
GraphIt to CUDA Compiler in 2021 LOC: A Case

for High-Performance DSL Implementation via

Staging with BuilDSL

Ajay Brahmakshatriya

CSAIL, MIT

Cambridge, USA

ajaybr@mit.edu

Saman Amarasinghe

CSAIL, MIT

Cambridge, USA

saman@csail.mit.edu

Abstract—Domain-Specific Languages (DSLs) provide the op-
timum balance between generalization and specialization that is
crucial to getting the best performance for a particular domain.
DSLs like Halide and GraphIt and their rich scheduling lan-
guages allow users to generate an implementation best suited for
the algorithm and input. DSLs also provide the right abstraction
for generating code for diverse architectures like GPUs, CPUs,
and hardware accelerators. DSL compilers are massive, typically
spanning tens of thousands of lines of code and need a frontend,
some analysis and transformation passes, and target-specific code
generation. These implementations usually require a great deal of
compiler knowledge and domain experts cannot prototype DSLs
without getting compiler experts involved.

Using multi-stage programming in a high-level language like
Scala, OCaml, or C++, is a great solution because it provides
easy-to-use frontend and automatic code generation abilities. The
DSL writers typically implement their abstraction as a library
in the multi-stage programming language and use it to generate
specialized code by providing partial inputs. This solves the
problem only partially because DSLs like GraphIt have shown
that several domain-specific analyses and transformations need to
be performed to get the best performance. Special care has to be
taken when targeting massively parallel architectures like GPUs
where factors like load balancing, warp divergence, coalesced
memory accesses play a critical role.

In this paper, we demonstrate how to build an end-to-end
DSL compiler framework and a graph DSL using multi-stage
programming in C++. We show how the staged types can be
extended to perform domain-specific data flow and control flow
analyses and transformations. We also show how our generated
CUDA code matches the performance of the code generated from
the state-of-the-art graph DSL, GraphIt. We achieve all this in a
very small fraction (8.4%) of the code size required to implement
the traditional DSL compiler.

Index Terms—domain-specific-languages code-generation
multi-stage programming data-flow analysis

I. INTRODUCTION

The space of problems from scientific domains has seen

a huge growth in recent years. With rapid advances in fields

like Machine Learning and Data Science, domain experts are

creating new abstractions to make these domains more acces-

sible. These abstractions include libraries like TensorFlow [1],

PyTorch [2], Keras [3] or compiler techniques like TVM [4],

Tiramisu [5] among others. Although library techniques are

BuildIt

Generalized DSL
Framework

Graph DSL types and
operators

Bu
ilD
SL

Algorithm Schedule

CUDA
Runtime library

Fig. 1. A complete overview of the BuilDSL framework built on top of
BuildIt. BuilDSL takes algorithm and schedule written in an embedded DSL
and generates high-peformance CUDA code. The generalized DSL framework
(green) is independent from the graph domain types and operators and includes
implementation for GPU code generation and Kernel Fusion

usually easy to implement and adopt, using Domain-Specific

Languages (DSLs) provides the right balance of programma-

bility and performance. DSLs from domains like TACO [6] for

tensor algebra, GraphIt [7]–[10] for high-performance graph

applications, Halide [11] for image processing also separate

the algorithm specification from the scheduling decisions. A

side benefit of using a DSL to program the applications is that

the user can now generate implementations for a variety of

hardware like CPUs, GPUs, and hardware accelerators.

DSLs are great at generating high-performance code because

of several factors. First, they apply a series of domain specific

analysis and transformations that general purpose languages

like C++ or Python cannot reason about. Second, they expose

a set of scheduling decisions to the user typically in the

form of scheduling language that further lets the programmer

tune the performance to varying input. Third, they apply

various target specific transformations when generating code

for diverse architectures. Unfortunately, because the DSL

compilers combine so many optimizations and code generation

techniques, their codebase usually spans tens to hundreds of

thousands of lines of code which makes rapid prototyping of

high-performance DSLs tricky. For example, the GraphIt and

978-1-6654-0584-3/22 © 2022 IEEE

Accepted for publication by IEEE. © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

53

https://www.acm.org/publications/policies/artifact-review-and-badging-current

TACO DSL compilers currently have more than 80,000 lines

of C++ code each. Developers have to spend multiple months,

if not years designing the programming interface, analysis, and

transformations, and target-specific code generation.

A widely used approach is to embed the DSL in another

language, preferably one that supports meta-programming or

multi-stage programming like Scala, Python, OCaml among

others. The benefit of such an approach is that the developer

gets the frontend and code generation for free and can focus on

only the implementation of the domain-specific operators just

like in a library. This approach has been explored in the past

by DSLs and DSL frameworks such as Forge [12], Jet [13],

StagedSAC [14], and Delite [15] all of which aim for high-

performance while keeping the implementation complexity

low. Most frameworks that have exploited this technique are

built in high-level functional programming languages. Although

being easy to argue about correctness, high-level languages are

not a natural fit for high-performance applications. Domain

experts who are used to writing libraries and applications in

low-level languages like C, C++, or CUDA have to now think

in two different languages and programming paradigms when

implementing the DSLs.

In this paper, we introduce BuilDSL, a DSL framework built

on top of BuildIt. BuildIt [16] brings multi-stage programming

to C++ through a lightweight library and helps us solve

the multi-paradigm and multi-language problem. BuildIt lets

the programmer write programs in multiple stages while

maintaining the same C++ syntax and programming model

across all stages. As shown in Figure 1, BuilDSL contains

a generalized DSL framework that contains routines and

utilities commonly required for implementing a DSL. Besides

getting a frontend and some code generation from BuildIt for

free, BuilDSL provides the framework support for analyzing

and transforming the programs in a domain specific way,

specializing it for certain inputs and algorithmic patterns and

generate code for very different architectures like CPUs and

GPUs. For example, BuilDSL has a CUDA extraction pass that

automatically extracts CUDA kernels from generated annotated

loop nests to be run on GPUs. BuilDSL also has features

that make it extremely easy to implement optimizations like

Kernel Fusion that combine various operations into a single

CUDA kernel to avoid the launch overhead. The generalized

framework also has support for extending the dynamic types

to create domain-specific analyses for enforcing correctness

and improving performance.

To demonstrate the usefulness of our framework, we im-

plement a real graph DSL inspired by the state-of-the-art

DSL, GraphIt. Just like GraphIt, our DSL takes algorithm and

schedule inputs from the user and generates high-performance

CUDA code to be run on GPUs. We show that our DSL

can match the performance of GraphIt while keeping the

implementation down to a very small fraction of the GraphIt

compiler (less than 8.4% lines of code).

This paper makes the following contributions:

• We demonstrate that using multi-stage programming is

an easy way to generate sophisticated code while keeping

the complexity to minimum. We do this by implementing

a compiler for regular expressions using BuildIt that fits

in a mere 103 lines of C++ code

• We present BuilDSL, a DSL framework that combines

routines and utilities that are essential for implementing

high-performance DSLs

• We implement a CUDA generating graph DSL on top of

our framework that matches the programming interface

of the real-world graph DSL, GraphIt

• We show that the code generated from our graph DSL

is on-par with that of the code generated from GraphIt

on 5 diverse applications and 9 datasets while keeping

our entire implementation in only 2021 lines of C++ code

which is less than 8.4% of GraphIt’s codebase

II. MOTIVATING EXAMPLE

Before we explain what it takes to implement an end-to-end

compiler with analysis, transformations, and complicated GPU

code generation, we want to show that using staging is an easy

approach for implementing compilers for small languages. In

this section, we will show how one can write a very naive

interpreter for a simple language and convert it into a compiler

with staging. For this example, we take a small subset of

Regular Expressions (RegEx) with just a-z, A-Z, 0-9 and *.

This subset is simple enough to understand the implementation

completely and at the same time is general enough that it has

some complex control flow generated by the * character. We

start with Algorithm 1 that shows how a naive interpreter could

match a given RegEx pattern with an input string.

Algorithm 1 A simple algorithm for a RegEx interpreter

implementation main loop. The algorithm takes as input the

RegEx pattern and the string to match both as strings

1: Input: RegEx pattern R, String to match S

2: Output: Boolean that says whether S exactly matches R.

