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Abstract
Compiled Domain Specific Languages are taking over var-
ious high-performance domains because of their ability to
exploit the domain knowledge and apply optimizations that
produce the most specialized code. A lot of research has gone
into making DSLs more performant and easy to prototype.
But the Achilles heel for DSLs is still the lack of debugging
support that provides an end-to-end picture to the user and
improves the productivity of both the DSL designer and
the end-user. Conventional techniques extend the compilers,
the debugging information format, and the debuggers them-
selves to provide more information than what the debugger
can provide when attached to the generated code. Such an
approach quickly stops scaling as adding extensions to large
and complex debuggers hampers DSL designer productivity.
We present D2X, a DSL debugging infrastructure that works
with most standard debuggers without any modifications
and is easily extensible to capture all the domain-specific
information the end-user cares about. We show that we can
add debugging support to the state-of-the-art graph DSL
GraphIt with as little as 1.4% changes to the compiler code
base. We also apply our techniques to a meta-programming
DSL framework BuildIt so that any DSLs built on top of
BuildIt get debugging support without any modifications
further boosting the productivity of future DSL designers.

CCS Concepts: • Software and its engineering → Com-
pilers.
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1 Introduction
Recent years have seen a significant uptick in the use of com-
putation for solving problems in various emerging and al-
ready existing areas of research. From usingDNA sequencing
for COVID-19 vaccine research to imaging black holes and
distant stars [15], many fields are relying on performance-
intensive computations to produce better and faster results.
Even in areas such as data mining, machine learning, and
scientific simulations that have long relied on computation,
problem sizes have increased by up to 300,000x and are de-
manding more performance-efficient software and hardware
stacks[21, 24]. This influx of new problem domains requiring
high performance has pushed compilers and programming
language research towards more domain-specific languages
(DSLs) for their ability to better specialize the optimizations
to the problem domain. DSLs like Halide [22], TACO [2],
Taichi [16] are being developed and adopted for these do-
mains while frameworks like MLIR [19] and BuildIt [5, 7] are
focusing on streamlining DSL development making it accessi-
ble to domain experts with little to no compilers knowledge.
While a significant amount of research has been done in

improving the performance of these DSLs, providing better-
debugging facilities is often overlooked. In cases where DSL
compilers generate low-level C, C++, or CUDA code, the
end-users have to resort to attaching debuggers like GDB,
LLDB, or CUDA-gdb to the generated code. This generated
code is often very complicated and mangled and interspersed
with other user and library code. This makes it not human
readable, and has little correlation to the input code writ-
ten by the end-user. This is because of the transformation
passes that eliminate, combine or create new operators and
variables. Apart from this, the DSL compilers make many
domain-specific optimization decisions and transformations
to the code. Because these decisions are not exposed to the
end-user, they often have to guess how the input code was
modified before it was generated. This is a challenge for both
correctness and performance debugging.

Extending existing debugging infrastructure to accommo-
date the needs of DSLs is often a difficult and time-consuming
task. Low-level language compilers encode debugging infor-
mation as binary data in formats like DWARF [12] or PDB
which are hard to understand and extend. At the same time,
modifications would have to be made to the debugger itself
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in the form of plugins or modifying the code of the debug-
ger itself. Such an approach is taken by the developers of
the CUDA-gdb, where the ability to debug GPU kernels is
added to the existing GDB infrastructure. Not only would
these modifications be not portable to other platforms and
debuggers, but these efforts would also take away valuable
research and prototyping time from DSL developers.
We propose D2X (pronounced as Detox), an extensible

and contextual debugging framework that allows DSL devel-
opers to encode semantic debugging details from the DSL
compiler alongside the generated code. D2X also provides
a runtime API that can be used to access this debugging
information from existing debuggers in a portable way with-
out any modifications. Besides providing basic debugging
functionality like listing source location and variables and
managing breakpoints, D2X allows the DSL designers to ar-
bitrarily extend the debugging information to expose any
combination of compiler internal state and runtime infor-
mation. D2X presents itself as an easy-to-use C++ library
that easily integrates into any DSL compiler code base. We
demonstrate our techniques by applying D2X to the state-of-
the-art graph DSL compiler GraphIt to debug the generated
CPU parallel code while requiring about 1.4% changes to the
code base. We also apply our techniques to the DSL compiler
framework BuildIt to provide debugging support for any DSL
built with it automatically without any developer effort fur-
ther simplifying the DSL design workflow for non-compiler
experts. D2X thus increases the productivity of not only the
end-user but also current and future DSL designers.
In the rest of the paper, we will explain the debugging

requirements of DSLs and the challenges of using existing
infrastructure (Section 2). Next we will explain the overview
of our system D2X (Section 3) and the technical details of
its implementation (Section 4). Finally, we will talk about
the two case studies with the GraphIt DSL compiler and the
BuildIt DSL framework and how our work simplifies DSL
development and use. We will also quantify the amount of
effort required to add debugging support for these DSLs in
terms of lines of code modified (Section 5).

2 Challenges
DSL compilers have grown in complexity over years and
present some unique challenges when it comes to building
debugging infrastructure. In this section, we will discuss
these challenges and some examples from popular DSLs.

