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Arrays are a fundamental abstraction to represent collections of data. It is often possible to exploit structural
properties of the data stored in an array (e.g., repetition or sparsity) to develop a specialised representation
optimised for space efficiency. Formally reasoning about correctness of manipulations with such structured
data is challenging, as they are often composed of multiple loops with non-trivial invariants.

In this work, we observe that specifications for structured data manipulations can be phrased as hypersafety
properties, i.e., predicates that relate traces of 𝑘 programs. To turn this observation into an effective verification
methodology, we developed the Logic for Graceful Tensor Manipulation (LGTM), a new Hoare-style relational
separation logic for specifying and verifying computations over structured data. The key enabling idea of
LGTM is that of parametrised hypersafety specifications that allow the number 𝑘 of the program components to
depend on the program variables. We implemented LGTM as a foundational embedding into Coq, mechanising
its rules, meta-theory, and the proof of soundness. Furthermore, we developed a library of domain-specific
tactics that automate computer-aided hypersafety reasoning, resulting in pleasantly short proof scripts that
enjoy a high degree of reuse. We argue for the effectiveness of relational reasoning about structured data
in LGTM by specifying and mechanically proving correctness of 13 case studies including computations on
compressed arrays and efficient operations over multiple kinds of sparse tensors.

CCS Concepts: • Theory of computation→ Logic and verification; Programming logic; • Software and
its engineering→ Formal software verification.

Additional Key Words and Phrases: sparse data structures, mechanised proofs, relational logic

1 INTRODUCTION
Arrays are one of the most basic yet most powerful abstractions in computer science, capable of
representing virtually any kind of data. The most common way to encode data is via a dense array
that stores data in memory contiguously, providing a simple interface to access it via iteration.
Representing data via dense arrays is often not optimal in terms of space efficiency. For instance, a
sparse tensor (i.e., an 𝑛-dimensional matrix with most of its elements being zeros) can be encoded
compactly by storing only its non-zero elements. Without this space optimisation, manipulations
with tensors that contain real-world datasets becomes impossible due to the immense amount of
storage that would be required by their dense representations.

Sparsity of a dense array is just one of the many structural properties of the array-stored data;
others include symmetry (e.g., an array-encoded matrix is equal to its transpose), repetition (data
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contains segments of repeating elements), or length-irregularity (a.k.a. ragged arrays). Realising
such data properties allows one to choose a specialised format for representing structured data,
leading to reduced size of the required storage and improved performance by avoiding redundant
computations (e.g., skipping through all zeros when performing summation over a sparse tensor).

Unsurprisingly, computations that involve structured data are typically much more intricate
than simply iterating through a dense array, as they should take the conventions imposed by the
data’s format into account. The problem of automatically generating code, which is specialised for
particular representations of structured data it manipulates with, has received a lot of attention in
recent years. Some of the most prominent works in this direction include the influential TACO
framework for code generation (Kjolstad et al. 2017) and the Finch compiler (Ahrens et al. 2023).

Problem statement. Given the intricacy of computations on structured data, it is natural to wonder:
Do they produce the same results as their non-specialised counterparts on dense data representations?
This question suggests a verification challenge that we focus on in this work.

Existing efforts on verifying computations with structured data either provide high-level domain-
specific languages (DSL) for encoding data formats as well as format-aware computations (Arnold
et al. 2010), or encode data formats as logical predicates in a language of a solver used to verify
refinement w.r.t. operations on the dense representations (Dyer et al. 2019). By offering a limited
set of predefined abstractions, these DSL- or predicate-based approaches do not allow for verifying
formats, whose encoding does not fit into their formalisms. None of these approaches come with a
formal soundness proof regarding the executable code they produce. A recent work by Kellison
et al. (2023) presented a mechanised correctness proof of a particular sparse matrix computation in
a general-purpose separation logic embedded into Coq (Appel 2011). That verification effort relied
on a tailored encoding of the chosen data format and required several format-specific lemmas,
making it difficult to reuse any of its components for verifying programs over different formats.

The goal of this work is to provide a versatile framework for formally specifying and mechanically
verifying diverse computations with structured data. We aim for an approach that (a) allows for
naturally-looking and easy-to-state specifications, (b) can accommodate arbitrary programmatically-
defined data formats, and (c) enables a high degree of proof reuse and automation.

In the rest of the paper, we argue that relational program logics are the right tool for this job.

1 def m_get (mc, i, j) -> val:
2 # matrix format; body omitted
3
4 def v_get (vc, i) -> val:
5 # vector format; body omitted
6
7 def mv_prod(mc, vc) -> val[]:
8 let ans = malloc(vc.size)
9 for mp in partition(mc):

10 inner_prod (mp, vc, ans)

Fig. 1. Structured matrix/vector multiplication.

Specifying manipulations with structured data. Let
us immediately dive into computations with struc-
tured data. Fig. 1 shows a high-level outline of one
such computations in Python-style pseudocode. The
function mv_prod multiplies a compressed matrix, com-
pactly encoded by a data structure mc, by a compressed
vector, encoded via vc.1 The two random access func-
tions, m_get and v_get, whose signatures are given,
specify the formats used to compress the matrix and
the vector, correspondingly. For instance, given a com-
pressed matrix mc and two indices (row and column
position), m_get returns a value (of some type val) stored in the “algebraic” (i.e., dense) version of
the matrix at those positions, without fully reconstructing the dense representation.

An efficient implementation mv_prod of a matrix/vector product, therefore, operates directly
on the compressed representations mc and vc provided as its arguments. Such computations are

1Compressed tensors, such as mc and vc from Fig. 1, are typically encoded as tuples of 1-dimensional arrays with their sizes,
but might be also represented as linked data structures (Chou and Amarasinghe 2022).
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typically structured by partitioning the representation of the matrix into separate chunks in some
format-specific way, and storing the results of submatrix/vector products into the (dense) result
vector ans. Functions of this sort, operating on sparse tensors, compressed via multiple different
formats, are standard components of popular libraries for tensor computations, such as SciPy
(Python), CsMatBase (Rust), and Eigen (C++). While at the time of this writing most of such
function implementations are hand-crafted, they can be also automatically generated by domain-
specific compilers, such as Finch (Ahrens et al. 2023), provided the corresponding computation on
dense matrices/vectors and the programmatic format specifications such as m_get and v_get.

Importantly, the programmatic format definitions m_get and v_get are not used directly within the
implementation of mv_prod. Instead, they should be considered as specifications of the compressed
data that mv_prod manipulates with. Given such specifications, modern domain-specific compilers
are capable of producing efficient format-specific implementation from reference implementations
of the operations phrased in terms of dense representations (Ahrens et al. 2023; Sakka et al. 2017).

How do we specify correctness of mv_prod, asserting that its result is the same as a multiplying
an uncompressed version of mc to that of vc? The key observation we make in this work is that
such correctness statements can be stated naturally and concisely as Hoare-style triples that relate
executions of the programmatic format specifications, such as m_get and v_get, to that of the
operation in question. A common way to capture it formally is via a hypersafety judgment—a
logical statement that relates results of executions of multiple possibly different computations.
Hypersafety properties can be ascribed to a product of independently run programs in a form of
(Hoare-style) hyper-triples, whose pre/postconditions constrain collections of pre/post-states of the
programs in question, as well as their results. Therefore, a correctness specification for mv_prod can
be phrased as the following hyper-triple relating its result to those of m_get and v_get:

{
𝑃mc (·) ∗ 𝑃vc (·)

} 
1 : mv_prod(mc, vc)

⟨2, 𝑖, 𝑗⟩𝑖 ∈ [0, 𝑀 )
𝑗 ∈ [0, 𝑁 )

: m_get(mc, 𝑖, 𝑗)
⟨3, 𝑗⟩ 𝑗∈[0,𝑁 ) : v_get(vc, 𝑗)



𝑎

𝑚

𝑣

������ ∃𝑠, arr(𝑎, 𝑠) ∗
⌈∀𝑖, 𝑠 [𝑖] = ∑

𝑗 𝑚(𝑖, 𝑗)𝑣 ( 𝑗)⌉

 (1)

The hypersafety specification (1) relates the execution of 1 + 𝑀 × 𝑁 + 𝑁 programs, with 𝑀
and 𝑁 being the number of the rows and the columns in the matrix. For instance, the component
⟨2, 𝑖, 𝑗⟩𝑖∈[0,𝑀 ), 𝑗∈[0,𝑁 ) : m_get(𝑚, 𝑖, 𝑗) of the triple represents a collection of independent runs of
m_get indexed by tuples ⟨2, 𝑖, 𝑗⟩, with 𝑖 ranging from 0 to 𝑀 − 1 and 𝑗 from 0 to 𝑁 − 1. In such
cases, we will refer to the set like {⟨2, 𝑖, 𝑗⟩ | 𝑖 ∈ [0, 𝑀), 𝑗 ∈ [0, 𝑁 )} as index sets. The results of those
𝑀 × 𝑁 programs are bound to a sequence (hyper-)variable 𝑚 of size 𝑀 × 𝑁 , whose individual
components are retrieved in the postcondition as𝑚(𝑖, 𝑗). The same intuition applies to the last 𝑁
program components, whose results are bound to 𝑣 . The postcondition of the triple, thus, ensures
that the result of the first program component 𝑎, is a base pointer of an array storing a mathematical
sequence 𝑠 , which is element-wise equal to the dot-product of the given matrix and vector.

The precondition features two Separation Logic-style predicates, 𝑃mc and 𝑃vc, that define the
memory shape of the corresponding compressed matrix/vector representations (i.e., state that they
are encoded in memory by array tuples). The definitions of those predicates are quite unremarkable,
as they do not capture any relations between elements of a compressed encoding and its dense
counterpart: that task is left to m_get and v_get. The only noteworthy component of the precondition
is the (·) notation, which indicates distinct copies of the same symbolic state across multiple state
components indexed by elements of {1} ∪ {⟨2, 𝑖, 𝑗⟩ | . . .} ∪ {⟨3, 𝑗⟩ | . . .}, thus, supplying a valid (i.e.,
safe to execute from) precondition to each one of the 1 +𝑀 × 𝑁 + 𝑁 programs in the hyper-triple.

Key idea. The specification (1) of mv_prod owes its brevity to the idea of parametrised hyper-
triples. Specifically, parametrisation means that the index sets used in program components can
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be expressed as functions of the input state and variables of the programs in question. To wit,
the index sets in (1) are determined by the variables 𝑀 and 𝑁 , which correspond to the “logical”
dimensions of the involved matrix, and are constrained by the predicate 𝑃mc.2 The benefits of
parametrisation are not limited to relatively concise specifications. While very simple conceptually,
the ability to vary the number of the components in a hyper-triple depending on logical- and
program-level variables is surprisingly useful for verifying properties of iterative computations on
non-overlapping data, such as formats for compression or sparsity. As we will show in Sec. 2, the
idea of parametrised hyper-triples makes it almost straightforward to decompose proofs of (stated
relationally) correctness of compressed structure-manipulating programs featuring multiple loops.

Towards practical reasoning about parametrised hypersafety. So-called relational program logics
are a well-studied formalism to specify and reason symbolically about hypersafety properties of
programs, such as information-flow security and correctness of optimisations (Barthe et al. 2011,
2012; Benton 2004; Carbin et al. 2012; Nanevski et al. 2011; Yang 2007). Alas, the vast majority of
existing relational logics are limited to specifying and proving 2-properties only, while our approach,
exemplified by the spec (1), requires proofs about arbitrary-arity parametrised specifications.

Two relatively new logics, CHL by Sousa and Dillig (2016) and LHC by D’Osualdo et al. (2022),
provide proof rules for arbitrary-arity hypersafety triples. Unfortunately, CHL does not feature
the necessary proof composition principles: it fixes the arity of a hyper-triple for the entire proof,
making it impossible to employ specifications about subsets of the program components (or Hoare-
style proofs for individual programs) in the context of a larger proof. LHC, on the other hand,
allows for combining specifications of arbitrary constant arity in a single proof, but lacks rules for
working with hyper-triples, whose arity depends on program-level variables. This limitation of LHC
turns out to be a show-stopper for constructing proofs about loops within the logic, requiring one
to resort to proofs in terms of semantics. Furthermore, LHC is not a Separation Logic and, therefore,
provides no support for modular reasoning about arrays and heap-based indirection. Finally, LHC
only exists on paper: it is not implemented as a tool, and its soundness has not been mechanised.

In our quest of building a framework for machine-assisted verification of structured data ma-
nipulations, which is both foundational (i.e., proven sound from first principles) and practical (i.e.,
requires low annotation overhead), we are taking forward the ideas for compositional hypersafety
reasoning pioneered by LHC (D’Osualdo et al. 2022), enhancing them with three new aspects:
(1) adding new rules for decomposing proofs about arbitrary arity-parametric hyper-tripes;
(2) providing specialised proof rules for loops that take advantage of hyper-triple parametrisation;
(3) introducing support for state-local hypersafety proofs in the style of Separation Logic.
The result is the novel logical framework for Hoare-style hypersafety proofs, dubbed Logic for
Graceful Tensor Manipulation (LGTM). We implemented LGTM as a Separation Logic (Reynolds
2002) embedded into the Coq proof assistant. The shallow nature of the embedding allowed us to
use Coq’s higher-order logic capabilities for implementing rules for handling parametrised triples
in the form of ordinary Coq lemmas. Furthermore, the careful design of rules for hyper-triple
decomposition and reasoning about loops made it possible to engineer effective proof automation
resulting in very short and conceptually simple machine-assisted verification proofs.