3: rLen ← len(R)
4: sLen ← len(S)
5: current ← [false]× rLen + 1
6: next ← [false]× rLen + 1
7: progress(R, current,−1)
8: for s ← 0 to sLen − 1 do

9: for r ← 0 to rLen − 1 do

10: if current[r] then

11: m ← R[r]
12: if isnormal(m) then

13: if S [s] == m then

14: progress(R,next, r)

15: else if m ==′ .′ then

16: progress(R,next, r)
17: else

18: error

19: if count(next) == 0 then

20: return false

21: current ← next

22: next ← [false]× rLen + 1

23: return current[rLen] == false

This algorithm takes in the RegEx pattern and the string to

match and calculates their lengths. It then allocates two boolean

arrays of the size of the RegEx pattern. The current array tracks

which characters in the RegEx can currently be matched and

the next arrays tracks which characters in the RegEx can be

matched next. Since regular expressions have non-determinism

in the matching process, more than one boolean in the current

54

1 #include <iostream>

2 #include <cstring>

3 #include "builder/dyn_var.h"

4 #include "builder/static_var.h"

5 #include "blocks/c_code_generator.h"

6 template <typename T>

7 using dyn = builder::dyn_var<T>;

8 template <typename T>

9 using static = builder::static_var<T>;

10 dyn<int (char*)> d_strlen("strlen");

11 dyn<int> match_regex(const char* re,

12 dyn<char*> str);

13 bool is_normal(char m) {

14 return m >= ’a’ && m <= ’z’ || m >= ’A’

15 && m <= ’Z’ || m >= ’0’ && m <= ’9’;

16 }

17 void progress(const char *re, static<char> *next, int p) {

18 int ns = p + 1;

19 if (strlen(re) == ns) {

20 next[ns] = true;

21 } else if (is_normal(re[ns])

22 || ’.’ == re[ns]) {

23 next[ns] = true;

24 if (’*’ == re[ns+1]) {

25 // We are allowed to skip this

26 // so just progress again

27 progress(re, next, ns+1);

28 }

29 } else if (’*’ == re[ns]) {

30 next[p] = true;

31 progress(re, next, ns);

32 }

33 }

34 int main(int argc, char* argv[]) {

35 builder::builder_context context(builder::UNSTRUCTURED);

36 auto ast = context.extract_function_ast(match_regex,

37 "match_re", argv[1]);

38 std::cout << "#include <string.h>" << std::endl;

39 block::c_code_generator::generate_code(ast, std::cout);

40 return 0;

41 }

42 dyn<int> match_regex(const char* re, dyn<char*> str) {

43 // allocate two state vectors

44 const int re_len = strlen(re);

45 static<char> *current = new static<char>[re_len + 1];

46 static<char> *next = new static<char>[re_len + 1];

47 for (static<int> i = 0; i < re_len + 1; i++)

48 current[i] = next[i] = 0;

49 progress(re, current, -1);

50 dyn<int> str_len = d_strlen(str);

51 dyn<int> to_match = 0;

52 while (to_match < str_len) {

53 // Don’t do anything for $.

54 static<int> early_break = -1;

55 for (static<int> state = 0; state < re_len; ++state)

56 if (current[state]) {

57 static<char> m = re[state];

58 if (is_normal(m)) {

59 if (-1 == early_break) {

60 // Normal character

61 if (str[to_match] == m) {

62 progress(re, next, state);

63 // If a match happens, it

64 // cannot match anything else

65 // Setting early break

66 // avoids unnecessary checks

67 early_break = m;

68 }

69 } else if (early_break == m) {

70 // The comparison has been done

71 // already, let us not repeat

72 progress(re, next, state);

73 }

74 } else if (’.’ == m) {

75 progress(re, next, state);

76 } else {

77 printf("Invalid Character(%c)\n", (char)m);

78 return false;

79 }

80 }

81

82 // All the states have been checked

83 // Now swap the states and clear next

84 static<int> count = 0;

85 for (static<int> i = 0; i < re_len + 1; i++) {

86 current[i] = next[i];

87 next[i] = false;

88 if (current[i])

89 count++;

90 }

91 if (count == 0)

92 return false;

93 to_match = to_match + 1;

94 }

95 // Now that the string is done,

96 // we should have $ in the state

97 static<int> is_match = (char)current[re_len];

98 for (static<int> i = 0; i < re_len + 1; i++) {

99 next[i] = 0;

100 current[i] = 0;

101 }

102 return is_match;

103 }

Fig. 2. The complete implementation of the the RegEx interpreter written with BuildIt staged types to create a RegEx compiler. The 4 sections here show the i)
BuildIt type includes ii) Helper functions for state transitions iii) Main function for staging and code generation and iv) The main implementation of the
interpreter being staged. The compiler comes to a total of only 103 lines of C++ code.

array could be set to true at a time. The algorithm relies on the

progress function that given a particular match decides which

characters in the RegEx can be matched next by setting the

next array. This function essentially encapsulates all the state

transition logic. If we want to add more characters like +, ?,

or (), we would change the implementation of the progress

function. Finally, the main part of the algorithm iterates over

every character in the input string and updates the next array

with each match in the current array. Before moving on to the

next character, we swap next and current and clear next. When

all the characters are done matching, the algorithm returns a

successful match if and only if the last boolean in next (which

corresponds to the end of the RegEx) is set.

This naive algorithm potentially matches every character in

the RegEx with every character in the string. Further for each

match, the progress function potentially scans through the entire

RegEx to find the next locations to match further, blowing

up the complexity. It is easy to see why such an interpreter

would be very inefficient. Now we will use the C++ multi-stage

programming framework BuildIt to convert this naive interpreter

into a compiler using Futamura projections [17]. We choose

BuildIt over other multi-stage frameworks because unlike other

frameworks it allows writing and generating imperative code

with rich control flow. BuildIt also allows updates to first

stage variables and expressions under conditions based on

expressions that are evaluated in the second stage. We will see

why this is required next. Figure 2 shows the entire working

source code for the compiler. The first section shows all the

BuildIt headers and types being included. The second section

shows some helper functions including the progress function.

55

The third section shows the main function that calls BuildIt to

stage the interpreter and generate the code. Finally, the last

section shows the actual matching function to be staged.

To write the compiler with BuildIt, we have to decide the

types for all the variables because BuildIt uses the declared

types of variables and expressions to decide what stage they

will be executed in. Any expression of type static<T> (or any

non BuildIt type) is evaluated in the first stage and expressions

with type dyn<T> are converted into code to be executed in the

second stage. Since we want to generate code for any given

regular expression, we declare the RegEx input to be of type

const char* and the string to match of type dyn<char*> as shown

Line 42. The two boolean arrays current and next are declared

to be of type static<char> because we want to completely

evaluate them away in the first stage (Line 45-46). Line 52-55

show the two loops that iterate over each character in the

input string and each boolean in the current array respectively.

Line 61 shows a condition on dyn<T> variables. Based on this

condition we make updates to the next array in the progress

function. BuildIt’s unique ability to support such patterns gives

rise to complex control flow in the generated code. Let us look

at a very simple RegEx input - ab*c. Figure 3 shows the code

generated for this input when it is passed through the compiler

above. The first thing we can notice is that all traces of the inner

loop that iterates over characters of the RegEx have disappeared.

The generated code instead has state transitions implemented

as if-and-goto. Further, all traces of the complex logic in the

progress function have disappeared too. This means that the

developer could implement the progress function in an easy to

understand but not so efficient way and it wouldn’t affect the

runtime at all. This example demonstrates that starting from a

naive interpreter logic, we are able to generate quite efficient

code which looks very different from the original code. Note

that, this code is still not the best implementation of RegEx

because we did not apply vectorization, parallelization, and

other advanced compiler code generation techniques. We will

show how this can be achieved with our graph DSL (§IV).

III. BACKGROUND AND CHALLENGES

In this section we provide some background into require-

ments for real world DSLs and the technical challenges in

implementing their compilers.