2.1 Disconnect in Source and Generated Code
Domain Specific Language compilers often parse some input
provided in a high-level language and generate low-level C,
C++, or CUDA code. This approach is taken by DSLs like
GraphIt [8, 29, 30], SIMIT [18] and Diderot [11]. Other DSLs
like Halide [22], Taichi [16], and Tiramisu [2] embed them-
selves into host languages like python or C++ for providing a

1 func updateEdge(s: Vertex, d: Vertex)
2 nrank[d] += orank[s]
3 end
4 func main()
5 #s1# edges.apply(updateEdge) // PUSH Schedule
6 #s2# edges.apply(updateEdge) // PULL Schedule
7 end

Figure 1. GraphIt algorithm input with same User Defined
Function (UDF) updateEdge used with two operators one
with PUSH schedule applied and the other with PULL.

familiar interface. Some DSLs like TACO [17] sometimes pro-
vide both these interfaces. The input code is passed through
a series of analysis and transformation passes and combined
with scheduling inputs before generating the final code. Of-
ten the code is parallelized, vectorized, or moved to GPU as
specialized kernels. Naturally, the generated code has very
little resemblance to the input code. For example, in the pop-
ular graph DSL GraphIt, a single call to an edgeset.apply
operator often produces 100s of lines of low-level code. This
is done to implement various optimizations such as different
iteration and parallelization strategies, hybrid scheduling,
handling different data structures and graph blocking. An
end-user attaching a debugger to the generated code would
have a very hard time trying to find correspondence between
the generated code and the input code. This problem is fur-
ther exacerbated by the fact that a single function can be
compiled in different ways depending on the calling context.
Figure 1 shows a User Defined Function (UDF) (Line 1)

written in GraphIt to be applied to each edge in an edgeset.
The sameUDF is used by two different calls to edgeset.apply
operators (Line 5- 6). Depending on the schedule applied to
these operators, the UDF is compiled in very different ways.
Figure 2 Line 2 and 5 show the two generated versions of the
same UDF tailored for the respective call sites for correctness
and performance. Similarly, in the multi-stage programming
framework BuildIt, each generated line of code is produced
from not one line but an entire call stack. Most DSL compil-
ers, especially those that have their own frontend are able
to obtain and keep track of source line numbers, but that
is often not sufficient. The compilers have to present this
information to the end-user in such a way that they can trace
back faults and bugs to the exact input they wrote despite all
the complex domain-specific transformations. The end-user
should also be able to insert breakpoints in the generated
code based on source locations in the DSL input. The data
format to capture this debug information and the support to
access it in the debugger is simply not present.

2.2 Use of Complex Data Structures
DSLs targeted for specific domains require specific data struc-
tures from the domain. A single object in the DSL often maps
to one or more complex objects in the generated code. For
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1 void updateEdge_1(int s, int d) {
2 atomicAdd(&nrank[d], orank[s]); // For #s1#
3 }
4 void updateEdge_2(int s, int d) {
5 nrank[d] += orank[s]; // For #s2#
6 }

Figure 2. Generated code for the GraphIt input in Figure 1.
The same UDF is generated into two separate versions suited
for the two call sites

example, in the Sparse Tensor DSL TACO, individual sparse
tensors are stored in one or more formats such as CSR, COO,
BCSR based on the operation being performed. In the case
of code generated for GPUs, a copy for the device and host
is generated and part of the data structure can reside on the
host or the device. Once again the end-user would have a
hard time debugging the state of these variables just by at-
taching a debugger to the generated code. The DSL compiler
needs to encode how individual objects in the source code
map to objects in the generated code and the logic to access
their state from the debugger.

2.3 Debugging Tools are Rigid
Current debugging tools like GDB, LLDB, and WinDbg have
various capabilities such as setting breakpoints, reading and
writing variables and registers, displaying source informa-
tion and calling functions from the applications. While these
are good for languages like C or C++, DSLs and DSLs com-
pilers have a lot of DSL-specific state often hidden inside the
compiler. This includes results of the domain-specific passes,
statically inferred types of variables in a dynamically typed
language among others which are crucial for debugging the
generated code. For example, Seq [25] the DSL for genomics
is a dynamically typed language similar in syntax to python
but generates high-performance native code after statically
inferring types for all variables. This type-information is
neither present in the source code nor the generated binary.
Displaying this type of information would require extend-
ing the debugger and the binary format used to encode the
debugging information. The multistage programming frame-
work BuildIt also has a similar problem where the state of
the first stage variables are not visible in the generated code
but are critical for debugging.
There are two problems with extending the debugger to

display this semantic information. i) the debugging informa-
tion is stored in complex formats that are hard to understand
and harder to extend. For example, DWARF [12] the pop-
ular debugging format used on Linux has a standard that
spans 459 pages, and the complexity required to understand
is beyond the scope of a typical domain expert. ii) the modifi-
cations required to be made to the debugger are neither easy
nor portable. The source code for the popular LLVM-based
debugger LLDB stands at 543K lines of C++ code (not includ-
ing the test cases or LLVM core). Similarly, the source code
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Figure 3. The overall system overview for the D2X compiler
and runtime extensions. Additional components added/gen-
erated by D2X are in green.

for GDB stands at 3M lines of C code. The DSL designers
would have to modify these large code bases for each new
DSL they build. This approach is used by the designers of
CUDA-gdb a debugger for NVIDIA GPUs. But CUDA-gdb is
maintained by a whole team at NVIDIA which is not feasible
for domain experts wanting to rapidly prototype DSLs.
All the above-mentioned issues guide our design of D2X.

We present an easy-to-use library that requires no modifi-
cation to the debuggers, displays rich source and variable
information for the DSL input and the generated code, allows
managing breakpoints based on DSL source locations and
can be easily extended by to display semantic information.