Contributions and outline. To summarise, in this work we make the following contributions.
• Our first conceptual contribution is an observation that specification and verification of manipu-

lations with structured data can be phrased in terms of reasoning about hypersafety properties.

2In our example, we made those variables explicit in the specification, omitting the full signature of 𝑃mc for brevity.
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(a) SV and uCSR, pictographically

1 def sv_get(x_ind, x_val, i):
2 ind = index(x_ind, i)
3 if (ind != -1):
4 return x_val[ind]
5 else:
6 return 0

(b) Sparse Vector (SV) format

1 def ucsr_get(m_idx, m_ind, m_val, i, j):
2 ind = index(m_idx, i)
3 if (ind != -1):
4 return sv_get(m_ind[ind], m_val[ind], j)
5 else:
6 return 0

(c) Unordered Compressed Sparse Row (uCSR)

Fig. 2. Sparse Vector and Unordered Compressed Sparse Row formats

• Our main theoretical contribution is the Logic for Graceful Tensor Manipulation (LGTM)—a
Hoare-style relational separation logic for hypersafety properties that provides e�ective reasoning
principles about array-manipulating programs with loops (Sec. 3). We mechanised the meta-
theory, the rules, and the soundness proof of LGTM in the Coq proof assistant.

• Our practical contribution is a set of Coq-based automation techniques for mechanised proofs in
LGTM that allow for short and intellectually manageable hypersafety proofs (Sec. 4). We have
evaluated our implementation of LGTM by mechanising proofs for 13 characteristic case studies
that implement computations with sparse and compressed tensors in various formats (Sec. 5).
We show that, in comparison with related foundational e�orts, mechanised proofs in LGTM are
about 10 times shorter than those done in a general-purpose non-relational Separation Logic.

2 A TOUR OF LGTM
In this section, we showcase the reasoning principles of LGTM as a logic formalism, postponing
the demonstration of its veri�cation capabilities as a tool until Sec. 4 and 5. To do so, we specify
and verify a program that computes a product of a compressed sparse matrix and a sparse vector,
represented via the Unordered Compressed Sparse Row (uCSR) format and a Sparse Vector (SV),
correspondingly, storing the result into an uncompressed vector represented by an array.

Fig. 2a graphically depicts the data layout in both SV and uCSR formats. The SV format is a
standard representation for sparse vectors. It achieves great rates of compression for sparse (i.e.,
mostly-zero) vectors by storing only their non-zero values in an array x_val together with their
indices at the same positions in an array x_ind. The programmatic encoding of SV is provided by
the sv_get function shown in Fig. 2b. This function “decompresses” a sparse vector encoded by
the pair of arrays (x_val, x_ind) by retrieving the ith value of the dense representation x from its
compressed representation via x_ind and x_val. It does so by �rst �nding the index of the element
corresponding to i in the array x_ind, calling the index function (line 2). The implementation of
index simply performs a linear scan through the contents of x_ind, returning a position of its second
argument, if it’s present, and -1 otherwise (remember, sv_get only serves as a format speci�cation,
hence its e�ciency is not important). Depending on the search result stored into ind, the rest of
sv_get’s implementation returns either the corresponding x_val element, or zero (lines 3-6).

The uCSR format for sparse matrices is a modi�cation of the popular Compressed Sparse
Row (CSR) format, designed to be more e�cient by enabling adaptive tiling (Hong et al. 2019).
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1 def ucsr_get(m_idx, m_ind, m_val, i, j):
2 ind = index(m_idx, i)
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Fig. 2. Sparse Vector and Unordered Compressed Sparse Row formats

• Our second conceptual contribution is an idea of a parametrised hyper-triple, whose arity depends
on attributes of the data under manipulation. We show that parametrisation enables hypersafety
proofs based on the structure of the data rather than the structure of the program (Sec. 2).

• Our main theoretical contribution is the Logic for Graceful Tensor Manipulation (LGTM)—a
Hoare-style relational separation logic for hypersafety properties that provides effective reasoning
principles about array-manipulating programs with loops (Sec. 3). We mechanised the meta-
theory, the rules, and the soundness proof of LGTM in the Coq proof assistant.

• Our practical contribution is a set of Coq-based automation techniques for mechanised proofs in
LGTM that allow for short and intellectually manageable hypersafety proofs (Sec. 4). We have
evaluated our implementation of LGTM by mechanising proofs for 13 characteristic case studies
that implement computations with sparse and compressed tensors in various formats (Sec. 5).
We show that, in comparison with related foundational efforts, mechanised proofs in LGTM are
about 10 times shorter than those done in a general-purpose non-relational Separation Logic.

2 A TOUR OF LGTM
In this section, we showcase the reasoning principles of LGTM as a logic formalism, postponing
the demonstration of its verification capabilities as a tool until Sec. 4 and 5. To do so, we specify
and verify a program that computes a product of a compressed sparse matrix and a sparse vector,
represented via the Unordered Compressed Sparse Row (uCSR) format and a Sparse Vector (SV),
correspondingly, storing the result into an uncompressed vector represented by an array.

Fig. 2a graphically depicts the data layout in both SV and uCSR formats. The SV format is a
standard representation for sparse vectors. It achieves great rates of compression for sparse (i.e.,
mostly-zero) vectors by storing only their non-zero values in an array x_val together with their
indices at the same positions in an array x_ind. The programmatic encoding of SV is provided by
the sv_get function shown in Fig. 2b. This function “decompresses” a sparse vector encoded by
the pair of arrays (x_val, x_ind) by retrieving the ith value of the dense representation x from its
compressed representation via x_ind and x_val. It does so by first finding the index of the element
corresponding to i in the array x_ind, calling the index function (line 2). The implementation of
index simply performs a linear scan through the contents of x_ind, returning a position of its second
argument, if it’s present, and -1 otherwise (remember, sv_get only serves as a format specification,



6 Vladimir Gladshtein, Qiyuan Zhao, Willow Ahrens, Saman Amarasinghe, and Ilya Sergey

hence its efficiency is not important). Depending on the search result stored into ind, the rest of
sv_get’s implementation returns either the corresponding x_val element, or zero (lines 3-6).

The uCSR format for sparse matrices is a modification of the popular Compressed Sparse
Row (CSR) format, designed to be more efficient by enabling adaptive tiling (Hong et al. 2019).
uCSR adopts a compression principle similar to that of SV: rather than storing each row of the
matrix, its only stores rows that have non-zero elements. To this end, uCSR uses an unordered
array m_idx to store the positions of non-empty rows. Those rows are in turn compressed using SV,
with associated two-dimensional arrays m_ind and m_val storing indices and values of non-empty
cells for each row.3 This intuition is mirrored in the programmatic specification of uCSR shown
in Fig. 2c, which takes three arrays m_idx, m_ind, and m_val, as well as the dense row/column indices
i and j, and retrieves the corresponding element by calling sv_get on its actual row encoding.

1 def spmspv(m_idx, m_ind, m_val, x_ind, x_val):
2 ans = malloc(M)
3 for i in range(0, length(m_idx)):
4 ans[m_idx[i]] =
5 spvspv(m_ind[i], m_val[i], x_ind, x_val)
6 return ans
7
8 def spvspv(y_ind, y_val, x_ind, x_val):
9 s, iY, iX = 0, 0, 0

10 while (iY < length(y_ind)) &&
11 (iX < length(x_ind)):
12 if y_ind[iY] = x_ind[iX]:
13 s += y_val[iY] * x_val[iX]
14 iY++; iX++
15 else if y_ind[iY] < x_ind[iX]:
16 iY++
17 else if x_ind[iX] < y_ind[iY]:
18 iX++
19 return s

Fig. 3. Sparse Matrix/Vector product, SpMSpV (top) and
Sparse Vector/Vector product, SpVSpV (bottom).

The implementation of the sparse ma-
trix/vector product is given in Fig. 3; we have
adopted it from the output produced by the
Finch compiler (Ahrens et al. 2023). The func-
tion spmspv takes a sparse matrix𝑚, encoded
in uCSR format via three arrays: m_idx, m_ind,
and m_val, as well as a sparse vector 𝑥 , en-
coded via x_ind and x_val. Its result is a dense
array ans, populated element-wise by the com-
ponents of the dot-product𝑚 · 𝑥 . The imple-
mentation of spmspv, also uses the height M of
the matrix, which we assume to be a global
variable. The body of spmspv first iterates over
all non-zero rows in the order determined by
m_idx (line 3). At each iteration of the for-loop
it calls spvspv, computing the product of two
sparse vectors, m_idx[i]th row of the matrix𝑚
and the vector 𝑥 . The while-loop in spvspv

(lines 10-18) co-iterates over a pair of sparse
vectors, visiting only non-zero values of both arrays. It does so by maintaining the positions in the
corresponding vectors via variables iY and iX, advancing them in a way so that the result stored
in s is changed only when indices of non-zero elements in the two vectors coincide (line 12).

To specify the result of spmspv, let us introduce some notation. We will abbreviate all unmodified
arrays that encode the involved data by the following Separation Logic (SL)-style predicates:

Arrsm ≜ arr(mind, 𝑚ind ) ∗ arr(mval, 𝑚val) ∗ arr(midx, 𝑚idx )
Arrsx ≜ arr(xind, 𝑥ind ) ∗ arr(xval, 𝑥val)
Arrs ≜ Arrsm ∗ Arrsx

(2)

That is, for instance, Arrsm combines three arrays responsible for representing a sparse matrix𝑚,
with their base pointers (e.g., mind) given in monospace font and payloads (e.g.,𝑚ind ) given in italic.
The disjointness of the arrays is asserted by the SL separating conjunction connective ( ∗ ).

The desired specification for spmspv is, therefore, captured by the following hypersafety triple:

3In a more realistic encoding, an additional dense array m_ptr is used to store locations of the boundaries between rows
in one-dimensional arrays m_val and m_ind. In this section, for simplicity of the presentation, we treat m_ind and m_val as
two-dimensional arrays. In our mechanisation, however, we verify the encoding involving the m_ptr array (cf. Sec. 5).



Mechanised Hypersafety Proofs about Structured Data 7

SeqU1 {
𝑃

} [𝜄 : 𝑝1]
{
𝑥

�� 𝐻 }{
𝐻

} [
𝜄 : 𝑝′1, 𝑆 : P2

] {
𝑥, 𝑧

��𝑄 (𝑧) }{
𝑃

} [
𝜄 : 𝑝1;𝑝′1, 𝑆 : P2

] {
𝑥,𝑦

��𝑄 (𝑥𝑦) }
SeqU2{

𝑃
} [

𝜄 : 𝑝1, 𝑆 : P2
] {

𝑥, 𝑧
�� 𝐻 (𝑧) }

∀𝑧, { 𝐻 (𝑧) } [
𝜄 : 𝑝′1

] {
𝑥

�� 𝑄 (𝑥𝑧) }{
𝑃

} [
𝜄 : 𝑝1;𝑝′1, 𝑆 : P2

] {
𝑥1, 𝑥2

��𝑄 (𝑥1𝑥2)
}

Product
local({𝑃𝑖 , 𝑄𝑖 }, 𝑖) ∀𝑖, { ⌈𝑖 ∈ 𝑆⌉ ∗ 𝑃𝑖

} [𝑖 : P(𝑖)] {
𝑥

�� 𝑄𝑖 (𝑥)
}{ ∗

𝑖∈𝑆
𝑃𝑖

}
[𝑆 : P]

{
𝑥

�� ∗
𝑖∈𝑆

𝑄𝑖 (𝑥 (𝑖))
}

Fig. 4. Rules for sequential composition and independent programs.

{
Arrs(·)

} 
1 : spmspv(midx, mind, mval, xind, xval)

⟨2, 𝑖, 𝑗⟩𝑖 ∈ [0, 𝑀 )
𝑗 ∈ [0, 𝑁 )

: ucsr_get(midx, mind, mval,𝑖, 𝑗)
⟨3, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(xind, xval, 𝑗)



𝑎

𝑚

𝑥

������
∃𝑠, arr(𝑎(1), 𝑠) ∗
⌈∀𝑖, 𝑠 [𝑖] = ∑

𝑗
𝑚(𝑖, 𝑗)𝑥 ( 𝑗)⌉ ∗

Arrs(·)

 (3)

The spec assumes that the width 𝑁 of the matrix 𝑚 is a global variable. It makes use of the (·)
notation that “replicates” a SL across all state components in the pre/postcondition. The ⌈·⌉ notation
stands for pure assertions that constrain values and do not depend on the shape of the heaps. Notice
that, unlike Arrs(·), the spatial part arr(𝑎(1), 𝑠) is only present in the first component’s post-state.

