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ABSTRACT

Symmetric tensors arise naturally in many domains including linear algebra, statistics,
physics, chemistry, and graph theory. Symmetry arises through both mathematical proper-
ties and scientific phenomena. Taking advantage of symmetry in matrices saves a factor of
two, but taking advantage of symmetry in a tensor of order n can save a factor of n! in mem-
ory accesses and operations. However, implementing this symmetry by hand significantly
increases the complexity; for instance, leveraging symmetry in 2D BLAS nearly doubles the
implementation burden, and this burden escalates further in the case of higher-dimensional
tensors. Existing compilers to compute those kernels either do not take advantage of symme-
try or do not take advantage of it to the extent possible. My thesis will identify and categorize
methods to exploit symmetry in common and uncommon tensor kernels. We will depict a
methodology to systematically generate and optimize symmetric code and will present a
compiler in Julia that automates this process. Our symmetric implementation demonstrates
significant speedups ranging from 1.36x for SSYMV to 7.95x for a 4-dimensional MTTKRP
over the naive implementation of these kernels.
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Chapter 1

Introduction

A symmetric tensor is a tensor that is invariant under a permutation of its indices (Figure
1.1). Tensors are often naturally symmetric because of the physical and chemical properties
of substances and matter which produce symmetric interactions, structures, or reactions. In
addition, mathematical operations often induce symmetry (e.g. computing ATA), a conse-
quence of the way we use tensor algebra.

A =


4 −3 5 0 7

−3 6 −2 9 −8
5 −2 0 −4 −6
0 9 −4 −1 −3
7 −8 −6 −3 2


Figure 1.1: Example of a 5x5 symmetric matrix. Note that for all valid indices i, j, Aij = Aji.

There are applications of symmetric tensors in many domains. For example, in linear
algebra, the hat matrix in linear regression and the Q matrix that is a result of QR fac-
torization are both symmetric [10]. In statistics, matrices expressing covariance and other
similarly commutative calculations are naturally symmetric [33]. In physics and chemistry
computations, the properties of quantum tensor networks and computational fluid dynamics
give way to multi-dimensional symmetry [28, 15]. In graph theory, all adjacency matrices of
undirected graphs, used in algorithms like single-source shortest path and to find connected
components, are also symmetric [36].

Given the ubiquitous nature of symmetric tensors, it is worthwhile to explore and im-
plement systems to take advantage of symmetry. Optimizations with symmetric tensors can
be categorized as being either (or both) storage-based or compute-based where the former
typically avoid redundant storage and the latter avoid redundant computation. For instance,
a storage-based optimization for the SSYMV kernel given by y = Ax where A is symmetric
would be storing and accessing only one triangle of matrix A (i.e. 1

2
the values) to compute

all of the output y. On the other hand, a compute-based optimization for the SSYRK kernel
given by C = A ∗AT where A is not symmetric would be computing the values for just one
triangle of C (i.e. 1

2
the values) because C is symmetric, and then replicating the values to
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the other triangle of C or alternatively, storing C in a symmetry-aware format that does not
need replication.

Existing compilers that take advantage of symmetry can be grouped into two classes:
frameworks that restructure tensor operations based on symmetry to reduce computation
and specialized libraries or systems that provide hand-written symmetric kernels that can
be recombined to produce symmetry-aware programs, as will be described further in Section
2.1. The former encompasses systems that reorder tensor contractions to minimize operation
count [18] as well as systems that utilize blocking to store and operate on only the unique
values of a symmetric tensor [32, 39]. However, after reordering or blocking, such systems
generally use programs that are not symmetry-aware to actually compute the output. On
the other hand, the specialized libraries have a limited number of symmetrized tensor kernels
[19]; hand-writing more specialized, symmetric kernels is cumbersome. Overall, there is a
lack of a generalizable framework for how to generate symmetry-aware code. I seek to fill
this void by providing such a framework that is applicable to arbitrary tensor kernels with
any type of symmetry.

Thus, my specific contributions in this thesis are

1. An identification and categorization of strategies to exploit symmetry in tensor kernels.
These include saving memory bandwidth by reusing memory reads of the symmetric
input and compute bandwidth by filtering redundant computations. To the best of
my knowledge, this thesis is the first to systematically depict how to take advantage of
symmetry at a granular level, providing context for some of the broader optimizations
previously described in the field.

2. A set of compiler techniques and automatic code transformations to systematically
generate and optimize symmetric code using the aforementioned strategies to exploit
symmetry. The first phase, symmetrization, involves generating code to read only the
canonical triangle(s) of symmetric input tensors, while the second phase, optimization,
focuses on reducing the number of memory accesses and operations.

3. An implementation of the compiler and the experimental results of the implementation
on several common tensor kernels. We demonstrate speedups ranging from 1.36x for
SSYMV to 7.95x for a 4-dimensional MTTKRP with the symmetric code generated
by the compiler over the naive implementation of these kernels.

1.1 Thesis Overview

The remainder of this thesis is organized as follows

• Chapter 2: Background discusses existing technologies to take advantage of sym-
metry and where they could be extended or improved.

• Chapter 3: Terminology for Discussing Symmetry presents a set of terminology
to use when discussing symmetry.

16



• Chapter 4: Techniques to Exploit Symmetry describes the core strategies that
form the groundwork for optimizing symmetric kernels.

• Chapter 5: Symmetric Compiler provides a step-by-step generalized methodology
to symmetrizing a kernel and then optimizing it that applies to any kernel.

• Chapter 6: Evaluation compares the performance of kernels to the symmetric ver-
sion generated by the compiler in Finch.

• Chapter 7: Conclusion concludes with some future directions to extend the appli-
cability of the compiler to more types of kernels and integrate it with existing libraries.

17
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Chapter 2

Background

2.1 Related Work

There are several existing solutions to optimize computation with symmetric tensors. The
most common application of these solutions has been for the Coupled Cluster (CC) method,
a numerical technique widely used for describing quantum many-body systems which in-
volves hundreds to thousands of tensor contractions. Tensors in CC have a high-dimensional
structure with permutational symmetry or skew-symmetry, which arises from the require-
ment that the wave-function for fermions (bosons) be antisymmetric (symmetric) under the
interchange of particles [40].

Given the steep computational cost of quantum chemistry methods, a lot of effort has been
put into designing algorithms that enable efficient use of computational resources. Overall,
CC motivates tensor contraction algorithms that exploit symmetry in tensors, efficiently
support contractions among tensors of diverse dimensions and shapes, and are suitable for
long and repeated contraction sequences [40]. The goal remains to minimize communication
(i.e. the number of words of data moved across network by any given processor) done to
contract tensors.

There are a few generalized existing systems focused on minimizing operation count in
kernels with symmetric tensors. For example, the OpMin system provides an operation op-
timization process that identifies the best sequence of two-tensor contractions to achieve a
multi-tensor contraction, performs common sub-expression elimination to reduce computa-
tional costs, and factorizes via the distributive law across multiple tensors [18]. Lai et. al
present a comparison of the opcounts that the restructured tensor contraction OpMin gen-
erates would hypothetically involve with the actual opcounts (determined via performance
counters inserted into the soure code) that high performance quantum chemistry computa-
tion suites NWChem [43] and PSI3 [37] use to compute that same contraction. However,
the OpMin system does not actually provide a means to generate the code itself.

Blocking, a common technique in tensor operations, involves partitioning large tensors
into smaller blocks to facilitate efficient computation. By breaking down tensors into manage-
able chunks, blocking reduces memory overhead and improves cache utilization, enhancing
overall computational performance. Additionally, blocking enables parallelization of tensor
operations by distributing blocks across multiple processors or computing nodes. This ap-
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proach is widely employed when dealing with symmetric tensors. Schatz et. al propose
Blocked Compact Symmetric Storage which involves storing only the unique blocks of sym-
metric tensors and a format for an algorithm-by-blocks for several common tensor kernels
that exploits this storage format [32]. In this algorithm-by-blocks, knowledge of the sym-
metry of the operands is concealed from the implementation; all computation is done as
if the blocks are nonsymmetric. Whilst most of the blocks are indeed nonsymmetric, the
blocks that intersect with a diagonal (i.e. the boundary between the canonical triangle1

and the other triangles) must be symmetric. Redundant computation could be avoided if a
symmetry-aware program was used for such blocks.

The Cyclops Tensor Framework (CTF), a popular library for distributed tensor compu-
tations, utilizes a different scheme for blocking wherein values in a tensor are distributed
cyclicly to processors so that each processor owns every element of the tensor with a defined
cyclic phase. This algorithm ensures that each the sub-tensor owned by any processor has
the same symmetry and structure as the whole tensor, thus remaining susceptible to clas-
sical linear algebra optimizations [39]. Furthermore, the mapping scheme is defined such
that the distributed contraction algorithm can treat the blocks as nonsymmetric. Here too,
we speculate that it could be possible to use fewer blocks and less padding, and thus more
efficient computation, if a symmetry-aware program was utilized instead.

However, while these systems describe how to most optimally restructure tensor oper-
ations via either reordering tensor contractions or dividing the computation into blocks to
reduce operation count and maximize throughput, respectively, they do not in fact describe
how to actually compute the tensor operations described (in OpMin’s case) or if they do, it is
via a program that is not symmetry aware. Many existing libraries or papers that do provide
symmetry-aware algorithms are highly specialized to specific kernels. The LAPACK (Lin-
ear Algebra Package) BLAS (Basic Linear Algebra Subprograms) provide a set of low-level
routines that are optimized for efficiency and are widely used as building blocks in higher-
level numerical libraries and applications. There are routines for vector, matrix-vector, and
matrix-matrix vector operations, including specialized routines for symmetric matrices [19].
Solomonik also proposes a specialized method to minimize operation count with the symv,
syr2, syr2k, and symm kernels by taking advantage of multiplication on a ring by reformu-
lating the kernels with a symmetric intermediate and introducing an additive inverse [38].
Furthermore, Cai et. al propose a new technique for computing the Matricized Khatri-Rao
Product (MTTKRP) kernel that involves fusing the computations of the Khatri-Rao product
and the multiplication of it with the matricized tensor, instead of completing one after the
other [4].

While there are several specialized algorithms for specific kernels to exploit symmetry that
have been proposed, there is overall a lack of literature describing how to programatically
generate these algorithms for arbitrary tensor kernels. A generalized system that can be
applied to any type of symmetric tensor used in any application and result in significant
performance savings does not yet exist.

The closest such system that exists was proposed by Shi et. al. Shi proposes a system
of representing and accessing packed symmetric tensors in storage using simplical numbers
and details how to generate an output-oriented loop structure for any tensor kernel that

1Defined in Section 3.
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iterates through all coordinates needed to sequentially compute the output [34]. However,
the output-oriented approach randomly accesses the symmetric input, thus forgoing many
possible memory savings and resulting in poor performance.

I seek to fill the gap in literature surrounding symmetric tensors by presenting a granular
approach to identify symmetry in a tensor kernel and generate code that successfully exploits
this symmetry. In this thesis, we will provide a generalizable framework to do the aforesaid
that can be applicable to any tensor kernel with any type of symmetry by analyzing the
phenomena with symmetry that emerges in different kernels and the means in which it can
be capitalized.

2.2 Common Symmetric Tensor Kernels

Below is a set of tensor kernels pervasive across various applications and domains that we
will be using to demonstrate many of the techniques described later in the paper. In these
kernels, we make the distinction of tensors being dense/sparse to be orthogonal to normal (i.e.
not symmetric)/symmetric—we find that it is usually the sparse tensor that is symmetric in
applications of these kernels.

2.2.1 SSYMV

Sparse symmetric matrix-vector multiplication (SSYMV) is given by

y[i] = A[i, j] ∗ x[j]

where matrix A is sparse symmetric, and vectors y and x are dense.
SSYMV is often used within iterative solvers, such as the conjugate gradient method,

which is used to solve systems of linear equations, because the coefficient matrix is symmet-
ric and positive-definite [25]. Furthermore, in graph theory, many problems are represented
as operations on symmetric matrices (like adjacency matrices of undirected graphs), where
SSYMV can be used for finding properties such as centrality measures [42]. In structural
engineering, finite element analysis often leads to large, sparse, symmetric system matri-
ces because of the inherent symmetries present in many physical structures (e.g from the
conservation of energy and equilibrium), causing SSYMV operations to be a common occur-
rence [46]. There are also applications in machine learning. Principal Component Analysis
(PCA), a dimensionality reduction technique used for analyzing high-dimensional data, in-
volves computing covariance matrices which are inherently symmetric [8]. In Support Vector
Machines (SVMs), the Gram matrix is symmetric because it represents the pairwise inner
products of feature vectors [26].

2.2.2 SYPRD

The symmetric triple product (SYPRD), also known as the "quadratic form" in literature
[27] is given by

y = x[i] ∗ A[i, j] ∗ x[j]
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where matrix A is sparse symmetric, vector x is dense, and y is a scalar.
SYPRD is very common in optimization problems, especially when the objective function

is a quadratic form [27]. In statistics, symmetric quadratic forms are used in the analysis of
variance (ANOVA) to determine the variability within and between groups of data. They are
also crucial in estimating the parameters of a linear regression model, where the matrix often
represents covariances or correlations [3]. In graph theory, because the adjacency matrix for
an undirected graph is symmetric, graphs and kinematic chains can be represented by a
SYPRD kernel to detect graph isomorphism [13].

