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Abstract

Achieving high performance for computations on tensors depends heavily on the for-
mats used to store them. While sparse tensors are very common, there are more
general patterns in data which can sometimes be better captured using lossless com-
pression.

We show how to extend sparse tensor algebra compilers to support lossless com-
pression techniques, including variants of run-length encoding and Lempel-Ziv com-
pression. We develop new abstractions to represent losslessly compressed data as a
generalized form of sparse tensors, with repetitions of values (which are compressed
out in storage) represented by non-scalar, dynamic fill values. We then show how a
compiler can use these abstractions to emit efficient code that computes on losslessly
compressed data. By unifying lossless compression with sparse tensor algebra, our
technique is able to generate code that computes with both losslessly compressed data
and sparse data, as well as generate code that computes directly on compressed data
without needing to first decompress it.

We evaluate two implementations of our techniques, using a prototype compiler
based on TACO, and an implementation of our formats within Finch. Our evaluation
using our TACO compiler shows our technique generates efficient image and video
processing kernels that compute on losslessly compressed data. We find that the
generated kernels are up to 16.3× faster than equivalent dense kernels generated by
TACO, a tensor algebra compiler, and up to 16.1× faster than OpenCV, a widely
used image processing library. Using our Finch formats, we see compression ratios
up to 25× with run-time speedups up to 3.1× over dense computation for reduction
computations.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

This thesis includes work published in [20]. I would like to thank my advisor Professor

Saman Amarasinghe for all his guidance. He has kept me on the right track when

getting into the details, and encouraged me to think bigger when discussing ideas and

future directions.

I would also like to thank Stephen Chou, whose mentorship and help made this

project possible. His deep knowledge of TACO, tensor computations, and formats

was invaluable and it was great working with him.

I would like to thank Willow Ahrens for many discussions on Tensor algebra, and

helping with many technical questions around both Finch and Julia.

I would also like to thank all of the other members of the COMMIT group for

their camaraderie. Especially with starting Graduate school during a pandemic, it

was great to have virtual events which gradually have changed back to in-person.

I would like to thank my parents and brothers for all their love and support,

and always asking about my research and being genuinely interested, even when my

descriptions start out too technical.

Last but not least, I’d like to thank my wife Jamie for encouraging me to start

this journey and for all of the unending love and support.

5



6



Contents

1 Introduction 13

2 Background 17

2.1 Lossless Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.1 RLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.2 LZ77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Sparse Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Sparse Tensor Algebra Compilation . . . . . . . . . . . . . . . . . . . 20

3 Representing Generalized Fill Values 23

3.1 Non-Scalar and Dynamic Fills . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Fill Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.2 Dynamic Fills . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Lossless Compression as Level Formats . . . . . . . . . . . . . . . . . 25

3.2.1 Run Length Encoded (RLE) . . . . . . . . . . . . . . . . . . . 25

3.2.2 RLE Variant (Pack-RLE) . . . . . . . . . . . . . . . . . . . . 27

3.2.3 LZ77 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Tracking Dynamic Fill Regions . . . . . . . . . . . . . . . . . . . . . 28

3.4 Appending Dynamic Fills . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Code Generation for Generalized Fills 33

4.1 TACO Code Generation . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Iterating with Dynamic Fills . . . . . . . . . . . . . . . . . . . . . . . 34

7



4.3 Appending Fill Regions . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Optimizing Reductions . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Lossless Compression Using Finch 39

5.1 Background on Looplets . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Lossless Compression using Looplets . . . . . . . . . . . . . . . . . . 40

6 Evaluation 43

6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2 Computing on Compressed Data . . . . . . . . . . . . . . . . . . . . . 43

6.3 Image Processing Applications . . . . . . . . . . . . . . . . . . . . . . 44

6.3.1 Alpha Blending . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.2 Medical Image Edge Detection . . . . . . . . . . . . . . . . . . 47

6.4 Video Processing Applications . . . . . . . . . . . . . . . . . . . . . . 47

6.4.1 Brightening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4.2 Compositing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Looplets and Finch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

7 Related Works 53

7.1 Lossless Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7.2 Compressed Domain Processing . . . . . . . . . . . . . . . . . . . . . 54

7.3 Sparse Programming . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8 Conclusion 57

8



List of Figures

2-1 The same tensor stored in two different formats. . . . . . . . . . . . . 19

2-2 Coordinate hierarchy representations of the same sparse tensor stored

in two different formats. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2-3 Decomposition of CSR into level formats, and corresponding level func-

tions that specify how the associated data structures can be efficiently

accessed and assembled. . . . . . . . . . . . . . . . . . . . . . . . . . 21

3-1 Tensors that represent real-world data may contain various kinds of

repetitions. Existing sparse tensor algebra compilers like TACO can

efficiently handle sparse tensors that contain mostly any single specific

value (zero or nonzero) but cannot efficiently work with tensors that

contain many distinct repeated (sequences of) values. . . . . . . . . . 24

3-2 Our generalization of fill values supports non-scalar fills (fill regions)

and different fills for different parts of a tensor (dynamic fills). . . . . 24

3-3 An example of a vector stored in the RLE level format, with each run of

identical elements represented as a defined value followed by fills that

have the same value. This variant of RLE explicitly stores the start

and end coordinates of each run (other than the end coordinate of the

last run, which is assumed to be the size of the stored dimension). The

length of each run can be computed by taking the difference between

the start and end coordinates. . . . . . . . . . . . . . . . . . . . . . 25

9



3-4 An example of a vector stored in the Pack-RLE format. Raw values are

represented as defined values, and repetitions, encoded using a repeat

token, are represented as fill values. . . . . . . . . . . . . . . . . . . 26

3-5 An example of a vector stored in the LZ77 level format, with raw values

represented as defined values and repetitions (encoded by repeat to-

kens) represented as fill regions. The LZ77 sequence is a,b,c,⟨8,3⟩,⟨2,6⟩.

Elements shaded gray in the vals array have high bits of one and de-

note the starts of repeat tokens. This variant of LZ77 stores distances

𝑑 that represent relative offsets within the values array as opposed to

offsets within the partially decoded sequence of elements. . . . . . . 28

4-1 Excerpt of code that our technique generates to add two LZ77 vectors,

with the result also stored in LZ77. . . . . . . . . . . . . . . . . . . . 34

4-2 Code that our technique generates to add two RLE vectors, with the

result also stored in RLE. . . . . . . . . . . . . . . . . . . . . . . . . 35

4-3 When adding a vector containing repetitions of three elements to a

vector containing repetitions of two elements, the resulting vector must

contain repetitions of 𝐿𝐶𝑀(2, 3) = 6 elements. Our technique exploits

this to emit code that optimizes computations with fill values. . . . . 37

4-4 When performing a reduction on two vectors, there is repeated mul-

tiplication from values within a fill region. Our technique is able to

optimize reduction operations by factoring out the repeated multipli-

cation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5-1 The Finch rewrite rule to factor out repeated multiplication. . . . . . 41

6-1 Performance of micro-benchmarks on synthetic data. . . . . . . . . . 45

6-2 Results of alpha blending experiments. . . . . . . . . . . . . . . . . . 46

6-3 Results of edge detection experiments. . . . . . . . . . . . . . . . . . 46

6-4 Storage size of each saved file format for brighten. . . . . . . . . . . . 48

10



6-5 Execution time of performing the subtitle computation where the files

are saved in the LZ77 format. . . . . . . . . . . . . . . . . . . . . . . 48

6-6 Execution time of performing the brightening computation directly on

the saved file format. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6-7 Execution time of performing the subtitle computation directly on the

saved file format. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6-8 Compression ratio of matrices used for matrix vector product. . . . . 50

6-9 Relative time of matrix vector product. . . . . . . . . . . . . . . . . . 50

11



12



Chapter 1

Introduction

Data, either extracted from nature or artificially generated, are seldom random but

often contain repeated patterns. Two distinct approaches, namely lossless data com-

pression and sparse programming, have evolved over the years to take advantage

of such repeated patterns, enabling large data sets to be transmitted, stored, and

computed on efficiently while fully preserving the integrity of the data.

