝐿𝐸 (𝑃𝑎𝑡𝑡𝑒𝑟𝑛()) for our mask,
we can reduce the branching in the masked kernel and get better performance. The improvements
with SparseRLE are seen in the histogram task too, as it allows us to mask off contiguous regions
of computation, instead of individual pixels, reducing the branches and leading to a significant
speedup (20.3x on Omniglot and 20.8x on sketches).

6.5 Implementing NumPy’s Array API in Finch
In the past decade, the adoption of the Python Array API [44] has allowed for a proliferation array
programming systems, but existing implementations of this and similar APIs for structured data
suffer from either incompleteness or inefficiency. These APIs have hundreds of required functions,
from mapreduce to slicing and windowing. Compilers with simpler interfaces (such as TACO’s
simple Einsum) need a massive amount of glue code outside of the normal compilation path to
support the full API, leading to a large implementation burden. As the API’s were designed for
only one structure (Dense), the burden only grows with the introduction of as additional structures
such as sparsity, as these structures interact with the complex interface and with each other.
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Further, implementing each operation on its own is insufficient. Operator fusion is required to
avoid asymptotic performance degradation on sparse kernels, as we show in Figure 25. A flexible
compiler like Finch, which can produce efficient code for arbitrary operations between inputs
in a wide variety of formats, is the missing piece needed to implement the full array API for
structured data with competitive performance. To handle the expansiveness of the Array API while
preserving opportunities for fusion and whole workflow optimization, we pursued a lazy evaluation
strategy mediated by a high-level query language. This is implemented by 1) Finch Logic, a minimal,
high-level language for expressing array operations and 2) the Physical Interpreter, which executes
Finch Logic as a sequence of Finch programs.

EXPR := table(TENSOR, FIELDS...) | #TENSOR is a tensor value
ALIAS | FIELD | mapjoin(OP, EXPRS...) | #OP is a function
aggregate(OP, INIT, EXPR, FIELDS...) | #INIT is an initial value
reorder(EXPR, FIELDS...) | #FIELD is a name for an index
relabel(EXPR, FIELDS...) | #ALIAS is a name for a tensor
reformat(TENSOR, EXPR) PLAN := plan(QUERIES...)

QUERY := query(ALIAS, EXPR)

Fig. 23. Finch Logic Syntax.

6.5.1 Finch Logic and the Physical Inter-
preter. Finch Logic is used as a common
representation to implement and fuse
the operations in the Array API. The
syntax is designed to be minimal and
expressive, taking inspiration from rela-
tional algebra with the goal of being able to express most of the operations in the Array API.

Finch Logic. The syntax of Finch Logic is described in Figure 23. Our mapjoin represents pointwise
application, while aggregate represents reductions. We name the result of each computation with
query, and join several expressions in a plan. reorder reorders the indices while relabel relabels
them. reformat hints at materialization into its argument.
Finch’s support for arbitrary user-defined functions allows us to support complex operations

such as argmin, norm, and where, all over structured data. Finch’s support for wrapper arrays allows
us to express indexing operations. These situations are shown in Figure 24.

Heuristic Optimization. Once we express our operation in Finch Logic, we use a quick heuristic
to fuse the expressions. We heuristically split nested aggregate queries into separate queries, and
fuse all of the mapjoins into corresponding aggregates. We then heuristically choose a loop order
for each query with reorder nodes, and introduce separate query nodes to transpose so that the
resulting expressions are concordant. Our heuristic assigns a format to each output by recursively
evaluating the properties of structure (sparsity, repetition, etc.) and checking whether they are
preserved under the operation in question.

Finch Interpreter. Once the program is in a standard form where each query has a specified
format with reformat and at most one aggregate, the Finch Interpreter executes each query, in
order, through a straightforward lowering process.

6.5.2 Evaluation. To demonstrate the performance of our array implementation, we evaluate it
on 1) triangle counting 2) SDDMM 3) and element-wise operations. Further, we compare against
DuckDB as a state of the art system which implements a form of kernel fusion through pipelined

sum(A, dims=2) = aggregate(+, relabel(A, i_1, ..., i_d), i_2)
matmul(A, dims=2) = aggregate(+, mapjoin(*, relabel(A, i, j), relabel(B, j, k)))
argmin(A) = aggregate(minby, (Inf, len(A)), mapjoin(tuple, relabel(A, i), i), i)
norm2(A) = aggregate(scaled_plus, (0, 0), mapjoin(tuple, mapjoin(sign, A), mapjoin(abs, A)), fields(A)...)
where(C, A, B) = mapjoin(ifelse, relabel(C, i), relabel(A, i), relabel(B, i))
slice(A, i:j) = table(WindowedArray(A, i:j), k)
cat(A, B) = mapjoin(coalesce, table(PermissiveArray(A), i), table(OffsetArray(B, length(A)), i))

Fig. 24. Implementations of a few common functions in Finch Logic. Here, minby(x, y) compares x[1] and y[1] and
returns the smaller x or y. scaled_plus rescales whichever argument is smaller, then adds the values with the same scale.
ifelse(c, a, b) returns a when c is true, b otherwise. Finch can understand declared properties and rewrite rules for all
of these functions and types, extending these algorithms to operate on structured arguments.
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Fig. 25. Performance of Finch Logic for common kernels.

query execution. To do this, we express each of these kernels as a single select, join, groupby query.
For the element-wise case, we provide an unfused Finch method to show the impact of fusion.
For triangle counting, we use the same set of graph matrices as in Figure 20. For SDDMM, we
use this set of graph matrices for the sparse matrix, and we produce random dense matrices with
embedding dimension 25. Lastly, for the elementwise operations, we use uniformly sparse matrices
with dimension 10000 by 10000. A/B have sparsity .1, and we vary the sparsity of C in the X axis.