3 System Overview
D2X is a C++ library that comprises of two parts – the D2X
compiler library (D2X-C) and the D2X runtime library (D2X-
R). Figure 3 shows the overall working of D2X. We choose
C++ for our framework because most high-performance DSL
compilers are written in C++ and the generated code is often
compatible with C++.

3.1 D2X Compiler Library
The D2X compiler library (D2X-C) is the part of D2X that
is used by the DSL compiler designers to encode domain-
specific information in the generated code. The library API
contains functions to encode source information and variable
information for each line of generated C or C++ code. The
library then organizes and dumps this information along-
side the generated code as C++ arrays and objects. Figure 3
shows the role of D2X-C in the code generation process. The
developer has to make minor modifications to the DSL com-
piler code base to call D2X-C. We will discuss the amount of
modification required for the DSLs we modified in Section 5.

3.2 D2X Runtime Library
The D2X runtime library (D2X-R) is the part of D2X that
is included and linked with the generated code. The library
interprets the debug information generated by D2X-C and
works with the debugger to provide DSL debugging features
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Figure 4. Two-stage mapping of source information enabled
with D2X. Left (blue) shows typical mapping from binary
state to source using DWARF. Right (green) shows mapping
from generated source to DSL input using data generated by
D2X-C.

to the end-user. The D2X-R library API contains various
functions that the user can call from the debugger to obtain
source and variable information and insert and delete break-
points in the DSL. Besides the requirement to compile the
generated code with regular debug information (using -g
for GCC and clang), D2X-R does not add any runtime over-
head. This makes D2X very practical for debugging high-
performance DSLs both for correctness and performance.
D2X-R’s implementation is explained in Section 4.

3.3 Debugger Helper Macros
D2X also includes a small set of helper macros to be used
with the popular debuggers GDB and LLDB. These are op-
tional and allow the end-user to invoke D2X functionality
without having to type long commands. These macros are
independent of the DSL and need to be written once.

4 Implementation
Most high-performance DSL developers and end-users are fa-
miliar with using low-level debugging tools like GDB, LLDB,
and WinDbg. Instead of techniques that build ad-hoc inter-
faces for debugging, we make a design decision of using
these commonly used debuggers to make adoption easier.

Most low-level debuggers take as input the runtime state
of the program (registers, memory, instructions) and map
them to the source code in the input language. These debug-
gers use the debug information produced by the compiler
alongside the generated code to perform this mapping. D2X
takes this idea further and performs a secondary mapping
from the source line in the generated code to the DSL context
which includes the DSL input locations, DSL compiler inter-
nal state, and the runtime values represented in a way that
makes sense for the DSL. To perform this mapping at debug-
ging time, D2X uses the tables D2X-C generates alongside
the source. Figure 4 shows this two-stage mapping. Because
this mapping takes the source location as input, D2X doesn’t
have to deal with low-level instructions and registers or ex-
tend complex debug information formats. We will discuss
the implementation of D2X-C to see what data structures
are generated during compilation.

4.1 Implementation of D2X-C
As explained in Section 3, D2X-C is available as a C++ li-
brary that can be directly used inside the DSL compiler. The
developer calls the D2X-C API to encode DSL related debug
information. The complete API is listed in Table 1. Since the
D2X mapping to debug information is done on the source lo-
cation of the generated code, D2X-C generates debug info for
each line of generated code. Fundamentally, two key pieces
of information need to be encoded - i) The source location
in the input DSL and ii) Live variables and their values.
To begin generating D2X debug tables, the developer in-

stantiates a d2x_context object and calls begin_section().
Now for each new line of code that the DSL compiler gen-
erates, they call the nextl() member function. All calls to
other functions between two subsequent calls to nextl()
encode debug information for a single line of source gener-
ated. As a result, the developer has to be very careful when
emitting newlines in the generated code to not misalign the
generated code and the debug information.
The examples in Section 2 show that the source location

in the DSL is more elaborate than a single line of source code.
As a result, we designed D2X to allow for a sequence of line
numbers and filenames for each generated line of code. This
is achieved with the help of the push_source_loc function,
which can be called multiple times per generated line of code.
When queried in the debugger, these source locations are
presented as a stack, which the end user can move up and
down akin to GDB frames.

Variables in D2X follow a basic key-value model. Each DSL
variable is identified by a key which is a string. The key of the
variable doesn’t have to correspond to an actual variable in
the DSL source and can thus be used to encode arbitrary in-
formation. The values for D2X variables can be of two types.
The first type of value is constant strings. These can be used
to encode the compiler’s internal state that does not change
during the execution. An example of such a value is the result
of the data flow analysis in the compiler. Section 5 shows
examples of data flow information encoded in the GraphIt
compiler. The second type of value can be a runtime value
handler rtv_handler which is a lambda that is evaluated
at runtime to obtain values of a variable. Each key can be
associated with a different lambda that gets the name of the
variable as a string and produces the value as a string. We use
BuildIt’s multi-stage execution to supply this lambda. Table 1
shows the set_var() member function that can be used to
create key-value pairs at any generated line. Since variables
are typically live for multiple lines, D2X-C also allows the
creation of live variables that are automatically inserted at
every line till they are deleted. These variables can also be
scoped to mimic the scopes in the DSL and the generated
code. The member functions create_var(), delete_var(),
push_scope(), pop_scope() and update_var() help with
simplifying variable creation and update.
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Table 1. Table showing the API functions from the D2X compiler API (D2X-C). Argument names shown in [] are optional.
The rt::string type is a BuildIt dynamic type for handling strings at runtime (dyn_var<string>).