A. The GraphIt DSL

GraphIt is a DSL for graph computations that generates

high-performance C++ and CUDA to be run on CPUs and

GPUs among other hardware. GraphIt separates what is

computed (specified in the algorithm language) from how

it is computed (specified in a scheduling language). The

GraphIt algorithm language is an imperative language that

uses abstract data structures and operators. This means that

objects like vertex sets and edge sets can have different

representations like bitmaps, boolmaps or sparse queues and

CSR, COO, or blocked CSR based on what is suitable for

the optimizations applied. Similarly, the implementation of

the operators combines a variety of parallelization techniques,

1 int match_re (char* arg1) {

2 char* var0 = arg1;

3 int var1 = strlen(var0);

4 int var2 = 0;

5 if (var2 < var1)

6 if (var0[var2] == 97) {

7 var2 = var2 + 1;

8 label0:

9 if (var2 < var1) {

10 if (var0[var2] == 98) {

11 var2 = var2 + 1;

12 goto label0;

13 }

14 if (var0[var2] == 99) {

15 var2 = var2 + 1;

16 if (var2 < var1)

17 return 0;

18 else

19 return 1;

20 } else

21 return 0;

22 } else

23 return 0;

24 } else

25 return 0;

26 else

27 return 0;

28 }

Fig. 3. Code generated from the RegEx compiler for the input ab*c. Notice
that this generated code effectively only has one loop

iteration direction, deduplication strategies, etc. The scheduling

language enables programmers to easily search through this

complicated tradeoff space by composing together a large set

of edge traversal and vertex data layout optimizations. These

choices allow the developer to fine-tune the performance for

their algorithm and graph input. The GraphIt GPU backend

can also generate CUDA code to be run on the NVIDIA GPUs

and is the current state-of-the-art in terms of performance [9].

The whole of the GraphIt compiler framework is about 82,000

lines of C++ code out of which about 26,000 lines are required

for the GPU part of the compiler.

B. Staging with BuildIt

BuildIt [16] brings the idea of staging or multi-stage

programming to C++ through a light-weight library. BuildIt

uses a type-based approach, meaning the declared types (and

only the types) of the variables and expressions are used to

decide the stage in which they would be evaluated. As seen in

RegEx example in Figure 2, BuildIt also uses the same syntax

for all operations and control flow constructs across all stages.

This provides a very seamless interface to the user and makes

moving code between stages much easier. Another benefit of

BuildIt is that it uses an imperative programming model and

hence is easier for domain experts to use.

Let us look at a few parts of the GraphIt compiler, specifically

the GPU backend and the challenges one would face while im-

plementing it with staging. Although these are being explained

in the context of a graph DSL, parallelization, data-structure

choices, and fusing kernels is essential for performance in any

DSL and these would similarly apply to other domains -

C. UDF Analysis and Transformations

GraphIt’s programming model requires the programmer to

write serial code for the algorithm and the compiler automati-

56

cally parallelizes it based on the graph domain knowledge.

One of the challenges in doing this is to insert atomics

and other synchronization primitives at the right place to

ensure correctness. The GraphIt compiler could conservatively

insert atomics at every access to shared data, but that would

compromise the performance. To solve this problem, the

compiler performs a data-flow analysis to identify which

variables are shared and independent between different threads.

It only inserts atomics when a variable is potentially modified

by more than one thread at the same time. This data-flow

analysis is seeded by the choice of load balance and direction of

iteration and goes through all the operations that are performed

on edges and vertices. This analysis is implemented as a mid-

end pass on the compiler IR. When implementing the compiler

with staging, we do not have an IR or a pass infrastructure.

We will show in Section IV how BuilDSL extends the types to

perform the data-flow analysis to provide the same guarantees.

The same idea can be used to implement a variety of analysis

and transformation passes.

D. Scheduling Language and Specialization

The GraphIt DSL first applied the idea of separating the

algorithm from the schedule for the applications from the graph

domain. Other DSLs like Halide [11], TACO [6], Tiramisu [5]

also apply similar techniques to applications from other domain.

Such a separation allows the developer to write the application

once and fine-tune the performance of the generated code to

better suit the inputs by simply tweaking the schedule. Having

a clear separation between inputs for correctness and inputs for

performance also lets the programmer apply techniques like

auto-tuning to choose the best schedule and hence generate the

best performing code. The GraphIt GPU backend, G2 identified

7 independent scheduling dimensions that are critical for the

performance of graph applications on GPUs and exposed them

to the user through the scheduling language. The GraphIt

DSL compiler implements scheduling as transformation and

code generation passes in the compiler with each schedule

transforming the IR in different ways. Once again, BuilDSL is

able to support specializing the generated code without having

explicit IR and transformation passes.

E. GPU Code Generation

The GraphIt DSL compiler can generate code for massively

parallel GPUs with thousands of threads organized in complex

thread hierarchies. Besides assigning work to threads in a

load-balanced way, the GPU backend also has to take care of

moving data between host and GPU, shared memory allocation,

warp, thread, and grid synchronization, avoid warp divergence,

and accessing global memory in a coalesced way among

other things. The GraphIt DSL GPU backend achieves all

this with a combination of code generation passes and runtime

libraries. This significantly increases the complexity of the

code generation passes.

F. Kernel Fusion

An optimization that the GraphIt GPU backend relies on

heavily is Kernel Fusion. When enabled, this moves outer loops

into the CUDA kernel to avoid the cost of launching a new

kernel for every step in every iteration. This is particularly

useful when the outer loop runs for a large number of

iterations and performs very little work per iteration. Kernel

Fusion can improve performance by up to 1000x for some

applications and inputs [9]. Implementing Kernel Fusion

requires identifying local variables that are being used inside

the loop, hoist and transfer them between the host and GPU,

insert appropriate synchronization between individual steps

to ensure semantic equivalence and using a fixed number of

threads to implement each step in the loop (which potentially

require a different number of threads). Because Kernel Fusion

is a non-local optimization, its implementation adds signifant

complexity to the code generation passes. Kernel Fusion is a

critical optimization for performance and the generalized DSL

framework in BuilDSL provides support for implementing

Kernel Fusion with ease for a variety of operators.

IV. IMPLEMENTATION

In this section, we will explain how BuilDSL handles all

the challenges explained in Section III and how we use the

framework to implement a GPU graph DSL that matches the

performance of the state-of-the-art graph DSL, GraphIt.

A. Graph DSL Programming Model

Before we get into how each component of BuilDSL is im-

plemented, we will introduce BuilDSL’s programming interface

with an example application. BuilDSL is implemented as an

embedded DSL in C++ using the BuildIt multi-staging library.

The design of BuilDSL’s programming API including data-

types and operators is similar to GraphIt’s carefully designed

API. Just like GraphIt’s types, all data-types are abstract

meaning they could have varying implementations based on

scheduling parameters. These data types are implemented as

extensions to (or wrappers around) BuildIt’s dyn<T> types. As a

result, instead of getting completely evaluated in the first stage,

they generate code to be run in the second stage. BuilDSL

packs all the implementation inside the operators that it

exposes to the users like the vertexset_apply and edgeset_apply.

These operators use a combination of dyn<T> (arguments)

and static<T> (schedule) inputs to generate specialized high-

performance code to be run on GPUs. We will explain the key

operators that make use of BuilDSL’s specialization and the

scheduling objects associated with them next.

vertexset apply: The eg::vertexset_apply applies a user-

defined function (UDF) to a set of vertices in a VertexSubset

in parallel. The operator takes two arguments, a VertexSubset

and a function that accepts a Vertex. The first parameter can

also be an EdgeSet (the graph data structure), in which case

the function is applied to all the vertices in the graph. This

operator is typically used to initialize values associated with

the vertices or for updating the values at a per vertex level

(without looking at the neighbors).

edgeset apply: The eg::edgeset_apply is one the main oper-

ators in our DSL and applies a UDF to each edge in a set.

The operator can be invoked by the apply function that takes

57

as arguments an EdgeSet (graph data structure) and a function

that takes as arguments a pair of vertices corresponding to the

source and the destination of the edge. The user can add clauses

like from and to that filter out edges that originate from and are

incident to a subset of vertices respectively. These clauses can

either take a VertexSubset or a function that takes as argument

a Vertex and returns a boolean. There is another version of

this operator apply_modified that also tracks vertices that have

a certain property updated and return it as a VertexSubset. This

is used to implement active frontiers in data-driven algorithms

like BFS and CC.