Lossless compression techniques work by using shorter code words to represent

repeated patterns in the input, thus preventing them from having to be redundantly

stored. Examples of lossless compression techniques include run-length encoding

(RLE) and Lempel-Ziv (LZ77) compression [56], which are building blocks in many

commonly used data formats such as PNG for images and ZIP for archive files.

By contrast, sparse programming, which is extensively used in linear/tensor al-

gebra and array computing, exploits the fact that many tensors/arrays representing

natural or synthetic data contain mostly zeros (i.e., are sparse). Sparse programming

systems can exploit this property to reduce storage cost by storing sparse tensors in

specialized data formats like compressed sparse row (CSR) [53] and compressed sparse

fiber (CSF) [47], which make the zeros implicit and only explicitly store nonzero en-

tries. Furthermore, sparse programming can reduce the cost of computing with large

data sets by orders of magnitude by also exploiting algebraic properties of the com-

putation. For instance, since multiplying any value by zero yields zero, multiplying

two large sparse tensors can be done efficiently by only accessing and computing with

13



the nonzero entries of the two tensors.

Unfortunately though, lossless compression and sparse programming techniques

have developed largely independently, and consequently existing libraries and frame-

works that utilize these techniques suffer from various limitations. For one, except

for in a few domain-specific cases, existing systems that utilize lossless compression

techniques haven’t progressed to directly compute on compressed data; instead, they

must first decompress the data before computing with it. Meanwhile, existing sparse

programming systems, including hand-implemented libraries like Intel MKL [27] and

compilers like TACO [30, 16, 25], cannot efficiently store and compute with data that

have many different repeated nonzeros, since sparse data representations only com-

press out zeros. Furthermore, existing systems cannot simultaneously compute with

losslessly compressed data representations (like RLE and LZ77) and sparse data rep-

resentations (like CSR and CSF) efficiently. A programming system that addresses all

these limitations and that can efficiently compute with both sparse and compressed

data requires well-optimized kernels to perform the computations. Such kernels are

difficult and tedious to implement and optimize by hand, since they are typically

much more complex than what are needed to perform the same computations with

uncompressed data.

In this thesis, we propose a compiler technique to automatically generate efficient

code that directly perform user-specified (tensor algebra) computations on any com-

bination of losslessly compressed and sparse inputs on arbitrary types. The key idea

behind our technique is to generalize the notion of sparsity by allowing different re-

gions of a tensor to have different values that are treated similar to "zeros" (i.e., fill

values) and compressed out in storage. We show how variants of algorithms like RLE

and LZ77 can be viewed as sparse tensor formats that support this expanded notion

of sparsity, allowing a compiler to reason about lossless compression techniques in

exactly the same way as more typical sparse tensor representations like CSR. This,

in turn, lets the compiler use the same mechanism to generate efficient code for com-

puting with compressed data as well as to generate code for computing with sparse

data. Specifically, our contributions include:

14



• A generalized notion of sparsity that allows repeated sequences of nonzeros to

be compressed out (i.e., fill regions) and that allows a sparse tensor to have

different fill values in different regions of the tensor (i.e., dynamic fills);

• New abstractions that capture lossless compression algorithms like RLE and

LZ77 as sparse tensor representations that support dynamic fill regions; and

• A unified mechanism for generating efficient code that directly compute with

losslessly compressed data and sparse data.

We implement our technique, which generalizes those described in [25] and [16],

first as a prototype extension to the TACO sparse tensor algebra compiler. Our

evaluation shows that our technique generates code that are up to 16× faster than

both TACO-generated dense kernels and OpenCV [15]. While computing directly on

compressed data is sometimes slower than processing densely stored data, we see that

the former approach yields end-to-end speedups over the latter approach in all but

one case (where the performance is equivalent), as the latter approach incurs overhead

for decompressing and recompressing data. We also include implementations of our

RLE formats within the Finch [7] compiler for the Looplets language. The Looplets

language further generalizes our abstractions, and more allows the optimizations we

describe to be more easily implemented. We show how our formats enable compression

ratios up to 25× and run-time speedups up to 3.1× over dense computation for

reduction computations.

15
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Chapter 2

Background

We briefly describe lossless compression and sparse programming, which are two dis-

tinct approaches for efficiently storing and computing with large data sets that contain

repeated patterns. We also provide an overview of the TACO sparse tensor algebra

compiler, which our technique extends.

2.1 Lossless Compression

Lossless compression algorithms, such as RLE and LZ77 compression, work by using

shorter code words to represent repeated patterns in the input, thus preventing the

repeated patterns from having to be redundantly stored.

2.1.1 RLE

RLE encodes contiguous sequences of repeated values as a single copy of the repeated

value along with a count of how many times the value is repeated. Thus, a sequence

such as 1,1,1,3,3,3,3 can be encoded using RLE as ⟨1,3⟩,⟨3,4⟩, which is a more

compact representation. In this example, the count is stored explicitly, however there

is significant flexibility in how the data and run lengths can be stored, as will be

discussed when introducing our variants of RLE in Section 3.2.1 and Section 3.2.2.

While RLE is a conceptually simple technique, it is not a single format, as there are

17



multiple ways to represent both the values and runs.

2.1.2 LZ77

LZ77 generalizes RLE by allowing repetitions of multi-valued sequences to be ef-

ficiently encoded. Data encoded using LZ77 consists of two kinds of tokens: value

tokens and repeat tokens. When decoding LZ77-compressed data, value tokens, which

store uncompressed subsets of the original data, are directly copied to the output.

On the other hand, a repeat token ⟨c,d⟩, which consists of a count 𝑐 and a distance

𝑑, is decoded by copying 𝑐 values starting at an offset of 𝑑 values from the end of

the partially decoded output. A key aspect of the LZ77 algorithm is that 𝑑 can be

smaller than 𝑐 in a repeat token, which implies that the sequence of values starting

from offset 𝑑 is repeated until 𝑐 values are copied to the output. Thus, a sequence

such as 1,2,3,1,2,3,1,2,3 can be encoded using LZ77 as 1,2,3,⟨6,3⟩, with all but

the first occurrence of the sequence 1,2,3 encoded as repeats.

Though most existing frameworks that utilize lossless compression work with com-

pressed data by first decompressing the data before computing with it, [52] describes

an approach for performing streaming computations directly on LZ77 compressed

data. The key idea behind the approach is that many computations preserve repe-

titions that exist in the input, so one can avoid recomputing with repeated data by

copying repetitions directly into the output. So to increment every element in the

LZ77-compressed sequence 1,2,3,⟨6,3⟩, for instance, one can directly compute on

the compressed representation by simply incrementing the value tokens and copy-

ing over the repeat token. This produces the output sequence 2,3,4,⟨6,3⟩, which

correctly encodes the result of the computation as if it was performed on the decom-

pressed input and then recompressed.
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2.2 Sparse Programming

Sparse programming systems, on the other hand, are optimized to compute with ten-

sors (multidimensional arrays) that contain mostly repeated zeros by storing such

sparse tensors in specialized formats that avoid materializing the zeros. There exists

many formats for storing sparse tensors, including CSR, CSF, and the coordinate

format (COO) [10], as illustrated in Figure 2-1. These formats use different data

structures to store coordinates of nonzeros and differ in how stored values can be effi-

ciently iterated and accessed, but all of these formats share the key characteristic that

only nonzero entries are explicitly stored in memory. Sparse programming systems

exploit this characteristic along with algebraic properties of the computation (such as

the fact that multiplication by zero always yields zero) in order to avoid computing

with zeros, thereby minimizing execution time. Sparse tensor formats also reduce

data movement as only nonzeros and their coordinates are loaded from memory.