Across all three of these kernels, we see that the high level interface for Finch provides a
major improvement over DuckDB, ranging from 1.2𝑥 − 28𝑥 . For triangle counting and SDDMM,
this improvement stems from Finch’s efficient intersection of the nonzero indices as opposed
to DuckDB’s use of binary join plans1. For element-wise operations, this improvement stems
from Finch’s better handling of expressions which combine index intersection and union and its
compressed data representation.

7 RELATEDWORK
The related work on array languages and libraries spans several areas, from libraries to languages,
from dense to structured computation.

Libraries for Dense Data: Many libraries specialize in dense computations. Perhaps the most well-
known example is NumPy [44], and a classic example is the BLAS, though several BLAS routines
are specialized to symmetric, hermitian, and triangular matrices [9]. Many research projects have
advanced on BLAS, such as BatchedBlas and BLIS [32, 86].

Libraries for Structured Data: Many libraries support BLAS plus a few sparse array types, typically
CSR, CSC, BCSR, Banded, and COO. Examples include SciPy [88], PETSc [5], Armadillo [71],
OSKI [90], Cyclops [79], MKL [1], and Eigen [42]. There are even libraries for very specific kernels
and format combinations, such as SPLATT [77] (MTTKRP on CSF). Several of these libraries also
feature some graph or mesh algorithms built on sparse matrices. The GraphBLAS [52] supports
primitive semiring operations (operations beyond (+, ∗), such as (𝑚𝑖𝑛, +) multiplication) which can
be composed to enable graph algorithms, some of which are collected in LAGraph [63]. Similarly, the
MapReduce and Hadoop platforms support operations on indexed collections [29], and have been
used to support graph algorithms in the GBASE library[51]. Several machine learning frameworks
support some sparse arrays and operations, most notably TorchSparse[83, 84].

1This matches with findings in the database literature showing that worst-case optimal joins (which are very similar to our
kernel execution) are more efficient than binary joins for these queries [91].



Finch: Sparse and Structured Array Programming with Control Flow 111:23

Compilers for Dense Data: Outside of general purpose compilers, many compilers have been
developed for optimizing dense data on a variety of control flow. Perhaps the most well known
example is Halide [70] and its various descendant such as TVM [24], Exo [49], Elevate [43], and
ATL [60]. These languages typically support most control flow except for an early break though some
don’t support arbitrary reading/writing or even indirect accesses. Several polyhedral languages,
such as Polly [41], Tiramisu [11], CHiLL [23], Pluto [19], and AlphaZ [96] offer similar capabilities
in terms of control flow though they often support more irregular regions that the polyhedral
framework supports. These are based on ISL [87]. The density of this research represents the density
of support for dense computation.

Compilers for Structured Data: Several compilers exist for several types of structured data, often
featuring separate languages for the storage of the structured data and the computation. The TACO
compiler originally supported just plain Einsum computations [54], but has been extended several
times to support (single dimensional) local tensors [53], imperfectly nested loops [30], breaks via
semi-rings [45], windowing and tiling [74], and convolution [92], and compilation in MLIR [17], all
as separate extensions. Similarly, TACO originally support just dense and CSF like N dimensional
structures, but was extended independently to support COO like structures [26], and tree like
structures [25], as separate extensions. SparseTIR is a similar system supporting combined sparse
formats (including block structures) [95]. The SDQL language offers a similar level of control
flow [75], but only on sparse hash tables. Similarly, SDQL has been extended with a system that
allows one to specify formats as queries on a set of base storage types [73] and separately by another
system that describes static symmetries and other structures as predicates [38]. The Taichi language
focuses on a single sparse data structure made from dense blocks, bit-masks, and pointers [47]. The
sparse polyhedral framework builds on CHiLL for the purpose of generating inspector/executor
optimizations [81] though the branch of this work that specifies sparse formats separately from
the computation (otherwise they are inlined into the computation manually) seems to apply
mainly to Einsums [98]. Second to last, SQL’s classical physical/logical distinction is the classic
program/format distinction, and SQL supports a huge variety of control flow constructs [28, 56].
However, many SQL or dataframe systems rely on b-trees, columnar, or hash tables, with only a
few systems, such as Vectorwise [18], LaraDB [48], GMAP [85], or SciDB [80] building physical
layouts with other constructs based in array programming. However, array based databases are a
new focus given the rise of mixed ML/DB pipelines [13, 62]. Lastly, SPIRAL focuses on recursively
defined datastructures and recursively define linear algebra, and can therefore express a structure
and computation that none of the systems mentioned above can: a Cooley–Tukey FFT [36, 37].

Other Architectures: Sparse compilers have been extended to many architectures. An extension
of TACO supports GPU [74], Cyclops [78, 79] and SPDistal [93] support distributed memory, and
the Sparse Abstract Machine [46] supports custom hardware. We believe that supporting control
flow is the first step towards architectural support beyond unstructured sparsity.