All the datastructures passed to these arguments are runtime

values and hence are declared as dyn<T>. There are various

ways this operator can map the execution of the UDF on each

edge to the threads, warps and thread blocks of the GPU. At

the same time, there are various choices with respect to the

actual representation of the data structures involved and how

they are updated. These choices are specified using a Schedule

object that is passed to the constructor of the edgeset_apply

operator. Since these choices are supplied at the compile time

in the DSL and are used for specialization, the argument is

declared as static<T>.

fuse kernel: The eg::fuse_kernel operator allows combining

calls to various operators into a single GPU kernel launch as

opposed to separate kernel launches for each of them. The

operator takes as argument a C++ lambda that wraps around

the calls to the operators to be fused. The operator also takes

a boolen (static<T>) to determine if the operators are to be

actually fused. The operators are fused only if this boolean

evaluates to true. This allows enabling/disabling fusion as a

scheduling option. fuse_kernel can also be wrapped around

control flow structures like if-then-else and loops to fuse all

the operators in every iteration or branch.

Scheduling objects: The scheduling objects declared as

static<T> are used by BuilDSL to specialize the code generated

by the operators. The type Schedule is an abstract class that has

two derived types, the SimpleGPUSchedule and HybridGPUSchedule.

The SimpleGPUSchedule has members and functions to configure

choices for load balancing, vertex set representation, vertex

set deduplication, iteration direction and edge blocking. The

HybridGPUSchedule type allows combining two Schedule objects

based on some runtime condition like size of the active vertex

set. We will explain the details of how these scheduling objects

affect the generated code further in this section.

Figure 4 shows an example of the BFS application written

in BuilDSL making use of all the operators. The example also

shows the construction and use of a Schedule object that is

passed to the edgeset_apply operator for specialization.

Now that the programming model is clear, we will explain

how BuilDSL addresses each of the challenges mentioned in

Section III.

B. GPU Code Generation

The biggest challenge when implementing high-performance

DSLs is providing an abstraction for parallelization. Especially

1 VertexData<int> parent("parent");

2 GraphT edges("edges");

3

4 static void updateEdge(Vertex src, Vertex dst) {

5 parent[dst] = src;

6 }

7 static dyn<int> toFilter(Vertex v) {

8 return parent[v] == -1;

9 }

10 static void reset(Vertex v) {

11 parent[v] = -1;

12 }

13 static void BFS(dyn<char*> graph_name, dyn<int> src,

14 dyn<float> t, eg::Schedule &s1, bool to_fuse) {

15 ...

16 edges = eg::runtime::load_graph(graph_name);

17 parent.allocate(edges.num_vertices);

18 VertexSubset frontier =

19 eg::runtime::new_vertex_subset(edges.num_vertices);

20

21 eg::vertexset_apply(edges, reset);

22

23 parent[src] = src;

24 frontier.addVertex(src);

25 eg::fusee_kernel(to_fuse, [&]() {

26 while(frontier.size() != 0) {

27 eg::edgeset_apply(s1).from(frontier).to(toFilter)

28 .apply_modified(edges, frontier, parent,

29 updateEdge);

30 }

31 });

32 ...

33 }

34 ...

35 int main(int argc, char* argv[]) {

36 // Define a schedule for specialization

37 SimpleGPUSchedule s1.

38 s1.configLoadBalance(VERTEX_BASED);

39 s1.configDeduplication(DISABLED);

40 // Extract the specialized implementation

41 // and generate code

42 auto ast = builder::extract_function(BFS, "BFS",

43 s1, true);

44 eg::pipeline::run_eg_pipeline(ast, std::cout);

45 }

Fig. 4. Implementation of the BFS algorithm in BuilDSL. Notice the call to
the vertexset_apply and edgeset_apply operators

for backends like NVIDIA GPUs that have a clear separation

between code that runs of the host and the code that runs

on the GPU, the code generation can become complex with

__global__ kernel generation, data transfer, kernel launch

parameters, synchronization primitives, etc. Although the

CUDA programming model is great for performance, it is not

the most programmer-friendly for domain experts. OpenMP

style pragma annotations is another popular abstraction for

expressing parallelism and is used in many state-of-the-art

graph libraries like Ligra [18] and GAPBS [19]. BuilDSL

extends the BuildIt framework to be able to generate CUDA

kernels from annotated loop nests using BuildIt’s annotation

system and adding a CUDA kernel extraction pass. Figure 5

shows a doubly nested loop written with BuildIt annotated as

"CUDA_KERNEL". The CUDA extraction pass in BuilDSL, identifies

such annotated loops and converts them into CUDA kernel

while mapping the outer loop to the blocks in a grid and

the inner loop to the threads in a block. The pass replaces

all accesses to the outer loop index with blockIdx.x and the

inner loop index with threadIdx.x. This pass also identifies

all the local variables that are used inside the doubly nested

loop that are declared globally or in the enclosing functions.

58

1 GraphT g = ...;

2 builder::annotate("CUDA_KERNEL");

3 for (dyn<int> cta = 0; cta < 60; cta = cta + 1) {

4 for (dyn<int> t = 0; t < 512; t = t + 1) {

5 dyn<int> tid = cta * 512 + t;

6 dyn<int> edge_dst = g.edges[tid];

7 ...

8 }

9 }

Fig. 5. Example of an annotated loop nest to be converted into a CUDA kernel

1 void __global__ cuda_kernel_0(GraphT arg0) {

2 int var0 = blockIdx.x * 512 + threadIdx.x;

3 int var1 = arg0.edges[var0];

4 ...

5 }

6 ...

7 GraphT g = ...;

8 cuda_kernel_0<<<60, 512>>>(g);

9 cudaDeviceSynchronize();

Fig. 6. Generated CUDA and host code for an annotated loop nest

These variables are passed to the kernel as arguments and

are copied back after the kernel is finished executing. The

loop bounds are used to pass the kernel launch parameters

at launch. Figure 6 shows the host and GPU generated code

for this loop nest. This basic primitive for launching CUDA

kernels by annotating loop nests enables the DSL developer to

implement various load-balancing techniques by tuning the grid

and block dimensions and is not limited to the graph domain.

The BuilDSL runtime library also provides warp, thread, and

grid-level synchronization primitives that can be called from

within the loop nests. The implementation of the operators

like vertexset_apply and edgeset_apply in BuilDSL use such

annotated loop nests inside them to map the execution of the

UDFs on each vertex or edge to GPU threads automatically.

C. Kernel Fusion

All parallel operators in BuilDSL are implemented using

the annotated loop nests. As a result, each call to an operator

generates separate CUDA kernels that are launched from the

host code. As explained in Section III, this can lead to a lot

of overhead when each operator does very little work and the

kernel launch overhead starts to dominate. The user might want

to fuse a series of calls to an operator or even entire loop nests

into a single GPU kernel. We want to achieve this without

having to write a fused version for each combination like in

some library approaches. BuilDSL uses the static<T> variables

to implement Kernel Fusion in a generic way. BuilDSL defines

an enum context that can have values HOST or DEVICE. As shown

in Figure 7 Line 1 BuilDSL also has a static<enum context>

variable current_context that is initialized to HOST. BuilDSL now

exposes an operator fuse_kernel (Line 4) to the user to wrap

around a series of calls or entire loop nests. The implementation

of this operator starts one annotated loop nest and sets the

current_context to DEVICE. Now each operator implementation

checks the current_context. If it is set to HOST, it creates its own

loop nest. Otherwise, it just uses the loop indices from the loop

nest created by fuse_kernel. If the operator needs more threads

than what is spawned by the fuse_kernel, it adds another loop

1 static<enum current_context> = HOST;

2 dyn<int> *cta_ptr, *t_ptr = nullptr;

3

4 void fuse_kernel(std::function<void(void)> body) {

5 current_context = DEVICE;

6 builder::annotate("CUDA_KERNEL");

7 for (dyn<int> ct = 0; ct < MAX_CTA; ct = ct + 1) {

8 for (dyn<int> t = 0; t < MAX_T; t = t + 1) {

9 // Save references to indices

10 // for use inside operator

11 cta_ptr = ct.addr();

12 t_ptr = t.addr();

13 body();

14 }

15 }

16 current_context = HOST;

17 }

18

19 void vertexset_apply(VertexSubset &s, udf_t f) {

20 // Specialization based on current context

21 if (current_context == HOST) {

22 current_context = DEVICE;

23 builder::annotate("CUDA_KERNEL");

24 for (dyn<int> ct = 0; ct < MAX_CTA; ct = ct + 1) {

25 for (dyn<int> t = 0; t < MAX_T; t = t + 1) {

26 dyn<int> tid = ct * MAX_T + t;

27 ...