While most existing sparse linear/tensor algebra libraries only support sparse

tensors that have zeros as fill values (i.e., the compressed out values), some sparse

programming systems, such as GraphBLAS [37, 28, 17] and TACO, support an ex-

tended notion of sparsity where any value can be the fill value. A single value—the fill

value—across the entire data can be elided. Under this model, one can also optimize

computations other than multiplication or addition when the fill value of the sparse

operands equals the computation’s annihilator (i.e., any value that, when operated

on, produces itself as the result). For example, computing the element-wise maximum

of two sparse tensors that have ∞ as fill values can be done by only accessing and

computing with the finite entries of the tensors, since the max function has ∞ as its

annihilator (i.e., max(∞, 𝑐) = ∞ for any 𝑐).
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2.3 Sparse Tensor Algebra Compilation

Chou et al. [16] describe how sparse tensors stored in different formats can be rep-

resented by coordinate hierarchies with varying structures that capture how stored

nonzeros are physically organized and encoded in memory. Figure 2-2 shows coordi-

nate hierarchies that represent the same tensor stored in two different formats. Each

level in a coordinate hierarchy encodes stored coordinates along one dimension of the

tensor, and each path from the root to a leaf of the coordinate hierarchy represents a

stored nonzero.

Under the coordinate hierarchy abstraction, sparse tensor formats can be decom-

posed into level formats that each stores a level of a coordinate hierarchy. As Figure 2-

3 illustrates, for instance, the CSR format can be expressed as a composition of the

dense level format, which stores the row dimension of a matrix, and the compressed1

level format, which stores the column dimension. Different level formats may use

different data structures to store tensor dimensions. The dense level format, for ex-

ample, encodes coordinates along a dimension as a contiguous range from 0 to 𝑁 . By

contrast, the compressed level format stores coordinates of nonzeros in segments of a

crd array, with the bounds of each segment encoded in a pos array. However, all level

formats implement the same interface, which exposes the level format’s capabilities as

sets of level functions that describe how underlying data structures can be accessed.

For instance, the compressed level format supports the coordinate position iteration

capability and the coordinate append capability. The coordinate position iteration

1The name of the compressed level format does not imply that it utilizes (lossless) compression,
but rather that coordinates of zero entries are omitted.
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pos_access(p2, i1):
  return <crd[p2], 
          true>;

pos_bounds(p1):
  return <pos[p1], 
          pos[p1+1]>;

4N

locate(p0, i1):
  return p0 * N + i1;

B(i1,i2)

dense compressed

pos 0 2 53

crd 0 1 01 2

8

1 2 3

insert_coord(p1, i1):
  return; append_coord(p1, i1):

  crd[p1] = i1;

append_edges(p0, pb1, pe1):
  pos[p0+1] = pe1 - pb1;

Figure 2-3: Decomposition of CSR into level formats, and corresponding level func-
tions that specify how the associated data structures can be efficiently accessed and
assembled.

capability is implemented by two level functions (pos_bounds and pos_access) that

together describe how coordinates stored consecutively within a coordinate hierarchy

level can be efficiently iterated. Similarly, the coordinate append capability is imple-

mented by a set of level functions (append_coord and append_edges) that together

describe how coordinates of nonzeros can be appended to a coordinate hierarchy level.

The coordinate hierarchy abstraction lets a compiler generate efficient code to

compute with sparse tensors in arbitrary formats, without any of the formats being

hard-coded into the compiler. In particular, the compiler can first emit code that

invokes the format’s capabilities in order to traverse coordinate hierarchies that rep-

resent the operands. Then, invocations of those capabilities can simply be replaced

by the operand format’s implementations of the capabilities, resulting in code that is

specialized to the operands’ formats.
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Chapter 3

Representing Generalized Fill Values

As mentioned previously though, existing sparse tensor algebra compilers such as

TACO only effectively support data representations like CSR and COO that com-

press out a single fill value. However, as Figure 3-1 illustrates, tensors that arise in

many application domains often contain multiple distinct values (or even sequences

of values) that are repeated. Animated videos and cartoon images, for instance, often

contain many regions of duplicated pixels, with each region having pixels of a different

color.

In this section, we first propose a generalization of fill values that can more ef-

ficiently encode repetitions of multiple distinct values in sparse tensors. We further

propose new level formats that use variations of RLE and LZ77 in order to losslessly

compress stored values, and we show how these level formats can be viewed as for-

mats that efficiently store generalized fill values. Finally, we describe an extension to

the level format abstraction described in [16] that fully captures how generalized fill

values stored in our new level formats can be efficiently accessed and modified. Our

technique is applicable to both integral and floating-point data, though it is better

suited to integral data since small fluctuations in otherwise identical floating-point

values can result in little or no exact repetition.
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3.1 Non-Scalar and Dynamic Fills

While sparse tensors are typically modeled as consisting of a single value (i.e., the fill

value) that can be compressed out in storage, we generalize this model in two ways

by introducing the concepts of fill regions and dynamic fills.

3.1.1 Fill Regions

Fill regions generalize the notion of sparsity by allowing for non-scalar fills. Con-

ceptually, a fill region is a simply a sequence of values that is tiled over an entire

tensor. At coordinates where there are no other explicitly defined values, the tensor

assumes the values of the fill region. The number of values in a fill region is referred

to as the fill region’s size. (A scalar fill value can be viewed as a fill region of size

1.) Figure 3-2a shows an example of a sparse tensor with a fill region of size 2 and

illustrates how sequences of values can be replicated across tensors as fill regions.
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Figure 3-3: An example of a vector stored in the RLE level format, with each run of
identical elements represented as a defined value followed by fills that have the same
value. This variant of RLE explicitly stores the start and end coordinates of each run
(other than the end coordinate of the last run, which is assumed to be the size of the
stored dimension). The length of each run can be computed by taking the difference
between the start and end coordinates.

3.1.2 Dynamic Fills

Dynamic fills generalize the notion of sparsity by allowing for different parts of a

tensor to have different fill values (or, more generally, fill regions). Conceptually, a

sparse tensor with dynamic fills can be represented as a set of defined values in the

tensor and a map from subsets of the tensor to their corresponding fill values/regions.

Figure 3-2b shows an example of a sparse tensor that contains two distinct fill regions.

3.2 Lossless Compression as Level Formats

As mentioned previously, RLE and LZ77 are two examples of commonly used lossless

compression algorithms. We propose three new level formats that implement variants

of these algorithms, and we show how these level formats can be viewed as storing

tensors with generalized fills.