8 CONCLUSION
Finch automatically specializes flexible control flow to diverse data structures, facilitating productive
algorithmic exploration, flexible array programming, and efficient high-level interfaces for a wider
variety of applications than ever before.
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A SPMV DATASETS

Table 1. SpMV Sample Matrices
HB/saylr4 Norris/heart3 large_band SNAP/as-735

Spy

Group / Name HB/saylr4 Norris/heart3 large_band SNAP/as-735

Dimensions 3,564 x 3,564 (22,316) 2,339 x 2,339 (680,341) 10,000 x 10,000
(1,999,900) 7,716 x 7,716 (26,467)

Best Finch Format Symmetric SparseList SparseVBL SparseBand Symmetric
SparseList-Pattern

B GRAPH ALGORITHM LISTINGS
B.1 Finch Breadth-First Search

function bfs_finch_kernel(edges, edgesT, source=5, alpha = 0.01)
(n, m) = size(edges)
edges = pattern!(edges)
@assert n == m
F = Tensor(SparseByteMap(Pattern()), n)
_F = Tensor(SparseByteMap(Pattern()), n)
@finch F[source] = true
F_nnz = 1
V = Tensor(Dense(Element(false)), n)
@finch V[source] = true
P = Tensor(Dense(Element(0)), n)
@finch P[source] = source
while F_nnz > 0

if F_nnz/m > alpha # pull
p = ShortCircuitScalar{0}()
_F .= false
for k=_

if !V[k]
p .= 0
for j=_

if F[follow(j)] && AT[j, k]
p[] <<choose(0)>>= j

end
end
if p[] != 0

_F[k] |= true
P[k] = p[]

end
end

end
else # push

_F .= false
for j=_, k=_

if F[j] && A[k, j] && !(V[k])
_F[k] |= true
P[k] <<choose(0)>>= j

end
end

end
c = Scalar(0)
@finch begin

for k=_
let _f = _F[k]

V[k] |= _f
c[] += _f

end
end

end
(F, _F) = (_F, F)
F_nnz = c[]

end
return P

end
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B.2 GraphBLAS Breadth-First Search
//------------------------------------------------------------------------------
// LAGr_BreadthFirstSearch: breadth-first search dispatch
//------------------------------------------------------------------------------

// LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights Reserved.
// SPDX-License-Identifier: BSD-2-Clause
//
// For additional details (including references to third party source code and
// other files) see the LICENSE file or contact permission@sei.cmu.edu. See
// Contributors.txt for a full list of contributors. Created, in part, with
// funding and support from the U.S. Government (see Acknowledgments.txt file).
// DM22-0790

// Contributed by Scott McMillan, SEI Carnegie Mellon University

//------------------------------------------------------------------------------

// Breadth-first-search via push/pull method if using SuiteSparse:GraphBLAS
// and its GxB extensions, or a push-only method otherwise. The former is
// much faster.

// This is an Advanced algorithm. SuiteSparse can use a push/pull method if
// G->AT and G->out_degree are provided. G->AT is not required if G is
// undirected. The vanilla method is always push-only.

#include "LG_alg_internal.h"

int LAGr_BreadthFirstSearch
(

// output:
GrB_Vector *level,
GrB_Vector *parent,
// input:
const LAGraph_Graph G,
GrB_Index src,
char *msg

)
{

#if LAGRAPH_SUITESPARSE
return LG_BreadthFirstSearch_SSGrB (level, parent, G, src, msg) ;

#else
return LG_BreadthFirstSearch_vanilla (level, parent, G, src, msg) ;

#endif
}

//------------------------------------------------------------------------------
// LG_BreadthFirstSearch_SSGrB: BFS using Suitesparse extensions
//------------------------------------------------------------------------------

// LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights Reserved.
// SPDX-License-Identifier: BSD-2-Clause
//
// For additional details (including references to third party source code and
// other files) see the LICENSE file or contact permission@sei.cmu.edu. See
// Contributors.txt for a full list of contributors. Created, in part, with
// funding and support from the U.S. Government (see Acknowledgments.txt file).
// DM22-0790

// Contributed by Timothy A. Davis, Texas A&M University

//------------------------------------------------------------------------------

// This is an Advanced algorithm. G->AT and G->out_degree are required for
// this method to use push-pull optimization. If not provided, this method
// defaults to a push-only algorithm, which can be slower. This is not
// user-callable (see LAGr_BreadthFirstSearch instead). G->AT and
// G->out_degree are not computed if not present.

// References:
//
// Carl Yang, Aydin Buluc, and John D. Owens. 2018. Implementing Push-Pull
// Efficiently in GraphBLAS. In Proceedings of the 47th International
// Conference on Parallel Processing (ICPP 2018). ACM, New York, NY, USA,
// Article 89, 11 pages. DOI: https://doi.org/10.1145/3225058.3225122
//
// Scott Beamer, Krste Asanovic and David A. Patterson, The GAP Benchmark
// Suite, http://arxiv.org/abs/1508.03619, 2015. http://gap.cs.berkeley.edu/
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// revised by Tim Davis (davis@tamu.edu), Texas A&M University

#define LG_FREE_WORK \
{ \

GrB_free (&w) ; \
GrB_free (&q) ; \

}

#define LG_FREE_ALL \
{ \

LG_FREE_WORK ; \
GrB_free (&pi) ; \
GrB_free (&v) ; \

}

#include "LG_internal.h"

int LG_BreadthFirstSearch_SSGrB
(

GrB_Vector *level,
GrB_Vector *parent,
const LAGraph_Graph G,
GrB_Index src,
char *msg

)
{

//--------------------------------------------------------------------------
// check inputs
//--------------------------------------------------------------------------

LG_CLEAR_MSG ;
GrB_Vector q = NULL ; // the current frontier
GrB_Vector w = NULL ; // to compute work remaining
GrB_Vector pi = NULL ; // parent vector
GrB_Vector v = NULL ; // level vector

#if !LAGRAPH_SUITESPARSE
LG_ASSERT (false, GrB_NOT_IMPLEMENTED) ;

#else

bool compute_level = (level != NULL) ;
bool compute_parent = (parent != NULL) ;
if (compute_level ) (*level ) = NULL ;
if (compute_parent) (*parent) = NULL ;
LG_ASSERT_MSG (compute_level || compute_parent, GrB_NULL_POINTER,