Function name Description
d2x_context::d2x_context(void) Constructor for the D2X context object
d2x_context::begin_section(void) Function to start a new section. All the newlines inside the section need to be

tracked by calls to nextl(). Lines outside sections need not be tracked
d2x_context::end_section(void) Ends a previously started section
d2x_context::nextl(void) Tells the context that a newline has been inserted in the generated code. Live

variables are automatically inserted
d2x_context::push_source_loc(string filename, int line_number,
[string function])

Push a source location of the source stack. Can be called multiple times per
generated source line

d2x_context::set_var(string key, string value) Inserts a new variable at the current line with a constant string value
rtv_handler::rtv_handler( function<rt::string(rt::string)>
handler_lambda)

Constructor for a new runtime value handler. Can be used for multiple key-value
pairs. The lambda takes the key of the variable and returns a string

d2x_context::set_var(string key, rtv_handler value) Inserts a new variable at the current line with a runtime value
d2x_context::create_var(string key) Creates a new variable in the current scope
d2x_context::push_scope(void) Pushes a new live variable scope
d2x_context::pop_scope(void) Pops a sope and deletes all the live variables in the current scope
d2x_context::update_var(string key, rtv_handler value) Updates the value of a currently live variable
d2x_context::update_var(string key, string value) Updates the value of a currently live variable
d2x_context::emit_section_info(ostream &oss) Outputs the debug information table to the given output stream for the last section
self_source_loc(void* ptr) Obtain the source location for a given instruction pointer in the current program

The rtv_handler also has access to a runtime API that
lets the handler obtain addresses of variables on the stack
given its name by decoding the DWARF information. The
rtv_handler is one of the key mechanism for extensibility
in D2X. Since the key-value model is very flexible and the
developers can supply arbitrary code in the handlers, de-
velopers can use this API to implement custom commands
that can run at debug time and produce output. These com-
mands can also be used to update the state of the variables
if required. Section 5 shows how the rtv_handler displays
sparse data structures stored in multiple formats.

Once all the debug information is encoded, the DSL com-
piler calls the member functions end_section() and emit
_section_info(), which convert this information into C++
arrays and structures and generates them into the C++ file
specified. The D2X-R functions access this source and vari-
able information by reading the generated arrays. This is
explained in Section 4.2

Finally, the D2X-C library also provides a utility function
self_source_loc that identifies the source location for the
program itself using D2X-C given a code pointer. This utility
is useful for obtaining source locations in DSLs that are
embedded in C++ and use the compiler in the form of a
library and do not have a separate parser.

4.2 Implementation of D2X-R
As explained before, we designed D2X to work with com-
monly used debuggers because both DSL developers and
end-users that have experience writing high-performance
code by hand are familiar with their interface and commands.
One of the main challenges when dealing with popular de-
buggers is that their implementation is huge and complex
and modifying them to support the DSLs is a non-trivial
effort. Even for debuggers that allow implementing plugins,
this approach is neither portable nor scalable. Moreover, we

want to enable the DSL designers to add more features to the
implementation as they wish. These constraints motivate a
novel design for our debugger runtime.

All the modern debuggers that we inspected (GDB, LLDB,
and WinDbg) implement a feature where arbitrary functions
from the program can be invoked from the debugger when
the execution is paused at a breakpoint or a fault. For exam-
ple, GDB implements the call command for this functional-
ity. The invoked functions can run arbitrary code that reads
and allocates memory, prints output, or even performs file
I/O.We exploit this feature of the debuggers to implement ex-
tensions to the debugger. The D2X runtime library (D2X-R)
links functions into the executable that have a well-defined
interface and allows the program itself to present a debug-
ging view of the state of the program. The debuggers also
allow the command line to directly read registers like the in-
struction pointer and the stack pointer as meta-variables and
pass them to these functions. All the commands that we im-
plement are just calls to these functions. These functions use
the passed instruction pointer and stack pointer to identify
where the execution is using the existing debug information
and then use the data generated by the D2X-C to map it to
the contextual debugging information encoded by the DSL
designer. Figure 5 shows an example of one such command -
xbt and how it is invoked. Note that the $rip and the $rsp
supplied are from the current stack frame. This means that
the end-user can also navigate the stack frame up and down
using the usual debugger commands and orthogonally call
these functions on each frame.
As mentioned in Section 3, the D2X-R also supplies a set

of macros that make it easy to call these functions. Figure 5
also shows how these macros are invoked.

The main benefit of our approach is that the entire imple-
mentation of the debugger extension is simply written as
C++ code that is linked into the executable, thus requiring
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1 namespace d2x_runtime {
2 void command_xbt(void* rip, void* rsp);
3 }
4 // GDB debugger command interface
5 (gdb) call d2x_runtime::command_xbt($rip, $rsp)
6 (gdb) xbt

Figure 5. The definition of a D2X-R function
d2x_runtime::command_xbt and macro with how it
is invoked from the debugger at a breakpoint.
no modification or plugins to the debugger itself. This also
makes our approach very portable and easy to extend as
long as the debugger supports calling functions from the
executable. Our approach is also strictly better than an alter-
native approach where the DSL compiler would just insert
source annotations into the generated code that the backend
compiler would understand. Such an approach would allow
only for a one-to-one mapping between the DSL input and
the generated code and would be severely limited by what
the debugger can do with the source information. Our exten-
sions allow the DSL developers to encode arbitrary data and
process it in any way they like in the debugger.
D2X also works with multi-threaded programs which is

typical for most high-performanace DSLs without any mod-
ifications as long as the debugger has the ability to pause
individual threads.