What’s next? In the rest of this section, we will verify the validity of the specification (3) via the
rules of LGTM. We will start by focusing on the for-loop from the spmspv’s body, “peeling away”
all calls to ucsr_get, that do not correspond to any of the loop’s iterations (Sec. 2.1 – Sec. 2.2). We
will then split the remaining calls into groups (one group per non-zero row) and relate the result
of each one to one iteration of the for-loop (Sec. 2.3). We will then show how the obtained goal
can be proven compositionally by using an independently verified specification of spvspv (Sec. 2.4).
Finally, we will sketch the proof of spvspv, showcasing LGTM’s rule for while-loops (Sec. 2.5).

2.1 Proofs about Sequential Composition and Independent Programs
To begin with the proof of (3), we unfold the definition of spmspv in the first component, and omit
ranges of variables 𝑖 and 𝑗 , obtaining the following goal to prove:{

Arrs(·)
} 

1 : ans = malloc(M); . . .

⟨2, 𝑖, 𝑗⟩ : ucsr_get(midx, mind, mval,𝑖, 𝑗)
⟨3, 𝑗⟩ : sv_get(xind, xval, 𝑗)



𝑎

𝑚

𝑥

������
∃𝑠, arr(𝑎(1), 𝑠) ∗
⌈∀𝑖, 𝑠 [𝑖] = ∑

𝑗 𝑚(𝑖, 𝑗)𝑥 ( 𝑗)⌉
∗ Arrs(·)

 (4)

Notice that the for-loop at lines 3-5 of Fig. 3 only “visits” rows of𝑚 that correspond to m_idx[i] for
some i. In this subsection, we will show how to reduce the verification goal (4) to the one that only
mentions those ucsr_get-components whose (row) argument 𝑖 is present as an element in m_idx.

2.1.1 Rules for Sequential Composition. Our first step is to get to the for-loop in the first component
of the goal (4), which will require us to symbolically step through the malloc statement, while
“focusing” on the corresponding component. This focusing capability is achieved by the SeqU1
shown in Fig. 4, which allows one to split the index set of a hyper-triple into two disjoint subsets,
{𝜄} and 𝑆 , symbolically executing the first component 𝑝1 of the sequential composition 𝑝1; 𝑝′1 that
corresponds to the 𝜄-indexed component of the entire hyper-triple.4 Applying SeqU1 with 𝜄 = 1 to
the goal (4) allows us to execute the malloc statement using the proof rule for allocation, which is
relatively standard for Separation Logic-style formalisms, so we postpone its presentation until
4To avoid clutter, the rules assume that execution of the “projected” components, such as 𝜄 : 𝑝1 in SeqU1, are implicitly
framed with the corresponding hyper-heap footprint of the 𝑆-indexed component, which it keeps unmodified.
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Sec. 3. The first premise of SeqU1, thus, takes the form of the following goal, where we use 0 to
denote a 0-filled vector of a suitable size, evident from the context:

{Arrs(·)} [
1 : ans = malloc(M)

] {Arrs(·) ∗ arr(ans(1), 0)}
Here the (1) syntax in arr(ans(1), 0) means that ans is a pointer allocated in the 1-indexed
component of the symbolic state (i.e., the heap where the first component runs). Abbreviating the
for-loop as 𝑓 we obtain the following triple as the result of the second obligation of SeqU1:{

arr(ans(1), 0)
∗ Arrs(·)

} 
1 : 𝑓 ; return ans

⟨2, 𝑖, 𝑗⟩ : ucsr_get(midx, mind, mval,𝑖, 𝑗)
⟨3, 𝑗⟩ : sv_get(xind, xval, 𝑗)



𝑎

𝑚

𝑥

������
∃𝑠, arr(𝑎(1), 𝑠) ∗
⌈∀𝑖, 𝑠 [𝑖] = ∑

𝑗 𝑚(𝑖, 𝑗)𝑥 ( 𝑗)⌉
∗ Arrs(·)

 (5)

The goal is further simplified by stripping off the return statement via the SeqU2 and unfolding
arr(ans(1), 0) into an iterated separating conjunction∗𝑀

𝑖=0 ans(1) + 𝑖 ↦→ 0 over a set of points-to
heaplets (i.e., symbolic heap entries), indexed by their offsets 𝑖 from the base array address ans(1):{∗𝑀

𝑖=0 ans(1) + 𝑖 ↦→ 0
∗ Arrs(·)

} 
1 : for 𝑖 in range(0, |𝑚idx |) {𝑝 (𝑖)}

⟨2, 𝑖, 𝑗⟩ : ucsr_get(midx, mind, mval,𝑖, 𝑗)
⟨3, 𝑗⟩ : sv_get(xind, xval, 𝑗)



−
𝑚

𝑥

������ ∃𝑠,∗𝑀
𝑖=0 ans(1) + 𝑖 ↦→ 𝑠 [𝑖] ∗

⌈∀𝑖, 𝑠 [𝑖] = ∑
𝑗 𝑚(𝑖, 𝑗)𝑥 ( 𝑗)⌉

∗ Arrs(·)


Finally, we abbreviate the loop’s body as 𝑝 (𝑖), and simplify the postcondition by substituting each
value of the ans’ payload sequence 𝑠 [𝑖] with the correspondent sum expression:{∗𝑖 ans(1) + 𝑖 ↦→ 0

∗ Arrs(·)

} 
1 : for 𝑖 in range(0, |𝑚idx |) {𝑝 (𝑖)}

⟨2, 𝑖, 𝑗⟩ : ucsr_get(midx, mind, mval,𝑖, 𝑗)
⟨3, 𝑗⟩ : sv_get(xind, xval, 𝑗)



−
𝑚

𝑥

������ ∗𝑖 ans(1) + 𝑖 ↦→∑
𝑗 𝑚(𝑖, 𝑗)𝑥 ( 𝑗)

∗ Arrs(·)

 (6)

2.1.2 Reasoning with Component-Local Assertions. Remember that array midx contains indices
of non-zero rows of the matrix𝑚, so that the for-loop from the first component will iterate only over
such indices. This suggests us to first get rid of all the components with ucsr_get(midx, mind, mval, 𝑖, 𝑗)
for 𝑖 ∉ 𝑚idx , and try to relate the rest of those with each iteration of the for-loop. To im-
plement the former, we note that for each index 𝑖 outside of the payload 𝑚idx the result of
ucsr_get(midx, mind, mval, 𝑖, 𝑗) will be 0 for any 𝑗 . This fact can be stated as the following triple:{

Arrs(·)
} [⟨2, 𝑖, 𝑗⟩𝑖 ∉𝑚idx

𝑗 ∈ [0, 𝑁 )
: ucsr_get(midx, mind, mval,𝑖, 𝑗)

] {
𝑚

���� ⌈∀𝑖 ∉𝑚idx ∀𝑗,𝑚(𝑖, 𝑗) = 0⌉
∗ Arrs(·)

}
(7)

To see how to deal with such triples, let us consider the following simple verification goal:{
𝑠 (·) ↦→ 𝑦

} [𝑖0≤𝑖<𝑁 : s += 𝑖] {
_

�� 𝑠 (·) ↦→ 𝑦 + 𝑖
}

Intuitively, proving this triple is equivalent to proving 𝑁 independent 1-safety triples of the form{
𝑠 (𝑖) ↦→ 𝑦

} [𝑖 : s += 𝑖] {
_

�� 𝑠 (𝑖) ↦→ 𝑦 + 𝑖
}

To capture this intuition LGTM features the rule Product (cf. Fig. 4) that allows one to divide
the state assertions in the pre-/postcondition (indexed by a set 𝑆) into |𝑆 | disjoint assertions, each
being local to a particular index. The idea of locality comes from the LGTM memory model, so
that its state assertions constrain not just the shapes of the heap but also the component in which
they reside, so that, e.g., 𝑥 (1) ↦→ 0 and 𝑥 (2) ↦→ 0 are not satisfied by the same heap. Postponing a
more formal treatment of LGTM state till Sec. 3, here we say that an LGTM assertion is local to
an index 𝜄 if it can only be satisfied by states that belong to the 𝜄 component. With the Product
rule, the assumed locality of the individual specifications and independence of the program runs, it
suffices to prove the correspondent triple for each individual program 𝑝 from a hyper-triple.
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The postcondition of the specification (7) can be rewritten using the following equivalence:

⌈∀𝑖 ∉𝑚idx ∀𝑗,𝑚(𝑖, 𝑗) = 0⌉ ⇐⇒ ∗
𝑖∉𝑚idx , 𝑗

⌈𝑚(𝑖, 𝑗) = 0⌉

With the right-hand side of the equivalence above, we can apply the Product rule, reducing (7) to{⌈𝑖 ∉𝑚idx ∧ 𝑗 ∈ [0, 𝑁 )⌉ ∗
Arrs(·)

}
[⟨2, 𝑖, 𝑗⟩ : ucsr_get(midx, mind, mval,𝑖, 𝑗)]

{
𝑚

���� ⌈𝑚 = 0⌉ ∗
Arrs(·)

}
(8)

This is a 1-safety property, which is stated in terms of a traditional Hoare-style triple of the form{
𝑃

} [𝜄 : 𝑝] {
𝑥

�� 𝑄 (𝑥) }
for a program 𝑝 . To discharge such obligations, LGTM provides the

standard set of Separation Logic rules. We omit this proof, which relies on an independently proven
specification of index(midx,𝑖); the reader can find it in our Coq development (Gladshtein et al. 2024).

2.2 Focusing and Framing
At this point, one can think of LGTM as of a “Separation Logic going hyper”, with the heaps being
replicated over index sets. An astute reader could have noticed that the rule Product exploits the
(hyper-)locality of spatial triples to provide a version of SL’s frame rule that combines multiple
independent unary triples into a single hyper-triple. In our next steps, we will keep taking advantage
of the SL nature of LGTM that enables principles of modular reasoning about hypersafety.

Focus
𝑆 = 𝑆1 ⊎ 𝑆2{

𝑃
} [𝑆1 : P1]

{
𝑥

�� 𝐻 (𝑥) }
∀𝑥, {

𝐻 (𝑥) } [𝑆2 : P2]
{
𝑦

�� 𝑄 (𝑥𝑦) }{
𝑃

} [𝑆 : P1 ⊎ P2]
{
𝑧

�� 𝑄 (𝑧) }
Fig. 5. Focus rule

Using (7), we can remove all runs of ucsr_get for𝑚’s
zero-only rows of𝑚 from the goal (6). To do so, we will
make use the Focus rule, shown in Fig. 5. Applying it,
followed by the framing-out of some no longer useful
pre-/postconditions components (via standard SL fram-
ing rules), will make us ready to handle the for-loop in
the first component. The Focus rules allows us to ad-
vance executions of the programs within 𝑆1 (a subset of the whole index set 𝑆 = 𝑆1⊎𝑆2), keeping the
rest of the state unchanged. The notation P1⊎P2 stands for the disjoint union of two sets of indexed
programs. Notice that the range of the result vector 𝑦 of 𝑆2 : P would be 𝑆2, so we will extend it to
the whole 𝑆 by appending with the result of 𝑆1 : P, vector 𝑥 of range 𝑆1. We apply the Focus rule
to the goal (6) by taking 𝑆1 = {⟨2, 𝑖, 𝑗⟩ | 𝑖 ∉𝑚idx} and 𝑆2 = {1} ∪ {⟨2, 𝑖, 𝑗⟩ | 𝑖 ∈𝑚idx} ∪ {⟨3, 𝑗⟩ | . . .}.
Using the spec (7) on the 𝑆1-indexed part earns us the conjunct ⌈∀𝑖 ∉ 𝑚idx ∀𝑗,𝑚(𝑖, 𝑗) = 0⌉ in the
precondition of the following goal, which corresponds to the second premise of the Focus:

{∗
𝑖
ans(1) + 𝑖 ↦→ 0
∗ Arrs(·)

} 
1 : for 𝑖 in range(0, |𝑚idx |) {𝑝 (𝑖)}

⟨2, 𝑖, 𝑗⟩𝑖∈𝑚idx
: ucsr_get(midx, mind, mval,𝑖, 𝑗)

⟨3, 𝑗⟩ : sv_get(xind, xval, 𝑗)



−
𝑚

𝑥

���������
∗

𝑖∈𝑚idx

ans(1) + 𝑖 ↦→∑
𝑗 𝑚(𝑖, 𝑗)𝑥 ( 𝑗)∗

𝑖∉𝑚idx

ans(1) + 𝑖 ↦→ 0

∗ Arrs(·)


Now, we can once again exploit the Separation Logic capabilities of LGTM, framing out the part∗𝑖∉𝑚idx

ans(1) + 𝑖 ↦→ 0 from both pre- and postconditions, obtaining the following goal:{ ∗
𝑖∈𝑚idx

ans(1) + 𝑖 ↦→ 0

∗ Arrs(·)

} 
1 : for 𝑖 in range(0, |𝑚idx |) {𝑝 (𝑖)}

⟨2, 𝑖, 𝑗⟩𝑖∈𝑚idx
: ucsr_get(midx, mind, mval,𝑖, 𝑗)

⟨3, 𝑗⟩ : sv_get(xind, xval, 𝑗)



−
𝑚

𝑥

������ ∗𝑖∈𝑚idx

ans(1) + 𝑖 ↦→∑
𝑗 𝑚(𝑖, 𝑗)𝑥 ( 𝑗)

∗ Arrs(·)

 (9)

The triple (9) is an examplary case of a parametrised hypersafety specification: its arity is determined
by the data𝑚idx that serves as a selector for the ucsr_get programs. Phrasing it this way allowed us
to bring the iterations of spmspv’s for-loop in line with the indexing structure of the specification
components, so we could handle the remaining proof using a dedicated LGTM rule for loops.
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𝑆 =

𝑁−1⋃
𝑖=0

𝑆𝑖 local(𝑅𝑖 , 𝑆𝑖 ) ∀𝑥, 𝑖 < 𝑁,
{
𝐼 (𝑖, 𝑥) ∗ 𝑅𝑖

} [
𝜄 : 𝑝, 𝑆𝑖 : P𝑖

] {
𝑧,𝑦

�� 𝐼 (𝑖 + 1, 𝑥𝑦) }
{
𝐼 (0, ∅) ∗

𝑁−1∗
𝑖=0

𝑅𝑖

} [
𝜄 : for 𝑖 in range(0, 𝑁 ) {𝑝} , 𝑆 : P] {

𝑧,𝑦
�� 𝐼 (𝑁,𝑦) } For

Fig. 6. A rule for for-iteration.