"either level or parent must be non-NULL") ;

LG_TRY (LAGraph_CheckGraph (G, msg)) ;

//--------------------------------------------------------------------------
// get the problem size and cached properties
//--------------------------------------------------------------------------

GrB_Matrix A = G->A ;

GrB_Index n, nvals ;
GRB_TRY (GrB_Matrix_nrows (&n, A)) ;
LG_ASSERT_MSG (src < n, GrB_INVALID_INDEX, "invalid source node") ;

GRB_TRY (GrB_Matrix_nvals (&nvals, A)) ;

GrB_Matrix AT = NULL ;
GrB_Vector Degree = G->out_degree ;
if (G->kind == LAGraph_ADJACENCY_UNDIRECTED ||

(G->kind == LAGraph_ADJACENCY_DIRECTED &&
G->is_symmetric_structure == LAGraph_TRUE))

{
// AT and A have the same structure and can be used in both directions
AT = G->A ;

}
else
{

// AT = A' is different from A. If G->AT is NULL, then a push-only
// method is used.
AT = G->AT ;

}

// direction-optimization requires G->AT (if G is directed) and
// G->out_degree (for both undirected and directed cases)
bool push_pull = (Degree != NULL && AT != NULL) ;
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// determine the semiring type
GrB_Type int_type = (n > INT32_MAX) ? GrB_INT64 : GrB_INT32 ;
GrB_Semiring semiring ;

if (compute_parent)
{

// use the ANY_SECONDI_INT* semiring: either 32 or 64-bit depending on
// the # of nodes in the graph.
semiring = (n > INT32_MAX) ?

GxB_ANY_SECONDI_INT64 : GxB_ANY_SECONDI_INT32 ;

// create the parent vector. pi(i) is the parent id of node i
GRB_TRY (GrB_Vector_new (&pi, int_type, n)) ;
GRB_TRY (GxB_set (pi, GxB_SPARSITY_CONTROL, GxB_BITMAP + GxB_FULL)) ;
// pi (src) = src denotes the root of the BFS tree
GRB_TRY (GrB_Vector_setElement (pi, src, src)) ;

// create a sparse integer vector q, and set q(src) = src
GRB_TRY (GrB_Vector_new (&q, int_type, n)) ;
GRB_TRY (GrB_Vector_setElement (q, src, src)) ;

}
else
{

// only the level is needed, use the LAGraph_any_one_bool semiring
semiring = LAGraph_any_one_bool ;

// create a sparse boolean vector q, and set q(src) = true
GRB_TRY (GrB_Vector_new (&q, GrB_BOOL, n)) ;
GRB_TRY (GrB_Vector_setElement (q, true, src)) ;

}

if (compute_level)
{

// create the level vector. v(i) is the level of node i
// v (src) = 0 denotes the source node
GRB_TRY (GrB_Vector_new (&v, int_type, n)) ;
GRB_TRY (GxB_set (v, GxB_SPARSITY_CONTROL, GxB_BITMAP + GxB_FULL)) ;
GRB_TRY (GrB_Vector_setElement (v, 0, src)) ;

}

// workspace for computing work remaining
GRB_TRY (GrB_Vector_new (&w, GrB_INT64, n)) ;

GrB_Index nq = 1 ; // number of nodes in the current level
double alpha = 8.0 ;
double beta1 = 8.0 ;
double beta2 = 512.0 ;
int64_t n_over_beta1 = (int64_t) (((double) n) / beta1) ;
int64_t n_over_beta2 = (int64_t) (((double) n) / beta2) ;

//--------------------------------------------------------------------------
// BFS traversal and label the nodes
//--------------------------------------------------------------------------

bool do_push = true ; // start with push
GrB_Index last_nq = 0 ;
int64_t edges_unexplored = nvals ;
bool any_pull = false ; // true if any pull phase has been done

// {!mask} is the set of unvisited nodes
GrB_Vector mask = (compute_parent) ? pi : v ;

for (int64_t nvisited = 1, k = 1 ; nvisited < n ; nvisited += nq, k++)
{

//----------------------------------------------------------------------
// select push vs pull
//----------------------------------------------------------------------

if (push_pull)
{

if (do_push)
{

// check for switch from push to pull
bool growing = nq > last_nq ;
bool switch_to_pull = false ;
if (edges_unexplored < n)
{

// very little of the graph is left; disable the pull
push_pull = false ;
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}
else if (any_pull)
{

// once any pull phase has been done, the # of edges in the
// frontier has no longer been tracked. But now the BFS
// has switched back to push, and we're checking for yet
// another switch to pull. This switch is unlikely, so
// just keep track of the size of the frontier, and switch
// if it starts growing again and is getting big.
switch_to_pull = (growing && nq > n_over_beta1) ;

}
else
{

// update the # of unexplored edges
// w<q>=Degree
// w(i) = outdegree of node i if node i is in the queue
GRB_TRY (GrB_assign (w, q, NULL, Degree, GrB_ALL, n,

GrB_DESC_RS)) ;
// edges_in_frontier = sum (w) = # of edges incident on all
// nodes in the current frontier
int64_t edges_in_frontier = 0 ;
GRB_TRY (GrB_reduce (&edges_in_frontier, NULL,

GrB_PLUS_MONOID_INT64, w, NULL)) ;
edges_unexplored -= edges_in_frontier ;
switch_to_pull = growing &&

(edges_in_frontier > (edges_unexplored / alpha)) ;
}
if (switch_to_pull)
{

// switch from push to pull
do_push = false ;