28 }

29 }

30 current_context = HOST;

31 } else {

32 dyn<int> ct = *cta_ptr;

33 dyn<int> t = *t_ptr;

34 dyn<int> tid = ct * MAX_T + t;

35 ...

36 // Synchronize the grid to ensure correctness

37 grid_sync();

38 }

39 }

Fig. 7. Implementation of the fuse_kernel operator in BuilDSL and the
specialization of the vertexset_apply operator to implement Kernel Fusion

to simulate more threads with the fixed threads while inserting

appropriate block and grid synchronization primitives. Since the

current_context variable is declared as static<T> all conditions

based on it are completely evaluated during compile time and

do not introduce any runtime overheads.

Unlike the GraphIt DSL compiler, the implementation of

the Kernel Fusion optimization does not require any additional

passes that generate separate kernels, hoist variable declarations

as parameters or introduce specialized loop nests. BuilDSL

implements it as specialization based on static<T> variable

reducing the complexity and the lines of code required for

implementing the optimization to the minimum. We will

compare the exact lines of code in BuilDSL and GraphIt

required to implement Kernel Fusion in Section V.

D. UDF Analysis and Transformations

As explained in Section III, one of the major challenges in

implementing a high-performance DSL is performing analysis

on the code written by the user and using that analysis

to transform the generated code for both correctness and

performance. Since BuilDSL lacks a pass infrastructure to

implement domain-specific passes, the analysis has to be packed

in the extended types. The types are a dual of passes when

moving from compilers to staging. To implement a generic

data-flow analysis in BuilDSL, we track the analysis bits as

static<T> with the values to be analyzed. These bits can then

59

1 // Type to hold a Vertex

2 struct Vertex {

3 // The actual dynamic vertex this value holds

4 dyn<int> vid;

5 // Dataflow analsis bits for this value

6 enum access_type {INDEPENDENT, SHARED, CONSTANT};

7 access_type current_access;

8 ...

9 // Operator overloads for Vertices

10 Vertex operator + (const Vertex& rhs) {

11 // Call the internal + operator on dyn<int>

12 Vertex out = vid + rhs.vid;

13 // Update analsis bits

14 if (current_access == INDEPENDENT

15 && rhs.current_access == CONSTANT

16 || current_access == CONSTANT

17 && rhs.current_access == INDEPENDENT)

18 out.current_access = INDEPENDENT;

19 else

20 out.current_access = SHARED;

21 ...

22 return out;

23 }

24 };

25 // Type to hold expressions like parent[dst]

26 template <typename T>

27 struct VertexDataIndex {

28 // The actual variable and index being tracked

29 // v[index]

30 VertexData<T> v;

31 Vertex index;

32 // Specialization for the += operator

33 // with atomics when index is shared across threads

34 dyn<T> operator += (const dyn<T>& rhs) {

35 if (index.current_access == INDEPENDENT)

36 return v[index] += rhs;

37 else

38 return atomicSum(&v[index], rhs);

39 }

40 };

41 // Edgeset apply seeding the analysis

42 void vertexbased_loadbalance(..) {

43 ...

44 Vertex src = ...;

45 Vertex dst = ...;

46 // In vertex based load balance,

47 // one source vertex is assigned to one thread,

48 // but the same destination can be visited by

49 // multiple threads

50 src.current_access = INDEPENDENT;

51 dst.current_access = SHARED;

52 udf_body(src, dst);

53 ...

54 }

Fig. 8. Implementation of the data-flow analysis to track SHARED and
INDEPENDENT vertex data indices for inserting atomics in appropriate
cases

be updated or propagated with each operation by overloading

the calls to the operators. Finally, these static<T> bits can be

queried at the time of operator implementation to specialize

the behavior, which is the dual of transformations.

Figure 8 shows the implementation of the data flow analysis

to track shared and independent values for inserting atomics at

appropriate places. This analysis tracks whether indices used

to index into VertexData can be shared across different threads

or is guaranteed to be unique across threads. If it is guaranteed

that no two threads would update the same index, we don’t

have to insert any atomics. This analysis is seeded by the load

balance implementation where a load balance technique like

VERTEX_BASED sets the current_access analysis bit of the source

vertex to INDEPENDENT while the bit for the destination vertex is

set to be SHARED. The VERTEX_BASED load balance assings each

source vertex to a different thread, while the same destination

1 SimpleGPUSchedule s1;

2 s1.configDirection(direction_type::PULL,

3 frontier_rep::BITMAP);

4 s1.configLoadBalance(load_balance::VERTEX_BASED);

5 s1.configFrontierCreation(frontier_rep::BITMAP);

6 ...

7 edgeset_apply(s1).from(frontier).apply_modified(...);

Fig. 9. Example of creating, configuring and applying a SimpleGPUSchedule

can be potentially visited by two threads when two vertices

in the graph have a common neighbor. This bit is queried to

specialize the implementation of the += reduction operator as

shown on Figure 8 Line 34.

The beauty of implementing data-flow analysis with

static<T> variables is that the developer only has to implement

how the values are propagated at each operation as shown

in Line 14. The developer doesn’t have to implement any

convergence analysis or worry about back edges. BuildIt treats

static<T> variables in a special way, such that it unrolls loops

till the static<T> values reach a previously visited value. Thus,

if there is a back-edge that further updates the analysis bits,

the loop will be unrolled with differing implementation till the

analysis converges. This way of implementing analysis not only

requires very few lines of code but most importantly doesn’t

require any knowledge of compiler analysis to implement. This

technique also generalizes well to other analyses and BuilDSL

uses the exact same technique to track which VertexData is

being tracked in the edgeset_apply.apply_modified operator to

produce the output frontier.

E. Scheduling language and specialization

In this section, we will explain how BuilDSL implements

a scheduling language and specialized code generation. The

GraphIt DSL compiler implements scheduling by progressively

transforming the IR before code generation. Because BuilDSL

lacks a domain-specific pass framework, once again we will

rely on extending the types to affect the code we generate

based on the scheduling input. The GraphIt GPU extensions,

G2 identified the 7 independent dimensions of scheduling

that are critical for the performance of graph applications on

GPUs namely - load balance, vertex subset representation,

the direction of traversal, deduplication, vertex ordering, edge

blocking, and kernel fusion. The programmer can choose one

of many options for each of these dimensions giving rise to a

total of about 576 combinations, the highest supported by any

graph GPU framework [9]. We support all these dimensions

with BuilDSL. The programmer encodes these options by the

means of a scheduling object like shown in Figure 9 configuring

one or more of the scheduling options. Line 7 shows how this

schedule can be applied to the operators when implementing

the algorithm. The implementation of the operators can then

specialize the code based on these scheduling objects by

introducing branches on these flags. Since the scheduling

objects are not of dyn<T> type, these branches are completely

evaluated avoiding any kind of runtime overhead.

One performance-critical schedule that GraphIt supports

is direction optimization, where the direction of iteration

60

1 ...

2 // Check if the applied schedule is Hybrid

3 if (s_isa<HybridGPUSchedule>(s)) {

4 HybridGPUSchedule *h = s_to<HybridGPUSchedule>(s);

5

6 // Branch based on dyn<T> expressions and recursively

7 // call edgeset_apply

8 if (in_set.size() <= h->threshold * graph.num_vertices)

9 edgeset_apply(h->s1).from(in_set).apply(...);

10 else

11 edgeset_apply(h->s2).from(in_set).apply(...);

12 return;

13 }

14

15 SimpleGPUSchedule s1, s2;

16 s1.config...

17 s2.config...

18 // Create and apply a Hybrid Schedule combining two

19 // simple schedules

20 HybridGPUSchedule h1(s1, s2, 0.05);

Fig. 10. Implementation of edgeset_apply operator with a
HybridGPUSchedule and an example of how the user can create a
hybrid schedule combining two simple schedules

is changed at runtime based on the size of the frontier.