2.2.3 SSYMM

Sparse symmetric matrix-matrix multiplication (SSYMM) is given by

C[i, j] = A[i, k] ∗B[k, j]

where matrix A is sparse symmetric and matrices B and C are dense.
SSYMM is also used in finite element analysis for simplex meshes to update stiffness

matrices during the simulation of structures under various load conditions [24]. In spectral
clustering and graph partitioning, the Laplacian matrix, is symmetric and sparse. SSYMM
is involved in operations that combine various graph Laplacians or when adjusting weights
in graph structures [30]. Quantum mechanics and computational chemistry often deal with
Hamiltonian and overlap matrices that are symmetric and sparse. SSYMM operations are
essential in calculating the properties of quantum systems over time or under different con-
ditions [9]. In portfolio optimization and other financial computations, covariance matrices,
which are symmetric, are multiplied to adjust risk models or to scale financial properties
across different scenarios [29]. Finally, in 3D reconstruction and image processing, SSYMM
can be part of the computation for transforming matrices when aligning images or construct-
ing spatial structures from image data [47].

2.2.4 SSYRK

Sparse symmetric rank-K update is given by

C[i, j] = A[i, k] ∗ A[j, k]

where A is a sparse (not necessarily symmetric) matrix and C is a dense symmetric matrix
because AAT for any matrix A is symmetric.

SSYRK is employed in optimization algorithms such as the Broyden–Fletcher–Goldfarb–Shanno
(BFGS) and its limited memory variant (L-BFGS), which are used for nonlinear optimiza-
tion problems. The update step in these algorithms, which refines the approximation of the
Hessian matrix, can be formulated as a rank-k update [14]. SSYRK is also useful in control
theory for updating Lyapunov or Riccati equations that describe the evolution of system
errors or state estimations in control systems [44]. In 3D modeling and rendering, updat-
ing transformation matrices to reflect changes in orientation or position is accomplished
using SSYRK [47]. SSYRK also plays a significant role in updating covariance matrices in
Cholesky-based matrix inversion algorithms [17].
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2.2.5 TTM

The mode-1, mode-2, and mode-3 variations of the tensor times matrix kernel [16] are given
by

C[i, j, l] = A[k, j, l] ∗B[k, i],

C[i, j, l] = A[i, k, l] ∗B[k, j],

C[i, j, l] = A[i, j, k] ∗B[k, l]

where A is a sparse fully symmetric tensor, B is a dense matrix, and C is a dense tensor.
TTM operations are commonplace in tensor decomposition methods such as CANDE-

COMP/PARAFAC (CP) and Tucker decompositions [16]. In these decompositions, fully
symmetric tensors often arise when modeling inherently symmetric phenomena, such as dif-
fusion processes [22] or signal correlations [7]. In multilinear subspace learning, symmetric
tensors can capture the higher-order correlations in data [23]. TTM operations are also rele-
vant in algorithms used for feature extraction and dimensionality reduction [31]. In quantum
chemistry, the electron correlation problem involves symmetric tensors representing the in-
teractions between electrons and in physics, tensors are used to represent various properties
such as inertia, the stress-energy of a system, or the moments of a distribution; TTM is used
to then apply transformations to these kernels [6].

2.2.6 MTTKRP

Matricized tensor times Kronecker product is given by

D[i, j] = A[i, k, l] ∗B[l, j] ∗ C[k, j]

where A is a sparse fully symmetric tensor and B, C, and D are dense matrices. We consider
the specialized case where B and C are equivalent as this causes more symmetric properties
to emerge.

This specialized case of MTTKRP emerges in CP decomposition when the same factor
matrix is used for all modes and is a common bottleneck [21]. A common application of
CP decomposition is to speed-up convolutions within CNNs [20]. CP decomposition with
structured matrices is also used in signal processing application such as Wiener-Hammerstein
system identification and cumulant-based wireless communication channel estimation [11].
Furthermore, in quantum mechanics, fully symmetric tensors often represent interaction ten-
sors or density matrices, where the matrices being equivalent can reflect operations involving
particles of the same type or symmetry in interaction terms [12]. In the study of materials,
especially when analyzing isotropic materials or symmetric properties like thermal conductiv-
ity or elasticity, the symmetric tensor and equivalent matrices can model properties that are
uniform in all directions, allowing for simplified and more efficient computational modeling
[35].

2.2.7 Other Tensor Kernels

The aforementioned kernels were chosen because they each demonstrate different symmetric
properties and serve as effective examples to illustrate the methodology we describe in later
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sections to exploit symmetry. Our methodology can be generalized to apply to tensor con-
tractions with a variable number of tensors of any dimensionality and any form of symmetry.
These example kernels also only involve the multiplication operator, but our methodology
can be expanded to work with any commutative operator used within the kernel.

2.3 Finch

Throughout this thesis, we will be using the program syntax and formats from Finch, a
Julia-to-Julia compiler designed for optimizing loop nests over sparse or structured multi-
dimensional arrays [1]. Finch supports a variety of tensor storage formats and provides a
clean interface for writing dense loops with enhanced control structures to read and update
tensors. We use Finch because of the support for a range of sparse storage formats and
enhanced control flow, which is necessary to implement and execute the symmetric kernels
our compiler generates. Finch also handles the complexities of sparse data manipulation,
enabling us to write readable, dense loop structures, which makes it easier to focus the
optimizations we apply to take advantage of symmetry.

Finch uses a fiber-tree style tensor abstraction [1] depicted in Figure 2.1 where a multi-
dimensional tensor is represented as a nested vector datastructure, where each level of the
nesting corresponds to a dimension of the tensor.

Figure 2.1: The fiber tree representation of a tensor with two sparse outer levels and a dense
inner level in Finch.)
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The Finch syntax mirrors most imperative languages with for-loops and control flow, as
shown in Figure 2.2 [1].

Figure 2.2: The syntax of the Finch language [1], which will be used throughout the rest of
thesis when describing kernels.)

To fully illustrate the utility of using Finch to write dense code, but have it compile as
sparse code, let us take a look at Listings 2.1 and 2.2 which demonstrate the code that we
would write with Finch and the code that Finch actually executes, respectively. The kernel in
Listing 2.1 works with sparse data, but the code itself appears dense because Finch handles
the sparse data manipulation for us, which we can see in the generated code in Listing 2.2.
Moreover, Finch is also able to lift conditions to the highest possible loop level.

1 A = Tensor(Dense(SparseList(Element(0.0)), rand(10, 10))
2 s = Scalar(0.0)
3

4 @finch begin
5 s .= 0
6 for j=_, i=_
7 if i <= j
8 s[] += A[i, j]
9 end

10 end
11 end

Listing 2.1: Program to compute the sum of the values in the upper triangle of a sparse
matrix, written in Finch.

1 s = ((ex.bodies[1]).bodies[1]).tns.bind
2 A_lvl = ((ex.bodies[1]).bodies[2]).body.body.body.rhs.tns.bind.lvl
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3 A_lvl_2 = A_lvl.lvl
4 A_lvl_ptr = A_lvl_2.ptr
5 A_lvl_idx = A_lvl_2.idx
6 A_lvl_2_val = A_lvl_2.lvl.val
7 result = nothing
8 s_val = 0
9 for j_4 = 1:A_lvl.shape

10 A_lvl_q = (1 - 1) * A_lvl.shape + j_4
11 A_lvl_2_q = A_lvl_ptr[A_lvl_q]
12 A_lvl_2_q_stop = A_lvl_ptr[A_lvl_q + 1]
13 if A_lvl_2_q < A_lvl_2_q_stop
14 A_lvl_2_i1 = A_lvl_idx[A_lvl_2_q_stop - 1]
15 else
16 A_lvl_2_i1 = 0
17 end
18 phase_stop = min(j_4, A_lvl_2.shape, A_lvl_2_i1)
19 if phase_stop >= 1
20 if A_lvl_idx[A_lvl_2_q] < 1
21 A_lvl_2_q = Finch.scansearch(A_lvl_idx, 1, A_lvl_2_q, A_lvl_2_q_stop - 1)
22 end
23 while true
24 A_lvl_2_i = A_lvl_idx[A_lvl_2_q]
25 if A_lvl_2_i < phase_stop
26 A_lvl_3_val = A_lvl_2_val[A_lvl_2_q]
27 s_val = A_lvl_3_val + s_val
28 A_lvl_2_q += 1
29 else
30 phase_stop_3 = min(A_lvl_2_i, phase_stop)
31 if A_lvl_2_i == phase_stop_3
32 A_lvl_3_val = A_lvl_2_val[A_lvl_2_q]
33 s_val += A_lvl_3_val
34 A_lvl_2_q += 1
35 end
36 break
37 end
38 end
39 end
40 end
41 s.val = s_val
42 result = (s = s,)
43 result

Listing 2.2: The code that Finch actually generates and runs to compute the sum of the
values in the upper triangle of a sparse matrix.
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Chapter 3

Terminology for Discussing Symmetry

In this section, we introduce the terminology that will be used throughout the rest of the
thesis. We adopt and adapt several definitions as well as the notation used to describe them
from existing literature to maintain consistency in communication.

3.1 Symmetric Tensors

A matrix M is symmetric if M [i1, i2] = M [i2, i1]—i.e. the entries at permutations of the
indices are equivalent. We can generalize this definition for tensors [5].

Definition 3.1.1 (Symmetry) Let T be an n-dimensional tensor and let Sn be the set of
all permutations of {1, ..., n}. Then T is symmetric if for all σ ∈ Sn,

T [i1, ..., in] = T [iσ(1), ..., iσ(n)].

Conventionally, symmetric is synonymous to fully symmetric.

Example 3.1.1 (Symmetry) A three-dimensional tensor T is symmetric if

T [i1, i2, i3] = T [i1, i3, i2] = T [i2, i1, i3] = T [i2, i3, i1] = T [i3, i1, i2] = T [i3, i2, i1].

In the case of matrices, symmetry is binary: a matrix is either symmetric or it is not.
However, when dealing with higher-order tensors, this definition can be expanded with the
notion of partial symmetry. A partition Π of a set A is a collection of non-empty, pairwise
disjoint subsets, which we will refer to as parts, of A, such that each element of A belongs
to exactly one subset within the collection [32]. We denote πi to be the ith part of Π.

We define partial symmetry relative to a chosen partition [34].

Definition 3.1.2 (Partial Symmetry) Let T be an n-dimensional tensor, and let Π be
a partition of {1, ..., n}. Then T is partially symmetric if for each part πi ∈ Π and each
permutation σi of the elements in πi,

T [i1, . . . , in] = T [i′1, . . . , i
′
n]
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where

i′j =


iσ1(j) if j ∈ π1

...
...

iσm(j) if j ∈ πm.

Then, we can denote that T has Π symmetry.

Note that parts of size one correspond to indices that are not transposable, as they
may not be interchanged with any other index. Also note that the term partial symmetric
encapsulates the term fully symmetric because a partition of A can consist of a single set with
all the indices in A. Furthermore, the term partial symmetry technically also encapsulates
an unsymmetric tensor because we can have a partition where |πi| = 1 for all i; however,
to distinguish unsymmetric tensors, although we will use the ST notation for all tensors T
to describe their symmetry groups (irregardless of whether they actually demonstrate the
presence of symmetry), we will only use the term partial symmetry to describe tensors where
there exists |πi| > 1.

Example 3.1.2 (Partial Symmetry) A three-dimensional tensor T has {{1, 3}, {2}} par-
tial symmetry if

T [i1, i2, i3] = T [i3, i2, i1].

Although conventionally, symmetric is synonymous to fully symmetric, throughout this
thesis, for simplicity, we will also use the term symmetric to describe tensors that exhibit
partial symmetry. Additionally, we will use set ST to interchangeably represent the symmetry
of a fully or partially symmetric tensor T and a partially symmetric tensor T . If T is fully
symmetric, ST is the set of all permutations of {1, ..., n}. If T is partially symmetric, ST is
Sπ1 × ...× Sπm where πi ∈ Π and Π is a partition of {1, ..., n}.

A tensor T with symmetry ST has many groups of coordinates with equivalent values.
To standardize tensor operations, we can choose to work with a specific coordinate from
each group of equivalent coordinates; let us refer to the coordinate that is commonly used
or referenced in tensor-related computations, operations, or representations as the canonical
coordinate. We define it as follows.

Definition 3.1.3 (Canonical) Let tensor T [i1, ..., in] have symmetry ST . Coordinates [i1, ..., in]
are canonical if ip ≤ iq for any p < q with ip and iq in the same part of ST . Otherwise, the
coordinates are non-canonical.

Furthermore, let us define the region of a tensor consisting of canonical coordinates.

Definition 3.1.4 (Canonical Triangle) The canonical triangle of a tensor consists of all
the canonical coordinates in the tensor.
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Figure 3.1: The canonical triangles of a matrix and 3-dimensional tensor if the zero coordi-
nate is in the (front) top left corner of a tensor. In this case, the canonical triangle of the
matrix is equivalent to the upper triangle.

The canonical triangle of a tensor forms a geometric triangle in two-dimensions, a prism
in three-dimensions (Figure 3.1), and a polytope in higher dimensions. We term the edges
and faces of these geometric figures the diagonals.

Definition 3.1.5 (Diagonal) A diagonal of a tensor T consists of all coordinates [i1, ..., in]
where the indices in a subset D of {i1, ..., in} where |D| > 1 are equal.

Note that this is different from the conventional definition of a diagonal, which involves
only the coordinates where all indices i1 = i2 = ... = in. Our definition enables there to be
multiple diagonals in a tensor since a diagonal is defined by the subset of indices that are
equivalent and there are multiple subsets of indices of size greater than one for a tensor of
dimension three and greater.

To represent and easily distinguish which diagonal of a tensor we are accessing, we in-
troduce the notion of equivalence groups—a term that we have formulated to represent the
tensor generalizations of diagonals.

Definition 3.1.6 (Equivalence Group) Given a set of indices I, we define equivalence
group E to represent a partition Π of indices i ∈ I where for each part π ∈ Π, in = im for
all n,m ∈ π.

We can simplify the representation of an equivalent group to only include parts where
there are more than one indices. Moreover, note that since the order of the subsets in E or
the order of the indices in E do not matter, permutations of the subsets of E or the indices
in subsets of E still result in the same equivalence group.