2.3 Iteration and Array Splitting
To prove the goal (9), we observe that the 𝑖th iteration of the for-loop in the first component
computes the dot product of the vector 𝑥 and the 𝑖th row of the matrix𝑚. This suggest partitioining
the verification task by aligning (i.e., relating the result of) each 𝑖th iteration of that loop with a
sequence of runs of sv_get(xind, xval, 𝑗) and ucsr_get(midx, mind, mval,𝑖, 𝑗) for all 𝑗 , 0 ≤ 𝑗 < 𝑁 , as
those runs compute values of 𝑥 and the 𝑖th row of𝑚. This pattern of splitting a set of independent
runs into “batches” to align with individual loop iterations in the “main” program is so common in
structured data computations that LGTM introduces a dedicated rule For to handle it (Fig. 6).

To understand how the rule works, first notice its premise 𝑆 =
⋃𝑁−1

𝑖=0 𝑆𝑖 that splits the index set
𝑆 into 𝑁 parts 𝑆𝑖 . Each part corresponding to a program “batch” to be aligned with one iteration
of the for-loop. The precondition of the conclusion features an assertion∗𝑁−1

𝑖=0 𝑅𝑖 that describes
a matching split of the pre-state required to run each of those batches (hence the locality side
condition). The most interesting aspect of the rule is the loop invariant 𝐼 , which is an assertion
parametrised by (𝑖) an integer that corresponds to the next value of the loop counter and (𝑖𝑖) a
hyper-value that collects the results of all program batches that have been already aligned with the
“prefix” of the loop. That is, in the conclusion of the rule, it is assumed that the assertion 𝐼 (0, ∅)
holds initially: which corresponds to zero iterations and no aligned batches executed so far (∅ is an
empty hyper-value). At the end, 𝐼 (𝑁,𝑦) means that the loop has been fully executed and all of the
aligned programs’ results are bound by 𝑦. The inductive step of the rule, i.e., the premise defining
the goal for the body of the loop 𝑝 , assumes that the invariant initially holds for some 𝑖 < 𝑁 and a
hyper-value 𝑥 (of size 𝑖 , which we omit from the rule for brevity), and asserts in the postcondition
that at the end the invariant holds on the next index 𝑖 + 1 and the combined hyper-value 𝑥𝑦.5

To proceed with our proof of (9) using the For rule, we first split the set of its indices as follows:

⟨2, 𝑖, 𝑗⟩𝑖∈𝑚idx , 𝑗∈[0,𝑁 ) ∪ ⟨3, 𝑗⟩ 𝑗∈[0,𝑁 ) =
|𝑚idx |−1⋃

𝑖∈0
𝑆𝑖 =

|𝑚idx |−1⋃
𝑖∈0

(
⟨2,𝑚idx [𝑖], 𝑗⟩ 𝑗∈[0,𝑁 ) ∪ ⟨3, 𝑗⟩ 𝑗∈[0,𝑁 )

)
(10)

Next, we define the loop invariant as follows:

𝐼for (𝑖,𝑚𝑥) ≜ ∗𝑖−1
𝑗=0 ans(1) + 𝑗 ↦→

∑𝑁
𝑘=0𝑚( 𝑗, 𝑘)𝑥 (𝑘) ∗ ∗ |𝑚idx |−1

𝑗=𝑖 ans(1) + 𝑗 ↦→ 0 (11)

The invariant states that (a) a 𝑗 th element from the prefix of the array ans(1), is already filled with
the dot product of 𝑥 and 𝑗 th row of𝑚 (i.e., the dot-product of results of ucsr_get and sv_get), for
0 ≤ 𝑗 < 𝑖 and (b) that the suffix of the array is filled with zeros. After applying For and advancing
the code of spmspv (Fig. 3) up to the line 5, we obtain the following goal, for some 𝑖 ∈ [0, |𝑚idx |):

ans(1) +
𝑚idx [𝑖] ↦→ 0
∗ Arrs(·)




1 : ans[midx [i]] = spvspv(. . . )
⟨2, 𝑖, 𝑗⟩ 𝑗∈[0,𝑁 ) : ucsr_get(midx, mind, mval,𝑚idx [𝑖], 𝑗)
⟨3, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(xind, xval, 𝑗)



−
𝑚

𝑥

������ ans(1) +𝑚idx [𝑖] ↦→∑
𝑗 𝑚(𝑖, 𝑗)𝑥 ( 𝑗)

∗ Arrs(·)


5As a curiosity, this means that 𝐼 has a dependent type: the value of its first parameter determines the arity of the second.
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Now we can advance lines 2 and 3 in uscr_get (Fig. 2c): index(midx,𝑚idx [𝑖]) evaluates to 𝑖 , triggering
then-branch of the if-statement (line 4), leaving us with the following goal:

ans(1)+
𝑚idx [𝑖] ↦→ 0
∗ Arrs(·)




1 : ans[midx [i]] = spvspv(. . . )
⟨2, 𝑖, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(mind [i], mval [i], 𝑗)
⟨3, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(xind, xval, 𝑗)



−
𝑚

𝑥

������ ans(1) +𝑚idx [𝑖] ↦→∑
𝑗 𝑚(𝑖, 𝑗)𝑥 ( 𝑗)

∗ Arrs(·)

 (12)

We can further reduce the goal using SeqU1 and omitted symbolic execution rules for unary triples:{
Arrs(·)

} 
1 : spvspv(mind [i], mval [i], xind, xval)

⟨2, 𝑖, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(mind [i], mval [i], 𝑗)
⟨3, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(xind, xval, 𝑗)



𝑠

𝑚

𝑥

������ ⌈𝑠 = ∑
𝑗 𝑚(𝑖, 𝑗)𝑥 ( 𝑗)⌉

∗ Arrs(·)

 (13)

2.4 Domain Substitution and Specification Composition
At this point, we have almost reduced the verification of the spmspv specification to verifying
the correctness of its auxiliary function spvspv w.r.t. the respective format definition sv_get: our
remaining goal (13) looks pretty much like a specification of a sparse vector/vector dot-product.

The actual desired specification of spvspv is captured via the following hyper-triple:{
Arrsy (·) ∗
Arrsx (·)

} 
1 : spvspv(yind, yval, xind, xval)

⟨2, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(yind, yval, 𝑗)
⟨3, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(xind, xval, 𝑗)



𝑠

𝑦

𝑥

������ ⌈𝑠 = ∑
𝑗 𝑦 ( 𝑗)𝑥 ( 𝑗)⌉

 (14)

The predicate Arrsy (·) abbreviates arr(yind (·), 𝑦𝑖𝑛𝑑 ) ∗ arr(yval (·), 𝑦𝑣𝑎𝑙 ), similarly for Arrsx (·). To
see how can we get (13) out of (14) recall that in (13), the implicitly universally quantified (outside of
the entire hyper-triple) variable 𝑖 ranges from 0 up to |𝑚ind | − 1. Since 𝑖 is fixed across all programs
in the second component, we get rid of it via domain substitution.

Subst
𝜙 : 𝑆 → 𝑆 ′ is injective ∀𝑖,P′ (𝑖) = P(𝜙 (𝑖))

{𝜙 [𝑃]} [
𝜙 [𝑆] : P′] {𝜙 [𝑄]}

{𝑃} [𝑆 : P] {𝑄 }

Fig. 7. Domain substitution rule

A simplified version of the substitution rule
Subst is presented in Fig. 7. Its key component
is an injective mapping 𝜙 from the index set 𝑆 to a
set 𝑆 ′, which embodies the reindexing in question.
This rule applies 𝜙 to the index set of the triple 𝑆 .
It also changes P to P′, which is a reindexed P
w.r.t. to 𝜙 . Finally, it re-indexes the components of
both pre- and postcondition by applying 𝜙 (denoted, e.g., 𝜙 [𝑃]), transforming, in particular, spatial
assertions of the kind 𝑥 (𝜄) ↦→ 𝑣 into 𝑥 (𝜙 (𝜄)) ↦→ 𝑣 . For composite assertions, containing separa-
tion conjunction, and big separation conjunction, 𝜙 just iteratively distributes over their logical
connectives. This transformation does not affect the validity of the assertions, since 𝜙 is injective.

We apply Subst to (13), taking 𝑆 to be the index set of (13), and 𝜙 to be a function removing
the second element 𝑖 from all tuples from the second component of 𝑆 . Note that this 𝜙 is going to
injective as 𝑖 is fixed across all the programs in the second component. The obtained triple is:

{
Arrs(·) } 

1 : spvspv(mind [i], mval [i], xind, xval)
⟨2, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(mind [i], mval [i], 𝑗)
⟨3, 𝑗⟩ 𝑗∈[0,𝑁 ) : sv_get(xind, xval, 𝑗)



𝑠

𝑚

𝑥

������ ⌈𝑠 = ∑
𝑗 𝑚( 𝑗)𝑥 ( 𝑗)⌉

 (15)

Now, substituting mind [i] for y in (14), we get a hyper-triple that immediately implies (15).

2.5 A Rule for While-Loops
What is left now is to verify correctness of spvspv stated as a hyper-triple (14). Below, we sketch its
proof, primarily focusing on how to deal with the while-loop in the body of spvspv.
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While

𝑆 =

𝑁−1⋃
𝑖=0

𝑆𝑖 local(𝑅𝑖 , 𝑆𝑖 )
∀𝑥, { 𝐼 (𝑁, 𝑥) } [

𝜄 : 𝑐
] {

𝑏
�� ⌈𝑏 = false⌉ }

∀𝑥, 𝑖 < 𝑁,
{
𝐼 (𝑖, 𝑥) ∗ 𝑅𝑖

} [
𝜄 : if 𝑐 then 𝑝, 𝑆𝑖 : P𝑖

] {
𝑧,𝑦

�� 𝐼 (𝑖 + 1, 𝑥𝑦) }{
𝐼 (0, ∅) ∗

𝑁−1∗
𝑖=0

𝑅𝑖

} [
𝜄 : while (𝑐) {𝑝} , 𝑆 : P] {

𝑧,𝑦
�� 𝐼 (𝑁,𝑦) }

Fig. 9. A rule for while-iteration.
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Fig. 8. SpVSpV pictographically

The proof is enabled by an important fact: the while-loop
in spvspv processes only non-zero values of input vectors. An
illustration of how spvspv works is depicted in Fig. 8. Given
the vectors 𝑦 and 𝑥 , the algorithm visits all positions where
at least one vector has a non-zero value (1, 2, 3, 5, and 7 in
this example). For each such position, spvspv will increase the
value of s only if both positions are non-zero (such situations
are depicted with solid black lines in Fig. 8). Getting back
to (14), this suggests us to align each iteration of the while-loop with the corresponding element
from the sequence of non-zero indexes in payloads of either of the two vectors 𝑦ind ∪ 𝑥ind . For
all other indices 𝑗 , results of both sv_get functions, 𝑦 ( 𝑗) and 𝑥 ( 𝑗) will be zero, hence they can be
safely elided from the summation

∑
𝑗 𝑦 ( 𝑗)𝑥 ( 𝑗). This can be captured by the following triple:

{
Arrsy (·) ∗
Arrsx (·)

} [⟨2, 𝑗⟩ 𝑗∉𝑦ind∪𝑥ind
: sv_get(yind, yval, 𝑗)

⟨3, 𝑗⟩ 𝑗∉𝑦ind∪𝑥ind
: sv_get(xind, xval, 𝑗)