Table 2 shows all the commands that can be invoked from
the D2X-R API and their description. We will explain these
commands and how they simplify debugging in detail.
Displaying extended stack. One of the main features of
D2X is to show the "extended stack" which roughly corre-
sponds to the sequence of calls in the DSL that led to the
generated source line. Remember that the D2X-C allows en-
coding this information using the push_source_loc mem-
ber function. The extended stack is associated with each
source line that is generated. This means that when the exe-
cution is paused inside a debugger, each execution frame has
a different complete "extended stack" associated with it. The
xbt command shows the extended stack for the currently se-
lected frame. Besides viewing the extended stack, the xlist
command shows the actual source code for the extended
stack location. The xlist shows the source for the current
extended stack frame which can be viewed and changed with
the xframe command similar to the typical GDB command
frame. Our design decision of allowing the DSL designers
to associate an entire stack with each source location allows
displaying rich DSL contexts like calling context in UDF for
GraphIt and the entire static stage stack in BuildIt. This stack
can also be used to mix and show the scheduling informa-
tion for the line of code stored in a different file. Examples
discussed in Section 5 with applications.
Displaying extended variables. As explained before, the
variables in D2X are key-value pairs that can be evaluated
and printed in the debugger. Just like the source location,

each generated line of code has a set of variables associ-
ated with it. The names of the variables associated with the
current execution frame can be printed using the xvars com-
mand. Supplying the name (key) of a variable also evaluates
and prints it. If the variable is a constant stored as a string,
it is simply printed out. If the value is an rtv_handler, the
handler is evaluated and the output is printed.

Inserting and deleting breakpoints. Managing break-
points based on the source locations in the input DSL is
critical to allow the end-user to debug their programs with
the least effort. Since one line of input DSL code often cor-
responds to tens of lines of generated code, it is incredibly
difficult to manually insert and remove breakpoints in the
generated code. Our technique of invoking D2X-R functions
from the debugger that print information is not enough to
manage breakpoints. We need the ability to invoke debug-
ger commands as a result of the D2X-R API call. To enable
this, we leverage the eval command available in most de-
buggers. The eval command accepts a printf style format
string with parameters and runs it as a command. The pa-
rameters can also be the result of a function from the pro-
gram being debugged. Instead of invoking the functions from
D2X-R using the call command, we now invoke it as eval
"%s", d2x_runtime::command_xbreak($rip, ...). The
command_xbreak functions takes as parameters a source lo-
cation and in the DSL and looks up the locations of all cor-
responding generated statements. It then creates a string
containing commands to insert breakpoints at those loca-
tions. This string is returned and is evaluated as a debugger
command. This way D2X-R is not only able to print relevant
information it is also able to take control of the debugger
and create breakpoints. Breakpoints are deleted in a similar
way using the xdel command.

The commands introduced in D2X are similar to the com-
mands in typical debuggers to make it easy for end-users to
adopt them. The commands listed above can be orthogonally
used with existing debugger commands.

4.3 DSL Specific Extensions to D2X
Besides being easy to use for both DSL designers and end-
user, another key design principle for D2X is to allow DSL-
specific extensions. Simple extensions can easily be imple-
mented using the rtv_handlers that can be used to run
arbitrary code at debug time. The DSL designers can cre-
ate DSL-specific commands by adding special variables that
can be evaluated using the xvars command. But besides
the rtv_handlers, the data generated by the D2X-C library
and the D2X-R functions are regular C++ data and code.
This means that the DSL developer can extend the debugger
further by generating more data from the compiler and im-
plementing functions to decode and display it. This would be
difficult to do with existing debugging formats like DWARF
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Table 2. Command macros that can be invoked from the debugger and their descriptions. The optional arguments are shown
in []. Each of these macros invoke the corresponding D2X-R API function with the $rip and $rsp as parameters.

Command Macros Description
xbt Displays the extended stack associated with the current execution stack frame. Can be called at any frame to display the

extended stack at that frame.
xframe [xframe_id] Displays the currently selected frame in the extended stack associated with the current execution stack frame. Optional

parameter xframe_id changes the selected extended stack frame before displaying
xlist Displays the source (DSL input) for the top frame in the extended stack associated with the current execution stack frame. Can

be used in combination with xframe to inspect the source for all the extended frames.
xbreak Insert a new break point at the specified source location in the DSL. Lists all current breakpoints if called without arguments.
xdel Delete a breakpoint in the source DSL identified by the breakpoint ID.
xvars [var_name] Displays all the contextual variables at the current frame. Value for var_name variable is evaluated and displayed.

and would require messing with the large code bases of the
debuggers, hurting the productivity of the DSL designers.

5 Case Studies
This section details our experiences with applying D2X’s
debugging capabilities to the graph DSL GraphIt and BuildIt
a framework that makes it easy for non-compiler experts to
implement DSL compilers.