A reminder about the distinction between symmetry groups and equivalence groups:
symmetry groups indicate which permutation of indices produce coordinates at which there
are equivalent entries in a tensor, while equivalence groups indicate which indices used to
access a tensor are constrained to be equivalent in value. To make the distinction clearer,
we will use = in equivalence groups to indicate the equivalent indices.

Example 3.1.3 (Equivalence Group) Given equivalence group {(i = j)}, indices i and
j of T [i, j, k] are equivalent. All the entries of T that satisfy this equivalence group comprise
the diagonal of T where i = j.
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Example 3.1.4 (Equivalent Symmetry Permutations) Suppose we access fully sym-
metric tensor T [i, j, k] at equivalence group {(i = j)}. The symmetry of T is described
by

ST = {{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2}, {3, 2, 1}}.

However, because we are accessing entries on the diagonal where i = j (i.e. indices 1 and
2 are the same), the permutations {1, 2, 3} and {2, 1, 3}, {1, 3, 2} and {2, 3, 1}, and {3, 1, 2}
and {3, 2, 1} result in accesses of the same entries.

We define the notation symmetry group ST |E to represent the unique permutations of a
tensor’s indices given a particular equivalence group E.

Definition 3.1.7 (Unique Symmetry Group) Let ST |E represent the unique symmetry
group, which given an equivalence group E, consists of

ST |E = {π ∈ Sn | ∀i, j ∈ {1, 2, ..., n}, if i, j are both in the same subset of E, then π(i) < π(j)}.

3.2 Tensor Operations

We will now shift to discussing terminology to describe tensor operations. We consider the
basic unit for computation with tensors to be an assignment.

Definition 3.2.1 (Assignment) A tensor assignment is an operation of the form

O[i1, ..., in] = T1[i1,1, ..., i1,n1 ]⊗ ...⊗ Tm[im,1, ..., im,nm ]

where tensor O is the output tensor, tensors T1, ..., Tm are the input tensors, and ⊗ is some
binary operation (e.g. +, ×, etc.). An assignment consists of computing a value using
specific entries in the input tensor and assigning it to a a specific coordinate of the output
tensor.

If the binary operator ⊗ is multiplication, an assignment is equivalent to the expression
i1,1 . . . i1,n1 , . . . , im,1 . . . im,nm → i1 . . . in in the Einstein summation convention (einsum)
[41] where the reduction is across the indices that do not present themselves in the output.
We choose to use the assignment notation we have introduced, however, as it closely parallels
the syntax to write assignment expressions in the Finch language (Section 2.3).

Example 3.2.1 (Assignments) The assignment that forms the basis of the MTTKRP
kernel is

C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j].
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Chapter 4

Techniques to Exploit Symmetry

4.1 Types of Symmetry

Figure 4.1: Assignments can have input and/or output symmetry.

We categorize the symmetry that presents itself in assignments in two groups: input sym-
metry, which involves one or more input tensors being symmetric and output symmetry,
which consists of a symmetric output tensor. Assignments can have either input or output
symmetry, as well as both types of symmetry (Figure 4.1). We make the distinction because
the techniques to exploit symmetry vary based on the type of symmetry.

It is possible to have input symmetry, but not output symmetry as the assignment itself
may not preserve the symmetry present in the input tensors: the computation involved in
the assignment may alter or distribute the symmetry differently across the output indices.
On the other hand, an assignment may result in a symmetric output tensor even if the input
tensors do not possess similar symmetry due to the specific combination of indices involved
in the assignment and the resulting tensor contraction: the symmetry in this case arises from
the mathematical properties of the assignment itself, rather than inherent symmetry present
in the input tensors.

Furthermore, we can subdivide output symmetry into two more intersecting types—visible
and invisible, where visible output symmetry is between indices that are present in the
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output tensor and invisible output symmetry is between indices that are not explicitly
present in the output tensor, but are still involved in the computation.

Example 4.1.1 (Visible and Invisible Output Symmetry) The assignment

B[i, j] = A[i, k] ∗ A[j, k]

exhibits visible output symmetry. Essentially, B[i, j] = A[i, k] ∗ A[j, k] = A[j, k] ∗ A[i, k] =
B[j, i]. Thus, we know that B exhibits {{i, j}} symmetry. Because B is indexable by both i
and j, we refer to this symmetry as visible.

On the other hand, the assignment

B[i] = A[i, j] ∗ A[i, k]

exhibits invisible output symmetry. Let us rewrite the assignment with a temporary tensor
T as follows.

T [i, j, k] = A[i, j] ∗ A[i, k]

B[i] =
∑
j,k

T [i, j, k]

Now the symmetry is more apparent: T [i, j, k] = A[i, j] ∗ A[i, k] = A[i, k] ∗ A[i, j] =
T [i, k, j]. T (and thus B) exhibit {{j, k}} symmetry. Because B is not indexable by both j
and k, we refer to this symmetry as invisible.

We may also have output symmetry between indices that are and are not present in the
output tensor (i.e. "visible-invisible" output symmetry), but we restrict our optimizations
to just exploit symmetry in groups of indices that are all present in the output tensor and
groups of indices that are all not present in the output tensor. The replication strategies,
as described in the subsequent section, are different based on the type of symmetry, and for
simplicity, we choose to not account for the intermediate category.

4.2 Core Strategies to Exploit Symmetry

We take an input-oriented approach to exploit symmetry in which we iterate through only
the coordinates needed to sequentially access the symmetric input whilst randomly accessing
the output and nonsymmetric inputs. This is in contrast to the output-oriented approach
explored by Shi et. al which involves iterating through all the coordinates needed to sequen-
tially compute the output [34].

Logically, in the presence of input symmetry, we choose to iterate over and access only
the canonical triangle(s) of the symmetric tensor(s). Analogously, in the presence of output
symmetry, we choose to update only the canonical triangle of the output tensor. Furthermore,
depending on whether the output symmetry is visible or invisible, the post-processing we do
to replicate the output tensor (i.e. fill in the redundant values) will differ. A mechanical
approach to exploit all types of symmetry will be described in Chapter 5, but in this section,
we will highlight the core strategies underlying this approach.

The two core strategies we have identified to exploit symmetry to make better use of
memory and compute bandwidth are
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1. reusing memory reads to save on bandwidth and

2. filtering redundant computations,

which are dissected in more detail in the following subsections.

4.2.1 Reusing Memory Reads

Given symmetric input tensors, we can restrict reads to the canonical triangle and use the
same memory read to perform multiple computations for the output. The key motivation
for reusing memory reads is to save memory bandwidth, which is particularly relevant for
memory bandwidth bound kernels (e.g. SSYMV) that have a high ratio of memory operations
to floating-point operations. The efficiency of these kernels is often limited by the rate at
which data can be transferred from the memory to the processor (memory bandwidth) rather
than the rate at which the processor can perform calculations (compute bandwidth).

Figure 4.2: The naive SSYMV kernel iterates through all the elements of the matrix.

Let us take a look at what reusing memory reads algorithmically entails for the SSYMV
kernel given by y[i] = A[i, j] ∗x[j]. In Figure 4.3, essentially, for every access of a coordinate
in the canonical triangle, we perform all the assignments that the canonical coordinate and
its non-canonical equivalents would be involved in. Note that the values on the diagonal get
handled differently—i.e. they are involved in only assignment, whereas all other values are
involved in two assignments.
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Figure 4.3: The SSYMV kernel optimized to reuse memory reads iterates through only the
canonical triangle of the matrix.

The code segments in Listings 4.1 and 4.2 illustrate the implementations for the diagrams
in Figures 4.2 in 4.3. Listing 4.2 limits accesses of the symmetric tensor to the canonical
triangle and uses reads that are not on the diagonal for two assignments and reads that are
on the diagonal for one assignment. Note that i and j are permuted in the second assignment
and this makes up for not covering the iteration space where i > j.

1 for j=_, i=_
2 y[i] += A[i, j] * x[j]
3

4

5

6

7

Listing 4.1: Naive SSYMV

1 for j=_, i=_
2 if i < j
3 A = A[i, j]
4 y[i] += A * x[j]
5 y[j] += A * x[i]
6 if i == j
7 y[i] += A[i, j] * x[j]

Listing 4.2: SSYMV that accesses only
canonical triangle and reuses memory reads.

As the number of axes of symmetry increase, the complexity of the symmetry-optimized
kernel increases, but so do the optimization opportunities! For instance, suppose that A in
the mode-1 TTM kernel [16] given by C[i, j, l] = A[k, j, l] ∗ B[k, i] is fully symmetry. The
resulting kernel from restricting accesses of A to the canonical triangle and performing all
necessary updates to the output tensor C is given by Figure 4.3.

1 for l=_, i=_, k=_, j=_
2 if j <= k && k <= l
3 if j < k && k < l
4 A = A[j, k, l]
5 C[i, j, l] += A * B[k, i]
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6 C[i, j, k] += A * B[l, i]
7 C[i, k, l] += A * B[j, i]
8 C[i, k, j] += A * B[l, i]
9 C[i, l, k] += A * B[j, i]

10 C[i, l, j] += A * B[k, i]
11 if j == k && k != l
12 A = A[j, k, l]
13 C[i, j, l] += A * B[k, i]
14 C[i, j, k] += A * B[l, i]
15 C[i, l, k] += A * B[j, i]
16 if j != k && k == l
17 A = A[j, k, l]
18 C[i, j, l] += A * B[k, i]
19 C[i, k, l] += A * B[j, i]
20 C[i, k, j] += A * B[l, i]
21 if j == k && k == l
22 C[i, j, l] += A[j, k, l] * B[k, i]

Listing 4.3: TTM kernel that accesses only the canonical triangle of A.

The monotonically increasing condition on line 2 of Listing 4.3 enforces that we only
iterate over the canonical triangle of symmetric tensor A. With three axes of symmetry,
there are more diagonals to consider as the number of equivalence groups increase: i.e.
the diagonals represented by equivalence groups {(j = k)}, {(k = l)}, {(j = l)}, and
{(j = k = l)}. We handle each of these diagonals separately in Listing 4.3, with the
exception of {(j = l)} because our overarching monotonically increasing condition ensures
that if j = l, then we are overlapping the diagonal represented by {(j = k = l)}, which
we already handle. Specifically, the block from lines 3-10 handles the equivalence group
{(j), (k), (l)}, lines 11-15 handles {(j = k)}, lines 16-20 handles {(k = l)}, and lines 21-22
handle {(j = k = l)}.

We can generalize the examples for SpMV and TTM to any kernel. To restrict reads to a
particular triangle, we can enclose the loop body of the kernel in an if-clause that checks that
the indices corresponding to the axes of symmetry are in the canonical triangle (i.e. given
our definition of the canonical triangle, that some order of these indices are monotonically
increasing).

Given n axes of symmetry, upon restricting a kernel to access only 1
n!

of a tensor, we need
to perform n! assignments in each iteration to write to all the triangles of the output tensor
in the case where none of the n indices are equivalent. However, if m indices are equivalent
to each other (e.g. we read an element on a diagonal of the symmetric tensor) then we only
perform n!

m!
assignments to avoid duplicate assignments. In other words, we perform the

same number of assignments as unique permutations of the indices per iteration to make
up for the fact that we are only covering 1

n!
of the iteration space. The simplest solution

to symmetrize code and handle these edge cases is to define every possible combination of
equivalent indices and specify the exact assignments to the output that need to be performed
for each.

Evidently, as the number of dimensions increase, the complexity of the symmetrized
kernel also increases. It becomes impractical to hand-write the kernel, pointing to the need
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to utilize an automated system. Chapter 5 describes a systematic method to determine
which assignments need to be performed and when to symmetrize a kernel.

Note that whether or not there is a speedup from this transform alone depends on the
nature of the kernel—we reduce the memory bandwidth needed to read the symmetric input
tensors, but we are performing out-of-order updates to the output. Regardless of whether
there is a performance enhancement, rewriting in this format enables patterns across multiple
assignments to be identified and capitalized, as discussed in the subsequent section.

4.2.2 Filtering Redundant Computations

The symmetrization process results in multiple assignments being performed with one read
of the symmetric tensors. Having multiple assignments in each loop iteration (as opposed
to just one assignment per loop iteration) makes it easier to identity and exploit patterns
that emerge across assignments. Namely, it enables us to identify where symmetry emerges
in the output tensor and consequently, take advantage of it.

Visible Output Symmetry

Visible output symmetry involves indices that are used to index the output tensor. In
the presence of visible output symmetry, we can restrict our kernel to compute the values
comprising only the canonical triangle of the output. Afterwards, we can perform an extra
post-processing step that consists of copying the canonical triangle of the output to the other
triangles.

For example, let us consider the first block of the symmetrized TTM kernel given in
Listing 4.3 that performs the assignments using coordinates of A in the canonical triangle
that are not on a diagonal. We reorder the assignments to make the pattern from output
symmetry more obvious in Listing 4.4. Swapping the second and third indices in the output
tensor on the left-hand side lends an equivalent right-hand side for each expression. As
depicted in Listing 4.5, we can exploit the output symmetry by only writing to the canonical
triangle of the output tensor (i.e. if we index C as C[i, j, l], then only where j <= l),
which reduces the number of computations that are done by 1

2
. Then, we can copy the values

from the canonical triangles to the other triangles of the output tensor in a separate loop
nest (lines 7-9 of Listing 4.5), thus completing the remaining assignments.
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1 for l=_, j=_, k=_, i=_
2 if j <= k && k <= l
3 A = A[j, k, l]
4 C[i, j, l] += A * B[k, i]
5 C[i, l, j] += A * B[k, i]
6 C[i, j, k] += A * B[l, i]
7 C[i, k, j] += A * B[l, i]
8 C[i, k, l] += A * B[j, i]
9 C[i, l, k] += A * B[j, i]

Listing 4.4: Before exploiting output
symmetry in the conditional block of the
TTM kernel that handles non-diagonal
coordinates of A.