3.2.1 Run Length Encoded (RLE)

Run length encoding formats typically explicitly store the run-length associated with

each value, either in a single data stream, or with the values and run lengths stored

separately. In Figure 3-3, we demonstrate a variant of RLE as a level format that can

25



vals

pos 0

ba    3 c     5 

da ddcb d d

8

d

Figure 3-4: An example of a vector stored in the Pack-RLE format. Raw values
are represented as defined values, and repetitions, encoded using a repeat token, are
represented as fill values.

efficiently store a one-dimensional tensor (vector) containing many distinct runs of

repeated values. This level format uses the same data structures as the compressed

level format (in particular, the crd and pos arrays) to store the coordinates of defined

values. In contrast to the compressed level format though, which simply interprets

each stored coordinate (and associated value) as a nonzero, the RLE level format

additionally interprets each stored coordinate as a point in the tensor where the fill

value changes to being the stored value. This defines the run-lengths implicitly, using

the coordinates from the crd array to store when the value stored changes, instead of

storing an explicit length. When iterating over a tensor stored in our RLE format, the

value at each non-defined coordinate can then be assumed to be the last explicitly-

stored value that was accessed. In this way, distinct runs of repeated values stored in

our RLE format can simply be interpreted as dynamic fill values.

The RLE level format can be used to represent any dimension of a tensor. When

used to store the innermost dimension of a tensor, the level format efficiently stores

repetitions of scalar fill values. When used to store other dimensions, however, the

level format can efficiently store repetitions of fill regions. For example, color images

can be viewed as 𝑊 × 𝐻 × 3 tensors, with the innermost dimension representing

the three color values for each pixel. By storing the 𝐻 dimension as RLE, one can

efficiently represent repetitions of entire pixels instead of just individual color values.
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3.2.2 RLE Variant (Pack-RLE)

The level format described in Section 3.2.1 is one possible implementation of RLE,

however it does not have the best performance in all cases. For example, when there

a fewer runs in data, a format which can store sequences of incompressible values can

have a better compression ratio by avoiding the storage of many coordinate values.

We implemented a second RLE format named Pack-RLE, based on the Packbits

format [4], which can store both incompressible sequences and runs.

Packbits uses a single header byte to distinguish between sequences of uncom-

pressed bytes and a repeated byte. This format is limited to compressing sequences

of bytes with sequences or runs of length 128. We extend this format, shown in

Figure 3-4, by using a two byte header, which encodes the length of either a run or

sequence using the number of values. This allows our format to work for any type,

and to represent longer sequences and runs when compared to Packbits. A high bit

of zero in the header indicates the remaining bytes encode a count 𝑛, where the fol-

lowing 𝑛 elements are distinct uncompressed values. A high bit of one in the header

encodes the run length 𝑐 using the remaining bits of the following element follow-

ing the header. As shown in Figure 3-4, each run can be interpreted as a point in

the tensor where the fill region dynamically changes to the repeated element. The

uncompressed sequences are then defined entries in the tensor.

3.2.3 LZ77

Figure 3-5 shows how a level format that implements a variant of LZ77 can efficiently

store a vector that contains many repeated sequences of values. The level format

stores both values and repeats as sequences of elements within the values array. As

with the RLE format described in Section 3.2.2, our LZ77 format uses a two byte

header to differentiate between uncompressed sequences and repeated values. Raw

values are represented by a two-byte element that has a high bit of zero and that

encodes a count 𝑛 using the remaining bits, followed by 𝑛 elements that each stores

a distinct uncompressed value. On the other hand, each repeat token ⟨c,d⟩ is repre-
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Figure 3-5: An example of a vector stored in the LZ77 level format, with raw values
represented as defined values and repetitions (encoded by repeat tokens) represented
as fill regions. The LZ77 sequence is a,b,c,⟨8,3⟩,⟨2,6⟩. Elements shaded gray in
the vals array have high bits of one and denote the starts of repeat tokens. This
variant of LZ77 stores distances 𝑑 that represent relative offsets within the values
array as opposed to offsets within the partially decoded sequence of elements.

sented by a two-byte element that has a high bit of one and that encodes 𝑐 using the

remaining bits, followed by another two-byte element that stores 𝑑. As Figure 3-5

illustrates, the repeat token can then be interpreted as a point in the tensor where

the fill region dynamically changes to being the 𝑐 values starting at 𝑑 bytes prior in

the values array. The raw values, on the other hand, can be interpreted as defined

entries of the tensor.

3.3 Tracking Dynamic Fill Regions

In order to generate code to iterate over level formats that encode dynamic fills,

a compiler must be able to emit code that keeps track of the current fill region.

To enable this, we extend the level format abstraction with a new capability that

captures how the fill region can be tracked at runtime during iteration. We define

this capability as a single function:

fill_region(p𝑘, i1, · · ·, i𝑘, vals) -> <sp, sz, found>

This function takes, as inputs, a position p𝑘 in a coordinate hierarchy level, the

coordinates (i1, ..., i𝑘) of the subtensor encoded at position p𝑘, and a reference vals
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to the values array of the tensor. And, as outputs, the function is expected to return

whether or not the fill region changes at position p𝑘 (i.e., found) and, if so, also return

the new fill region itself (stored in an array of size sz referenced by the pointer sp).

The capability to keep track of fill regions can be implemented for the RLE level

format as follows:

fill_region(p𝑘, i1, · · ·, i𝑘, vals):

return <&vals[p𝑘 * size], size, true>

Since each stored coordinate also implicitly encodes a point where the fill region

changes, the function always returns found as true and sets the new fill region to be

the segment of the values array that corresponds to the coordinate stored at position

p𝑘. When the level format is used to store the innermost dimension of a tensor, the

value of size is 1 as the repetitions are of scalar values. However, when the level

format is used to store other dimensions, size instead reflects the number of values

that are in each subtensor stored by the level format. So if, for instance, the RLE level

format is used to store the 𝐻 dimension of a 𝑊 ×𝐻 × 3 tensor (and the innermost

dimension is stored densely), then a value of 3 for size would reflect that repetitions

are fill regions of size 3.

We implemented this capability for the Pack-RLE level format as follows:

fill_region(p𝑘, i1, · · ·, i𝑘, vals):

if ((load_uint16(vals, p𝑘) >> 15) & 1) {

int count = load_uint16(vals, p𝑘) & 32767

return <&vals[p𝑘 + 2], count, true>

}

return <0, 0, false>

As our Pack-RLE level represents both repeated values and sequences, it first

checks the 16 bit header to determine if a run is encoded at position 𝑝𝑘. If the header

represents a sequence of values, the function returns found as false. Otherwise, the

repeated value is immediately next to the header, with the count value read from the

remaining 15 bits in the header.
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The same capability can also be implemented for the LZ77 level format as follows:

fill_region(p𝑘, i1, · · ·, i𝑘, vals):

if ((load_uint16(vals, p𝑘) >> 15) & 1) {

int count = load_uint16(vals, p𝑘) & 32767

int dist = load_uint16(vals, p𝑘 + 2)

int size = MIN(count, dist)

return <&vals[p𝑘 - size], size, true>

}

return <0, 0, false>

As with the Pack-RLE level format, this function must first check for the type of the

token that is stored at position p𝑘, since only repeat tokens encode points at which

the fill region changes. If the token is a value token, then the function simply returns

found as false. If the token is a repeat token though, then the function must calculate

the new fill region size and position using the count and the distance encoded by the

repeat token, which corresponds to the replicated values.

3.4 Appending Dynamic Fills

In order to support computations that store results in formats with dynamic fills, a

compiler must also be able to emit code that inserts new fill regions into the output.

To enable this, we further extend the level format abstraction with another new

capability that captures how to append a new fill region to the output. We also

define this capability as a single function:

append_fill_region(p𝑘, sp, sz, cnt, vals) -> void

This function takes, as arguments, the current end position p𝑘 of a level in the output’s

coordinate hierarchy representation, the new fill region to be appended (stored in an

array of size sz referenced by sp), and the number cnt of output elements that this

new fill region (assuming it encodes a repeated sequence of values) is actually meant

to represent. Additionally, vals is a reference to the output values array.
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The capability can be trivially implemented for the RLE level format as a no-op,

since the format stores fill regions implicitly. On the other hand, since both the Pack-

RLE and LZ77 level formats encode fill regions as explicit tokens in the tensor, the

fill append capability can be implemented to set the token as appropriate.