5.1 Debugging Capabilities for GraphIt
GraphIt is a DSL for graph computations that generates
high-performance C++ and CUDA to be run on CPUs and
GPUs among other hardware. GraphIt separates what is
computed (specified in the algorithm language) fromhow it is
computed (specified in a scheduling language). The GraphIt
algorithm language has high-level operators such as the
edgeset.apply and vertexset.apply that are lowered to
low-level code after applying a series of transformations and
analyses to better suit the implementation of the operators
for the overall application and the graph inputs. GraphIt is a
classic example of a DSL where a single line of input code
maps to multiple lines of complex low-level code spread out
in multiple places in the generated code. As explained in
Section 2, the generated functions are also specialized for
each call site differently. All these factors make it incredibly
hard to debug the generated code by simply attaching a
debugger to the generated code.
The DSL also uses high-level sparse data-structures like

the edgeset, vertexset and PriorityQueue that can be
lowered to one or more different representations. Debug-
ging the state of these data structures at runtime is not as
straightforward as printing a variable in the debugger. Since
GraphIt is a popular DSL that generates state-of-the-art high-
performance code for graph applications, it is critical that
we improve the debugging support for improving end-user
productivity. We will explain two main capabilities that we
add to GraphIt and how they appear in the debugger.

Source locations in GraphIt. Developers using GraphIt
write the algorithm input in a .gt file that is parsed by
the GraphIt frontend. The frontend already records the line
and column number for each operator it parses for printing
error messages. This makes it easy for us to support D2X

extensions without modifying the parser. We propagate the
line numbers from the parser through all the mid-end passes
to the code generation phase that is modified to insert calls to
the D2X-CAPI and insert source locations for each generated
C++ line. To provide more context for the specialization of
User Defined Functions (UDF), we also insert the line number
of the call site for which a particular UDF is specialized. An
example GraphIt source for the PagerankDelta application,
generated code and the information displayed inside GDB
is shown in Figure 6. Notice for a source location inside the
updateEdge UDF, the extended call stack shows the location
of the operator for which this UDF is specialized.

Debugging complex data structures. One of the key data
structures in the GraphIt DSL is the vertexset that holds
the active set of vertices to be processed in each round.
The performance of the entire algorithm depends a lot on
the implementation of this data structure in the generated
code. As a result, GraphIt uses 3 different representations -
Bitmap, Boolmap, and CompressedQueue each offering dif-
ferent tradeoffs in terms of performance. As explained before,
different representations are suitable for different parts of
the applications. Sometimes as the number of actually stored
vertices increases, GraphIt switches representations for this
data structure. Debugging this data structure thus requires
checking the current representation and decoding it. We im-
plement support for debugging vertexsets with the help
of a rtv_handler. Figure 7 shows the handler declared for
debugging the vertexset data structure. This handler finds
the data structure on the stack using the name of the variable
(Line 2), then checks the current format it is stored in (Line 6)
and finally serializes the elements stored to produce an out-
put (Line 8/Line 12) (Boolmap and Bitmap are always updated
together, so a single check is enough). Figure 6 shows the
produced output. We can see the contrast between the output
produced using the rtv_handler and the usual print com-
mand available in the debugger. The usual print command
just shows the struct and its members and leaves decipher-
ing them completely up to the end user. D2X’s approach for
debugging complex data structures makes it incredibly easy
for the end user to stop the execution at any step and check
the state of the algorithm.
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GraphIt DSL input
and generated code

 gdb --args ./pagerankdelta graph.mtx

Debugger (gdb) output showing D2X debugging
information

 pagerankdelta.gt

 pagerankdelta.cpp

Figure 6. The GraphIt DSL input and the generated code for PagerankDelta and the view from the debugger (GDB). The red
box shows the extended stack and the listing using xbt and xlist commands. The blue box shows the UDF calling context
using xframe. The green box shows the vertexset objects and the output from the rtv_handler using xvars command.

1 d2x::rtv_handler frontier_resolver([&] (auto v) -> auto {
2 dyn_var<frontier_t**> addr = find_stack_var(v);
3 dyn_var<frontier_t*> set = addr[0];
4 dyn_var<string> ret_val = "is_dense(" +
5 to_str(set->is_dense) + ")␣[";
6 if (set->is_dense)
7 for (dyn_var<int> i=0; i < set->num_vertices; i++) {
8 ret_val += to_str(set->dense_vertex_set[i]) + ",";
9 }
10 else
11 for (dyn_var<int> i=0; i < set->vertices_range; i++) {
12 if (set->bool_map[i]) ret_val += to_str(i) + ",";
13 }
14 return ret_val + "]";
15 });

Figure 7. Definition of the rtv_handler to display a
vertexset. Notice the check on the format and the seri-
alization based on it.

Table 3. The number of lines of code changed in GraphIt
and number of lines of code required for the implementation
of D2X. We add support for contextual debugging to GraphIt
by changing merely 1.4% lines of code.

Component Lines of C++ Code
GraphIt DSL Compiler and Runtime 45,966
Delta for adding D2X support 667 (+597/-70)
GraphIt percentage change 1.4%
D2X-C 465
D2X-R 956
D2X helper macros 40
D2X total 1452

Furthermore, Table 3 shows the number of lines of code
changed to support D2X debugging in the GraphIt DSL com-
piler. This includes all the lines changed for propagating the
debugging information through the compiler passes and the
calls to D2X-C to generate the debug information. We can
see that the changes are only 1.4% of the entire GraphIt code

base supporting the claim that D2X boosts end-user and DSL
developer productivity with very little effort.