1 for l=_, j=_, k=_, i=_
2 if j <= k && k <= l
3 A = A[j, k, l]
4 C[i, j, l] += A * B[k, i]
5 C[i, j, k] += A * B[l, i]
6 C[i, k, l] += A * B[j, i]
7 for l=_, j=_, i=_
8 if j > l
9 C[i, j, l] = C[i, l, j]

Listing 4.5: After exploiting output
symmetry in the conditional block of the
TTM kernel that handles non-diagonal
coordinates of A.

Let us now see how we can exploit output symmetry in the conditional blocks that handle
the diagonal coordinates of A. We will look at the second conditional block of Listing 4.3
which handles the diagonal represented by equivalence group {(j = k)}, replicated below in
Listing 4.6. It is slightly less apparent that we even have output symmetry because every
assignment does not have an analogous assignment where the second and third indices are
swapped, like we did in Listings 4.4-4.10. However, given that j == k, we can swap the j
and k indices in the assignment C[i, l, k] += A * B[j, i] on line 7 to obtain C[i, l,
j] += A * B[k, i]. It is evident now that there is output symmetry across the second and
third indices of C in lines 5 and 7. We also observe that the second and third indices of C,
j and k, on line 6 are equivalent, and thus there is no analogous assignment.

1 for l=_, i=_, k=_, j=_
2 if j <= k && k <= l
3 if j == k && k != l
4 A = A[j, k, l]
5 C[i, j, l] += A * B[k, i]
6 C[i, j, k] += A * B[l, i]
7 C[i, l, k] += A * B[j, i]

Listing 4.6: TTM kernel that handles the coordinates on the diagonal represented by
{(j = k)} in A

Given these observations, we can write the second block as shown in Listing 4.7, with
only two assignments and replication of C afterwards. Here we aim to show that it may
not be immediately clear in a mathematically correct symmetrized kernel where the output
symmetry is; we may need to swap around a few indices in the blocks accounting for the
diagonals to make the visible output symmetry more apparent.

1 for l=_, i=_, k=_, j=_
2 if j <= k && k <= l
3 if j == k && k != l
4 A = A[j, k, l]

37



5 C[i, j, l] += A * B[k, i]
6 C[i, j, k] += A * B[l, i]
7 for l=_, j=_, i=_
8 if j > l
9 C[i, j, l] = C[i, l, j]

Listing 4.7: TTM kernel that handles the coordinates on the diagonal represented by
{(j = k)} in A after replicating output symmetry and with post-processing replication
of C

The resulting TTM kernel after exploiting the visible output symmetry in C thoughout
the entire kernel is given by Listing 4.8.

1 for l=_, i=_, k=_, j=_
2 if j <= k && k <= l
3 if j < k && k < l
4 A = A[j, k, l]
5 C[i, j, l] += A * B[k, i]
6 C[i, j, k] += A * B[l, i]
7 C[i, l, k] += A * B[j, i]
8 if j == k && k != l
9 A = A[j, k, l]

10 C[i, j, l] += A * B[k, i]
11 C[i, j, k] += A * B[l, i]
12 if j != k && k == l
13 A = A[j, k, l]
14 C[i, j, l] += A * B[k, i]
15 C[i, k, l] += A * B[j, i]
16 if j == k && k == l
17 C[i, j, l] += A[j, k, l] * B[k, i]
18 for l=_, j=_, i=_
19 if j > l
20 C[i, j, l] = C[i, l, j]

Listing 4.8: Entire TTM kernel after exploiting visible output symmetry.

In general, if n indices are in the same part of a partition representing the visible sym-
metry of the output tensor, then we can reduce the number of assignment operations by
1
n!

.

Invisible Output Symmetry

While visible output symmetry results in equivalent assignments to multiple locations, in-
visible output symmetry results in equivalent assignments to the same locations. We filter
redundant computation by replacing k additions with equivalent right-hand sides with a
single addition that multiples the right-hand side by scalar k.

SYPRD is given by y = x[i] ∗ A[i, j] ∗ x[j] where A is symmetric. SYPRD exemplifies
invisible output symmetry because the output is a scalar (and thus any output symmetry
must be with indices that are not present in the output). If we permute i, j, then we obtain
an equivalent assignment.
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y = x[i] ∗ A[i, j] ∗ x[j] = x[j] ∗ A[j, i] ∗ x[i]

Thus, instead of performing both nondiagonal assignments in Figure 4.9 (lines 5-6), we
can optimize by only performing one assignment but multiplying it by a factor of 2, as
depicted in figure 4.9 (line 3). Note that this does not apply to the block that accesses the
diagonal entries of A because i and j are equivalent and thus there is only one assignment.

1 for j=_, i=_
2 if i <= j
3 if i < j
4 A = A[i, j]
5 y[] += x[i] * A * x[j]
6 y[] += x[j] * A * x[i]
7 if i == j
8 y[] += x[i] * A[i, j] * x[j]

Listing 4.9: SYPRD before exploiting
output symmetry.

1 for j=_, i=_
2 if i < j
3 y[] += 2 * x[i] * A[i, j] * x[j]
4 if i == j
5 y[] += x[i] * A[i, j] * x[j]
6

7

8

Listing 4.10: SYPRD after exploiting
output symmetry

Invisible output symmetry often presents itself when there are multiple of the same
operands in an assignment. Using the same process depicted in the prior section, we may
need to swap around a few indices in the blocks accounting for the diagonals to make the
invisible output symmetry more apparent. This normalization makes it easier to pinpoint
when assignments are equivalent.

If n indices are in the same part of a partition representing the invisible symmetry of the
output tensor, then we can reduce the number of assignment operations by 1

n!
.

After symmetrizing to reuse memory reads and filtering redundant computation, there are
further optimizations that do not necessarily exploit symmetry, but instead exploit some of
the properties that materialize as a result of the optimizations to exploit symmetry described
previously. These additional optimizations result in fewer memory accesses, improved cache
locality, and better branch prediction and will be described in the subsequent chapter.
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Chapter 5

Symmetric Compiler Methodology

Given an assignment and a map of input tensors that are known to be symmetric and
the partitions that represent their symmetries, to take advantage of symmetry, we need to
first generate a kernel that reuses memory reads and then, filter the resulting redundant
computations. For simple assignments, it is easy to do this by hand, but as the number of
indices involved in a symmetry group, the dimensionality of the tensors, and the number of
tensors in the assignment increase, writing a symmetric kernel becomes less intuitive and
more akin to a trial-and-error process. In this chapter, we propose a mechanical, generalizable
system to generate a symmetry-exploiting kernel that is applicable to any tensor assignment
and which can be replicated in any compiler.

5.1 Methodology

We divide this system in two phases to reflect the two core strategies of first capitalizing on
memory bandwidth and then compute bandwidth. The first phase is symmetrization and
consists of generating code to read only the canonical triangle(s) of the symmetric tensor(s).
The second phase is optimization and consists of applying various transforms to reduce the
number of memory accesses and operations that are performed.

5.1.1 Symmetrization

The process of symmetrization involves adding the appropriate control structures to limit
the iteration space to the canonical triangles of the symmetric input tensors and determining
which additional assignments will need to be made and and under what conditions to ensure
that all the appropriate updates to the output tensor are performed.

Given an assignment

O[i1, ..., in] = T1[i1,1, ..., i1,n1 ]⊗ ...⊗ Tm[im,1, ..., im,nm ],

let Πi be the partition that defines the symmetry of Ti. Furthermore, we represent the
symmetry groups as ST1 , ..., STm and SO.

The four stages below delineate the process to systematically generate a symmetrized
kernel for this assignment. We assume that in addition to the assignment itself, the client
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has also provided the partitions Πi for each input tensor Ti as well as the loop order (i.e. the
order in which they will be looping through the indices in the assignment).

1. Identify Symmetry: First, we determine the set of permutable indices P , which is
given by

P =
m⋃
i=1

(⋃
{π ∈ Πi | |π| > 2}

)
and includes all indices in the tensor assignment that are in a symmetry group with
more than one index. Note that this step overapproximates symmetry—for instance,
if we have {{1, 2}, {3, 4}} symmetry in a tensor, we obtain P = {1, 2, 3, 4}.

2. Restrict Iteration Space: We establish an ordering p1, ..., pn of the permutable in-
dices in P such that accessing any tensor Ti at entries where p1, ..., pn are monotonically
increasing (i.e. p1 ≤ ... ≤ pn) will only access the canonical triangle of all symmetric
tensors. This ordering is a topological sort of the dependence graph between canonical
indices and always exists.

3. Define Assignments: For each equivalence group E that can be constructed from P
and satisfies the monotonically increasing condition established in step (2), we deter-
mine the unique symmetry group SP |E where SP consists of all the permutations of P .
Then we can apply each permutation σ ∈ SP |E to the original assignment to generate
all the assignments that need to be performed if the equivalence relationships defined
by E are satisfied.

4. Normalize Assignments: Lastly, we normalize all assignments to make it easier to
identify equivalent assignments or patterns across assignments during the optimization
process. There are many ways to rewrite an expression and yield an equivalent result;
namely, indices in a symmetric group of a symmetric tensor can be permuted and
operands involved in commutative operations can be commuted. Standardizing tensor
assignments can make it easier to programatically identify equivalent assignments and
distinguish patterns across assignments. Thus, we define the notion of a normalized
assignment to be an assignment were (1) all tensors on the right-hand side have been
ordered based on some predetermined sort order (e.g. alphabetical) and (2) for all
symmetric tensors Ti in the assignment, all indices in the same part of the partition Πi

representing the symmetry of Ti are ordered based on some predetermined sort order
(e.g. to be concordant with the loop order).

The resulting symmetrized kernel from applying these steps is depicted via mathematical
pseudocode in Figure 5.1. We first enforce the monotonically increasing condition for the
permutable indices (line 1) to restrict the iteration space to the canonical triangles of the
symmetric tensors. We iterate through all possible equivalence groups of P (line 3) and
for each, determine the set of unique permutations of P given the equivalence group (line
4). We apply each of these unique permutations to the initial assignment (line 6) to ob-
tain all the assignments that are performed for the equivalence relationships represented by
corresponding equivalence group.
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1: for i1 = 1 : _, i2 = 1 : _, ... do ▷ Loop through all indices
2: if p1 ≤ ... ≤ pn then
3: for each E of P do ▷ Iterate through all possible equivalence groups of P
4: Construct SP |E ▷ Determine all unique permutations
5: for each σ ∈ SP |E do
6: (O[i1, ..., in] = T1[i

1
1, ..., i

1
n]⊗ ...⊗ Tm[i

m
1 , ..., i

m
n ]) [i → σ(i)]

7: end for
8: end for
9: end if

10: end for

Figure 5.1: Pseudocode for Symmetrized Kernel

We can furthermore unroll the loops from lines 5-7 and lines 3-8 in Figure 5.1 to gen-
erate a more efficient kernel. We demonstrate how to do this for MTTKRP in Section 5.2.
Additionally, note that each equivalence group is exclusive (i.e. a coordinate only satisfies
one of the equivalence groups), so when we do unroll the loops, the conditional blocks that
are generated are exclusive.

5.1.2 Optimization

After symmetrizing the kernel such that it accesses only the canonical triangle(s) of the
symmetric tensor(s), we shift to applying various transforms to reduce the number of com-
putations performed. These transforms are the building blocks for filtering redundant code
and are illustrated in more detail in Table 5.1.

Common Tensor Access Elimination

We replace repeated reads of the same element in a tensor with a single constant value. In
particular, after normalizing the symmetrized kernel, all accesses to a fully symmetric tensor
will be equivalent in each iteration of a loop. For a fully symmetric tensor of order n, this
will entail reducing memory reads by 1

n
. The same entry of other tensor operands may also

be read multiple times and can be replaced with a constant.

Distributive Assignment Grouping

Replace N equivalent additions in a conditional block with a single addition that multiples
the right-hand side by N .

Restrict Computation of Output to Canonical Triangle

Identify assignments with equivalent right-hand sides that update symmetric entries of the
output tensor (i.e. coordinates with particular indices swapped) in the same conditional
block. In this case, replace the symmetric assignments with just one assignment to the
canonical coordinate of the output tensor. We also mark the indices across which the output
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tensor will need to be replicated. After the kernel is computed, the canonical triangle of
the output tensor is replicated to the noncanonical triangles. Note that equivalent index
variables may need to be swapped with each another in the assignments in a conditional
block to make it easier to identify the output symmetry.

Consolidate Conditional Blocks

Identify conditional blocks containing equivalent assignments and replace them with a single
conditional block with an if-condition that is the union of the if-conditions of each of the
conditional blocks. Note that equivalent index variables may need to be swapped with each
another in the assignments in a conditional block to make it easier to identify whether or
not the assignments are equivalent to those in another conditional block. This transform
improves the readability of the generated kernel and also prevents unnecessary specialization
of cases during compilation.

Group Assignments Across Branches

Restructure and reorganize the generated code such that each assignment happens only once.
Many of the same assignments are performed in different branches in the code generated from
the symmetrization process. For each assignment, we identify all the equivalence conditions
under which that particular assignment is performed. We create a new block that is branched
to if any of the equivalence conditions and the overarching monotonically increasing con-
ditional requirement is satisfied and in which the assignment is performed. We also merge
blocks where the branching conditions are the same. This particular transform is beneficial
when the total number of unique assignments (after applying the previous transforms) is less
than the number of conditional blocks and we only apply it when this is the case.