The Pack-RLE level format implements this by appending the count with the high

bit set.

append_fill_region(p𝑘, sp, sz, cnt, vals):

store_uint16(vals, p𝑘, cnt | 32768)

p𝑘 += 2

For the LZ77 level format this capability is implemented by simply appending a

repeat token to the values array, as follows:

append_fill_region(p𝑘, sp, sz, cnt, vals):

store_uint16(vals, p𝑘, cnt | 32768)

store_uint16(vals, p𝑘 + 2, p𝑘 - sp)

p𝑘 += 4

As we will show in Section 4.3, this enables a compiler to, by only reasoning about

appending new fill regions, emit code that copies repetitions in the inputs directly to

the output. This, in turns, makes it possible to generate code that directly compute

on compressed data without first decompressing it.
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Chapter 4

Code Generation for Generalized Fills

In this section, we show how our technique uses the abstractions we defined in Chap-

ter 3 in order to generate code that compute on sparse tensors with dynamic fill

regions and, by extension, generate code that efficiently compute on losslessly com-

pressed data.

4.1 TACO Code Generation

Our technique, which builds on the technique described in [25], takes as input a tensor

index notation statement that declaratively defines the tensor algebra computation

to be performed. For instance, computation that alpha blends two tensors can be

expressed in tensor index notation as 𝐶𝑖𝑗𝑐 = 𝛼𝐴𝑖𝑗𝑐+(1−𝛼)𝐵𝑖𝑗𝑐, where the subscripts

represent index variables used to access the modes of each tensor. To generate code,

the compiler first lowers the tensor index notation statement down to concrete index

notation, which is an IR that explicitly specifies the order of iteration over dimensions

of the operands. So, for example, the alpha blending computation defined previously

can be lowered to the concrete index notation statement ∀𝑖∀𝑗∀𝑐 𝐶𝑖𝑗𝑐 = 𝛼𝐴𝑖𝑗𝑐 + (1−

𝛼)𝐵𝑖𝑗𝑐.

The code generator then traverses the foralls (i.e., the ∀s) in order. For each

forall (over dimension 𝐼), the code generator emits a loop (or multiple loops) that

simultaneously iterates over the operands along dimension 𝐼. Within the loop(s), the
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1 while (piB < B1_pos[1] && piC < C1_pos[1]) {
2 if (i == iB && iBVals == 0) {
3 iB = B1Crd;
4 if (load_uint16(B_vals, piB) >> 15 & 1)
5 == 0) {
6 iBVals = load_uint16(B_vals, piB);
7 piB += 2;
8 B1Crd += iBVals;
9 }

10 if (load_uint16(B_vals, piB) >> 15 & 1)
11 == 1) {
12 int32_t count =
13 load_uint16(B_vals, piB) & 32767;
14 int32_t dist = load_uint16(B_vals,
15 piB + 2);
16 BFillSize = MIN(B1Count, B1Dist);
17 BFillRegion = &B_vals[piB - B1_dist];
18 B1Crd += count;
19 piB += 4;
20 B1Found = true;
21 } else {
22 B1Found = false;
23 }
24 if (B1Found) {
25 iB = B1Crd;
26 BFillIndex = 0;
27 BFillValue = BFillRegion[0];
28 }
29 }
30 ...
31 if (BVals == 0)
32 BFillIndex = (BFillIndex + (i - iPrev))
33 % BFillSize;
34 ...
35 if (iB == i && iC == i && iBVals != 0 &&
36 iCVals != 0) {
37 store_uint16(A_vals, piA, 1);
38 A_vals[piA + 2] = B_vals[piB] +
39 C_vals[piC];
40 piA += 2;

41 piA++;
42 }
43 ...
44 else {
45 int32_t lengthsLcm =
46 LCM(BFillSize, CFillSize);
47 int32_t coordMin = MIN(iB, iC);
48 int32_t loopBound = i + lengthsLcm;
49 int32_t startVar = piA;
50 while (i < MIN(coordMin, loopBound)) {
51 store_uint16(A_vals, piA, 1);
52 A_vals[piA + 2] =
53 B_vals[piB] + C_vals[piC];
54 piA += 2;
55 piA++;
56 BFillIndex = (BFillIndex + 1)
57 % BFillSize;
58 CFillIndex = (CFillIndex + 1)
59 % CFillSize;
60 i++;
61 }
62 iPrev = i;
63 if (MIN(coordMin, loopBound)
64 == loopBound) {
65 int32_t runValue = coordMin - i;
66 store_uint16(A_vals, piA,
67 runValue | 32768);
68 store_uint16(A_vals, piA + 2,
69 piA - startVar);
70 piA += 4;
71 i = coordMin;
72 }
73 continue;
74 }
75 piB += (int32_t)(iB == i);
76 iB += (int32_t)(iB == i);
77 piC += (int32_t)(iC == i);
78 iC += (int32_t)(iC == i);
79 iPrev = i++;
80 }

Figure 4-1: Excerpt of code that our technique generates to add two LZ77 vectors,
with the result also stored in LZ77.

code generator also emits if statements that, based on which operands actually contain

defined values in a particular iteration of the loop, perform the specified computation

with defined values from those operands (and fill values from the remaining operands).

In addition, the code generator emits code that appends computed values to the result

tensor.

4.2 Iterating with Dynamic Fills

To support computations on sparse tensors with dynamic fills though, our tech-

nique also emits code that keeps track of each input tensor’s current fill value as the
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1 while (piB < B1_pos[1] && piC < C1_pos[1]) {
2 int32_t iB = B1_crd[piB];
3 int32_t iC = C1_crd[piC];
4 int32_t i = min(iB,iC);
5 if (iB == i) {
6 BFillValue = (&(B_vals[piB]))[0];
7 if (iC == i) {
8 CFillValue = (&(C_vals[piC]))[0];
9 if (iB == i && iC == i) {

10 A_vals[piA] = B_vals[piB] + C_vals[piC];
11 } else if (iB == i) {
12 A_vals[piA] = B_vals[piB] + CFillValue;
13 } else {
14 A_vals[piA] = BFillValue + C_vals[piC];
15 }
16 A_crd[piA++] = i;
17 piB += (int32_t)(iB == i);
18 piC += (int32_t)(iC == i);
19 }

Figure 4-2: Code that our technique generates to add two RLE vectors, with the
result also stored in RLE.

tensors are iterated over. In general, such code must keep track of each tensor’s cur-

rent fill region as well as track the position of the current fill value within the current

fill region.

To keep track of a tensor 𝐵’s current fill region, the generated code maintains a

pointer (BFillRegion) to the start of the fill region and a variable (BFillSize) that

keeps track of the size of the fill region. The generated code keeps these variables

updated for each input tensor by invoking the fill_region level function whenever

any element in the tensor is accessed. If the level function reports that the fill region

for tensor 𝐵 has changed, then BFillRegion and BFillSize are updated to store

the new fill region returned by the level function. Lines 9–24 in Figure 4-1 show an

example of code that our technique emits for tracking an LZ77 tensor’s current fill

region.