This optimization is used by applications like BFS and BC

especially when dealing with power-law degree distribution

graphs where the frontier size varies a lot. Just like RegEx

example, we leverage BuildIt’s unique ability to have static<T>

code inside conditions based on dyn<T> expressions. To apply

direction optimization, the programmer starts by creating a

HybridGPUSchedule object that combines two separate Schedule

objects (top-level abstract class of all scheduling classes) with

a threshold. The first schedule is applied if the fraction of the

active vertices in the input frontier is less than the threshold

and the second schedule otherwise. While implementing

the edgeset_apply operator, the implementation checks if the

schedule being applied is a hybrid schedule. If yes, it branches

on the size of the input frontier and recursively calls the

edgeset_apply operator in the then and else branch with the two

schedules respectively. Because BuildIt uses the same syntax

for all stages, this implementation is very similar to how one

would branch in a graph library keeping the code generation

complexity to the minimum. On the other hand the GraphIt

DSL compiler has to rely on duplicating, creating if-then-else

IR nodes and doing specialized code generation when it detects

a hybrid schedule further increasing the compiler complexity.

Section V shows the number of lines of code required to

implement code generation in GraphIt, while Figure 10 shows

the complete implementation of hybrid scheduling in BuilDSL.

HybridGPUSchedule can also be arbitrarily nested to create very

complex runtime conditions. The dynamic condition can also

be generalized to be based on other runtime parameters instead

of just the input frontier size.

F. Runtime Library

Although most of the code generated from BuilDSL is

specialized for best performance, some of the code doesn’t

change a lot across different applications and inputs like vertex

set allocation and management, priority queue implementation,

I/O, graph transformations among others. To keep the staging

complexity to a minimum, we implement this in a runtime

TABLE I. LINES OF CODE REQUIRED TO IMPLEMENT VARIOUS PARTS OF

BUILDSL AND THE GRAPHIT DSL COMPILER. FOR FAIRNESS WE HAVE

ONLY COUNTED THE GPU BACKEND AND THE GPU RUNTIME LIBRARY

FROM GRAPHIT ALTHOUGH IT ALSO HAS A CPU BACKEND. THE LINES OF

CODE FOR BUILDIT HAS BEEN SHOWN SEPARATELY.

Component BuilDSL GraphIt

BuildIt 6,808 -

Frontend - 9,593

Scheduling Language 151 2,401

Midend Analysis and Transformations - 9,601

Types and Operator Implementation 1,320 -

Code Generation 550 2,188

Runtime Library 1,570 2,470

Total 3,591 26,253

Total (compiler only) 2,021 23,783

library that is linked with the generated code. BuilDSL can

insert calls to the routines in the runtime library because BuildIt

supports calls to external dyn<T> functions.

Finally, although the implementation techniques explained

in this section all talk about how they apply to the graph

domain, it is very easy to see how these can be applied to

DSLs from other domains. The generalized DSL framework

part of BuilDSL provides the basic blocks like extracting

CUDA kernels, support for Kernel Fusion, etc. The scheduling,

analysis, and transformations can be made specific to the

domain by extending the types.

Our companion paper [20] shows the implementation

and schedules for five graph applications implemented with

BuilDSL and discusses in detail the generated CUDA code for

each of them.

V. EVALUATIONS

In this section, we demonstrate the performance of the code

generated from BuilDSL and how it compares against the

code generated from the state-of-the-art GPU graph compiler

GraphIt. We will also compare the lines of code required to

implement BuilDSL with that of the GraphIt DSL compiler.

A. Implementation Complexity

The primary metric for the quality of a DSL is the

performance of the code it generates and how it stacks up

against other library and compiler frameworks. However, with

the increasing number of DSLs coming out tailored to very

specific domains, it is also important to see how easy or difficult

it is to implement the compiler for the particular DSL. In

this paper, we make the case that using staging and BuilDSL

makes it significantly easier to rapidly prototype and test a

DSL without having to compromise on performance. We will

start with comparing the number of lines of code required to

implement various parts of BuilDSL explained in Section IV

with the lines of code required to implement the corresponding

features in the GraphIt DSL compiler as passes. Table I shows

the various components and the lines of C++ code required to

implement them.

Looking at the total lines of code we can see right away that

BuilDSL takes only about 15% of the lines of code required

to implement a full DSL compiler. This difference becomes

61

even more prominent when we ignore the number of lines

of code that go into the runtime library (8.4%). BuildIt a

library that BuilDSL primarily depends upon currently stands

at 6,808 lines of C++ code and has been shown separately

in the table. Although this a large component of BuilDSL,

BuildIt is a generalized C++ library for multi-stage execution

and is completely independent of any DSL implementation.

For fairness reasons, we have counted only the lines of code of

GraphIt that are required for the GPU backend and the GPU

runtime library although it also implements a CPU backend.

The bulk of the implementation complexity of GraphIt lies in

the front-end and the mid-end. This is because the frontend has

a tokenizer, a parser, front-end IR definitions which BuilDSL

doesn’t have to implement because the DSL is implemented

embedded in C++ on top of BuildIt and its types. The mid-end

of GraphIt has the IR definitions and the bulk of the analysis

and transformation passes which implement visitors over the IR

and manipulate it. This mode of transformation takes up more

lines of code compared to the staging-based specialization in

BuilDSL as part of the types and operator implementation.

Finally, GraphIt’s GPU backend implementation is also huge

because it has to manually generate code as strings by visiting

every IR node for both GPUs and the host. The backend also

has to do specialized code generation for transferring data

between hosts and GPUs and implement Kernel Fusion. The

code generation in BuilDSL on the other hand is completely

handled by BuildIt and hence is for free. The only small part

that we have to implement is the CUDA extraction passes and

the Kernel Fusion infrastructure as part of the generalized DSL

framework. Once again, this implementation is very generic

and can be reused across DSLs. Finally, the runtime library

in BuilDSL is slightly smaller than that of GraphIt’s because

GraphIt implements all load balancing as a series of runtime

library routines whereas BuilDSL takes care of load balancing

in the operator implementation itself.

The GraphIt DSL compiler is also a large project created

over more than 3 years and maintained by at least 4 developers.

BuilDSL on the other hand was developed entirely by just one

developer over a few months. Although BuilDSL borrows a

lot of design decisions and optimization tricks from GraphIt it

still shows that BuilDSL can significantly reduce the time for

prototyping and testing the DSL especially for tricky backends

like GPUs.

B. Performance Evaluations

Now that we have shown how BuilDSL makes it easier

to implement DSLs over traditional compiler techniques, we

want to demonstrate that the code generated from BuilDSL

is on-par with the code from other frameworks in terms of

performance. Since GraphIt already shows that its performance

beats or very closely matches the performance from other state-

of-the-art frameworks like Gunrock [21], GSwitch [22] and

SEP-Graph [23], we only compare the performance of the code

generated from BuilDSL with that of GraphIt. The relative

performance to other frameworks can be calculated from the

evaluations in the GraphIt paper [9].

TABLE II. GRAPH INPUTS USED FOR EVALUATION. THE EDGE COUNT

SHOWS THE NUMBER OF UNDIRECTED EDGES.

Graph Input Vertex count Edge count

soc-orkut [24] (OK) 2,997,166 212,698,418

soc-twitter-2010 [24] (TW) 21,297,772 530,051,090

soc-LiveJournal [25] (LJ) 4,847,571 85,702,474

soc-sinaweibo [24] (SW) 58,655,849 522,642,066

hollywood-2009 [25] (HW) 1,139,905 112,751,422

indochina-2004 [25] (IC) 7,414,865 301,969,638

road usa [26] (RU) 23,947,347 57,708,624

road central [25] (RC) 14,081,816 33,866,826

roadNet-CA [25] (RN) 1,971,281 5,533,214

We benchmark 5 applications - PageRank (PR), Breadth

First Search (BFS), Single Source Shortest Path with Delta

Stepping (SSSP), Betweenness Centrality (BC) and Connected

Components (CC). These applications include a mix of

topology-driven, data-driven, and priority-driven algorithms

that fully stress the various aspects of BuilDSL. Similarly, we

use 9 different graph datasets with these applications (shown

in Table II). These datasets include a mix of power-law degree

and bounded degree high-diameter graphs which have different

characteristics and sparsity patterns. We run our evaluations

on an NVIDIA Volta V100 (32 GB memory, 4MB L2 cache,

and 80 SMs) GPU. Both for GraphIt and BuilDSL we tune

the best schedule for each algorithm and graph input for a

fair comparison (since the programming interface and the

scheduling language for both BuilDSL and GraphIt is similar,

these schedules are very close to each other).