Concordize Tensors

Transpose tensors to make the iteration of indices concordant [2]—in other words, so that
the order of the indices with which the tensor is accessed aligns with the loop order of the
kernel. If necessary, transpose the tensor and reorder the loops to make iteration concordant.

Workspace Transformation

Replace a write to the output tensor in an assignment with a write to a temporary variable
defined just inside the innermost loop L that iterates through an index used to access the
output tensor in the assignment. Accumulate updates in this temporary variable and write
back the sum to the output tensor just at the end of this loop. This is worthwhile to do
when there are more for loops inside L.

Multiple Loop Nests

Moving specific conditional blocks into a separate loop nest. Because non-diagonal values
form the bulk of the values in a tensor, we can think of assignments that involve the diagonal
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entries of a symmetric tensor as an edge case and compute them separately. In particular,
we can move the conditional blocks involving non-diagonal entries in a separate loop nest.

Technique Before After
Common
Tensor Access
Elimination

y[i] += A[i, j] * x[j]
y[j] += A[i, j] * x[i]

A = A[i, j]
y[i] += A * x[j]
y[j] += A * x[i]

Distributive
Assignment
Grouping

y[i] += A[i, j] * x[j]
y[i] += A[i, j] * x[j]

y[i] += 2 * A[i, j] * x[j]

Restrict
Computation
of Output
to Canonical
Triangle

for j=_, i=_
if i <= j

y[i, j] += A[i, j] * x[j]
y[j, i] += A[i, j] * x[j]

for j=_, i=_
if i <= j

y[i, j] += A[i, j] * x[j]
for j=_, i=_

if i > j
y[i, j] = y[j, i]

Consolidate
Conditional
Blocks

if i == j
y[i] += A[i, j] * x[j]

if i != j
y[i] += A[i, j] * x[j]

if (i == j) || (i != j)
y[i] += A[i, j] * x[j]

Group As-
signments
Across
Branches

if i != j
y[i] += A[i, j] * x[j]
y[j] += A[i, j] * x[i]

if i == j
y[i] += A[i, j] * x[j]

if i != j || i == j
y[i] += A[i, j] * x[j]

if i != j
y[i] += A[i, j] * x[i]

Concordize
Tensors

for j=_, k=_, i=_
C[i, j] += A[i, k] * B[k, j]
C[k, j] += A[i, k] * B[i, j]

for k=_, i=_, j=_
C_T[j, i] += A[i, k] * B_T[j, k]
C_T[j, k] += A[i, k] * B_T[j, i]

Workspace
Transforma-
tion

for j=_, i=_
y[i] += A[i, j] * x[j]
y[j] += A[i, j] * x[i]

for j=_
temp = 0
for i=_

y[i] += A[i, j] * x[j]
temp += A[i, j] * x[i]

y[j] += temp

Multiple
Loop Nests

for j=_, i=_
if i != j

y[i] += A[i, j] * x[j]
if i == j

y[i] += A[i, j] * x[j]

for j=_, i=_
if i != j

y[i] += A[i, j] * x[j]
for j=_, i=_

if i == j
y[i] += A[i, j] * x[j]

Table 5.1: Optimization Transforms

5.2 MTTKRP Demonstration

Let us take a look at how we would apply the methodology described in the prior section
for MTTKRP given by

C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
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where tensor A is fully-symmetric and B is not symmetric.
We begin with the symmetrization phase. The set of permutable indices is given by

P = {i, k, l}. We establish an ordering of the permutable indices in P—i, k, l—such that if
these indices are monotonically increasing, we will only access the canonical triangle of A.
We will use the pseudocode given in 5.1 to generate the code. Our set up thus far is depicted
in 5.2.

1: for j = 1 : _, l = 1 : _, k = 1 : _, i = 1 : _ do
2: if i ≤ k ≤ l then
3: for each E of P do
4: Construct SP |E
5: for each σ ∈ SP |E do
6: (i, k, l) = σ((i, k, l))
7: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
8: end for
9: end for

10: end if
11: end for

Figure 5.2: MTTKRP Symmetrization: Set up pseudocode.

All the equivalence groups that can be constructed from P and which satisfy the that
i ≤ k ≤ l are delineated below.

{(i), (k), (l)}
{(i = k), (l)}
{(i), (k = l)}
{(i = k = l)}

Note that the monotonically-increasing requirement for the permutable indices naturally
enforces that if two-nonadjacent indices pi and pi+k in the canonical order are equivalent, all
the indices that are between pi and pi+k in the canonical order are also equivalent. Thus, we
do not include the case {(i = l), (k)} because it is encapsulated by {(i = k = l)}.

We can unroll the for loop given by lines 3-8 in Figure 5.2 as shown in Figure 5.3.
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1: for j = 1 : _, l = 1 : _, k = 1 : _, i = 1 : _ do
2: if i ≤ k ≤ l then
3: if E = {(i), (k), (l)} then
4: Construct SP |E
5: for each σ ∈ SP |E do
6: (i, k, l) = σ((i, k, l))
7: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
8: end for
9: end if

10: if E = {(i = k), (l)} then
11: Construct SP |E
12: for each σ ∈ SP |E do
13: (i, k, l) = σ((i, k, l))
14: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
15: end for
16: end if
17: if E = {(i), (k = l)} then
18: Construct SP |E
19: for each σ ∈ SP |E do
20: (i, k, l) = σ((i, k, l))
21: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
22: end for
23: end if
24: if E = {(i = k = l)} then
25: Construct SP |E
26: for each σ ∈ SP |E do
27: (i, k, l) = σ((i, k, l))
28: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
29: end for
30: end if
31: end if
32: end for

Figure 5.3: MTTKRP Symmetrization: Unroll block looping through equivalence groups.

Next, we determine the unique symmetry group SP |E for each equivalence group E.

E = {(i), (k), (l)} → SP |E = {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)}
E = {(i = k), (l)} → SP |E = {(1, 2, 3), (1, 3, 2), (3, 1, 2)}
E = {(i), (k = l)} → SP |E = {(1, 2, 3), (2, 1, 3), (3, 1, 2)}
E = {(i = k = l)} → SP |E = {(1, 2, 3)}

We can add these symmetry groups to our pseudocode as shown in Figure 5.4.
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1: for j = 1 : _, l = 1 : _, k = 1 : _, i = 1 : _ do
2: if i ≤ k ≤ l then
3: if E = {(i), (k), (l)} then
4: for each σ ∈ {(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1)} do
5: (i, k, l) = σ((i, k, l))
6: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
7: end for
8: end if
9: if E = {(i = k), (l)} then

10: for each σ ∈ {(1, 2, 3), (1, 3, 2), (3, 1, 2)} do
11: (i, k, l) = σ((i, k, l))
12: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
13: end for
14: end if
15: if E = {(i), (k = l)} then
16: for each σ ∈ {(1, 2, 3), (2, 1, 3), (3, 1, 2)} do
17: (i, k, l) = σ((i, k, l))
18: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
19: end for
20: end if
21: if E = {(i = k = l)} then
22: for each σ ∈ {(1, 2, 3)} do
23: (i, k, l) = σ((i, k, l))
24: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
25: end for
26: end if
27: end if
28: end for

Figure 5.4: MTTKRP Symmetrization: We construct the unique symmetry groups given
each equivalence group.

Now we unroll the blocks given by lines 4-6, 9-11, 14-16, and 19-21 in 5.4 to obtain 5.5.
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1: for j = 1 : _, l = 1 : _, k = 1 : _, i = 1 : _ do
2: if i ≤ k ≤ l then
3: if E = {(i), (k), (l)} then
4: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
5: C[i, j] = A[i, l, k] ∗B[k, j] ∗B[l, j]
6: C[k, j] = A[k, i, l] ∗B[l, j] ∗B[i, j]
7: C[k, j] = A[k, l, i] ∗B[i, j] ∗B[l, j]
8: C[l, j] = A[l, i, k] ∗B[k, j] ∗B[i, j]
9: C[l, j] = A[l, k, i] ∗B[i, j] ∗B[k, j]

10: end if
11: if E = {(i = k), (l)} then
12: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
13: C[i, j] = A[i, l, k] ∗B[k, j] ∗B[l, j]
14: C[l, j] = A[l, i, k] ∗B[k, j] ∗B[i, j]
15: end if
16: if E = {(i), (k = l)} then
17: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
18: C[k, j] = A[k, i, l] ∗B[l, j] ∗B[i, j]
19: C[l, j] = A[l, i, k] ∗B[k, j] ∗B[i, j]
20: end if
21: for E = {(i = k = l)} do
22: C[i, j] = A[i, k, l] ∗B[l, j] ∗B[k, j]
23: end for
24: end if
25: end for

Figure 5.5: MTTKRP Symmetrization: We unroll the blocks looping through the permuta-
tions in the symmetry groups.

Lastly, we normalize all the assignments. The symmetrized code generated by the above
process after normalization is given in Listing 5.1.

1 function mttkrp(C, A, B)
2 for l=_, j=_, k=_, i=_
3 if i <= k && k <= l
4 if i != k && k != l
5 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]
6 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]
7 C[k, j] += A[i, k, l] * B[i, j] * B[l, j]
8 C[k, j] += A[i, k, l] * B[i, j] * B[l, j]
9 C[l, j] += A[i, k, l] * B[i, j] * B[k, j]

10 C[l, j] += A[i, k, l] * B[i, j] * B[k, j]
11 if i == k && k != l
12 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]
13 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]
14 C[l, j] += A[i, k, l] * B[i, j] * B[k, j]
15 if i != k && k == l
16 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]
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17 C[k, j] += A[i, k, l] * B[i, j] * B[l, j]
18 C[k, j] += A[i, k, l] * B[i, j] * B[l, j]
19 if i == k && k == l
20 C[i, j] += A[i, k, l] * B[k, j] * B[l, j]

Listing 5.1: Normalized Symmetric MTTKRP Kernel

We proceed to the optimization phase. First, we apply the common tensor access elimi-
nation transform in Listing 5.2 where we replace repeated accesses of particular coordinates
of A and B with constants (line 3).

1 function mttkrp(C, A, B)
2 for l=_, j=_, k=_, i=_
3 A = A[i, k, l], B_ij = B[i, j], B_kj = B[k, j], B_lj = B[l, j]
4 if i <= k && k <= l
5 if i != k && k != l
6 C[i, j] += A * B_kj * B_lj
7 C[i, j] += A * B_kj * B_lj
8 C[k, j] += A * B_ij * B_lj
9 C[k, j] += A * B_ij * B_lj

10 C[l, j] += A * B_ij * B_kj
11 C[l, j] += A * B_ij * B_kj
12 if i == k && k != l
13 C[i, j] += A * B_kj * B_lj
14 C[i, j] += A * B_kj * B_lj
15 C[l, j] += A * B_ij * B_kj
16 if i != k && k == l
17 C[i, j] += A * B_kj * B_lj
18 C[k, j] += A * B_ij * B_lj
19 C[k, j] += A * B_ij * B_lj
20 if i == k && k == l
21 C[i, j] += A * B_kj * B_lj

Listing 5.2: MTTKRP: Common Tensor Access Elimination

Subsequently, given that several assignments are repeated within a conditional block, we
apply the distributive assignment grouping transform and replace the repeated assignments
with one assignment that doubles the right-hand side in Listing 5.3.

1 function mttkrp(C, A, B)
2 for l=_, j=_, k=_, i=_
3 A = A[i, k, l], B_ij = B[i, j], B_kj = B[k, j], B_lj = B[l, j]
4 if i <= k && k <= l
5 if i != k && k != l
6 C[i, j] += 2 * A * B_kj * B_lj
7 C[k, j] += 2 * A * B_ij * B_lj
8 C[l, j] += 2 * A * B_ij * B_kj
9 if i == k && k != l

10 C[i, j] += 2 * A * B_kj * B_lj
11 C[l, j] += A * B_ij * B_kj
12 if i != k && k == l
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13 C[i, j] += A * B_kj * B_lj
14 C[k, j] += 2 * A * B_ij * B_lj
15 if i == k && k == l
16 C[i, j] += A * B_kj * B_lj

Listing 5.3: MTTKRP: Distributive Assignment Grouping

Given that there are no pairs of assignments with swapped indices accessing C with
equivalent right-hand sides, we can identify that there is no visible output symmetry in this
kernel. Thus, we skip the output symmetry transform and move on to the consolidating
conditional blocks transform. It is possible that in Listing 5.3, the blocks given by 9-11 and
12-14 have equivalent assignments because the have the same number of assignments. By
swapping equivalent indices, we can actually rewrite the three assignments in both blocks to
be

C[i, j] += A * B_kj * B_lj
C[l, j] += A * B_ij * B_kj
C[k, j] += A * B_ij * B_lj.

Thus, we can combine the conditional blocks on lines 9-11 and 12-14 to give us Listing
5.4.

1 function mttkrp(C, A, B)
2 for l=_, j=_, k=_, i=_
3 A = A[i, k, l], B_ij = B[i, j], B_kj = B[k, j], B_lj = B[l, j]
4 if i <= k && k <= l
5 if i != k && k != l
6 C[i, j] += 2 * A * B_kj * B_lj
7 C[k, j] += 2 * A * B_ij * B_lj
8 C[l, j] += 2 * A * B_ij * B_kj
9 if (i == k && k != l) || (i != k && k == l)

10 C[i, j] += A * B_kj * B_lj
11 C[l, j] += A * B_ij * B_kj
12 C[k, j] += A * B_ij * B_lj
13 if i == k && k == l
14 C[i, j] += A * B_kj * B_lj

Listing 5.4: MTTKRP: Consolidate Conditional Blocks

We observe that j is consistently the second index used to access both B and C. We
can make the loop order concordant by transposing both B and C and moving the j loop to
be innermost loop since A is not accessed with j, as shown in Listing 5.5. We just need to
perform an additional post-processing step now of transposing the output tensor back after
this kernel.