] {
𝑦

𝑥

���� ⌈∀𝑗 ∉ 𝑦ind ∪ 𝑥ind , 𝑦 ( 𝑗) = 0⌉ ∗
⌈∀𝑗 ∉ 𝑦ind ∪ 𝑥ind , 𝑥 ( 𝑗) = 0⌉

}
(16)

The hyper-triple (16) can proven in a way similar to the specification (7) of ucsr_get. First, using
the Product rule we reduce it to a set of unary triples, and then, noticing that the index function
in the body of sv_get will return -1 for any 𝑗 that is not an element of the set 𝑥ind ∪ 𝑦ind . Now
applying the Focus rule, and taking ind ≜ 𝑦ind ∪ 𝑥ind , we reduce (14) to the following goal:{

Arrsy (·) ∗
Arrsx (·)

} 
1 : spvspv(yind, yval, xind, xval)

⟨2, 𝑗⟩ 𝑗∈ind : sv_get(yind, yval, 𝑗)
⟨3, 𝑗⟩ 𝑗∈ind : sv_get(xind, xval, 𝑗)



𝑠

𝑦

𝑥

������ ⌈𝑠 = ∑
𝑗∈ind

𝑦 ( 𝑗)𝑥 ( 𝑗)⌉
 (17)

Finally, we are ready to align each iteration of the while-loop with the corresponding element of
ind by applying the While rule shown on Fig. 9. While is (predictably) similar to the For rule.
The intuition for this rule comes from the fact that each loop while (𝑐) {𝑝} that terminates after
no more than 𝑁 steps is equivalent to just 𝑁 iterations of if 𝑐 then 𝑝 . Therefore, if we divide our
index set into 𝑁 batches, we can align each batch with one execution of if 𝑐 then 𝑝 . Note that
this will also handle the case when the loop terminates after 𝐾 < 𝑁 steps: in that case all runs of
if 𝑐 then 𝑝 will become idle, starting from the 𝐾 th step. A new premise on the top right corner
will ensure that the loop will terminate once we have exhausted all batches.6 To proceed with the
proof of (17) by making use of the While rule, we divide our index set as follows:

⟨2, 𝑗⟩ 𝑗∈ind ∪ ⟨3, 𝑗⟩ 𝑗∈ind =

|ind |−1⋃
𝑗=0

{⟨2, ind [ 𝑗]⟩ , ⟨3, ind [ 𝑗]⟩}

6LGTM is implemented as logic for total correctness, yet the While rule does not require an explicit termination measure.
The termination will follow from the fact that, each iteration is aligned with its own batch from a finite set of index batches.
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Locations 𝑥, 𝑦, . . . alpha-numeric strings
Constants 𝑛 unbounded integer literals
Expressions 𝑒 ::= 𝑛 | true | false | 𝑥 | 𝑒 = 𝑒 | 𝑒 < 𝑒 | 𝑒 ∧ 𝑒 | ¬𝑒 | 𝑒 ⊕ 𝑒

Command 𝑐 ::= !𝑥 | 𝑥 [𝑑 ] | 𝑥 := 𝑒 | 𝑥 [𝑒 ] := 𝑒 | for 𝑥 in range(𝑒, 𝑒 ) {𝑐 } | while (𝑒 ) 𝑐 | if (𝑒 ) {𝑐 } else{𝑐 } |
let 𝑥 := 𝑐 in 𝑐 | alloc(𝑛) | malloc(𝑛) | free(𝑥 ) | mfree(𝑥 ) | length(𝑒 ) | return 𝑒

Fig. 10. LGTM programming language

Here, to reference to the 𝑗 th component of ind we treat as an sorted sequence without duplicates.
Let us show the most important part of the loop invariant and sketch the rest of the prove:

𝐼while ( 𝑗, 𝑦𝑥) ≜ ∃iy, ix , iY ↦→ iy ∗ iX ↦→ ix ∗
𝑠 ↦→ ∑

𝑘< 𝑗 𝑦 (ind [𝑘]) 𝑥 (ind [𝑘]) ∗
⌈min(𝑥ind [ix ], 𝑦ind [iy]) = ind [ 𝑗]⌉ ∗ . . .

(18)

The first line of the invariant simply gives names to the values stored in the vector counters
(iy and ix ). The second line captures the fact that 𝑠 stores the accumulated intermediate result of the
dot product. The third line is the most subtle: it states that at each iteration, the current position
in the ind sequence, is equal to a minimum of the current positions in both vectors (𝑦ind [iy] and
𝑥ind [ix]). If 𝑦ind [iy] and 𝑥ind [ix] are same, then they are both equal to ind [𝑘]. Hence line 6 of spvspv
will increase the sum by 𝑦 (ind [ 𝑗]) 𝑥 (ind [ 𝑗]), preserving the second line of 𝐼while. In other cases,
using the third line of the invariant, we will be able to show one of 𝑦ind [iy] or 𝑥ind [ix] to be zero,
so the sum will indeed remain unchanged, matching the code on lines 8-9 and 10-11 of Fig. 3.

2.6 Putting It All Together
And that concludes our tour of LGTM! As a quick recap, the right side of Fig. 13 summarises the
main milestones of our proof of spmspv’s specification (3) (with pre-/posts elided), showing the
corresponding sections and changes in the proof goals. Once again, we emphasise the key LGTM
aspects that enabled the proof: separation for modular reasoning (Sec. 2.1.2), parametrisation for
deconstructing loops (Sec. 2.3 and 2.5), and compositionality for proof reuse (Sec. 2.4). We next
briefly outline LGTM’s soundness argument, postponing the presentation of its implementation as
a verification tool till Sec. 4, in which we will show the Coq mechanisation of our spmspv example.

3 LGTM, FORMALLY
The programming language of LGTM (Fig. 10) is chosen to be generic enough to model tensor
computations in C, Python, and Julia. Its commands include location and array access (!𝑥 and
𝑥 [𝑒]), allocation/deallocation for both individual memory locations (via alloc/free) and arrays (via
malloc/mfree). The let-expressions are also used to chain sequences of commands, thus encoding a
sequential composition. For the sake of the presentation, we assume that all the considered programs
are well-typed, integers are unbounded, and division is not present amongst the operations.

3.1 Semantics
We adopt a standard big-step semantics for our language. Let 𝑐 be a command and 𝑠 be a state, i.e.,
a finite mapping from locations Loc to values Val. The evaluation relation ⟨𝑐, 𝑠⟩ ⇓ ⟨𝑣, 𝑠′⟩ is defined
inductively on the structure of 𝑐 . It means that a command 𝑐 starting from input store 𝑠 terminates
with the return value 𝑣 ∈ Val, and store 𝑠′.7 In this work, we only focus on deterministic program
executions, i.e., such that allocation does not exercise randomness. For a fixed index set 𝑆 , given
two hyper-heaps ℎ and ℎ′ defined as mappings from Loc × 𝑆 to values, a hyper-value 𝑣 and an

7We only consider terminating programs, and require termination measure given for programs with while-loops.
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𝑆-indexed program product P, the semantics of a product execution is defined as follows:

⟨P, ℎ⟩ ⇓𝑆 ⟨𝑣, ℎ′⟩ ≜ ∀𝜄 ∈ 𝑆, ⟨P(𝜄), ℎ |𝜄⟩ ⇓ ⟨𝑣 (𝜄), ℎ′ |𝜄⟩
That is, for every 𝜄 ∈ 𝑆 and individual program P(𝜄) executed on the corresponding projection ℎ |𝜄
of the initial hyper-heap (defined as ℎ |𝜄 ≜ 𝜆𝑙 ∈ Loc. ℎ(𝑙, 𝜄)), its execution results in a new state ℎ′ |𝜄
and a value 𝑣 (𝜄). Similarly to the ordinary (unary) programs, we assume all programs in a product
to be deterministic and terminate (the latter is guaranteed for all programs that verify in LGTM).
The details of the semantics can be found in our Coq mechanisation (Gladshtein et al. 2024).

Hyper-safety triples in LGTM are defined in terms of the weakest precondition predicate:

wp [𝑆 : P] {𝑄} ≜ 𝜆ℎ, ∃ℎ′ 𝑣, ⟨P, ℎ⟩ ⇓𝑆 ⟨𝑣, ℎ′⟩ ∧𝑄 (𝑣) (ℎ′) (19)

The weakest preconditions are relative to a provided postcondition (i.e., a predicate on hyper-
heaps) 𝑄 and are defined as predicates on input heaps ℎ, where 𝑄 is a function from hyper-value
to hyper-heap assertions. We next define a hyper-triple {𝑃} [𝑆 : P] {𝑄} as a notation for 𝑃 ⊢
wp [𝑆 : P] {𝑄}. In plain language, this means that an assertion 𝑃 (ℎ) implies wp [𝑆 : P] {𝑄}(ℎ)
for any hyper-heap ℎ. We will use the expanded version of the postcondition whenever we want to
emphasise its assertion 𝑄 to be a function of the result hyper-value: {𝐻 } [𝑆 : P] {𝑣 | 𝑄 (𝑣) } and
we will omit the index set 𝑆 whenever it is clear from the context. Note that, due to the termination
requirement on the programs in products, all triples in LGTM ensure total correctness by definition.

3.2 Support for Reasoning with Parametrisation and Separation
Many essential rules of LGTM take their origins in the Logic for Hyper-triple Composition (LHC)
by D’Osualdo et al. (2022). LGTM’s structural and lockstep rules directly adjust those of LHC to work
with parametrised triples that use Separation Logic (SL) connectives and predicates. Below, we
outline the key LGTM’s enhancements on top of LHC, supporting parametrisation and separation.

idx(𝑄1) ⊆ supp(𝑡1) idx(𝑄2) ⊆ supp(𝑡2)
wp P1{𝑄1} ∧ wp P2{𝑄2} Wp-Conj
wp (P1 + P2) {𝑄1 ∧𝑄2}

Fig. 11. WpConj rule from LHC

3.2.1 Parametrisation. One example of an LGTM rule
that is not derivable in LHC is the Product rule (Fig. 4).
Product takes inspiration from LHC WpConj rule,
depicted on Fig. 11. LHC triples do not feature the index
set explicitly, as all programs in LHC triples can only
be indexed with natural numbers. This rule allows one to conjoin specifications of two program
products P1 and P2 with possibly overlapping components, yielding P1 + P2, if P1 and P2 agree
on the overlapping part. Even though LHC’s rules are phrased in terms of triples with an arbitrary
number of programs, this number must be fixed prior the proof. This is not a problem in LHC: for
program products of a fixed known size 𝑛, one would have to apply this rule 𝑛 times.

Things become problematic with parametrised triples: to get the effect of LGTM’s Product
rule, one would have to apply Wp-Conj the size of 𝑆 number of times. To support cases when |𝑆 |
depends, e.g., on a program parameter, this would require LHC support a “constant-space” iterated
rule application (as in R𝑛 () instead of R(R(. . . )) - repeated explicitly 𝑛 times) of Wp-Conj. This
ability does, indeed, come “for free” for an embedding into a higher-order logic such as one of Coq
(hence the importance of Coq formalisation in our work). It is, however, missing from LHC, but is
explicitly captured in LGTM rules. The same idea applies to For and While rules (Sec. 2.3–2.5). In
both those rules we divide the index set 𝑆 into 𝑛 batches, where 𝑛 is a parameter coming from the
specification, so that one iteration of the for-/while-loop handles only one such batch.

{emp} [𝑆 : alloc(𝑣)]
{
𝑥

����∗
𝑖∈𝑆

𝑥 (𝑖) ↦→ 𝑣

}
Fig. 12. LGTM rule for allocation

3.2.2 Separation. LGTM extends LHC’s lockstep inference
rules with Separation Logic specific-rules (e.g., for pointer
and array allocation). Adding required adjusting a unary
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SL proof system to work with hyper-heaps, as, for instance, is exemplified by Alloc rule presented
on Fig. 12. Alloc states that the results of a family of pointer allocations are these pointers 𝑥 ,
pointing to the assigned value. Other LGTM lockstep rules follow the same intuition and are
available in Appendix A.

3.3 Soundness and Mechanisation
We say that LGTM triple {𝑃} [𝑆 : P] {𝑄} is derivable and write ⊢LGTM {𝑃} [𝑆 : P] {𝑄} if this triple
can be obtained using the rules of the logic. We say that the triple {𝑃} [𝑆 : P] {𝑄} is semantically
valid and write |= {𝑃} [𝑆 : P] {𝑄} if and only if

∀ℎ, 𝑃 (ℎ) ⇒ ∃ℎ′ 𝑣, ⟨P, ℎ⟩ ⇓𝑆 ⟨ℎ′, 𝑣⟩ ∧𝑄 (𝑣) (ℎ′)
That is, we ask that for every hyper-heap ℎ satisfying the precondition, if we run P on it, it
terminates, and the resulting hyper-heap and hyper-value satisfy 𝑄 . The derivability of a logic
triple in LGTM is connected to its semantic validity by the following standard soundness result:

Theorem 3.1 (Soundness). For all hyper-heap assertions 𝑃 , functions from hyper-value to hyper-
heap assertions 𝑄 , and program products P indexed by a set 𝑆 ,

⊢LGTM {𝑃} [𝑆 : P] {𝑄} ⇒ |= {𝑃} [𝑆 : P] {𝑄}
We have mechanised the meta-theory of LGTM and its semantics in the logic of Coq proof

assistant. In our mechanisation, we defined the Hoare triples semantically in terms of the weakest
precondition predicates, which, by their definition (19) encode semantic validity. We then defined
each LGTM rule as a lemma and proved that it holds, thus establishing the result of Theorem 3.1.
Our mechanisation of LGTM is built by extending CFML (Charguéraud 2011, 2020)—a mechanised
sequential Separation Logic. Our changes to the original CFML including the theory of hyper-heaps,
the wp-calculus for program products, LGTM rules, and automation, are totalling at 20kLOC.