Figure 11 shows the execution time of the code generated

from BuilDSL normalized to the execution time of the code

generated from GraphIt across the 5 applications and 9 graph

inputs. In both cases the best schedule is chosen for each

algorithm and graph input. Across all applications graphs,

BuilDSL has a 1.03× geometrical mean speedup with an at

most 8.38% slowdown and up to 25.15% speedup. BuilDSL

can match the performance of GraphIt because we support the

exact same space of optimization choices as that of GraphIt.

For topology-driven applications like PR and CC, where

all the edges are processed each round, BuilDSL switches

the layout of the graph data structure to COO which is more

suitable and easier to load balance on GPUs. PR also benefits

from Edge Blocking which BuilDSL supports the same way

as GraphIt. Applications like BFS and BC whose performance

is very susceptible to variations in sizes of the active vertex

set across rounds, greatly benefit from the hybrid scheduling

in BuilDSL which as explained in Section IV is implemented

as specialization based on dyn<T> expressions as opposed to

just static<T> expression. We apply direction optimization and

changing data structures for the vertex sets to improve the

performance of BFS and BC. Both these algorithms also apply

Kernel Fusion for bounded-degree large diameter graphs to

reduce the kernel launch overhead which is made possible by

the infrastructure support from the generalized DSL framework

in BuilDSL. SSSP uses the priority queue abstraction that is

mostly implemented by calls to a runtime library, but the actual

vertex set processing is done by the same operators in BuilDSL.

62

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

OK TW LJ SW IC HW RN RU RC

E
x
e
c
u
ti
o
n
 T

im
e
 N

o
rm

a
liz

e
d
 t
o
 G

ra
p
h
It

Graph Dataset Name

PR
BFS
CC

SSSP
BC

Fig. 11. Execution time of code generated from BuilDSL normalized to the execution time of the code generated from GraphIt across 5 applications and 9
graph inputs (lower the better). The best schedule for each algorithm and input is chosen in both the cases

SSSP also uses kernel fusion for road graphs like BC and BFS.

Our evaluation shows that all the optimizations that we have

implemented in BuilDSL are critical for performance across

commonly used applications. The GraphIt GPU paper has

shown that the lack of some of these optimizations can lead

to up to 1000× slowdown in some cases.

VI. RELATED WORKS

High-performance DSLs have played a critical role in opti-

mizing applications from several domains. Halide [11] a DSL

for image processing applications was the first that introduced

the idea of separating algorithms from schedules. Other DSLs

like GraphIt [7]–[10], TACO [27], Tiramisu [5], Taichi [28]

have applied the same ideas to other high-performance appli-

cation domains. Lightweight Modular Staging [29] and other

works [30]–[38] have contributed to the idea of staging and its

applications to other domains. Works like Forge [39], Jet [13],

StagedSAC [14] and others [1], [40], [41] either apply the

idea of Futamura Projections [17] to interpreters to create

DSL compilers or implement end-to-end DSL frameworks

with staging. A lot of these DSLs also target high-performance

domains and generate code for different architectures like GPUs

and CPUs. BuildIt [16] extends ideas from the BUILDER [42]

framework and brings the idea of multi-stage programming

with a library approach to C++. This is critical because

most high-performance DSLs want to generate C or C++

and BuildIt brings the two stages together. Delite [43] and

other related works [44]–[46] have created building blocks for

components of high-performance DSLs that make it easy to

rapidly prototype a DSL for a new domain. MLIR [47] is a

DSL framework that makes it easy to reuse compiler analysis

and transformation passes across domains with its extensible

IR. But MLIR still requires a lot of compiler knowledge and

is not necessarily easy to use for domain experts. Many high-

performance graph libraries and frameworks have been built to

target different platforms like Ligra [18], [48], Gunrock [21],

GSwitch [22], SEP-Graph [23], IrGL [49] among others [50]–

[68]. GraphIt [7]–[10] is a high-performance graph DSL that

can generate code for CPUs, GPUs, multi-cores and other

hardware accelerators with its unique GraphIR intermediate

representation and scheduling language. The GraphIt GPU

backend combines 7 orthogonal dimensions of scheduling that

enables it to generate the code most suitable for each algorithm

and input. The GraphIR and GraphVMs allow for code reuse

when developing different backends but the framework is very

large and not as accessible for domain experts.

VII. CONCLUSION

We present BuilDSL, a DSL framework built on top of the

light-weight C++ staging library BuildIt. BuilDSL provides

the framework support for GPU code generation, kernel fusion,

analyses, and specialization based on schedules all of which

are commonly required to implement high-performance DSL.

We build a graph DSL on top of BuilDSL that generates high-

performance GPU code that matches the performance of the

code generated from the state-of-the-art graph DSL compiler

GraphIt with a small fraction (8.4%) of the lines of the code.

VIII. DATA AVAILABILITY STATEMENT

BuilDSL and all its components are available open-source

under the MIT license [69]. The procedure to obtain the dataset

and reproduce the results in this paper are also included. All

of the source code for BuilDSL including the generalized

DSL framework and the graph DSL implementation can be

found under the BuilDSL/include and BuilDSL/src

directories adding up to 2021 lines of C++ code. The implemen-

tation for the five applications with their schedules are under

the BuilDSL/apps directory. Our companion paper [20]

explains in detail the implementation of these applications and

the generated code for each of them.

ACKNOWLEDGMENTS

This research was supported by DARPA SDH Award

#HR0011-18-3-0007, Applications Driving Architectures

(ADA) Research Center, a JUMP Center co-sponsored by SRC

and DARPA.

63

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: http://tensorflow.org/

[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information

Processing Systems 32, 2019.

[3] F. Chollet et al. (2015) Keras. [Online]. Available: https://github.com/
fchollet/keras

[4] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm: An
automated end-to-end optimizing compiler for deep learning,” in Proc.

OSDI, 2018.

[5] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral
compiler for expressing fast and portable code,” in Proc. CGO, 2019.

[6] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The
tensor algebra compiler,” in Proc. OOPSLA, 2017.

[7] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and S. Amarasinghe,
“Graphit: A high-performance graph dsl,” in Proc. OOPSLA, 2018.

[8] Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil,
S. Amarasinghe, and J. Shun, “Optimizing ordered graph algorithms
with graphit,” in Proc. CGO, 2020.

[9] A. Brahmakshatriya, Y. Zhang, C. Hong, S. Kamil, J. Shun, and
S. Amarasinghe, “Compiling graph applications for gpus with graphit,”
in Proc. CGO, 2021.

[10] A. Brahmakshatriya, E. Furst, V. Ying, C. Hsu, C. Hong, M. Ruttenberg,
Y. Zhang, D. C. Jung, D. Richmond, M. Taylor, J. Shun, M. Oskin,
D. Sanchez, and S. Amarasinghe, “Taming the zoo: A unified graph
compiler framework for novel architectures,” in Proc. ISCA, 2021.

[11] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proc. PLDI, 2013.

[12] A. K. Sujeeth, A. Gibbons, K. J. Brown, H. Lee, T. Rompf, M. Odersky,
and K. Olukotun, “Forge: Generating a high performance dsl implemen-
tation from a declarative specification,” in Prof. GPCE, 2013.

[13] S. Ackermann, V. Jovanovic, T. Rompf, and M. Odersky, “Jet: An
embedded dsl for high performance big data processing,” in Proc.

BigData, 2012.

[14] V. Ureche, T. Rompf, A. Sujeeth, H. Chafi, and M. Odersky, “Stagedsac:
A case study in performance-oriented dsl development,” in Proc. PEPM,
2012.

[15] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun, “A domain-specific approach to heterogeneous parallelism,”
in Proc. PPoPP, 2011.

[16] A. Brahmakshatriya and S. Amarasinghe, “Buildit: A type based
multistage programming framework for code generation in c++,” in
Proc. CGO, 2021.

[17] Y. Futamura, “Partial evaluation of computation process, revisited,”
HOSC, 1999.

[18] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in Proc. PPoPP, 2013.

[19] S. Beamer, K. Asanovic, and D. A. Patterson, “The GAP benchmark
suite,” CoRR, 2015.