To track the position of a tensor 𝐵’s current fill value within the current fill region,

the generated code additionally maintains a variable (BFillIndex) that indexes into

the fill region. This index is initialized to zero whenever the fill region changes, so

that the index points to the start of the new fill region. Then, when iterating over

the tensor, the generated code conceptually increments the index by one (potentially

with wraparound) for every element of the tensor that follows the point where the

fill region last changed. (To account for the fact that some elements may be skipped
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when iterating over the tensor though, the generated code compensates by instead

incrementing the index by the number of elements that were skipped.) Lines 27–28

and 47–48 in Figure 4-1 show an example of code that our technique emits for tracking

the position of an LZ77 tensor’s current fill value within the current fill region.

Our technique can additionally exploit properties of the operands’ format in order

to further optimize computations with dynamic fills. For example, when the size of

a tensor’s fill region is statically known to be one (as is the case with the RLE level

format when used to store the innermost dimension, for instance), there is no dis-

tinction between the fill regions and fill values. Thus, in this case, the code generator

does not need to emit code to keep track of the position of the tensor’s current fill

value within the current fill region. Preconditions that need to be satisfied for such an

optimization can be checked by statically analyzing the definition of fill_region to

see if the function returns the required values for sz. Figure 4-2 shows an example of

how our technique applies the optimization to generate efficient code that computes

on RLE-compressed data.

4.3 Appending Fill Regions

If the result of an element-wise computation is stored in a format that supports

appending dynamic fill regions, our technique further optimizes the emitted code by

minimizing the amount of computation with fill values. At coordinates where none of

the input tensors have defined values, the generated code must use the input tensors’

fill values to compute elements of the result. As Figure 4-3 illustrates though, since fill

values of a tensor with fill region of size 𝑆 repeat after every 𝑆 elements (by definition),

values of the result must therefore also repeat after every 𝐿 elements, where 𝐿 is the

least common multiple (LCM) of the input tensors’ fill region sizes. Thus, if more

than 𝐿 consecutive elements of the result are computed from just the input tensors’

fill values, the generated code instead only computes the first 𝐿 elements.

As the fill region sizes can be a dynamic property of the input tensors, this LCM

computation must be done at runtime by the generated code. When computing with
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Figure 4-3: When adding a vector containing repetitions of three elements to a vector
containing repetitions of two elements, the resulting vector must contain repetitions
of 𝐿𝐶𝑀(2, 3) = 6 elements. Our technique exploits this to emit code that optimizes
computations with fill values.

formats with only static fill region size, such as RLE, are able to elide the LCM

computation from the generated code by pre-computing its value statically. Then,

the generated code appends those elements to the output tensor as a new fill region

by invoking the append_fill_region level function.

Lines 38–59 in Figure 4-1 shows how our technique applies this optimization to

generate code that directly computes on LZ77-compressed data and produces a com-

pressed output without ever materializing uncompressed versions of the inputs or

output, following the same general approach as [52]. Lines 42–50 in Figure 4-1 com-

pute the 𝐿 necessary values, and lines 52–58 invoke the append_fill_region level

function. Similarly, Figure 4-2 shows how our technique applies the same optimization

to generate code that directly computes on RLE-compressed data.

4.4 Optimizing Reductions

When computing the result of a reduction, such as 𝑎 = 𝑏𝑖𝑐𝑖, the compiler is able to

reduce the computation cost by factoring out repeated multiplication as in Figure 4-

4. When there is a fill region in one input tensor and dense values in another input

tensor, we can factor out repeated multiplication by the values in the fill region. This

optimization also applies with a scalar fill value, as in traditional sparse formats, and

is beneficial when the fill value is not an annihilator.
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=
56(5+4+2+5+4+0)×1 + (1+0+3+4+5+5)×2 =

Figure 4-4: When performing a reduction on two vectors, there is repeated multipli-
cation from values within a fill region. Our technique is able to optimize reduction
operations by factoring out the repeated multiplication.

When there are multiple fill regions involved in a reduction computation, we can

further optimize the computation. The compiler can first generate code to calculate

the output obtained by performing the element-wise multiplication between the input

tensors. Both the length of the resulting pattern, and the number of elements which

are repeated are calculated as in section 4.3. The reduction of the element-wise

intermediate result is multiplied by the number of repetitions to calculate the final

value of reducing the input fill regions. This reduces the total cost of computing

reductions when there are multiple fill regions.

For computations with both multiple fill regions and dense inputs, both of the

above optimizations are applied. First, the generated code produces the element-wise

output of the multiplication operation for all of the fill regions. This single repeated

pattern can then be reduced with the dense outputs as described above, by factoring

out repeated multiplication.

While reduction operations do not directly result in compressed outputs, the above

optimizations reduce the computation cost of computing with compressed inputs.

This is in addition to the reduced cost of data movement of compressed input tensors.
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Chapter 5

Lossless Compression Using Finch

Our new abstractions make it possible to represent lossless compression formats within

TACO, however it required significant engineering effort to produce a prototype com-

piler implementing our techniques. In addition to the new capabilities, to achieve the

best performance on the LZ77 and Pack-RLE formats required additional extensions

to efficiently iterate the densely stored regions. The optimizations described in chap-

ter 4 also required integration into the compiler itself, though they apply to any new

formats added. Composability with other new techniques, such as for ragged [23] or

symmetric arrays [43] is also a challenge, as these techniques are separate compiler

extensions which require significant effort to merge. A new langauge, Looplets [7],

and its associated compiler Finch, aims to solve many of these issues with a new

representation of array structure.

5.1 Background on Looplets

The Looplet language consists of looplets which describe abstract sequences of values,

and are combined together to create formats using a level hierarchy as in TACO. In

TACO, a level format can only iterate over non-zeros in a few standard ways, where

looplets can be arbitrarily combined to represent values. Within a given level format,

looplets are used to represent regions or sub-regions in that level, and must represent

the full sequence of indices or values. Each region or sub-region is represented with
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their absolute starting and ending index.

The Finch compiler lowers looplets into loop nests which can efficiently co-iterate

many tensors. The values represented by each of the looplets can be static or dynamic.

For example, the run looplet represents a single repeated value, and can be used to

represent the fill value in a sparse tensor. The dense level in TACO can be represented

using the lookup looplet, which represents an arbitrary sequence as a function of the

index. There are also looplets to sequence regions, and to switch between different

cases. The Looplets language can express a wide variety of Tensor formats through

various combinations of the looplets which make up the language.

The Finch compiler also simplifies the implementation of optimizations, by ex-

pressing optimizations as rewrite rules which are applied when lowering tensor com-

putations into loop nests. This makes it possible to generate comparable code to

TACO, as there are included rewrite rules to statically remove computation with an-

nihilator values. This also allows users to implement their own rewrite rules, for their

own logic or functions without needing detailed knowledge of the compiler’s internals.

5.2 Lossless Compression using Looplets

The Looplets language generalizes our techniques for representing sparsity within a

tensor compiler. The run looplet can be used to implement the dynamic fill-values we

describe, including appending fill values when generating compressed outputs. Using

Looplets, each region of fill values within the tensor is replaced with a run which gets

its value from the appropriate level data-structure. Furthermore, the lookup looplet

can be used to represent the dense regions in both the Pack-RLE and LZ77 formats.

Currently, LZ77 is not expressible, as there is no looplet representing repeated

regions of values, however this is a possible language extension. Both the RLE and

Pack-RLE formats are described in the Looplets paper, and we evaluate their perfor-

mance in chapter 6. We also implemented a new format, Repeat-VBL, which extends

the VBL format to represent arbitrary runs in between dense blocks of values instead

of a single default fill value. This required adding an additional array of repeated val-
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@loop i ∈ start:stop b[j] += c * r[i] => if i ̸= j (b[j] += c * acc) where (@loop i ∈ start:stop acc += r[i])

Figure 5-1: The Finch rewrite rule to factor out repeated multiplication.

ues to the VBL format, and modifying the format to use the dynamic value from the

array in the run looplet instead of the static fill value. This format can outperform

our Pack-RLE format, depending on the input data, as it can represent arbitrarily

long regions of runs and dense blocks, where Pack-RLE is limited by the header size.