4 LGTM AS A VERIFICATION TOOL
Let us now showcase LGTM as a verification framework by walking through a mechanisation of
the spmspv case study from Sec. 2 and explaining its most essential proof automation components.

4.1 Structuring Mechanised Proofs
Fig. 13 presents a mechanised proof of spmspv (left) next to the informal outline of the proof
derivation from Sec. 2 (right), with gray rectangles depicting the transformations of the proof goals.

One noticeable technical difference between the two proofs is the representation of index sets in
the mechanisation. In the Coq specification (lines 1-7), each component of the program product has
an explicit tag, separate from the rest of the index set definition. For example, the tag of uscr_get
is 2. We tried several designs for LGTM triples and found the “tagged union” of index sets to be the
most user-friendly when it comes to the local per-component reasoning via focusing (Sec. 2.2).8

The proof immediately makes use of the index set tags: the xin tactical (i.e., a higher-order tactic)
at line 9 takes the tag 1 as its argument, thus applying a version of the SeqU1 rule (Sec. 2.1.1). Using
xin, one can advance the proof of a composite hyper-triple by symbolically executing instructions in
its sub-components in a lockstep manner by passing a sequence of tactics implementing sequential
(or, in general, lockstep) rules after the : separator. In this case, we pass two tactics to the xin

tactical. The first one, xmalloc, symbolically executes the malloc instruction in the first component.
The second, xret, strips off the last return statement in the body of spmspv.

8The tag-based encoding does not affect expressivity, since index sets can be arbitrarily mapped using Subst (Fig. 7).
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Fig. 13. Mechanised LGTM proof of spmspv (left) and the corresponding paper-and-pencil derivation (right).

Moving on with the proof, we achieve the effect of the Focus rule from Sec. 2.2 by calling xfocus

tactic at line 11. As the result, the index set of the second component will be divided into two
groups, as per the tactic’s second argument: inside𝑚idx × [0, 𝑁 ) and outside of it. Subsequently, the
lines 12-13 verify the runs of uscr_get outside of𝑚idx × [0, 𝑁 ), using the specification of uscr_get
via xapp tactic. In the rest of the proof, we first divide the index set into a union of |𝑚idx | batches,
to apply the For rule (lines 21-24). Next, at line 26 we apply the xfor tactic, replicating the steps
from Sec. 2.3, followed by an application of the xsubst, which performs the domain substitution
from Sec. 2.4. We conclude the proof by using an independently verified specification of spvspv
(line 33), discharging the residual obligations about index set manipulations (lines 34-42).

4.2 Proof Automation for Separation and Parametrisation
The two enabling features of LGTM, modularity via separation and parametrisation, come with
additional obligations in rules that exercise them. Those obligations have to do with (a) proving
assertion locality (Sec. 2.1.2) when reducing triple arity and (b) changing indices within assertions
when performing domain substitution with arbitrary index sets (Sec. 2.4). Below, we describe two
proof automation techniques that eliminate the proof burden associated with those obligations.

4.2.1 Discharging Locality Obligations. Tactics that generate proof obligations for locality of hyper-
heap assertions include xprod (which implements the Product rule) and xfor (which implements
For). For instance, the application of xfor at line 26 of Fig. 13 generates a number of subgoals
requiring one to establish locality of the assertions 𝑅𝑖 used as preconditions for programs in the
respective components (cf. Fig. 6). Even a subgoal for the third component looks a bit intimidating:
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local

((
𝑁−1∗
𝑖=0

arr(xind ⟨3, 𝑖⟩ , 𝑥ind ) ∗
𝑁−1∗
𝑖=0

arr(xval ⟨3, 𝑖⟩ , 𝑥val)
)
, {⟨3, 𝑖⟩ : 𝑖 ∈ [0, 𝑁 )}

)
1 Ltac xlocal := intros;

2 match goal with
3 | |- local (P1 \* P2) _ ⇒
4 apply local_conj; xlocal

5 | |- local (\*_(i ∈ s) Pi) _ ⇒
6 apply local_big_conj; xlocal

7 | |- local (arr(p(i), l)) s ⇒
8 apply local_array; indomE

9 ...

10 end

Fig. 14. xlocal tactic

To dispatch such goals, we provide the xlocal tactic
shown Fig. 15. In a nutshell, this tactic, structurally decom-
poses the hyper-heap assertion in a goal, reducing locality
of a composite assertion to locality of its parts. For instance,
lines 3-4 of the tactic reduce locality of 𝑃1 ∗ 𝑃2 to local-
ity of both 𝑃1 and 𝑃2, calling xlocal recursively on those
subgoals. Lines 5-6 we reduce locality of∗𝑖∈𝑆 𝐻𝑖 to the lo-
cality of 𝑃𝑖 for each 𝑖 ∈ 𝑆 . Finally, whenever xlocal reaches
terminal goals such as local(arr(𝑝 (𝑖), 𝑙), 𝑆), it applies the
local_array lemma, resulting in the obligation 𝑖 ∈ 𝑆 , proven
by the indomE membership solver from the MathComp library (Mahboubi and Tassi 2022).

4.2.2 Automating Index Set Substitution. The need for proof automation in the presence of parametri-
sation manifests whenever we want to perform reindexing involving arbitrary index sets via the
Subst rule. As Subst applies a substitution function 𝜙 to both pre- and postcondition, 𝜙 must be
distributed over the connectives of the LGTM including, separation conjunction and its iterated
version (big-∗). One naïve approach to implement such distribution automatically would involve
proving a lemma of the form 𝜙

[∗𝑖∈𝑆 𝐻𝑖

]
=∗𝑖∈𝑆 𝜙 [𝐻𝑖 ] for distributing the substitution over∗,

and use it for repeated rewriting in the assertions. Unfortunately, this solution does not combine
well with the shallow embedding of “big” operators into Coq, that implement indexing over 𝑖
via Coq’s lambda-functions. As the inner assertions 𝐻𝑖 of∗𝑖∈𝑆 𝐻𝑖 might depend on the lambda-
bound 𝑖 , rewriting them would require independently instantiating the equality lemmas such as
∀𝑃,𝑄. 𝜙 [𝑃 ∗ 𝑄] = 𝜙 [𝑃] ∗ 𝜙 [𝑄] with assertions that depend on 𝑖 and are not well-formed outside
of the lambda. Therefore, after we rewrite an assertion involving∗ using the above equality once,
the application of 𝜙 will occur in the scope of the binder 𝑖 , preventing its further rewrites.

1 Ltac xsubst := match goal with
2 | |- 𝜙[P1 \* P2] = ?H ⇒
3 rewrite subst_conj;

4 apply conj_eq; xsubst

5 | |- 𝜙[\*_(i ∈ s) Pi] = ?H ⇒
6 rewrite subst_big_conj;

7 apply big_conj_eq; intros; xsubst

8 | |- 𝜙[arr(p(i), l)] = ?H ⇒
9 rewrite subst_array; reflexivity

10 ...

11 end

Fig. 15. xsubst tactic

We overcome this hurdle with the following trick.
When performing domain substitution via 𝜙 , we start
with replacing the precondition 𝜙[P] (resp. 𝜙[Q]) with a
fresh existential variable ?H, adding a subgoal 𝜙[P] = ?H

to the set of proof obligations. This subgoal will be re-
peatedly transformed as we gradually propagate 𝜙 inside
P, elaborating ?H as we go. This idea is implemented by
xsubst tactic shown in Fig. 15. To understand its effect
on the proof, consider the lines 6-8 of its definition that
deal with the big-∗ operator. The tactic implementation
first propagates 𝜙 under the big-star by performing the rewrite via the subst_big_conj lemma, fol-
lowed by application of the big_conj_eq lemma of type (∀𝑖, 𝐻𝑖 = 𝑃𝑖 ) ⇒∗𝑖∈𝑆 𝐻𝑖 =∗𝑖∈𝑆 𝑃𝑖 , which
is essentially a specialised version of the functional extensionality axiom. Applying this lemma
instantiates the existential variable ?H with∗𝑖=0 (?Hi 𝑖), producing a subgoal ∀𝑖, (𝜙 [𝑃𝑖 ] = ?Hi 𝑖),
which will require further elaboration of ?Hi. The tactic subsequently fixes the binder 𝑖 by moving
it to the proof context using intros, followed by a recursive call of xsubst.

When xsubst reaches primitive heap assertions such as arr(𝑝 (𝑖), 𝑙), it rewrites them using suitable
lemmas (e.g., turning arr(𝑝 (𝑖), 𝑙) into arr(𝑝 (𝜙 (𝑖)), 𝑙) via subst_array), dispatching the residual goal
by using Coq’s standard reflexivity tactic that instantiates the remaining existential variable.
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Table 1. Statistics for the verified programs. For each program, we specify its operation in Einstein notation,
the formats of the involved operands (D is for dense), and the return type, followed by the size of the code
and of the mechanised LGTM proof, along with the proof/code ratio. We also indicate the characteristic rules
of LGTM the auxiliary specifications used by the proof, as well the time it takes Coq to check it.

# Operation Formats
(Operands)

Return
Type

Size (LOC) Ratio Prominent rules Uses Time
(sec)Code Proof For While Focus Subst

1
∑
𝑖 𝑥𝑖 SV (𝑥 )1,2 int 9 22 2.4 ✓ ✓ 5.42

2
∑
𝑖 𝑥𝑖𝑦𝑖 SV (𝑥 ), D (𝑦)1,2 int 12 22 1.8 ✓ ✓ 6.96

3
∑
𝑖 𝑥𝑖𝑦𝑖 SV (𝑥 ), SV (𝑦)1,2 int 31 237 7.6 ✓ ✓ 20.73

4
∑
𝑖, 𝑗 𝐴𝑖, 𝑗 COO (𝐴) int 7 25 3.6 ✓ ✓ 5.40

5
∑
𝑖, 𝑗 𝐴𝑖, 𝑗 CSR (𝐴)1,2 int 10 11 1.1 ✓ ✓ #1 7.91

6
∑

𝑗 𝐴𝑖, 𝑗𝑥 𝑗 CSR (𝐴), D (𝑥 )1,2 int[] 10 12 1.2 ✓ ✓ #2 8.99
7

∑
𝑗 𝐴𝑖, 𝑗𝑥 𝑗 CSR (𝐴), SV (𝑥 )1,2 int[] 10 16 1.6 ✓ ✓ #3 11.02

8
∑
𝑖, 𝑗 𝐴𝑖, 𝑗 uCSR (𝐴) int 10 29 2.9 ✓ ✓ ✓ #1 12.62

9
∑

𝑗 𝐴𝑖, 𝑗𝑥 𝑗 uCSR (𝐴), D (𝑥 )3 int[] 11 33 3.0 ✓ ✓ ✓ #2 18.69
10

∑
𝑗 𝐴𝑖, 𝑗𝑥 𝑗 uCSR (𝐴), SV (𝑥 )3 int[] 11 30 2.7 ✓ ✓ ✓ #3 20.05

11
∑
𝑖 𝑥𝑖 RL (𝑥 )2 int 16 18 1.1 ✓ 5.90

12
∑
𝑖 𝛼𝑥𝑖 + 𝛽𝑦𝑖 RL (𝑥 ), RL (𝑦)2 int 64 143 2.2 ✓ 41.66

13
∑

𝑗 𝐴𝑖, 𝑗𝑥 𝑗 CSR (𝐴), D (𝑥 )4 double[] 19 36 1.9 ✓ ✓ ✓ 31.76

1 From (Kjolstad et al. 2017) 2 From (Ahrens et al. 2023) 3 From (Hong et al. 2019) 4 From (Kellison et al. 2023)

5 LGTM UNDER THE SPOTLIGHT: EMPIRICAL EVALUATION
We conducted an empirical evaluation of LGTM to answer the following research questions:
• RQ1: Is LGTM expressive enough to reason about real-world computations on structured data?
• RQ2: How LGTM proofs are influenced by the involved formats and kinds of computations?
• RQ3: How does LGTM fare against state-of-the-art approaches not based on relational logic?