}
}
else
{

// check for switch from pull to push
bool shrinking = nq < last_nq ;
if (shrinking && (nq <= n_over_beta2))
{

// switch from pull to push
do_push = true ;

}
}
any_pull = any_pull || (!do_push) ;

}

//----------------------------------------------------------------------
// q = kth level of the BFS
//----------------------------------------------------------------------

int sparsity = do_push ? GxB_SPARSE : GxB_BITMAP ;
GRB_TRY (GxB_set (q, GxB_SPARSITY_CONTROL, sparsity)) ;

// mask is pi if computing parent, v if computing just level
if (do_push)
{

// push (saxpy-based vxm): q'{!mask} = q'*A
GRB_TRY (GrB_vxm (q, mask, NULL, semiring, q, A, GrB_DESC_RSC)) ;

}
else
{

// pull (dot-product-based mxv): q{!mask} = AT*q
GRB_TRY (GrB_mxv (q, mask, NULL, semiring, AT, q, GrB_DESC_RSC)) ;

}

//----------------------------------------------------------------------
// done if q is empty
//----------------------------------------------------------------------

last_nq = nq ;
GRB_TRY (GrB_Vector_nvals (&nq, q)) ;
if (nq == 0)
{

break ;
}

//----------------------------------------------------------------------
// assign parents/levels
//----------------------------------------------------------------------

if (compute_parent)
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{
// q(i) currently contains the parent id of node i in tree.
// pi{q} = q
GRB_TRY (GrB_assign (pi, q, NULL, q, GrB_ALL, n, GrB_DESC_S)) ;

}
if (compute_level)
{

// v{q} = k, the kth level of the BFS
GRB_TRY (GrB_assign (v, q, NULL, k, GrB_ALL, n, GrB_DESC_S)) ;

}
}

//--------------------------------------------------------------------------
// free workspace and return result
//--------------------------------------------------------------------------

if (compute_parent) (*parent) = pi ;
if (compute_level ) (*level ) = v ;
LG_FREE_WORK ;
return (GrB_SUCCESS) ;

#endif
}

B.3 Finch Bellman-Ford
function bellmanford_finch_kernel(edges, source=1)

(n, m) = size(edges)
@assert n == m
dists_prev = Tensor(Dense(Element(Inf)), n)
dists_prev[source] = 0
dists = Tensor(Dense(Element(Inf)), n)
active_prev = Tensor(SparseByteMap(Pattern()), n)
active_prev[source] = true
active = Tensor(SparseByteMap(Pattern()), n)
parents = Tensor(Dense(Element(0)), n)
for iter = 1:n

@finch begin
for j=_

if active_prev[j]
dists[j] <<min>>= dists_prev[j]

end
end

end
@finch begin

active .= false
for j = _

if active_prev[j]
for i = _

let d = dists_prev[j] + edges[i, j]
dists[i] <<min>>= d
active[i] |= d < dists_prev[i]

end
end

end
end

end
if countstored(active) == 0

break
end
dists_prev, dists = dists, dists_prev
active_prev, active = active, active_prev

end
@finch begin

for j = _
for i = _

let d = edges[i, j]
if d < Inf && dists[j] + d <= dists[i]

parents[i] <<choose(0)>>= j
end

end
end

end
end
return (dists=dists, parents=parents)

end

B.4 GraphBLAS Bellman-Ford
//------------------------------------------------------------------------------
// LAGraph_BF_full1a.c: Bellman-Ford single-source shortest paths, returns tree,
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// while diagonal of input matrix A needs not to be explicit 0
//------------------------------------------------------------------------------

// LAGraph, (c) 2019-2022 by The LAGraph Contributors, All Rights Reserved.
// SPDX-License-Identifier: BSD-2-Clause
//
// For additional details (including references to third party source code and
// other files) see the LICENSE file or contact permission@sei.cmu.edu. See
// Contributors.txt for a full list of contributors. Created, in part, with
// funding and support from the U.S. Government (see Acknowledgments.txt file).
// DM22-0790

// Contributed by Jinhao Chen and Timothy A. Davis, Texas A&M University

//------------------------------------------------------------------------------

// This is the fastest variant that computes both the parent & the path length.

// LAGraph_BF_full1a: Bellman-Ford single source shortest paths, returning both
// the path lengths and the shortest-path tree.

// LAGraph_BF_full performs a Bellman-Ford to find out shortest path, parent
// nodes along the path and the hops (number of edges) in the path from given
// source vertex s in the range of [0, n) on graph given as matrix A with size
// n*n. The sparse matrix A has entry A(i, j) if there is an edge from vertex i
// to vertex j with weight w, then A(i, j) = w.

// LAGraph_BF_full1a returns GrB_SUCCESS if it succeeds. In this case, there
// are no negative-weight cycles in the graph, and d, pi, and h are returned.
// The vector d has d(k) as the shortest distance from s to k. pi(k) = p+1,
// where p is the parent node of k-th node in the shortest path. In particular,
// pi(s) = 0. h(k) = hop(s, k), the number of edges from s to k in the shortest
// path.

// If the graph has a negative-weight cycle, GrB_NO_VALUE is returned, and the
// GrB_Vectors d(k), pi(k) and h(k) (i.e., *pd_output, *ppi_output and
// *ph_output respectively) will be NULL when negative-weight cycle detected.

// Otherwise, other errors such as GrB_OUT_OF_MEMORY, GrB_INVALID_OBJECT, and
// so on, can be returned, if these errors are found by the underlying
// GrB_* functions.