To achieve the best performance, we also added an additional protocol for iterating

the Pack-RLE and Repeat-VBL formats when the data has both runs and significant

sparsity. Within the new Pack-RLE and Repeat-VBL formats, each run is split into

two cases, a zero-run and a non-zero run. The compiler then automatically applies

existing rewrite rules to elide the zero-run case. This produces code which dynamically

checks the value of the run and only performs computation when necessary. This was

necessary to achieve the best performance compared to sparse formats to further

reduce the computation done.

We also add a rewrite rule implementing the optimization described in section 4.4

to factor out repeated multiplication. The new rule, shown in fig. 5-1, recognizes

when a loop-invariant value is repeatedly multiplied with values in a dense region

and automatically factors out the constant multiplication.
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Chapter 6

Evaluation

We implement our technique as a prototype extension to TACO. We then evaluate it

against TACO without our extension (which supports dense and sparse inputs/out-

puts, but not RLE or LZ77) as well as against the widely used image and video

processing library OpenCV [15]. We find that support for lossless compression is

essential for memory usage and performance in many applications. We also evaluate

our techniques with in the Finch compiler.

6.1 Methodology

We ran our experiments on a dual-socket Intel Xeon E5-2680 v3 machine with 128

GB of main memory and running Ubuntu 18.04.3 LTS. All of our experiments were

run single-threaded, with Turbo Boost disabled and execution restricted to a single

socket using numactl. Unless otherwise noted, all of our experiments were run with

a cold cache, and each experiment was repeated at least ten times.

6.2 Computing on Compressed Data

We first exhibit the flexibility and performance benefits of our techniques with micro-

benchmarks on synthetic data. We measure performance for the following computa-

tions:
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• Scalar multiplication, 𝐴𝑖𝑗 = 𝐵𝑖𝑗 * 𝑐

• Element-wise multiplication, 𝐴𝑖𝑗 = 𝐵𝑖𝑗 * 𝐶𝑖𝑗

• Reduction (matrix-vector product), 𝐴𝑖 = 𝐵𝑖𝑗 *𝐶𝑗, where 𝐶 is stored as an RLE

vector

• Mixed operation (multiplication with a sparse mask), 𝐴𝑖𝑗 = 𝐵𝑖𝑗 * 𝐶𝑖𝑗, where 𝐶

is stored as CSR

We generate integer tensors by first sampling a random value uniformly from the

range 0 to 255 and then determine the number of copies, or run length, of each value

by sampling a random value uniformly from the range 1 to a defined upper limit. We

generate ten random matrices for each run length upper bound of size 10, 000×1, 000.

We show the execution time for each of the operations plotted against the upper bound

of the run length, which approximates the compression factor in Figure 6-1.

There is overhead to computing on compressed data, so for low compression ratios,

depending on the computation, our technique is initially outperformed by computing

on dense tensors. However there is a crossover point after which computing on both

the RLE and LZ77 tensors is faster. For all of the kernels except matrix-vector

product, computing with sparse matrices is significantly worse than computing on

dense matrices, as the matrices have high density. However, the performance of

matrix-vector product also depends on the compression of the RLE vector, which

contributes to higher variability among the Dense and Sparse cases, and also makes

computing on the CSR matrix faster. The LZ77 level format has higher iteration

costs due to the complexity of the format, and it has no representation advantages

over RLE on these generated tensors.

6.3 Image Processing Applications

We evaluate our technique on two kernels used in image processing, namely alpha

blending and edge detection.
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(a) Scalar multiplication

(b) Element-wise multiplication

(c) Matrix-vector product

(d) Element-wise multiplication with a sparse mask

Figure 6-1: Performance of micro-benchmarks on synthetic data.
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(a) Data compression ratio (b) Execution time speedup

Figure 6-2: Results of alpha blending experiments.

(a) Data compression ratio (b) Execution time speedup

Figure 6-3: Results of edge detection experiments.

6.3.1 Alpha Blending

A common operation in the image processing domain is alpha blending, or the

weighted element-wise sum of two images, represented by the following index state-

ment 𝐴𝑖𝑗 = 𝛼𝐵𝑖𝑗 + (1− 𝛼)𝐶𝑖𝑗. We evaluate this operation on pairs of images pulled

from a subset of 2000 images from the sketch dataset from [21]. We report the geo-

metric mean (geomean) speedup and size reduction compared to dense in Figure 6-2.

Our RLE format has the largest geomean speedup of 16.3× faster than dense and

16.1× faster than OpenCV. While these images are very sparse with most of the

pixels being white background, they also have relatively large regions of black. Using

the RLE format, we can gain additional speedups over traditional sparse computing,

with a geomean speedup of 2.5× over CSR.
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6.3.2 Medical Image Edge Detection

A common image processing algorithm used in many fields, including medical images,

is edge detection. We implement boundary edge detection on MRI images as described

in [49]. We further filter the output image by applying a region-of-interest (ROI)

mask, as done in [25]. The expression we compute is 𝑂𝑢𝑡𝑖𝑗 = (𝐴𝑖𝑗 ∧ 𝑅𝑂𝐼𝑖𝑗)⊕ (𝐵𝑖𝑗 ∧

𝑅𝑂𝐼𝑖𝑗) where 𝐴 and 𝐵 are thresholded versions of the original image with 𝑡1 = 75%

used to compute 𝐴 and 𝑡2 = 80% used to compute 𝐵. The ROI used is generated

by placing 4 rectangular regions of interest, each 40×40 pixels, in the center of the

image 20 pixels apart.

We report the geomean size reduction of the input tensors and the geomean

speedup over computing over Dense tensors in Figure 6-3. Using the RLE level for-

mat, we achieve a geomean speedup of 2.6× over Dense, and 1.5× over Sparse. While

performing the computation using OpenCV is faster than the Dense computation

using TACO, mainly due to hand vectorization, we still report a goemean speedup of

1.9× of the RLE format over OpenCV.

6.4 Video Processing Applications

We evaluate our technique on two kernels used in video processing, namely 1) com-

positing two videos together with a mask and 2) brightening the video. We use 12

video clips for our evaluation: four from the 3D-animated film Elephants Dream, four

from the 2D-animated film Sita Sings the Blues, and four stock videos from Pexel. As

all of these videos are in color, a third index variable 𝑐 is used to index the additional

mode of the input and output video frames.

6.4.1 Brightening

This operation does element-wise addition with a constant and truncates the value

at the maximum (i.e., 255, as all of the videos are in 8-bit color).
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Figure 6-4: Storage size of each saved file format for
brighten.

Figure 6-5: Execution time of performing the subtitle com-
putation where the files are saved in the LZ77 format.

6.4.2 Compositing

We test this operation by compositing a subtitle image onto every frame in each of the

videos. The index expression for performing this operation on each frame of the video

is 𝑂𝑢𝑡𝑖𝑗𝑐 = (𝐹𝑖𝑗𝑐 *𝑀𝑖𝑗) + (𝑆𝑖𝑗* !𝑀𝑖𝑗) where 𝐹 is the input frame, 𝑆 is the grayscale

subtitle image, and 𝑀 is the Boolean mask.