Benchmarks. We have assembled our benchmark suite by adopting case studies from different
sources, including programs produced by the TACO (Kjolstad et al. 2017) and Finch (Ahrens et al.
2023) compilers, notable benchmarks from the Sparse Suite collection (Hong et al. 2019), and an
example from a recent effort on verifying sparse matrix/vector multiplication (Kellison et al. 2023).
The conversion of the selected programs from their implementation languages, C and Julia, to the
language of LGTM (Fig. 10) has been done manually, but could be easily automated.

The resulting collection of 13 programs is summarised in Tab. 1. The programs were selected
to feature diverse range of data formats and operations. The considered formats can be broadly
classified into three groups: (1) primitive sparse tensor formats, such by SV and Coordinate List
(COO) (Popoola et al. 2023), (2) composite sparse tensor data formats, CSR and uCSR, that incorporate
primitive formats as their parts, and (3) a data format for non-sparse structured data, represented by
Run-Length Encoding (RL) (Donenfeld et al. 2022). For each such format group, we considered the
most common operations with the respective data implemented in real-world kernels: dot-product
and alpha-blending for vector formats, and matrix/vector multiplication for matrix formats. All the
verified programs listed in Tab. 1 are parametrised with arbitrary sizes of matrices/vectors.

5.1 RQ1: Expressivity of the Logic
We answer RQ1 by providing quantitative evidence of LGTM’s effectiveness and efficiency when
verifying characteristic programs manipulating with structured data listed in Tab. 1.

A quick glance at the table’s fifth and sixth column should convey that LGTM’s proofs are
relatively compact, especially for an extrinsic verifier, such as Coq, with the average proof/code
ratio (in LOC) being 2.5. One notable outlier in this aspect is a dot-product of two sparse vectors (#3),
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whose proof we will discuss in Sec. 5.2. The last column of Tab. 1 reports the proof checking times
(averaging at 15.2s), obtained via Coq 8.18 on a 3.2 GHz Apple M1 MacBook Air with 16GB RAM.
The time it takes Coq to check LGTM proofs is directly influenced by the number of uses of tactics
that implement domain-specific automation, such as xsubst and xlocal (cf. Sec. 4.2.2).

5.2 RQ2: Verification Trends
Besides quantitative characteristics of LGTM, such as proof sizes and proof checking time, we are
also interested in verification trends. For instance, what rules one should expect to use when dealing
with a particular format or a kind of structured data computation?

To answer this question, we start by considering the programs #1-#4 involving primitive formats
SV and COO for sparse vectors and matrices, which are used as “building blocks” by other formats
The verification trends for these programs are summarised in the seventh column of Tab. 1, featuring
(1) the Focus rule, required to focus only on non-zero elements of the input tensor and (2) the For
or While rules, depending on the type of the loop in the code, required to group remaining non-
zero elements with correspondent loop iterations. Next, we focus on the case studies #5-#10 with
composite formats, CSR and uCSR, which are obtained as combinations of a dense representation,
SV (for exploiting sparcity), and COO (for featuring random permutation of the components). The
key proof principle of LGTM that shows up prominently in those proofs is Subst. This should not
come as a surprise: because of the composite nature of the formats, one should expect to make
use of the specifications that involve their sub-formats (e.g., SV is a part of CSR). Using Subst
allows one to adjust intermediate subgoals within the proof to match specifications of “auxiliary”
operations (most of which are represented by case studies #1-#4) so they could be used in the
proof in a compositional manner. As the penultimate column of Tab. 1 indicates, the case studies
#5-#10 that involve composite data formats, reuse a proof of some case study #1-#3, involving
only primitive formats. Finally, we consider the case studies #11-#12, in which we have verified
operations on RL encoding that manipulate with compressed arrays containing repeated data. In
those proofs, we made use only of LGTM’s loops rules, as the RL format is primitive (so we don’t
need Subst) and is not sparse (so we don’t need to focus on non-zero elements via Focus).

We conclude this subsection with an observation about the only example from our collection that
has a relatively large proof/code ratio (7.6): a dot-product of two SV vectors (#3). This figure can
be explained by the fact that the textbook implementation of SV/SV product is heavily optimised
by skipping as many unnecessary computations (involving zeros) as possible. Hence the main
complexity in the proof is because of the need to justify the absence of code, rather than its presence.

5.3 RQ3: Comparison with Non-Relational Proofs
The landscape of tools for verified computations on structured data is somewhat scarce, with the
prior work mostly focusing on verified compilers for sparse tensors (Arnold et al. 2010; Dyer et al.
2019; Kovach et al. 2023). Those tools, which we discuss in detail in Sec. 6, can only produce a
subset of computations that can be verified in LGTM, and they are not guaranteed to produce the
most performant format-specific code. The various existing logics for 𝑘-safety either do not offer
means to work with array computations (Dardinier and Müller 2023; Sousa and Dillig 2016), or are
not even mechanised (D’Osualdo et al. 2022), thus making it impossible to conduct a meaningful
comparison with them as tools. Therefore, we only compare verification in LGTM with formal
reasoning about structured data in a mechanises general-purpose non-relational Separation Logic.

Recent work by Kellison et al. (2023) presented a mechanised proof of a sparse matrix/dense vector
product function implemented in C, taking a sparse matrix in the CSR format. The C implementation
is specified and verified using the Verified Software Toolchain (VST) (Appel 2011), a Separation
Logic framework embedded into Coq. Kellison et al.’s proofs follows a relatively conventional
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1 Inductive crs_row_rep {t} : ∀ cols (vals:list

2 (ftype t)) col_ind (v:list (ftype t)), Prop :=

3 | crs_row_rep_nil: crs_row_rep 0%Z nil nil nil

4 | crs_row_rep_zero: ∀ cols vals col_ind v,

5 crs_row_rep (cols-1) vals (map pred col_ind) v ->

6 crs_row_rep cols vals col_ind (Zconst t 0 :: v)

7 | crs_row_rep_val: ∀ cols x vals col_ind v,

8 crs_row_rep (cols-1) vals (map pred col_ind) v ->

9 crs_row_rep cols (x::vals) (0::col_ind) (x::v).

(a) Inductive predicate for relating a vector v with
length cols and its corresponding sparse vector
represented by col_ind and vals.

1 Definition crs_rep_aux {t} (mval: matrix t) cols

2 (vals: list (ftype t)) col_ind row_ptr: Prop :=

3 (* propositions about sortedness and lengths *) ∧
4 ∀ j, 0 <= j < Zlength mval ->

5 crs_row_rep cols (sublist (Znth j row_ptr)

6 (Znth (j+1) row_ptr) vals)

7 (sublist (Znth j row_ptr) (Znth (j+1) row_ptr)

8 col_ind) (Znth j mval).

(b) Predicate for relating a dense matrix mval
modelled as a list and a sparse matrix in CSR,
represented by row_ptr, col_ind, and vals.

Fig. 17. Encoding of CSR format in VST by Kellison et al. (2023); ftype t is a type for floating point numbers.

two-layer paradigm for verifying imperative code (Appel 2022): first a functional model of sparse
matrices is defined, along with its operations (e.g., computing the dot-product of a matrix row and
a dense vector); next, the C function is ascribed a specification in terms of a functional model, and
the verification amounts to proving that the imperative function refines the functional operation.

1 def spmv(m_idx, m_ind, m_val, v):
2 for i in range(0, length(m_idx)):
3 for j in range(m_idx[i], m_idx[i+1]):
4 ans[i] += m_val[j] * v[m_ind[j]]

Fig. 16. CSR matrix/dense vector product

Fig. 16 presents a slightly simplified CSR sparse
matrix/dense vector product implementation ver-
ified in Kellison et al.’s LAProof framework. The
outer loop iterates through the rows of a compressed
CSR matrix m and the inner loop sums up all non-
zero m elements in each row, multiplied by the re-
spective values of a dense vector v. The functional model of CSR is defined using a family of
inductive predicates. First, the inductive predicate crs_row_rep (Fig. 17a) relates the contents of a
dense vector and its sparse representation, capturing the shape of the SV format. Next, crs_rep_aux
(Fig. 17b) uses crs_row_rep to express the relation between a dense matrix and the corresponding
CSR matrix. Finally, an SL representation predicate crs_rep (omitted for brevity) relates a dense
matrix to its sparse counterpart (constrained by crs_rep_aux) stored as a C struct in the memory.
The predicate crs_rep is used in the pre/postconditions of the specification, and the postcondition
states that the returned vector is exactly the result of multiplying the input dense matrix and a
dense vector. The LAproof verification proceeds as follows:
(1) Prove that the inner loop accumulates into ans[i] all values in the array m_val corresponding

to the 𝑖th row, multiplied by respective values of v using the invariant

𝐼 ( 𝑗) ≜ ans[𝑖] =
𝑗∑︁

𝑘=midx [𝑖 ]
mval [𝑘] · 𝑣 [mind [𝑘]]

(2) For any 𝑖 at the end of the loop, replace the sum at the right hand side of the equality in the
invariant with the product of the corresponding rows of the logical “dense” matrix m and the
vector v. This rewrite requires leveraging the properties of the representation predicate csr_rep,
connecting the contents of m_idx, m_ind, and m_val with the elements of the logical matrix m

(including zeros), via a set of predicate-specific lemmas.
(3) Verify the outer loop using an invariant stating that at 𝑖th iteration, for each 𝑘 < 𝑖 , ans[𝑘] =

m[𝑘] · v, where m[k] is an 𝑘 th row of the logical matrix m.
The most laborious part of this proof is its second step. It requires a whole separate file with 350
LOC of Coq code to prove a number of bespoke facts about csr_rep. Those facts are needed to
“align” the representation predicate, which necessarily describes the entire contents of the matrix m,
with the logic of the inner loop of the code above, which only operates on m’s non-zero values.
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In contrast, our approach does not require one to design such tailored functional model for each
new sparse format. Instead, with LGTM, one can use access functions (e.g., sv_get) for interpreting
the formats, relating their results to that of the main function being specified. Those access functions
can be executed “on demand” in lockstep with the respective parts of the operation’s implementation
and verified with a comparatively low proof overhead. This highlights a conceptual advantage of
our approach: it liberates the user from the burden associated with (𝑖) designing functional format
definitions and (𝑖𝑖) proving their properties that are typically required in refinement proofs.

To further demonstrate how our approach facilitates proofs about sparse matrices, we conducted
the verification task from Kellison et al.’s work in LGTM, which is marked as the case study #13
in Tab. 1. In the interest of fair comparison, the program #13 differs from a similar implementation #6
in the following aspects: (a) it works on the domain of IEEE 64-bit floating point numbers instead
of integers, and (b) it does not call sub-functions (e.g., #2) to keep the full resemblance to the C
program by Kellison et al., which does not depend on sub-procedures that operate with sparse
vectors. To verify the inner loop of smpv in Fig. 16 in LGTM, we first replace the manipulations with
the matrix contents via m_ind and m_val by manipulations directly with the contents of its logical
row m[𝑖], so that the remaining goal is conceptually reduced to a vector/vector product. And then
align each 𝑖th iteration of the inner loop with a matching access function call for the 𝑖th non-zero
element of the matrix’s row m[𝑖], and prove that the “logical” iterations corresponding to zeros can
be ignored. Verification of the outer loop is similar to the one presented in Sec. 2.

To summarise, we note that, instead of inventing a data representation predicate and proving
lemmas about it, LGTM proof is mostly about “aligning” calls to access functions with the code
being verified. That is why, from Tab. 1, our proof, even without composition, is only 36 LOC.
In Kellison et al.’s work, the proofs about CSR-specific properties alone take 210 LOC, and the
refinement proof takes additional 204 LOC, making our proof less than a tenth of their total length.

6 RELATED WORK
Our work connects several lines of research on (a) program logics for relational safety properties,
(b) compilers for structured data, and (c) verification of structured data manipulations.

Relational program logics. Benton’s seminal work (2004) introduced Relational Hoare Logic (RHL)
to capture safety properties of pairs of programs and prove them using lockstep rules. RHL’s
extension to Separation Logic (Yang 2007) has been used to specify and verify complex relational
properties of heap-manipulating programs, such as equivalence of heap-based graph-marking
algorithms. Barthe et al. (2011) proposed a method to encode reasoning about 2-safety properties in
unary Hoare logic by considering product programs that simulate the execution steps of both their
constituents. More recently, Sousa and Dillig (2016) introduced Cartesian Hoare Logic (CHL) that
allows one to express and prove 𝑘-safety properties of imperative programs for arbitrary but fixed 𝑘 .
CHL comes with the automated verifier Descartes that proves hypersafety specifications by
reducing them to unary Hoare triples. None of these approaches support reasoning about families
of programs indexed by elements of an arbitrary finite set that can change within the proof.