5.2 BuildIt DSL Framework
For the next application, we look at the BuildIt DSL frame-
work [5, 7]. BuildIt is a DSL framework that uses multi-stage
programming in C++ to enable rapid prototyping of high-
performance DSLs with little to no compiler knowledge. This
approach of using multi-stage programming allows domain
experts to write library-like code, specialize it based on com-
pile time inputs, perform analysis using static variables and
generate code for CPUs and GPUs. The BuildIt framework
has shown that the entire GraphIt DSL can be implemented
for the GPU architecture using only 2021 lines of code [7]
which is a huge step toward developer productivity. With
this case study, we add D2X support to all the code gener-
ated from BuildIt which enables debugging capabilities for all
DSLs built on top of BuildIt further boosting the productivity
of not only the end-users but also the DSL designers.

The key idea behind BuildIt is that the program is written
in multiple stages. BuildIt introduces two new template types
static<T> and dyn<T>. All code written using static<T> is
completely evaluated in the first stage while the expressions,
variables, and control flow written with dyn<T> are gener-
ated as it is in the second stage code. This second stage code
is then further compiled and executed. There is an obvious
disconnect in the source the developer writes vs the second
stage code that would be executed with a debugger. Provid-
ing source locations from the first stage code would allow
for end-to-end debugging that would span multiple stages.
Just like the previous GraphIt DSL, each generated line of
code can be a result of an entire call stack in the first stage as
opposed to a single line. Furthermore, the static<T> vari-
ables are completely erased from the generated code, which
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means that these variables are not visible when the user tries
to debug the generated code. But these variables definitely
have an effect on the generated code because they can be
used to specialize the code generated. Providing access to the
state of these variables at each location would be essential
to the complete debugging experience.
First stage source access. BuildIt’s internal logic uses a
very simple idea to implement staging. Each expression and
statement that is extracted is assigned a "static tag" that
uniquely identifies the statements from other statements in
the generated code. This mechanism of static tags is crucial
to code deduplication, branch collapsing, and detecting loops
in BuildIt. The static tag is comprised of two separate parts.
The first part is the call stack in the first stage code at the site
where the expressions were created and the second part is
the state of all static variables that were live at the site where
the expression was created. The first part packs all the in-
formation we need to generate D2X source information. We
use D2X-C’s helpful self_source_loc util API (described
in Section 4) to obtain source location for each static tag
and encode it for each line of generated C++ code using the
D2X-C API. This small change is enough to encode the entire
source information from the first stage.
First stage variable access. Encoding the state of the first
stage or the static<T> variable follows a similar procedure.
Each statement in the generated code is already attached
with a snapshot of all the live static<T> variables. We sim-
ply serialize each static<T> variable from the snapshot into
a string and encode it as an xvar using the D2X-C API.

Figure 8 shows the input and generated code for a power
function using repeated squaring. Figure 9 shows the out-
put of various usual debugger commands and the D2X com-
mands. The bt, frame and print commands show the second
stage source and variables, while the xbt, xlist and xvars
commands show the first stage source location and vari-
ables. For example, at different lines in the generated code,
the static<int> variable exponent has different values at-
tached to it, as it would have in the first stage code. Finally,
the xbreak command shows how inserting one breakpoint in
the first stage code inserts 3 breakpoints at the corresponding
generated lines of code.
Debugging DSLs with BuildIt. One of the main func-
tions of the BuildIt framework is to rapidly prototype high-
performance DSLs. Developers build library-like abstractions
on top of BuildIt and specialize it using static<T> inputs
before code generation. Our techniques allow the end-users
to peek into the state of the analyses and specializations
performed inside the DSL compiler as well as observe the
embedded DSL input. We take a simple Einsum expression
DSL compiler on top of BuildIt [9] that is available on the
BuildIt website and repository. This DSL generates code for
expressions on tensors written with einsum notation (like
a[i][j] = b[i] * c[j]) and is a mere 330 lines of code.

1 // First stage BuildIt code
2 dyn<int> power_f(dyn<int> base, static<int> exponent) {
3 dyn<int> res = 1, x = base;
4 while (exponent > 0) {
5 if (exponent % 2 == 1)
6 res = res * x;
7 x = x * x;
8 exponent = exponent / 2;
9 }
10 return res;
11 }
12 // Generated code with exponent = 15
13 int power_15 (int arg0) {
14 int res_1 = 1;
15 int x_2 = arg0;
16 res_1 = res_1 * x_2;
17 x_2 = x_2 * x_2;
18 ...
19 x_2 = x_2 * x_2;
20 return res_1;
21 }

Figure 8. The first stage BuildIt source code for the power
function implemented with repeated squaring and the gener-
ated code with exponent specified as 15. The static<int>
exponent is completely erased from the generated code but
produces a sequence of statements.

1 (gdb) bt
2 #0 power_15 (arg0=3) at power_test.cpp:11
3 #1 0x0000555555556c52 in main (argc=1, argv=...) at ...
4 (gdb) frame
5 #0 power_15 (arg0=3) at scratch/power_test.cpp:11
6 11 x_2 = x_2 * x_2;
7 (gdb) xbt
8 #0 in power_f at power.cpp:16
9 #1 in _M_invoke at std_function.h:316
10 (gdb) xlist
11 14 if (exponent % 2 == 1)
12 15 res = res * x;
13 >16 x = x * x;
14 17 exponent = exponent / 2;
15 18 }
16 (gdb) xvars
17 1. exponent
18 (gdb) xvars exponent
19 exponent = 7
20 (gdb) print res_1
21 $1 = 27
22 (gdb) xbreak 15
23 Inserting 3 breakpoints with ID: #1
24 Breakpoint 2 at: scratch/power_test.cpp, line 8.
25 Breakpoint 3 at: scratch/power_test.cpp, line 10.
26 Breakpoint 4 at: scratch/power_test.cpp, line 12.