6.4.3 Results

Figure 6-4 shows the storage benefits of lossless compression, with both RLE and

LZ77 storing up to an order of magnitude fewer explicit values than the dense rep-

resentations. Figures 6-6 and 6-7 show the execution time of computing directly on

the given formats. While there are cases where the execution time of computing di-

rectly on RLE and LZ77 is faster then Dense or using OpenCV, in many cases the

execution time of computing on the compressed data is slower. As storing video data

as uncompressed is often extremely impractical, a fairer comparison is to the total
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Figure 6-6: Execution time of performing the brightening
computation directly on the saved file format.

Figure 6-7: Execution time of performing the subtitle com-
putation directly on the saved file format.

processing time, which includes both decompression and re-compression. We show a

comparison of computing on dense tensors using both TACO and OpenCV and com-

puting directly on LZ77 in Figure 6-5. Even though the computation time for LZ77

is much longer then any of the other formats, the time necessary for decompression

and re-compression ensures that computing directly on LZ77 is still faster, in all but

one case where the performance is equivalent.

6.5 Looplets and Finch

We evaluate the lossless compressed formats within Finch on the matrix-vector mul-

tiplication kernel 𝑦𝑖 = 𝐴𝑖𝑗 * 𝑥𝑗, where only the matrix 𝐴 is stored in either a sparse

or lossless compressed format. As Finch is written in Julia, we run the benchmark at

least ten times as described above, or for at least five seconds. However, we take the

minimum time to account for the cost of JIT overhead from both the Julia runtime

and Finch compiler for the kernels.

Many machine learning algorithms, including regression algorithms, use matrix
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Figure 6-8: Compression ratio of matrices
used for matrix vector product.

Figure 6-9: Relative time of matrix vector
product.

vector products, and the datasets, while many may be sparse, are also compressible.

The previous experiments only compressed along the rows of the matrices and ten-

sors, however this approach is not as effective with many datasets. The first four

datasets used, Covtype [13], Kddcup [3], and SPGEMM [38], are compressed along

their columns. Compressing along their rows would be significantly less effective as

each column represents distinct data for each sample, so in each column, there is sig-

nificant potential for compression. The next four datasets are image-based, Omniglot

[34], MNIST [18], HWD+ [11] and Sketches [21]. There is less potential for column

compression with these datasets, and as shown in the previous image processing eval-

uation, significant potential for compression along the row dimension. The matrices

are stored using both integral and floating point types, where appropriate.

We show the compression ratios achieved in fig. 6-8 and the relative speedup

compared to dense computation in fig. 6-9. These datasets ranged in sparsity, while

also having both runs and dense regions. Depending on the dataset, while one of the

lossless-compressed formats always had the best compression ratio, the additional run-

time complexity of these formats did not always result in the best performance. Com-

puting column compressed resulted in higher runtime speedups for the datasets we

evaluated, while the highest compression ratio observed was on the images datasets.

While the long rows in these datasets were very amendable to compression, this likely

resulted in poor cache utilization, as the vector being multiplied was extremely large.
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We still observed performance roughly on par with dense computation, while having

significantly higher compression. As these datasets are usually stored and transmit-

ted in compressed formats, using our lossless compression formats would result in

end-to-end speedups.
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Chapter 7

Related Works

In this section, we describe related works on lossless compression algorithms and tech-

niques for directly computing on compressed data (compressed domain processing),

as well as describe related works on sparse programming.

7.1 Lossless Compression

While this work focuses on LZ77-style compression [56], it is one example of a general

purpose lossless compression algorithm. LZ77 is part of a larger class of dictionary

based compressors which includes LZ78 [57], LZW [55] and LZSS [50], which encode

repetition into a dictionary to avoid redundant storage. The second main class of

lossless compression algorithms is entropy encoders, includes Huffman coding [26]

and Arithmetic coding [42, 39]. These algorithms compress data by replacing fixed

length input symbols with code words whose length is determined by the probabilities

of each input symbol in the data to be compressed.

Most general purpose compression formats use one of or both dictionary compres-

sion and entropy coding, including 7z [1], ZIP [40], gzip [19], and bzip2 [2]. There

are also many more formats specialized for specific kinds of data, including audio,

graphics, and video data. These formats can take advantage of specific properties of

the data they store and compress, however they generally use dictionary and entropy

coding as a part of their algorithms.
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7.2 Compressed Domain Processing

There are many algorithms for compressed domain processing, which differ depending

on the structure of the compressed data. For example there is prior work on pattern

matching within compressed text [9, 29, 24, 8], computing directly on compressed

databases [6, 5], and computing directly on compressed video [52]. However, much

of this work focuses on lossy compression schemes which use the Discrete Cosine

Transform [45, 46, 44, 14, 36]. We do not consider this kind of compression in our

work.

Two approaches for compressing matrices for SpMV were introduced in [33], one

based on compressing the index data structures using delta coding, and the second

compressing the values by only storing unique elements and representing them with

smaller indices.

There has also been research into compressing matrices for linear algebra. In [32],

they propose techniques for compressing both the index and value data structures

of sparse matrices for matrix-vector products. The index compression technique uses

delta coding to reduce the size of the column coordinate array. The value compression

stores a array of unique values and replaces the values array with indices into the array

of unique values. Both [22] and [35] describe systems for compressing and computing

on data matrices for common machine learning algorithms. In both cases are limited

to a subset of matrix operations, and the specific compression formats they designed.

In [22], they partition matrices into column groups and compress each group together,

using both RLE and offset list encoding (OLE). In OLE, they store each value in a

column with a list of coordinates it appears at, similarly to the value compression

technique from [32]. In [35], they develop a dictionary compression scheme which does

not compress data across row or column boundaries, however can represent repetition

across a matrix by a common dictionary for each compressed matrix.
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7.3 Sparse Programming

Our technique builds on the sparse tensor algebra compiler TACO [25, 16, 30], which

implements the techniques described in Section 2.3 and Section 4.1. Without our ex-

tension, TACO does not support lossless compression techniques like RLE and LZ77

and cannot efficiently compute with data that contain many distinct repeated values

or sequences. There also exist a number of other compiler techniques that can gen-

erate sparse linear algebra kernels given imperative implementations of their dense

counterparts, including MT1 [12], Bernoulli [31], SIPR [41], and CHiLL [54]. Bernoulli

uses a sparse matrix format abstraction that can also represent losslessly-compressed

data, but this abstraction exposes losslessly-compressed data to the compiler as just

fully-decompressed streams of nonzeros. Thus, Bernoulli cannot generate code that

avoid redundant computations by directly computing on compressed data. Mean-

while, the other techniques only support sparse matrix representations that compress

out zero elements, and thus they cannot generate code to compute with losslessly

compressed data. In addition, GraphBLAS [37, 28, 17] and CTF [48] are examples

of sparse linear algebra frameworks that support arbitrary semirings, which can have

any value as the "zero" that is compressed out in storage. As with the technique of

[25] though, such systems can only efficiently compute with data that contain mostly

a single value, not data that contain many distinct repeated values or sequences.

Furthermore, in the context of domain-specific hardware design, [51] describe a

hierarchical fiber-tree abstraction for sparse tensor storage, similar to the coordinate

hierarchy abstraction of [16]. The abstraction supports storing zeros using RLE, but

it does not support lossless compression of nonzero elements.
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Chapter 8

Conclusion

This paper shows how to build a compiler for computing with both losslessly com-

pressed and sparse tensors by generalizing the notion of sparsity to handle different

repeated values within a single tensor. With our technique, the compiler is able to

generate efficient code for varied computations. We observe speedups up to 16× over

computing on dense data, and even in the worst case we observe speedups or equiva-

lent performance over just decompressing the inputs, computing on dense data, and

then recompressing the result.
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