1 function mttkrp(C, A, B)
2 for l=_, k=_, i=_, j=_
3 A = A[i, k, l], B_ji = B_T[j, i], B_jk = B_T[j, k], B_jl = B[j, l]
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4 if i <= k && k <= l
5 if i != k && k != l
6 C_T[j, i] += 2 * A * B_jk * B_jl
7 C_T[j, k] += 2 * A * B_ji * B_jl
8 C_T[j, l] += 2 * A * B_ji * B_jk
9 if (i == k && k != l) || (i != k && k == l)

10 C_T[j, i] += A * B_jk * B_jl
11 C_T[j, l] += A * B_ji * B_jk
12 C_T[j, k] += A * B_ji * B_jl
13 if i == k && k == l
14 C_T[j, i] += A * B_jk * B_jl

Listing 5.5: MTTKRP: Concordize Tensors

Lastly, we separate the conditional blocks handling the diagonals of A into a new loop
nest as depicted in Listing 5.6. To avoid doubling accesses to A from doing so, we addi-
tionally construct two separate tensors, A_nondiag and A_diag which hold all the elements
in the canonical triangle of A that are not on any diagonal and that are on some diagonal,
respectively.

1 function mttkrp(C, A_nondiag, A_diag, B)
2 for l=_, k=_, i=_, j=_
3 A = A_nondiag[i, k, l], B_ji = B_T[j, i], B_jk = B_T[j, k], B_jl = B[j, l]
4 if i <= k && k <= l
5 if i != k && k != l
6 C_T[j, i] += 2 * A * B_jk * B_jl
7 C_T[j, k] += 2 * A * B_ji * B_jl
8 C_T[j, l] += 2 * A * B_ji * B_jk
9 for l=_, k=_, i=_, j=_

10 A = A_diag[i, k, l], B_ji = B_T[j, i], B_jk = B_T[j, k], B_jl = B[j, l]
11 if i <= k && k <= l
12 if (i == k && k != l) || (i != k && k == l)
13 C_T[j, i] += A * B_jk * B_jl
14 C_T[j, l] += A * B_ji * B_jk
15 C_T[j, k] += A * B_ji * B_jl
16 if i == k && k == l
17 C_T[j, i] += A * B_jk * B_jl

Listing 5.6: MTTKRP: Separate Loop Nests
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Chapter 6

Evaluation

6.1 Implementation

I developed a compiler1 in Julia to automate the process of applying the strategies described
in the prior section. Provided an assignment and a list of symmetric tensors, the compiler
outputs a kernel that exploits symmetry. The compiler uses RewriteTools, the same rewrit-
ing package used by Finch. RewriteTools is a utility for term rewriting, that provides a
language for finding subexpressions that satisfy specific conditions and applying predefined
transformations on the matches [2]. We use this library to define a set of simplification rules
and identify specific control structures, einsums, and operations to which these rules are
applied. The compiler takes a Finch program expression as input and outputs executable
Finch code.

The entry point to the compiler is a function called symmetrize with the following method
signature

function symmetrize(program, symmetries, loop_order)

where program is a @finch_program instance consisting of an ASSIGN statement—i.e. a
statement of the form TENSOR[INDEX...] <CALL> = EXPR in Finch. symmetries consists
of a dictionary of TENSOR symbols mapped to a set of sets of INDEX symbols representing
the symmetry partitions of each symmetric tensor. loop_order consists of a list of all the
INDEX symbols that present themselves in program, in the order in which they should be
iterated through, from outermost loop to innermost loop. The output is a @finch_program
instance consisting of the optimized kernel to compute the program input.

For instance, the call to the compiler given by Listing 6.1 will result in the output given
by Listing 6.2.

1 C = :C; A = :A; B = Bx
2 i = index(:i); j = index(:j); k = index(:k)
3 prgm = @finch_program C[i, j] += A[i, k] * B[k, j]

1This compiler is currently standalone, but it can be integrated into Finch—or any library—as an exten-
sion in the future.
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4 optimized_executable = symmetrize(prgm, {A: {{i, j}}}, [j, i])

Listing 6.1: Sample call to compiler.

1 Finch program: for j = virtual(Dimensionless),
2 k = virtual(Dimensionless),
3 i = virtual(Dimensionless)
4 let A_ik = A[i, k]
5 begin
6 if <(i, k)
7 begin
8 C[i, j] <<+>>= *(B[k, j], A_ik)
9 end

10 end
11 if <=(i, k)
12 begin
13 C[k, j] <<+>>= *(A_ik, B[i, j])
14 end
15 end
16 end
17 end
18 end

Listing 6.2: The result of printing the output of the call to the compiler in Listing 6.1.

The compiler generates code in two phases that parallels the methodology described in
Chapter 5: in the symmetrization phase, the compiler first identifies the set of permutable in-
dices and generates all the possible equivalence groups with these indices. Then, it constructs
a conditional block for each equivalence group where the condition is the boolean expression
representing the equivalence group and the body is a set of assignments. These assignments
are produced by applying the unique permutations possible under that equivalence group to
the original input assignment expression.

In the optimization phase, the compiler performs the transforms delineated in Section
5.1.2. In the implementation, each transform from Table 5.1 has been mapped into a rewrite
rule that is then applied if applicable in this phase. For instance, the Distributive Assignment
Grouping transform is formulated as the rule shown in Listing 6.3.

1 Fixpoint(Rewrite(Postwalk(@rule block(~s1..., assign(~lhs, +, ~rhs), ~s2..., assign(~lhs,
+, ~rhs), ~s3...) => block(s1..., assign(lhs, +, call(*, 2, rhs)), s2..., s3...))))(

ex)

Listing 6.3: The rewrite rule corresponding to the Distributive Assignment Grouping
transform.

This rule identifies assignment statements in a Finch program that have the same left
hand and right hand sides and combines them into one assignment statement with the same
left hand side and the right hand side multiplied by two via a post-order traversal over the
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nodes in the Finch program given by ex. This rule is repeatedly applied until no further
changes occur. A series of rewrite rules like this, albeit many more complex, are applied to
the symmetrized code to optimize it.

This compiler implementation is publicly available online at https://github.com/radha-patel/
symmetry-compiler.

6.2 Results

In this section, we showcase the performance speedups obtained by applying the methodology
described in Section 5 to Finch kernels via the compiler we implemented. We specifically
focus on the six kernels introduced in Section 2.2 and restated in Table 6.1 as they encompass
all the different symmetry types and strategies to take advantage of symmetry that have been
discussed in this thesis. The assignment expressions given in Table 6.1 were used as input
to the compiler to generate the optimized kernels. However, these assignment expressions
are not necessarily the assignment used in the naive version of each of these kernels. To
focus on the performance improvements from reducing memory reads and filtering redundant
computations specifically, we transpose tensors as needed to ensure that the loop order is
concordant with the access order.

Kernel Assignment Expression Symmetric Tensors
SSYMV y[i] = A[i, j] ∗ x[j] A - {i, j}
SYPRD y[] = x[i] ∗ A[i, j] ∗ x[j] A - {i, j}
SSYMM C[i, j] = A[i, j] ∗B[i, j] A - {i, j}
SSYRK C[i, j] = A[i, k] ∗ A[k, j] C - {i, j}
TTM C[i, j, l] = A[i, k, l] ∗B[k, j] A - {i, k, j}

MTTKRP C[i, j] = A[i, k, l] ∗B[k, j] ∗B[l, j] A - {i, k, l}
4D MTTKRP C[i, j] = A[i, k, l,m] ∗B[k, j] ∗B[l, j] ∗B[m, j] A - {i, k, l,m}

Table 6.1: Evaluation Kernels

All experiments were run on a single core of a 12-core 2-socket Intel Xeon E5-2695
v2 running at 2.40GHz with 128GB of memory. We used v0.6.22 of the Finch library to
implement the kernels and executed both the naive and optimized implementation generated
by the symmetric compiler. We used Julia v1.10 to run the tests and all timings are the
minimum of 10,000 runs or 5s of measurement, whichever happens first.

We used a variety of datasets in our benchmarks, including both existing tensors that are
already symmetric or have been symmetrized, and randomly generated tensors. The matrices
we use (Table 6.2) are derived from the matrix benchmark suite used by Vuduc et. all [45]
and downloaded from the SuiteSparse matrix repository. Given that there does not currently
exist a database of symmetric tensors, we generated uniformly distributed symmetric random
sparse tensors of varying sizes and sparsities via an Erdős–Rényi distribution.

We envision a similar capacity for performance enhancements by applying the given
techniques to kernels generated by any library.
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Group/Name Application Area Dimension Nonzeros Symmetric*
ATandT/onetone2 Harmonic balance method 36057 227628
Boeing/bcsstk35 Stiff matrix automobile frame 30237 1450163 ✓
Boeing/crystk02 FEM Crystal free vibration 13965 968583 ✓
Boeing/crystk03 FEM Crystal free vibration 24696 1751178 ✓
Boeing/ct20stif CT20 Engine block 52329 2698463 ✓

Brethour/coater2 Simulation of coating flows 9540 207308
Cote/vibrobox Vibroacoustic problem 12328 342828 ✓
FIDAP/ex11 3D steady flow caculation 16614 1096948

Goodwin/goodwin Fluid mechanics problem 7320 324784
Goodwin/rim FEM fluid mechanics problem 22560 1014951

Grund/bayer02 Chemical process simulation 13935 63679
Grund/bayer10 Chemical process simulation 13436 94926
Hamm/memplus Circuit Simulation 17758 126150

HB/gemat11 Power flow 4929 33185
HB/lnsp3937 Fluid flow modeling 3937 25407
HB/orani678 Economic modeling 2529 90185
HB/saylr4 Oil reservoir modeling 3564 22316 ✓

HB/sherman3 Oil reservoir modeling 5005 20033
HB/sherman5 Oil reservoir modeling 3312 20793
Mallya/lhr10 Light hydrocarbon recovery 10672 232633

Mulvey/finan512 Financial portfolio optimization 74752 596992 ✓
Nasa/nasasrb Shuttle rocket booster 54870 2677324 ✓
Simon/olafu Accuracy problem 16146 1015156 ✓

Simon/raefsky3 Fluid structure interaction 21200 1488768
Simon/raefsky4 Buckling problem 19779 1328611 ✓
Simon/venkat01 Flow simulation 62424 1717792
Shyy/shyy161 Viscous flow calculation 76480 329762
Wang/wang3 Semiconductor device simulation 26064 177168
Zitney/rdist1 Chemical process separation 4134 94408

Table 6.2: Symmetric Matrix Benchmark Suite
* Matrices that are not originally symmetric are symmetrized by computing A+AT when represented by a
symmetric tensor. Note that the nonzero count reflects that before symmetrization.

6.2.1 SSYMV

The sparse symmetric matrix vector kernel is given by

y[i] = A[i, j] ∗ x[j].

The tensor formats we utilized are described in Figure 6.1. We used the matrices from the
matrix benchmark suite for A (Table 6.2), symmetrized when not symmetric, and randomly
generated a vector for x.
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Tensor Level Format Dimension
A Dense(SparseList(Element(0.0))) n× n
x Dense(Element(0.0)) n
y Dense(Element(0.0)) n

Figure 6.1: SSYMV Tensor Formats

If tensor A has sparsity p, the runtime of the naive SSYMV kernel is O(2n2p). The
optimized kernel accesses only 1

2
of the values of A, but performs all of the computations.

In cases where SSYMV is bandwidth bound, we can expect a speedup approaching 2x.
The optimized kernel generated by the symmetric compiler performed an average of 1.36

times faster than the naive kernel (Listing A.1), with a maximal speedup of 1.85, as shown
in Figure 6.2.

Figure 6.2: Performance of the optimized SSYMV kernel normalized to the naive SSYMV
kernel.

6.2.2 SYPRD

The symmetric triple product kernel is given by

y[] = x[j] ∗ A[i, j] ∗ x[i].

The tensor formats we utilized are described in Figure 6.3. We used the matrices from the
matrix benchmark suite for A, symmetrized when not symmetric, and randomly generated
a vector for x.

Tensor Level Format Dimension
A Dense(SparseList(Element(0.0))) n× n
x Dense(Element(0.0)) n
y Scalar(0.0) -

Figure 6.3: SYPRD Tensor Formats
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If tensor A has sparsity p, the runtime of the naive SYPRD kernel is also O(2n2p). The
optimized kernel accesses only 1

2
of the values of A and only performs 1

2
of the computations

because we have {{i, j}} invisible symmetry in C. Approximating the expression for large n,
we can therefore expect a speedup of 2x.

The optimized kernel generated by the symmetric compiler performed an average of 1.04
times faster than the naive kernel (Listing A.2), with a maximal speedup of 1.77. As seen in
Figure 6.4, for some matrices, the optimized kernel performed well, achieving the expected
speedup, but for matrices, there was nearly a 2x slowdown. In particularly, we we get a
speedup for sparsities above 0.04% (the sparsity of Grund/bayer02). Zitney/rdist1 which is
the leftmost bar of the plot has sparsity 0.5%, while Shy/shyy161 which is the rightmost bar
of the plot has sparsity 0.005%. We suspect the slight slowdowns to be a result of control
flow overhead from having separate branches to handle the diagonals and non-diagonals of
A, and that being magnified when the density decreases.

Figure 6.4: Performance of the optimized SYPRD kernel normalized to the naive SSYMV
kernel.

6.2.3 SSYMM

The sparse symmetric matrix-matrix kernel is given by

C[i, j] = A[i, k] ∗B[k, j].

The tensor formats we utilized are described in Figure 6.5. We used the matrices from the
matrix benchmark suite for A (Table 6.2), symmetrized when not symmetric, and randomly
generated a matrix for B.