Figure 9. Debugger (GDB) output for the code generated in
Figure 8. The output of the bt, frame and print command
show the second stage source and variables. The output of
the xbt, xlist and xvars command show the first stage
source and the state of the static<T> variables. The xbreak
command shows breakpoints inserted in the first stage.
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1 el::tensor<int> c({M}, output);
2 el::tensor<int> a({M, N}, matrix);
3 el::tensor<int> b({N}, input);
4 b[j] = 1; // Initialization of b
5 c[i] = 2 * a[i][j] * b[j]; // Use in matrix x vector

Figure 10. An input for Einsum lang implemented on top
of BuildIt that initializes a vector performs matrix-vector
multiplication. Example demonstrates the use of constant
propagation analysis and specialization.

1 BT 1, main (arg0=1, arg1=...) at einsum_test.cpp:25
2 25 output_4[i_5] = output_4[i_5]
3 + ((var20 * matrix_2[(i_5 * 8) + j_6]) * 1);
4 (gdb) xbt
5 #0 in create_increment at einsum_matrix_mul.cpp:161
6 ...
7 #6 in operator= at einsum_matrix_mul.cpp:229
8 #7 in m_v_mul<16, 8> at einsum_matrix_mul.cpp:370
9 (gdb) xframe 7
10 #7 in m_v_mul<16, 8> at einsum_matrix_mul.cpp:370
11 370 c[i] = 2 * a[i][j] * b[j];
12 (gdb) xvars
13 1. b.constant_val
14 (gdb) xvars b.constant_val
15 b.constant_val = 1

Figure 11. The D2X output from the debugger for the pro-
gram in Figure 10. The xbt command shows the steps inside
the DSL implementation and the xvars command shows the
details of the analysis stored as static<T>.
Table 4. The number of lines of code changed in the BuildIt
code base to support D2X debugging information genera-
tion. Notice that besides these changes no other changes are
required to the DSLs built on top of BuildIt.

Component Lines of C++ Code
BuildIt DSL compiler framework 7,035
Delta for adding D2X support 428 (+407/-21)
BuildIt percentage change 6.1%

The implementation also performs constant propagation in
tensors by the use of static variables. We use D2X and the
generated debugging information to inspect this internal
state. We test the embedded DSL on an input program (Fig-
ure 10) where a rank 1 tensor b[i] is initialized to all 1s. This
tensor is then used in another computation that performs
matrix-vector multiplication. The DSL compiler performs
constant propagation through the static<T> variables. Fig-
ure 11 shows the extended stack and frames that show how
each step of the generated code is produced. Using xvarswe
can also see the propagated constant value inside the debug-
ger. Note that we did not make even a single line of change in
the DSL implementation apart from the above modifications
made to BuildIt. This further supports our claim that D2X
improves DSL designer and end-user productivity. Table 4
shows the total number of lines and the lines changed.

6 Related Works
High-performance DSLs are gaining popularity across vari-
ous domains like graph computations [8, 29, 30], tensors [16,
17], polyhedral compilation [2], genome sequencing [25], im-
age processing and analysis [11, 22], machine learning [1, 10]
among others. Recently, there has been a focus on building
infrastructure support for prototyping high-performance
DSLs with ease [5, 7, 19, 23]. Most of these DSLs focus pri-
marily on the maximum achievable performance and very
little on ease of debugging. These DSLs provide support for
source-level debugging but lack support for DSL specific
contextual debugging and any kind of extensibility.
Some research has been focused on building new inter-

faces for debugging DSLs [3, 4, 14, 26–28], but these debug-
gers either resort to an interpreter-based execution while de-
bugging which affects the performance, or build their debug-
ging infrastructure tied to one particular debugger lacking
portability. Other works have focused on performance [20]
but typically have a narrow focus like concurrency and do
not adapt to the need of upcoming DSLs. D2X on the other
hand simply generates regular C++ data structures and code
that can be used with any debugger that supports calling
functions from the executables. This makes our approach
not only portable but also easily extensible. The extra C++
code that we generate is never executed till the end-user
invokes a debugging command.

General purpose language debuggers have been around for
a while and rely on the compiler generating standardized de-
bugging formats like DWARF [12] or PDB. These debuggers
and the format standards are often very rigid and extend-
ing them is out of scope for typical domain experts. There
has been work on verifying and providing formal guaran-
tees about the debuggers [13] but these guarantees are very
hard to extend to domain-specific extensions. We show the
robustness of D2X by applying it to a high-performance state-
of-the-art DSL and an easy-to-use DSL framework which
extends the benefits of our approach to future DSLs.

7 Conclusion
In this paper, we present D2X which is a portable end-to-end
debugging framework for DSLs and provides rich debug-
ging information that can be easily extended to fit the needs
of upcoming DSLs with ease. We apply D2X’s debugging
techniques to GraphIt and the easy-to-use DSL framework
BuildIt. D2X thus greatly increases productivity for not only
the end-user but also the designers.
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Data Availability Statement
D2X and all its components are available open-source [6]
under the MIT License. All of the source code for D2X (D2X-
C and D2X-R) can be found under the D2X directory. The
source code for the modified compiler for the graph DSL,
GraphIt and BuildIt can be found under the graphit and
buildit directories respectively. The README in the repos-
itory contains instructions to build all dependencies and
applications and reuse the framework for more applications.
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