//------------------------------------------------------------------------------

#define LG_FREE_WORK \
{ \

GrB_free(&d); \
GrB_free(&dmasked); \
GrB_free(&dless); \
GrB_free(&Atmp); \
GrB_free(&BF_Tuple3); \
GrB_free(&BF_lMIN_Tuple3); \
GrB_free(&BF_PLUSrhs_Tuple3); \
GrB_free(&BF_LT_Tuple3); \
GrB_free(&BF_lMIN_Tuple3_Monoid); \
GrB_free(&BF_lMIN_PLUSrhs_Tuple3); \
LAGraph_Free ((void**)&I, NULL); \
LAGraph_Free ((void**)&J, NULL); \
LAGraph_Free ((void**)&w, NULL); \
LAGraph_Free ((void**)&W, NULL); \
LAGraph_Free ((void**)&h, NULL); \
LAGraph_Free ((void**)&pi, NULL); \

}

#define LG_FREE_ALL \
{ \

LG_FREE_WORK ; \
GrB_free (pd_output); \
GrB_free (ppi_output); \
GrB_free (ph_output); \

}

#include <LAGraph.h>
#include <LAGraphX.h>
#include <LG_internal.h> // from src/utility

typedef void (*LAGraph_binary_function) (void *, const void *, const void *) ;

//------------------------------------------------------------------------------
// data type for each entry of the adjacent matrix A and "distance" vector d;
// <INFINITY,INFINITY,INFINITY> corresponds to nonexistence of a path, and
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// the value <0, 0, NULL> corresponds to a path from a vertex to itself
//------------------------------------------------------------------------------

typedef struct
{

double w; // w corresponds to a path weight.
GrB_Index h; // h corresponds to a path size or number of hops.
GrB_Index pi;// pi corresponds to the penultimate vertex along a path.

// vertex indexed as 1, 2, 3, ... , V, and pi = 0 (as nil)
// for u=v, and pi = UINT64_MAX (as inf) for (u,v) not in E

}
BF_Tuple3_struct;

//------------------------------------------------------------------------------
// binary functions, z=f(x,y), where Tuple3xTuple3 -> Tuple3
//------------------------------------------------------------------------------

void BF_lMIN3
(

BF_Tuple3_struct *z,
const BF_Tuple3_struct *x,
const BF_Tuple3_struct *y

)
{

if (x->w < y->w
|| (x->w == y->w && x->h < y->h)
|| (x->w == y->w && x->h == y->h && x->pi < y->pi))

{
if (z != x) { *z = *x; }

}
else
{

*z = *y;
}

}

void BF_PLUSrhs3
(

BF_Tuple3_struct *z,
const BF_Tuple3_struct *x,
const BF_Tuple3_struct *y

)
{

z->w = x->w + y->w ;
z->h = x->h + y->h ;
z->pi = (x->pi != UINT64_MAX && y->pi != 0) ? y->pi : x->pi ;

}

void BF_LT3
(

bool *z,
const BF_Tuple3_struct *x,
const BF_Tuple3_struct *y

)
{

(*z) = (x->w < y->w
|| (x->w == y->w && x->h < y->h)
|| (x->w == y->w && x->h == y->h && x->pi < y->pi)) ;

}

// Given a n-by-n adjacency matrix A and a source vertex s.
// If there is no negative-weight cycle reachable from s, return the distances
// of shortest paths from s and parents along the paths as vector d. Otherwise,
// returns d=NULL if there is a negtive-weight cycle.
// pd_output is pointer to a GrB_Vector, where the i-th entry is d(s,i), the
// sum of edges length in the shortest path
// ppi_output is pointer to a GrB_Vector, where the i-th entry is pi(i), the
// parent of i-th vertex in the shortest path
// ph_output is pointer to a GrB_Vector, where the i-th entry is h(s,i), the
// number of edges from s to i in the shortest path
// A has weights on corresponding entries of edges
// s is given index for source vertex
GrB_Info LAGraph_BF_full1a
(

GrB_Vector *pd_output, //the pointer to the vector of distance
GrB_Vector *ppi_output, //the pointer to the vector of parent
GrB_Vector *ph_output, //the pointer to the vector of hops
const GrB_Matrix A, //matrix for the graph
const GrB_Index s //given index of the source

)
{
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GrB_Info info;
char *msg = NULL ;
// tmp vector to store distance vector after n (i.e., V) loops
GrB_Vector d = NULL, dmasked = NULL, dless = NULL;
GrB_Matrix Atmp = NULL;
GrB_Type BF_Tuple3;

GrB_BinaryOp BF_lMIN_Tuple3;
GrB_BinaryOp BF_PLUSrhs_Tuple3;
GrB_BinaryOp BF_LT_Tuple3;

GrB_Monoid BF_lMIN_Tuple3_Monoid;
GrB_Semiring BF_lMIN_PLUSrhs_Tuple3;

GrB_Index nrows, ncols, n, nz; // n = # of row/col, nz = # of nnz in graph
GrB_Index *I = NULL, *J = NULL; // for col/row indices of entries from A
GrB_Index *h = NULL, *pi = NULL;
double *w = NULL;
BF_Tuple3_struct *W = NULL;

if (pd_output != NULL) *pd_output = NULL;
if (ppi_output != NULL) *ppi_output = NULL;
if (ph_output != NULL) *ph_output = NULL;

LG_ASSERT (A != NULL && pd_output != NULL &&
ppi_output != NULL && ph_output != NULL, GrB_NULL_POINTER) ;

GRB_TRY (GrB_Matrix_nrows (&nrows, A)) ;
GRB_TRY (GrB_Matrix_ncols (&ncols, A)) ;
GRB_TRY (GrB_Matrix_nvals (&nz, A));
LG_ASSERT_MSG (nrows == ncols, -1002, "A must be square") ;
n = nrows;
LG_ASSERT_MSG (s < n, GrB_INVALID_INDEX, "invalid source node") ;