Tensor Level Format Dimension
A Dense(SparseList(Element(0.0))) n× n
B Dense(Dense(Element(0.0))) n× r
C Dense(Dense(Element(0.0))) n× r

Figure 6.5: SSYMM Tensor Formats
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If tensor A has sparsity p, the runtime of the naive SSYMM kernel is O(n2rp). The
optimized kernel accesses only 1

2
of the values of A, but performs all computations. Because

this kernel is compute-bound and we don’t save on compute, we do not expect much speedup,
which our results confirm (Figure 6.6). We suspect the slight slowdowns here too to be a
result of control flow overhead from having separate branches to handle the diagonals and
non-diagonals of A.

Figure 6.6: SSYMM Performance

6.2.4 SSYRK

The sparse symmetric rank-k update kernel is given by

C[i, j] = A[i, k] ∗ A[k, j].

The tensor formats we utilized are described in Figure 6.7. We used the matrices from
the matrix benchmark suite for A (Table 6.2). Note that A is not symmetric, but by nature
of the computation, C is symmetric.

Tensor Level Format Dimension
A Dense(SparseList(Element(0.0))) n× n
C Dense(Dense(Element(0.0))) n× n

Figure 6.7: SSYRK Tensor Formats

If tensor A has sparsity p, the runtime of the naive SSYRK kernel is O(n3p). The
optimized kernel accesses all values of A because A is not symmetric, but performs only 1

2
of

the computations and writes to C because we exploit the {{i, j}} output visible symmetry
in C. Because SSYRK is compute-bound, we expect a speedup of 2.

The optimized kernel generated by the symmetric compiler performed an average of 1.14
times faster than the naive kernel (Listing A.4), with a maximal speedup of 1.76 times.
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Figure 6.8: SSYRK Performance

6.2.5 TTM

The tensor times matrix kernel is given by

C[i, j, l] = A[i, k, l] ∗B[k, j].

The tensor formats we utilized are described in Figure 6.9. We randomly generated symmet-
ric tensors with a range of sizes and sparsities for A and randomly generated a dense tensor
for B.

Tensor Level Format Dimension
A Dense(SparseList(SparseList(Element(0.0)))) n× n× n
B Dense(Dense(Element(0.0))) n× r
C Dense(Dense(Dense(Element(0.0)))) r × n× n

Figure 6.9: TTM Tensor Formats

The naive and optimized kernels we benchmarked with are provided in the Appendix
(Listing A.5). Notably, the optimized kernel our compiler implementation generates consists
of only three assignments because of the transform to group assignments across branches.

If tensor A has sparsity p, the runtime of the naive TTM kernel is O(n3rp). The optimized
kernel accesses only 1

6
of the values of A and performs 1

2
of the computations (and hence

writes 1
2

of the values to C) because we take advantage of the {{j, l}} symmetry in C. We
can therefore expect a speedup of at least 2x. This theoretical speedup is maximized for high
density and low rank; we find that with rank r = 1 (i.e. a tensor times vector computation),
sparsity p = 1, and n = 500, we achieve a maximal speedup of 2.27 times.

Figure 6.10 demonstrates the effects of varying sparsity and rank. We achieve a greater
speedup with greater density of tensor A (Figure 6.10a), likely because this increases memory
pressure, enabling us to take greater advantage of the savings resulting from performing only
1
6

of memory accesses of A. While theoretically lower rank should correspond to a greater
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speedup, we find that the results are not consistent (Figure 6.10b), potentially because of
greater control flow overhead with lower rank.

(a) (b)

Figure 6.10: Performance of the optimized TTM kernel normalized to the naive TTM kernel
and with varying sparsity and varying rank. In plot (a), we set dimension n = 500 and
numerical rank r = 10. In plot (b), we set dimension n = 500 and sparsity p = 0.1.

6.2.6 MTTKRP

The matricized tensor times Khatri-Rao product kernel is given by

C[i, j] = A[i, k, l] ∗B[k, j] ∗B[l, j].

The tensor formats we utilize are described in Figure 6.11. We randomly generated symmet-
ric tensors with a range of sizes and sparsities for A and randomly generated a dense tensor
for B.

The naive and optimized kernels we benchmarked with are provided in the Appendix
(Listing A.6). The optimized kernel our compiler implementation generates consists of two
loop nests, one that handles the nondiagonals and another to handle the diagonals to simplify
control flow logic. Our compiler skips the grouping assignments across branches transform
(which is performed in TTM) because it increases the number of conditional blocks due to
the invisible symmetry in C, which causes factors of 2 to emerge in some assignments, but
not others.

Tensor Level Format Dimension
A Dense(SparseList(SparseList(Element(0.0)))) n× n× n
B Dense(Dense(Element(0.0))) n× r
C Dense(Dense(Element(0.0))) r × n

Figure 6.11: MTTKRP Tensor Formats

If tensor A has sparsity p, the runtime of the naive MTTKRP kernel is O(n3rp). The
optimized kernel accesses only 1

6
of the values of A and performs 1

2
of the computations
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because we have {{k, l}} invisible symmetry in C. Thus, we expect a speedup of at least 2x.
This theoretical speedup is also maximized for high density and low rank; we find that with
rank r = 1, sparsity p = 1, and n = 500, we achieve a maximal speedup of 3.17 times.

Figure 6.12 demonstrates the effects of varying sparsity and rank. As expected, we
achieve a greater speedup with greater density of tensor A (Figure 6.12a). Theoretically,
lower rank should correspond to a greater speedup, but MTTKRP exhibits relatively consist
speedups across different ranks (Figure 6.12b). This is also likely because the cost of reading
A outweighs the cost of reading B or writing to C even when the rank is high. Interestingly,
the speedup is highest when the rank is equivalent to n; this may be attributed to control
flow overhead from having many branches, which proportionally has less of an impact when
there are more values in the dense matrix.

In an order-3 tensor of dimension 500, 0.04% of the coordinates are diagonals. We find
that the time that the loop nest to handle diagonals takes compared to the loop nest that
handles the non-diagonals is not proportional to this distribution; regardless, the time to
handle diagonals is still relatively insignificant, ranging from a minimum of 1% of time for
rank 500 and maximum of 4% for sparsity 0.0001 (Figures 6.12c-6.12d).
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(a) (b)

(c) (d)

Figure 6.12: Plots (a) and (b) depict the performance of the optimized MTTKRP kernel
normalized to the naive MTTKRP kernel and with varying sparsity and varying rank. Plots
(c) and (d) showcase that handling the non-diagonals take the bulk of the execution time;
the time to handle the diagonals (i.e. the base case) is near negligible. In plots (a) and (c),
we set dimension n = 500 and numerical rank r = 10. In plots (b) and (d), we set dimension
n = 500 and sparsity p = 0.1.

Let us now take a look at a 4-dimensional MTTKRP given by

C[i, j] = A[i, k, l,m] ∗B[k, j] ∗B[l, j] ∗B[m, j].

The tensor formats are equivalent to the 3-dimensional case, except we add another SparseList
level to A to get Dense(SparseList(SparseList(SparseList(Element(0.0))))).

The optimized 4-dimensional MTTKRP kernel (Listing A.7) also consists of two loops
nests, one for the nondiagonals and one for the diagonals. While the loop nest for the
nondiagonals remains relatively simple, we have 4 separate branches in the loop nest for the
diagonals (as opposed to 2 for 3-dimensional MTTKRP).

The optimized 4-dimensional MTTKRP kernel accesses only 1
4!
= 1

24
of the values of A

and performs 1
3!
= 1

6
of the computations because we have {{k, l,m}} invisible symmetry in

C. Thus, we expect a speedup of at least 6x.
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We expect this theoretical speedup to be maximized for high density and low rank. We
achieve a speedup of 7.82 times with rank r = 1, sparsity p = 1, and n = 100; however,
we find that the speedups are greater for greater rank. We obtain a maximal speedup of
7.94 times with sparsity 0.1 and rank 500 (Figure 6.13b). For this same case, we obtain a
speedup of 10.17 times if we consider only the nondiagonal values, which suggests potential
benefits from register blocking from having four assignments in the loop nest that handles
the nondiagonals of the optimized kernel that all use the same memory read from A. We
hypothesize that the benefits of register blocking are more pronounced when rank is higher.
As expected, the performance improves as sparsity increases, with a speedup of 4.37 times
for sparsity 0.0001 and (Figure 6.13b) and a speedup of 6.81 times for sparsity 0.1.

In an order-4 tensor of dimension 100, 6% of the coordinates are on diagonals. Since
the number of branches to handle the diagonals increase with more dimensions of A, we
expect there to be significantly greater control flow overhead. Thus, is not surprising that
an average of 25.3% of the execution time of the optimized kernel in our benchmarks is from
handling diagonals (Figures 6.13c-6.13d); this percent is relatively consist across sparsities
and ranks.
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(a) (b)

(c) (d)

Figure 6.13: Plots (a) and (b) depict the performance of the optimized 4-dimensional MT-
TKRP kernel normalized to the naive 4-dimensional MTTKRP kernel and with varying
sparsity and varying rank. Plots (c) and (d) showcase that handling the non-diagonals take
the bulk of the execution time; the time to handle the diagonals (i.e. the base case) is near
negligible. In plots (a) and (c), we set dimension n = 100 and numerical rank r = 10. In
plots (b) and (d), we set dimension n = 100 and sparsity p = 0.1.

We expect the performance benefits of using a symmetric kernel to perform n-dimensional
MTTKRP to scale proportionally to n!, albeit with increasing control flow costs from han-
dling the nondiagonals. However, if the diagonals are all zeroed, the factorial growth is
evident; for instance, we find a 54.56 times speedup with 5-dimensional MTTKRP. Evi-
dently, as the the complexity of the kernel increases, it becomes more and more beneficial to
optimize for symmetry.
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Chapter 7

Conclusion

7.1 Summary

In this thesis, we demonstrated a systematic approach to exploit symmetry in arbitrary
tensor kernels. We identified core strategies to exploit symmetry in tensor kernels, includ-
ing memory read reuse and redundant computation filtering. We also proposed a detailed
compiler methodology for mechanically generating and optimizing symmetric code. This
methodology involved two stages: first, symmetrizing the kernel such that we only access
the canonical triangle of symmetric inputs, and secondly, applying a set of transforms to
further optimize the code. We ultimately implemented this methodology in a Julia-based
compiler and evaluated its performance on several common tensor kernels, showing signifi-
cant speedups.

7.2 Future Work

While this work provides a strong foundation for exploiting symmetry in tensor kernels,
several avenues for future research remain:

7.2.1 Generalizing to More Types of Symmetry

Our current methodology focuses on fully and partially symmetric tensors using the conven-
tional definition of symmetry where the values at coordinates with permutations of indices
in the same part of a symmetry partition are the same. We can expand and adapt our
methodology to encompass other forms of symmetry like antisymmetry, block symmetry,
or cyclic symmetry that commonly arise in physics, mathematics, chemistry, and machine
learning.

7.2.2 Integration with Existing Systems

Integrating our symmetric compiler directly or implementing systematic approach we propose
to exploit symmetry within Finch or existing numerical libraries such as LAPACK would
significantly enhance the performance of these widely used tools. Furthermore, embedding
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our framework within larger systems, such a distributed tensor computation frameworks,
would demonstrate its scalability and utility in real-world applications.

7.2.3 Exploring Parallelization Opportunities

The optimized code generated by the compiler I implemented is single-threaded and the naive
kernels we compared it to were also single-threaded. A natural next step is exploring parallel
computing techniques, such as multi-threading on shared-memory systems or distributed
computing across clusters, especially for kernels involving high-dimensional tensors. This
may just involve changes to the compiler implementation, or also to the methodology itself
in order to effectively load balance whilst maintaining correctness.

7.2.4 Improving Compiler Heuristics and Transformations

Our methodology relies on several basic heuristics when determining which transforms to
apply: for instance, we apply the transform to group assignments across branches if it results
in fewer conditional blocks. Using a more thorough heuristic that considers more factors (i.e.
the specific assignments across conditional blocks, dimensions in tensors, types of symmetry
identified so far, etc.) could improve the efficiency of the transforms. It would also be
worthwhile to explore more transformations that could be made to simplify the code to
handle non-diagonals, which becomes quite complex when working with high-dimensional
tensors.

7.2.5 Implementing Data Formats Tailored to Symmetry

Data formats tailored to symmetry that provide concordant accesses when iterating over
different triangles of a tensor could significantly improve performance when the output ten-
sor is symmetric. Then, we could experiment with algorithms that utilize a combination
of an input-oriented and output-oriented approach—as opposed to just the input-oriented
approach we propose in this thesis—since both would result in in-order memory accesses.
Such data formats could also eliminate the need for or simplify extra post-processing steps
like replicating the canonical triangle of a tensor to the noncanonical triangles.