A recent work by Dardinier and Müller (2023) introduced Hyper Hoare Logic (HHL)—a framework
to reason about 𝑘-safety properties of arbitrary (even infinite) arity 𝑘 . Unlike LGTM, HHL only
allows for 𝑘-safety specifications constraining multiple runs of the same program. Similarly to
LGTM, in HHL the arity of a judgement can change during the proof, for instance in its Cons
rule. This feature is, however, not exploited by HHL, which does not provide specialised rules
for reasoning about loops, such as LGTM’s For and While. The closest to our work is Logic for
Hyper-triple Composition (LHC) by D’Osualdo et al. (2022). We provided a detailed discussion on
the improvements LGTM makes over LHC in terms of expressivity in Sec. 3.2.
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Compilers for structured data manipulations. Sparsity is a well-studied example of structured data,
with wide-ranging applications from machine learning to scientific computing. A popular strategy
for sparse tensor compilation is to generate low-level code directly from high-level abstractions
(Kjolstad et al. 2019). The TACO tensor compiler is emblematic of the approach, defining sparse
tensor formats through an iterator interface for non-zero elements (Chou et al. 2018, 2020), gener-
ating an implementation of an operation for the sparse representations from the same operation
on dense arrays. Later works generalised TACO’s format abstraction to capture dynamic data
structures (Chou and Amarasinghe 2022), multiple simultaneous formats (Ye et al. 2023), repeti-
tion (Donenfeld et al. 2022), or ragged-style irregularity (Fegade et al. 2022). Many such approaches
were unified and generalised by the Finch compiler (Ahrens et al. 2023), which goes beyond sparsity
and allows one to define arbitrary iteration strategies for producing efficient looping code.

Verified computations with structured data. Arnold et al. (2010) proposed a high-level functional
language LL for expressing computations with sparse tensors that facilitates automation of correct-
ness proofs about matrix manipulations in Isabelle/HOL. The approach by Arnold et al. is, however,
only limited to sparse formats that can be encoded in LL. Furthermore, it assumes correctness of
the compilation from the LL encoding to the C representation (Arnold 2011). That is, the correctness
guarantees provided by the approach only apply to LL programs, but not to their C counterparts.

Dyer et al. (2019) suggested to encode sparse formats and computation as Alloy predicates,
phrasing verification of sparse tensor computations as a search for counterexamples. Such verifica-
tion is unsound, in the sense that Alloy tries to find only small counterexamples up to a certain
bound. Moreover the way to encode stateful programs in Alloy proposed by Dyer et al. is only
capable to capture programs with nested for-loops and could not express, e.g., spmspv from Sec. 2.

Liu et al. (2022) developed a Coq library for certified optimisations of tensor-manipulating pro-
gram via verified rewrites. Those rewrites do not exploit the structure of specific data formats,
and, hence, are not guaranteed to produce optimised implementations. Finally Kovach et al. (2023)
presented Etch, a verified (in Lean) compiler for sparse data computations. Etch is limited to
operations on structures that are expressible as mappings over indexed streams, so its optimisations
can be expressed as stream fusion, hierarchical iterations, and control over interaction order (Kise-
lyov et al. 2017). This restricts the range of operations Etch can synthesise: for instance, it cannot
generate computations on data with unordered layers, such as COO and uCSR formats.

Unlike the listed above efforts, LGTM is not a compiler, but is a verification framework: it does
not synthesise computations, but offers means to mechanically verify the results produced by highly
fine-tuned unverified synthesisers, such as TACO. This makes it a suitable verification back-end
for certifying sparse data compilers, which are yet to be developed. Furthermore, the applications
of LGTM are not limited to just sparse data: for example, our case studies #11-12 from Tab. 1 are
about the run-length encoding for arrays with repeated values.

7 CONCLUSION AND FUTURE WORK
In this work we presented LGTM: a program logic for hypersafety properties, built around the idea
of parametrised 𝑘-safety specifications. We argued that parametrisation enables intuitive safety
proofs about intricate computations over structured data (e.g., sparse tensors), and substantiated
this claim by mechanically verifying thirteen case studies using LGTM embedding into Coq.

In our immediate future work, we are planning to automate common reasoning patterns of LGTM
to facilitate push-the-button construction of machine-assisted proofs for parametrised hypersafety
specifications. As our long-term agenda, we are aiming to use LGTM as a foundation for building
a certifying compiler for structured data manipulations similar to Finch (Ahrens et al. 2023) by
adopting the ideas of proof-producing program synthesis (Watanabe et al. 2021).
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A LGTM RULES

{𝑃} [𝑆1 : P1] {𝐻 } 𝐻 ⊢ wp [𝑆2 : P2] {𝑄}
Cons{𝑃} [𝑆1 : P1] {wp [𝑆2 : P1] {𝑄}}

𝑃 ⊢ wp [𝑆1 : P1] {wp [𝑆2 : P1] {𝑄}}
WpNest

𝑃 ⊢ wp [𝑆1 : P1, 𝑆2 : P2] {𝑄}
{𝑃} [𝑆1 : P1, 𝑆2 : P2] {𝑄}

Fig. 19. SeqU derivation using WpNest

Structural Rules. We start our overview of
LGTM reasoning principles by looking at its
structural rules (Fig. 18) that facilitate transfor-
mations of the triples following the structure of
the index set, thus enabling applications of the
program-driven lockstep rules presented below.

For example, the rule WpNest exploits the
nature of the definition of LGTM triples via the
wp predicate to “bring forward” a subset of the programs P1 in the product (for a particular subset
𝑆1 of the index set), enabling more specialised reasoning about this set in particular. The utility of
WpNest comes from its ability to derive rules such as SeqU (as well as other structural rules from
the overview). Fig. 19 shows this derivation by first replacing the triple in the conclusion by its
definition in terms of the weakest preconditions, then applying WpNest, and then rewriting the
judgements in the wp-form back to the corresponding triples. The full derivations of other rules
from the overview section in the paper are broadly similar, and are omitted here for brevity.
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𝑆1 ∩ 𝑆2 = ∅
WpNest

wp [𝑆1 : P1, 𝑆2 : P2] {𝑄} ⊣⊢ wp [𝑆1 : P1] {𝑣 | wp [𝑆2 : P2] {𝑢 | 𝑄 (𝑣𝑢)}}

local({𝑃𝑖 , 𝑄𝑖 }, 𝑖) ∀𝑖, { ⌈𝑖 ∈ 𝑆⌉ ∗ 𝑃𝑖
} [𝑖 : P(𝑖)] {

𝑥
�� 𝑄𝑖 (𝑥)

}
Product{∗𝑖∈𝑆 𝑃𝑖

} [𝑆 : P] {
𝑥

��∗𝑖∈𝑆 𝑄𝑖 (𝑥 (𝑖))
}

𝐻 ⊢ 𝐻 ′ 𝑄 ′ ⊢ 𝑄 {𝐻 ′} [𝑆 : P] {𝑄 ′}
Conseq{𝐻 } [𝑆 : P] {𝑄}

{𝐻 } [𝑆 : P] {𝑄}
Frame{𝐻 ′ ∗ 𝐻 } [𝑆 : P] {𝑄 ∗ 𝐻 ′}{

𝑃
} [𝑆1 : P1]

{
𝑥

�� 𝐻 (𝑥) } ∀𝑥, {
𝐻 (𝑥) } [𝑆2 : P2]

{
𝑦

�� 𝑄 (𝑥𝑦) }
SeqU{

𝑃
} [𝑆1 : P1, 𝑆2 : P2]

{
𝑧

�� 𝑄 (𝑧) }
SeqU1 {

𝑃
} [𝜄 : 𝑝1]

{
𝑥

�� 𝐻 }{
𝐻

} [
𝜄 : 𝑝′1, 𝑆 : P2

] {
𝑥, 𝑧

��𝑄 (𝑧) }{
𝑃

} [
𝜄 : 𝑝1; 𝑝′1, 𝑆 : P2

] {
𝑥,𝑦

��𝑄 (𝑥𝑦) }
SeqU2{

𝑃
} [

𝜄 : 𝑝1, 𝑆 : P2
] {

𝑥, 𝑧
�� 𝐻 (𝑧) }

∀𝑧, { 𝐻 (𝑧) } [
𝜄 : 𝑝′1

] {
𝑥

�� 𝑄 (𝑥𝑧) }{
𝑃

} [
𝜄 : 𝑝1;𝑝′1, 𝑆 : P2

] {
𝑥1, 𝑥2

��𝑄 (𝑥1𝑥2)
}

Fig. 18. Selected structural LGTM rules

Ret{emp} [return 𝑣] {𝑢 | ⌈𝑣 = 𝑢⌉ } Read{𝑥 ↦→ 𝑣} [!𝑥] {𝑢 | 𝑥 ↦→ 𝑣 ∗ ⌈𝑢 = 𝑣⌉ }

Asn{𝑥 ↦→ 𝑣} [𝑥 := 𝑢] {𝑥 ↦→ 𝑢} Fr{𝑥 ↦→ 𝑣} [free(𝑥)] {emp} Alc{emp} [alloc(𝑣)] {𝑥 | 𝑥 ↦→ 𝑣 }
Malloc{emp} [malloc(𝑛)] {𝑥 | arr(𝑥, 0𝑛) } MFree{arr(𝑥, 𝑠)} [mfree(𝑥)] {emp}

{𝐻 } [P1] {𝑃} ∀𝑣, {𝑃 (𝑣)} [P2 [𝑣/𝑥]] {𝑄} Let{𝐻 } [let 𝑥 := P1 in P2] {𝑄}

{𝐻 } [P] {𝑄} ∀𝑖, 𝑣 (𝑖) ⇒ P(𝑖) = P1 (𝑖)
¬𝑣 (𝑖) ⇒ P(𝑖) = P2 (𝑖)

If{𝐻 } [if (𝑣) {P1} {P2}] {𝑄}

Len{arr(𝑥, 𝑠)} [length(𝑥)] {𝑢 | ⌈∀𝑖, 𝑢 (𝑖) = |𝑠 (𝑖) |⌉ }
∀𝑗 ∈ 𝑆, 𝑟 ( 𝑗) = 𝑠 ( 𝑗) [𝑖 ( 𝑗) ↦→ 𝑣 ( 𝑗)]

AsnArr{arr(𝑥, 𝑠)} [
𝑥 [𝑖] := 𝑣

] {arr(𝑥, 𝑟 )}
∀𝑗 ∈ 𝑆, 0 ≤ 𝑖 ( 𝑗) < |𝑠 ( 𝑗) |

ReadArr{arr(𝑥, 𝑠)} [
𝑥 [𝑖]] {

𝑢
�� arr(𝑥, 𝑠) ∗ ⌈∀𝑗 ∈ 𝑆,𝑢 ( 𝑗) = 𝑠 ( 𝑗) (𝑖 ( 𝑗))⌉ }

Fig. 20. Lockstep rules

We have already seen an application of the rule Product in the Section 2 of the paper. The
remaining structural rules from Fig. 18 are standard for separation logic-style proof systems. For
example, LGTM enjoys a familiar Frame rule that naturally extends to hyper-heaps.

Lockstep rules. The core of any relational program logic is formed by so-called lockstep rules that
enable reasoning about individual programs in the product or about batches of programs that share
the same syntactic structure. The lockstep rules of LGTM are shown in Fig. 20. In their presentation,
we follow a few syntactic conventions. First, by applying a program construction to a vector, we
mean a pointwise application: for example, for a hyper-value 𝑣 and two product-programs, P1 and
P2, indexed by a set 𝑆 , for any 𝑖 ∈ 𝑆 the effect of programs is defined as follows:

(return 𝑣) (𝑖) ≜ return 𝑣 (𝑖) (if(𝑣){P1}{P2})(𝑖) ≜ if(𝑣 (𝑖)){P1 (𝑖)}{P2 (𝑖)}
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The same convention applies to hyper-heap assertions, e.g., points-to assertions distribute similarly:
𝑥 ↦→ 𝑣 ≜ ∗

𝑖∈𝑆
𝑥 (𝑖) ↦→ 𝑣 (𝑖)

Since lockstep rules work on syntactically same programs, we omit the index set in the rules.
Most of the lockstep rules are just trivial extensions of correspondent rules in a regular separation

logic. For example, Ret rule states that result of a program product, each component of which is a
return-statement return 𝑣 , is a hyper-value 𝑢 is equal to the one we return 𝑣 . The Read rule states
that, if we read from a family of pointers 𝑥 , the result 𝑢 would be equal to a vector constructed out
of the contents of the pointers being read (i.e., 𝑣), and that the hyper-heap will remain unchanged.
The Asn rule says that, in order to write a value 𝑢 to a vector of pointers 𝑥 , one has to replace
their contents 𝑣 with 𝑢. Fr states that after deallocation of a vector of pointes, the resulting heap is
empty. Alc states that the results of a family of pointer allocations are these pointers 𝑥 , pointing to
the assigned values 𝑣 . Malloc, Mfree, Len, AsnArr and ReadArr, are rules for arrays extended
to the hyper-case; we elaborate on the two of them. Malloc, malloc takes a length of an array to
be allocated. The result of the allocation is filled with zeros: 0𝑛 denotes a vector of sequences, each
of which consists of 𝑛(𝑖) zeros. In the AsnArr rule, substitution 𝑠 ( 𝑗) [𝑖 ( 𝑗) ↦→ 𝑣 ( 𝑗)] is defined only
if 0 ≤ 𝑖 ( 𝑗) < |𝑠 ( 𝑗) |. The rules Let and If are straightforward.
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