//--------------------------------------------------------------------------
// create all GrB_Type GrB_BinaryOp GrB_Monoid and GrB_Semiring
//--------------------------------------------------------------------------
// GrB_Type
GRB_TRY (GrB_Type_new(&BF_Tuple3, sizeof(BF_Tuple3_struct)));

// GrB_BinaryOp
GRB_TRY (GrB_BinaryOp_new(&BF_LT_Tuple3,

(LAGraph_binary_function) (&BF_LT3), GrB_BOOL, BF_Tuple3, BF_Tuple3));
GRB_TRY (GrB_BinaryOp_new(&BF_lMIN_Tuple3,

(LAGraph_binary_function) (&BF_lMIN3), BF_Tuple3, BF_Tuple3,BF_Tuple3));
GRB_TRY (GrB_BinaryOp_new(&BF_PLUSrhs_Tuple3,

(LAGraph_binary_function)(&BF_PLUSrhs3),
BF_Tuple3, BF_Tuple3, BF_Tuple3));

// GrB_Monoid
BF_Tuple3_struct BF_identity = (BF_Tuple3_struct) { .w = INFINITY,

.h = UINT64_MAX, .pi = UINT64_MAX };
GRB_TRY (GrB_Monoid_new_UDT(&BF_lMIN_Tuple3_Monoid, BF_lMIN_Tuple3,

&BF_identity));

//GrB_Semiring
GRB_TRY (GrB_Semiring_new(&BF_lMIN_PLUSrhs_Tuple3,

BF_lMIN_Tuple3_Monoid, BF_PLUSrhs_Tuple3));

//--------------------------------------------------------------------------
// allocate arrays used for tuplets
//--------------------------------------------------------------------------

#if 1
LAGRAPH_TRY (LAGraph_Malloc ((void **) &I, nz, sizeof(GrB_Index), msg)) ;
LAGRAPH_TRY (LAGraph_Malloc ((void **) &J, nz, sizeof(GrB_Index), msg)) ;
LAGRAPH_TRY (LAGraph_Malloc ((void **) &w, nz, sizeof(double), msg)) ;
LAGRAPH_TRY (LAGraph_Malloc ((void **) &W, nz, sizeof(BF_Tuple3_struct),

msg)) ;

//--------------------------------------------------------------------------
// create matrix Atmp based on A, while its entries become BF_Tuple3 type
//--------------------------------------------------------------------------

GRB_TRY (GrB_Matrix_extractTuples_FP64(I, J, w, &nz, A));
int nthreads, nthreads_outer, nthreads_inner ;
LG_TRY (LAGraph_GetNumThreads (&nthreads_outer, &nthreads_inner, msg)) ;
nthreads = nthreads_outer * nthreads_inner ;
printf ("nthreads %d\n", nthreads) ;
int64_t k;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (k = 0; k < nz; k++)
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{
W[k] = (BF_Tuple3_struct) { .w = w[k], .h = 1, .pi = I[k] + 1 };

}
GRB_TRY (GrB_Matrix_new(&Atmp, BF_Tuple3, n, n));
GRB_TRY (GrB_Matrix_build_UDT(Atmp, I, J, W, nz, BF_lMIN_Tuple3));
LAGraph_Free ((void**)&I, NULL);
LAGraph_Free ((void**)&J, NULL);
LAGraph_Free ((void**)&W, NULL);
LAGraph_Free ((void**)&w, NULL);

#else

todo: GraphBLAS could use a new kind of unary operator, not z=f(x), but

[z,flag] = f (aij, i, j, k, nrows, ncols, nvals, etc, ...)
flag: keep or discard. Combines GrB_apply and GxB_select.

builtins:
f(...) =

i, bool is true
j, bool is true
i+j*nrows, etc.
k
tril, triu (like GxB_select): return aij, and true/false boolean

z=f(x,i). x: double, z:tuple3, i:GrB_Index with the row index of x
// z = (BF_Tuple3_struct) { .w = x, .h = 1, .pi = i + 1 };

GrB_apply (Atmp, op, A, ...)

in the BFS, this is used:
op: z = f ( .... ) = i
to replace x(i) with i

#endif

//--------------------------------------------------------------------------
// create and initialize "distance" vector d, dmasked and dless
//--------------------------------------------------------------------------
GRB_TRY (GrB_Vector_new(&d, BF_Tuple3, n));
// make d dense
GRB_TRY (GrB_Vector_assign_UDT(d, NULL, NULL, (void*)&BF_identity,

GrB_ALL, n, NULL));
// initial distance from s to itself
BF_Tuple3_struct d0 = (BF_Tuple3_struct) { .w = 0, .h = 0, .pi = 0 };
GRB_TRY (GrB_Vector_setElement_UDT(d, &d0, s));

// creat dmasked as a sparse vector with only one entry at s
GRB_TRY (GrB_Vector_new(&dmasked, BF_Tuple3, n));
GRB_TRY (GrB_Vector_setElement_UDT(dmasked, &d0, s));

// create dless
GRB_TRY (GrB_Vector_new(&dless, GrB_BOOL, n));

//--------------------------------------------------------------------------
// start the Bellman Ford process
//--------------------------------------------------------------------------
bool any_dless= true; // if there is any newly found shortest path
int64_t iter = 0; // number of iterations

// terminate when no new path is found or more than V-1 loops
while (any_dless && iter < n - 1)
{

// execute semiring on dmasked and A, and save the result to dmasked
GRB_TRY (GrB_vxm(dmasked, GrB_NULL, GrB_NULL,

BF_lMIN_PLUSrhs_Tuple3, dmasked, Atmp, GrB_NULL));