7.3 Final Remarks

In conclusion, this thesis addressed a significant gap in the literature on symmetric ten-
sors by providing a generalizable framework for generating symmetry-aware code. Our work
demonstrates the potential for substantial performance improvements in tensor computa-
tions by effectively leveraging symmetry, highlighting the importance of symmetry-aware
optimizations for high-performance computing applications.
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Appendix A

Code listing

1 @finch_kernel function ssymv_ref(y, A, x)
2 y .= 0
3 for j = _, i = _
4 y[i] += A[i, j] * x[j]
5 end
6 return y
7 end
8

9 @finch_kernel function ssymv_opt(y, A, x, temp)
10 y .= 0
11 for j = _
12 temp .= 0
13 for i = _
14 let A_ij = A[i, j]
15 if i <= j
16 y[i] += x[j] * A_ij
17 end
18 if i < j
19 temp[] += A_ij * x[i]
20 end
21 end
22 end
23 y[j] += temp[]
24 end
25 return y
26 end

Listing A.1: SSYMV Naive and Optimized Kernels

1 @finch_kernel function syprd_ref(y, A, x)
2 y .= 0
3 for j=_, i=_
4 y[] += x[i] * A[i, j] * x[j]
5 end
6 return y
7 end
8

9 @finch_kernel function syprd_opt(y, A, x)
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10 y .= 0
11 for j=_, i=_
12 let x_i = x[i], A_ij = A[i, j], x_j = x[j]
13 if i < j
14 y[] += 2 * A_ij * x_i * x_j
15 end
16 if i == j
17 y[] += A_ij * x_i * x_j
18 end
19 end
20 end
21 return y
22 end

Listing A.2: SYPRD Naive and Optimized Kernels

1 @finch_kernel function symm_ref(C, A, B)
2 C_T .= 0
3 for k=_, i=_, j=_
4 C_T[j, i] += A[i, k] * B_T[j, k]
5 end
6 return C_T
7 end
8

9 @finch_kernel function ssymm_opt(C_T, A, B_T)
10 C_T .= 0
11 for k=_, i=_, j=_
12 let A_ik = A[i, k]
13 if i <= k
14 C_T[j, i] += A_ik * B_T[j, k]
15 end
16 if i < k
17 C_T[j, k] += A_ik * B_T[j, i]
18 end
19 end
20 end
21 return C_T
22 end

Listing A.3: SSYMM: Optimized Kernel

1 @finch_kernel function ssyrk_ref(C, A)
2 C .= 0
3 for k=_, j=_, i=_
4 C[i, j] += A[i, k] * A[j, k]
5 end
6 return C
7 end
8

9 @finch_kernel function ssyrk_opt(C, A)
10 C .= 0
11 for k=_, j=_, i=_
12 if i <= j
13 C[i, j] += A[i, k] * A[j, k]
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14 end
15 end
16 return C
17 end

Listing A.4: SSYRK: Optimized Kernel

1 @finch_kernel function ttm_ref(C, A, B)
2 C .= 0
3 for l=_, j=_, k=_, i=_
4 C[i, j, l] += A[k, j, l] * B_T[i, k]
5 end
6 return C
7 end
8

9 @finch_kernel ttm_opt(C, A, B_T)
10 C .= 0
11 for l=_, k=_, j=_, i=_
12 let jk_leq = (j <= k), kl_leq = (k <= l)
13 let A_jkl = A[j, k, l]
14 if jk_leq && kl_leq
15 C[i, j, k] += A_jkl * B_T[i, l]
16 end
17 if j < k && kl_leq
18 C[i, k, l] += A_jkl * B_T[i, j]
19 end
20 if jk_leq && k < l
21 C[i, j, l] += A_jkl * B_T[i, k]
22 end
23 end
24 end
25 end
26 return C
27 end

Listing A.5: TTM: Optimized Kernel

1 @finch_kernel function mttkrp_ref(C_T, A, B_T)
2 C_T .= 0
3 for l=_, k=_, i=_, j=_
4 C_T[j, i] += A[i, k, l] * B_T[j, l] * B_T[j, k]
5 end
6 return C_T
7 end
8

9 @finch_kernel mttkrp_finch_opt_1(C_T, A_nondiag, B_T)
10 C_T .= 0
11 for l=_, k=_, i=_, j=_
12 if i < k && k < l
13 let B_ij = B_T[j, i], A_ikl = A_nondiag[i, k, l], B_kj = B_T[j, k], B_lj = B_T

[j, l]
14 C_T[j, l] += 2 * B_kj * B_ij * A_ikl
15 C_T[j, k] += 2 * B_lj * B_ij * A_ikl
16 C_T[j, i] += 2 * B_kj * B_lj * A_ikl
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17 end
18 end
19 end
20 return C_T
21 end
22

23 @finch_kernel function mttkrp_finch_opt_2(C_T, A_diag, B_T)
24 C_T .= 0
25 for l=_, k=_, i=_, j=_
26 if identity(i) <= identity(k) && identity(k) <= identity(l)
27 let ik_eq = (i == k), kl_eq = (k == l)
28 let B_ij = B_T[j, i], A_ikl = A_diag[i, k, l], B_kj = B_T[j, k], B_lj = B_T

[j, l]
29 if (ik_eq && !kl_eq) || (!ik_eq && kl_eq)
30 C_T[j, i] += B_kj * B_lj * A_ikl
31 C_T[j, i] += B_lj * B_ij * A_ikl
32 C_T[j, i] += B_kj * B_ij * A_ikl
33 end
34 if ik_eq && kl_eq
35 C_T[j, i] += B_kj * B_lj * A_ikl
36 end
37 end
38 end
39 end
40 end
41 return C_T
42 end

Listing A.6: MTTKRP: Naive and Optimized Kernels

1 @finch_kernel function mttkrp_ref(C_T, A, B_T)
2 C_T .= 0
3 for m=_, l=_, k=_, i=_, j=_
4 C_T[j, i] += A[i, k, l, m] * B_T[j, l] * B_T[j, k] * B_T[j, m]
5 end
6 return C_T
7 end
8

9 @finch_kernel function mttkrp_opt_1(C_T, A_nondiag, B_T)
10 C_T .= 0
11 for m=_, l=_, k=_, i=_, j=_
12 if i < k && k < l && l < m
13 let A_iklm = A_nondiag[i, k, l, m], B_T_jl = B_T[j, l], B_T_jk = B_T[j, k],

B_T_ji = B_T[j, i], B_T_jm = B_T[j, m]
14 C_T[j, m] += 6 * B_T_jl * B_T_jk * B_T_ji * A_iklm
15 C_T[j, l] += 6 * B_T_jk * B_T_ji * A_iklm * B_T_jm
16 C_T[j, k] += 6 * B_T_jl * B_T_ji * A_iklm * B_T_jm
17 C_T[j, i] += 6 * B_T_jl * B_T_jk * A_iklm * B_T_jm
18 end
19 end
20 end
21 return C_T
22 end
23
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24 @finch_kernel function mttkrp_opt_2(C_T, A_diag, B_T)
25 C_T .= 0
26 for m=_, l=_, k=_, i=_, j=_
27 if identity(i) <= identity(k) && identity(k) <= identity(l) && identity(l) <=

identity(m)
28 let ik_eq = (i == k), kl_eq = (k == l), lm_eq = (l == m)
29 let A_iklm = A_diag[i, k, l, m], B_T_jl = B_T[j, l], B_T_jk = B_T[j, k],

B_T_ji = B_T[j, i], B_T_jm = B_T[j, m]
30 if (ik_eq && !kl_eq && !lm_eq) || (!ik_eq && kl_eq && !lm_eq) || (!

ik_eq && !kl_eq && lm_eq)
31 C_T[j, m] += 3 * B_T_jl * B_T_jk * B_T_ji * A_iklm
32 C_T[j, l] += 3 * B_T_jk * B_T_ji * A_iklm * B_T_jm
33 C_T[j, k] += 3 * B_T_jl * B_T_ji * A_iklm * B_T_jm
34 C_T[j, i] += 3 * B_T_jl * B_T_jk * A_iklm * B_T_jm
35 end
36 if (ik_eq && !kl_eq && lm_eq)
37 C_T[j, m] += 3 * B_T_jl * B_T_jk * B_T_ji * A_iklm
38 C_T[j, k] += 3 * B_T_jl * B_T_ji * A_iklm * B_T_jm
39 end
40 if (ik_eq && kl_eq && !lm_eq) || (!ik_eq && kl_eq && lm_eq)
41 C_T[j, m] += B_T_jl * B_T_jk * B_T_ji * A_iklm
42 C_T[j, l] += B_T_jk * B_T_ji * A_iklm * B_T_jm
43 C_T[j, k] += B_T_jl * B_T_ji * A_iklm * B_T_jm
44 C_T[j, i] += B_T_jl * B_T_jk * A_iklm * B_T_jm
45 end
46 if ik_eq && kl_eq && lm_eq
47 C_T[j, m] += B_T_jl * B_T_jk * B_T_ji * A_iklm
48 end
49 end
50 end
51 end
52 end
53 return C_T
54 end

Listing A.7: 4-D MTTKRP: Optimized Kernel

1 @finch_kernel function mttkrp_ref(C_T, A, B_T)
2 C_T .= 0
3 for n=_, m=_, l=_, k=_, i=_, j=_
4 C_T[j, i] += A[i, k, l, m, n] * B_T[j, l] * B_T[j, k] * B_T[j, m] * B_T[j, n]
5 end
6 return C_T
7 end
8

9 @finch_kernel function mttkrp_opt_1(C_T, A_nondiag, B_T)
10 C_T .= 0
11 for n=_, m=_, l=_, k=_, i=_, j=_
12 if i < k && k < l && l < m && m < n
13 let A_iklmn = A_nondiag[i, k, l, m, n], B_T_jl = B_T[j, l], B_T_jk = B_T[j, k

], B_T_ji = B_T[j, i], B_T_jm = B_T[j, m], B_T_jn = B_T[j, n]
14 C_T[j, i] += 24 * B_T_jl * A_iklmn * B_T_jk * B_T_jm * B_T_jn
15 C_T[j, l] += 24 * A_iklmn * B_T_jk * B_T_ji * B_T_jm * B_T_jn
16 C_T[j, k] += 24 * B_T_jl * A_iklmn * B_T_ji * B_T_jm * B_T_jn
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17 C_T[j, n] += 24 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jm
18 C_T[j, m] += 24 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jn
19 end
20 end
21 end
22 return C_T
23 end
24

25 @finch_kernel function mttkrp_opt_2(C_T, A_diag, B_T)
26 C_T .= 0
27 for m=_, l=_, k=_, i=_, j=_
28 if identity(i) <= identity(k) && identity(k) <= identity(l) && identity(l) <=

identity(m) && identity(m) <= identity(n)
29 let ik_eq = (i == k), mn_eq = (m == n), kl_eq = (k == l), lm_eq = (l == m)
30 let A_iklmn = A_nondiag[i, k, l, m, n], B_T_jl = B_T[j, l], B_T_jk = B_T[j,

k], B_T_ji = B_T[j, i], B_T_jm = B_T[j, m], B_T_jn = B_T[j, n]
31 if (ik_eq && !kl_eq && !lm_eq && !mn_eq) || (!ik_eq && kl_eq && !lm_eq

&& !mn_eq) || (!ik_eq && !kl_eq && lm_eq && !mn_eq) || (!ik_eq && !
kl_eq && !lm_eq && mn_eq)

32 C_T[j, i] += 12 * B_T_jl * A_iklmn * B_T_jk * B_T_jm * B_T_jn
33 C_T[j, l] += 12 * A_iklmn * B_T_jk * B_T_ji * B_T_jm * B_T_jn
34 C_T[j, k] += 12 * B_T_jl * A_iklmn * B_T_ji * B_T_jm * B_T_jn
35 C_T[j, n] += 12 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jm
36 C_T[j, m] += 12 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jn
37 end
38 if (ik_eq && !kl_eq && lm_eq && !mn_eq) || (!ik_eq && kl_eq && !lm_eq

&& mn_eq) || (ik_eq && !kl_eq && !lm_eq && mn_eq)
39 C_T[j, i] += 6 * B_T_jl * A_iklmn * B_T_jk * B_T_jm * B_T_jn
40 C_T[j, l] += 6 * A_iklmn * B_T_jk * B_T_ji * B_T_jm * B_T_jn
41 C_T[j, k] += 6 * B_T_jl * A_iklmn * B_T_ji * B_T_jm * B_T_jn
42 C_T[j, n] += 6 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jm
43 C_T[j, m] += 6 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jn
44 end
45 if (ik_eq && kl_eq && !lm_eq && !mn_eq) || (!ik_eq && kl_eq && lm_eq &&

!mn_eq) || (!ik_eq && !kl_eq && lm_eq && mn_eq)
46 C_T[j, i] += 4 * B_T_jl * A_iklmn * B_T_jk * B_T_jm * B_T_jn
47 C_T[j, l] += 4 * A_iklmn * B_T_jk * B_T_ji * B_T_jm * B_T_jn
48 C_T[j, k] += 4 * B_T_jl * A_iklmn * B_T_ji * B_T_jm * B_T_jn
49 C_T[j, n] += 4 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jm
50 C_T[j, m] += 4 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jn
51 end
52 if (ik_eq && !kl_eq && lm_eq && mn_eq) || (ik_eq && kl_eq && !lm_eq &&

mn_eq)
53 C_T[j, i] += 2 * B_T_jl * A_iklmn * B_T_jk * B_T_jm * B_T_jn
54 C_T[j, l] += 2 * A_iklmn * B_T_jk * B_T_ji * B_T_jm * B_T_jn
55 C_T[j, k] += 2 * B_T_jl * A_iklmn * B_T_ji * B_T_jm * B_T_jn
56 C_T[j, n] += 2 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jm
57 C_T[j, m] += 2 * B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jn
58 end
59 if (ik_eq && kl_eq && lm_eq && !mn_eq) || (!ik_eq && kl_eq && lm_eq &&

mn_eq)
60 C_T[j, i] += B_T_jl * A_iklmn * B_T_jk * B_T_jm * B_T_jn
61 C_T[j, l] += A_iklmn * B_T_jk * B_T_ji * B_T_jm * B_T_jn
62 C_T[j, k] += B_T_jl * A_iklmn * B_T_ji * B_T_jm * B_T_jn
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63 C_T[j, n] += B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jm
64 C_T[j, m] += B_T_jl * A_iklmn * B_T_jk * B_T_ji * B_T_jn
65 end
66 if ik_eq && kl_eq && lm_eq && mn_eq
67 C_T[j, i] += B_T_jl * A_iklmn * B_T_jk * B_T_jm * B_T_jn
68 end
69 end
70 end
71 end
72 end
73 return C_T
74 end

Listing A.8: 5-D MTTKRP: Optimized Kernel
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