// dless = d .< dtmp
GRB_TRY (GrB_eWiseMult(dless, NULL, NULL, BF_LT_Tuple3, dmasked, d,

NULL));

// if there is no entry with smaller distance then all shortest paths
// are found
GRB_TRY (GrB_reduce (&any_dless, NULL, GrB_LOR_MONOID_BOOL, dless,

NULL)) ;
if(any_dless)
{

// update all entries with smaller distances
//GRB_TRY (GrB_apply(d, dless, NULL, BF_Identity_Tuple3,
// dmasked, NULL));
GRB_TRY (GrB_assign(d, dless, NULL, dmasked, GrB_ALL, n, NULL));
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// only use entries that were just updated
//GRB_TRY (GrB_Vector_clear(dmasked));
//GRB_TRY (GrB_apply(dmasked, dless, NULL, BF_Identity_Tuple3,
// d, NULL));
//try:
GRB_TRY (GrB_assign(dmasked, dless, NULL, d, GrB_ALL, n, GrB_DESC_R));

}
iter ++;

}

// check for negative-weight cycle only when there was a new path in the
// last loop, otherwise, there can't be a negative-weight cycle.
if (any_dless)
{

// execute semiring again to check for negative-weight cycle
GRB_TRY (GrB_vxm(dmasked, GrB_NULL, GrB_NULL,

BF_lMIN_PLUSrhs_Tuple3, dmasked, Atmp, GrB_NULL));

// dless = d .< dtmp
GRB_TRY (GrB_eWiseMult(dless, NULL, NULL, BF_LT_Tuple3, dmasked, d,

NULL));

// if there is no entry with smaller distance then all shortest paths
// are found
GRB_TRY (GrB_reduce (&any_dless, NULL, GrB_LOR_MONOID_BOOL, dless,

NULL)) ;
if(any_dless)
{

// printf("A negative-weight cycle found. \n");
LG_FREE_ALL;
return (GrB_NO_VALUE) ;

}
}

//--------------------------------------------------------------------------
// extract tuple from "distance" vector d and create GrB_Vectors for output
//--------------------------------------------------------------------------

LAGRAPH_TRY (LAGraph_Malloc ((void **) &I, n, sizeof(GrB_Index), msg)) ;
LAGRAPH_TRY (LAGraph_Malloc ((void **) &W, n, sizeof(BF_Tuple3_struct),

msg)) ;
LAGRAPH_TRY (LAGraph_Malloc ((void **) &w, n, sizeof(double), msg)) ;
LAGRAPH_TRY (LAGraph_Malloc ((void **) &h, n, sizeof(GrB_Index), msg)) ;
LAGRAPH_TRY (LAGraph_Malloc ((void **) &pi, n, sizeof(GrB_Index), msg)) ;

// todo: create 3 unary ops, and use GrB_apply?

GRB_TRY (GrB_Vector_extractTuples_UDT (I, (void *) W, &n, d));

for (k = 0; k < n; k++)
{

w [k] = W[k].w ;
h [k] = W[k].h ;
pi[k] = W[k].pi;

}
GRB_TRY (GrB_Vector_new(pd_output, GrB_FP64, n));
GRB_TRY (GrB_Vector_new(ppi_output, GrB_UINT64, n));
GRB_TRY (GrB_Vector_new(ph_output, GrB_UINT64, n));
GRB_TRY (GrB_Vector_build (*pd_output , I, w , n, GrB_MIN_FP64 ));
GRB_TRY (GrB_Vector_build (*ppi_output, I, pi, n, GrB_MIN_UINT64));
GRB_TRY (GrB_Vector_build (*ph_output , I, h , n, GrB_MIN_UINT64));
LG_FREE_WORK;
return (GrB_SUCCESS) ;

}

C MASK IMAGES
We interpreted the following images from “Digital Image Processing” [1] as masks:

FigP1012.png
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Fig1008_a__step_edge_.png

FigP0905_d_.png

FigP0528_c__doughnut_.png

FigP0616_b_.png

Fig0114_c__bottles_.png

FigP0616_c_.png
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FigP0433_b_.png

Figp0917.png

FigP0905_b_.png

Fig1059_c__NegADI_.png
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Fig1111_a__triangle_.png

Fig1111_b__square_.png

FigP0905_top_.png

FigP1110.png
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Fig0533_a__circle_.png

FigP0917_noisy_rectangle_.png
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Fig0230_b__dental_xray_mask_.png

FigP0528_b__two_dots_.png

Fig1059_a__AbsADI_.png

Fig1059_b__PosADI_.png
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Fig0539_c__shepp-logan_phantom_.png

FigP0905_c_.png

Fig1043_a__yeast_USC_.png

FigP0905_U_.png
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Fig0524_b__blurred-impulse_.png

Fig0424_a__rectangle_.png

Fig1008_c__roof_edge_.png

Fig0539_a__vertical_rectangle_.png
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FigP0905_a_.png

FigP0433_a_.png

Fig0.15_a__translated_rectangle_.png

FigP0918_c_.png

Fig0524_a__impulse_.png
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Fig0236_a__letter_T_.png

Fig0503__original_pattern_.png

FigP0501.png

Fig1218_airplanes_.png
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Fig0534_a__ellipse_and_circle_.png

FigP0616_a_.png
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FigP0918_b_.png

FigP0528_c_.png

FigP0528_a__single_dot_.png



Finch: Sparse and Structured Array Programming with Control Flow 111:23

REFERENCES
[1] Rafael C. Gonzalez and Richard E. Woods. 2006. Digital Image Processing (3rd Edition). Prentice-Hall, Inc., USA.