[20] A. Brahmakshatriya and A. Saman, “Application suite for a graph dsl in
buildsl,” 2022.

[21] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the GPU,”
SIGPLAN Not., 2016.

[22] K. Meng, J. Li, G. Tan, and N. Sun, “A pattern based algorithmic
autotuner for graph processing on GPUs,” in Proc. PPoPP, 2019.

[23] H. Wang, L. Geng, R. Lee, K. Hou, Y. Zhang, and X. Zhang, “SEP-
Graph: Finding shortest execution paths for graph processing under a
hybrid framework on GPU,” in Proc. PPoPP, 2019.

[24] R. Rossi and N. Ahmed, “The network data repository with interactive
graph analytics and visualization,” in Proc. AAAI, 2015.

[25] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., 2011.

[26] C. Demetrescu, A. Goldberg, and D. Johnson, “9th DIMACS implemen-
tation challenge - shortest paths,” http://www.dis.uniroma1.it/challenge9/.

[27] F. Kjolstad, S. Kamil, J. Ragan-Kelley, D. I. W. Levin, S. Sueda, D. Chen,
E. Vouga, D. M. Kaufman, G. Kanwar, W. Matusik, and S. Amarasinghe,
“Simit: A language for physical simulation,” ACM Trans. Graph., 2016.

[28] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi:
A language for high-performance computation on spatially sparse data
structures,” ACM Trans. Graph., 2019.

[29] T. Rompf and M. Odersky, “Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled dsls,” SIGPLAN Not.,
2010.

[30] W. Taha, “A gentle introduction to multi-stage programming,” in Proc.

Domain-Specific Program Generation, 2004.

[31] W. Taha and T. Sheard, “Multi-stage programming with explicit annota-
tions,” in Proc. PEPM, 1997.

[32] W. Taha and T. Sheard, “Multi-stage programming with explicit annota-
tions,” SIGPLAN Not., 1997.

[33] C. Calcagno, W. Taha, L. Huang, and X. Leroy, “Implementing multi-
stage languages using asts, gensym, and reflection,” in Proc. GPCE,
2003.

[34] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif, and W. Taha,
“Mint: Java multi-stage programming using weak separability,” SIGPLAN

Not., 2010.

[35] K. Swadi, W. Taha, O. Kiselyov, and E. Pasalic, “A monadic approach
for avoiding code duplication when staging memoized functions,” in
Proc. PEPM, 2006.

[36] Y. Kameyama, O. Kiselyov, and C.-c. Shan, “Closing the stage: From
staged code to typed closures,” in Proc. PEPM, 2008.

[37] Y. Kameyama, O. Kiselyov, and C.-c. Shan, “Shifting the stage: Staging
with delimited control,” in Proc. PEPM, 2009.

[38] G. Wei, Y. Chen, and T. Rompf, “Staged abstract interpreters: Fast
and modular whole-program analysis via meta-programming,” in Proc.

OOPSLA, 2019.

[39] A. K. Sujeeth, A. Gibbons, K. J. Brown, H. Lee, T. Rompf, M. Odersky,
and K. Olukotun, “Forge: Generating a high performance dsl implemen-
tation from a declarative specification,” SIGPLAN Not., 2013.

[40] T. Rompf and N. Amin, “Functional pearl: A sql to c compiler in 500
lines of code,” SIGPLAN Not., 2015.

[41] K. J. Brown, H. Lee, T. Rompf, A. K. Sujeeth, C. De Sa, C. Aberger,
and K. Olukotun, “Have abstraction and eat performance, too: Optimized
heterogeneous computing with parallel patterns,” in Proc. CGO, 2016.

[42] Stanford Compiler Group, “The builder library, a tool to construct or
modify suif code within the suif compiler,” 1994. [Online]. Available:
https://suif.stanford.edu/suif/suif1/docs/builder toc.html

[43] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and
K. Olukotun, “A domain-specific approach to heterogeneous parallelism,”
SIGPLAN Not., 2011.

[44] T. Rompf, A. K. Sujeeth, H. Lee, K. J. Brown, H. Chafi, M. Odersky, and
K. Olukotun, “Building-blocks for performance oriented dsls,” EPTCS,
2011.

[45] K. J. Brown, A. K. Sujeeth, H. J. Lee, T. Rompf, H. Chafi, M. Odersky,
and K. Olukotun, “A heterogeneous parallel framework for domain-
specific languages,” in Proc. PACT, 2011.

[46] A. Prokopec, P. Bagwell, T. Rompf, and M. Odersky, “A generic parallel
collection framework,” in Proc. Euro-Par, 2011.

[47] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. A. Pienaar,
R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “Mlir: Scaling
compiler infrastructure for domain specific computation,” in Proc. CGO,
2021.

[48] L. Dhulipala, G. Blelloch, and J. Shun, “Julienne: A framework for
parallel graph algorithms using work-efficient bucketing,” in Proc. SPAA,
2017.

[49] S. Pai and K. Pingali, “A compiler for throughput optimization of graph
algorithms on gpus,” SIGPLAN Not., 2016.

[50] D. Merrill, M. Garland, and A. Grimshaw, “High-performance and
scalable GPU graph traversal,” ACM Trans. Parallel Comput., 2015.

64

http://tensorflow.org/
https://github.com/fchollet/keras
https://github.com/fchollet/keras
https://suif.stanford.edu/suif/suif1/docs/builder_toc.html

[51] S. Pai and K. Pingali, “A compiler for throughput optimization of graph
algorithms on GPUs,” in Proc. OOPSLA, 2016.

[52] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: An asynchronous
multi-GPU programming model for irregular computations,” in Proc.

PPoPP, 2017.
[53] H. Liu and H. H. Huang, “SIMD-x: Programming and processing of

graph algorithms on GPUs,” in Proc. USENIX ATC, 2019.
[54] A. H. Nodehi Sabet, J. Qiu, and Z. Zhao, “Tigr: Transforming irregular

graphs for GPU-friendly graph processing,” in Proc. ASPLOS-XXIII,
2018.

[55] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “CuSha: Vertex-
centric graph processing on GPUs,” in Proc. HPDC, 2014.

[56] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable SIMD-efficient
graph processing on GPUs,” in Proc. PACT, 2015.

[57] P. Harish and P. Narayanan, “Accelerating large graph algorithms on the
GPU using CUDA,” in Proc. HIPC, 2007.

[58] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in Proc. PPoPP, 2011.

[59] H. Liu and H. H. Huang, “Enterprise: breadth-first graph traversal on
GPUs,” in Proc. SC, 2015.

[60] X. Shi, X. Luo, J. Liang, P. Zhao, S. Di, B. He, and H. Jin, “Frog:
Asynchronous graph processing on GPU with hybrid coloring model,”
TKDE, 2017.

[61] C. Hong, A. Sukumaran-Rajam, J. Kim, and P. Sadayappan, “Multigraph:
Efficient graph processing on GPUs,” in Proc. PACT, 2017.

[62] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel GPU methods for single-source shortest paths,” in Proc. IPDPS,
2014.

[63] J. Soman, K. Kishore, and P. Narayanan, “A fast GPU algorithm for
graph connectivity,” in Proc. IPDPSW, 2010.

[64] R. Nasre, M. Burtscher, and K. Pingali, “Data-driven versus topology-
driven irregular computations on GPUs,” in Prof. IPDPS, 2013.

[65] S. Che, “GasCL: A vertex-centric graph model for GPUs,” in Proc.

HPEC, 2014.

[66] M.-S. Kim, K. An, H. Park, H. Seo, and J. Kim, “GTS: A fast and
scalable graph processing method based on streaming topology to GPUs,”
in Proc. SIGMOD, 2016.

[67] A. Gaihre, Z. Wu, F. Yao, and H. Liu, “XBFS: eXploring runtime
optimizations for breadth-first search on GPUs,” in Proc. HPDC, 2019.

[68] W. Han, D. Mawhirter, B. Wu, and M. Buland, “Graphie: Large-scale
asynchronous graph traversals on just a GPU,” in Proc. PACT, 2017.

[69] A. Brahmakshatriya and S. Amarasinghe, “Replication package for
the paper: Graphit to cuda compiler in 2021 loc: A case for
high-performance dsl implementation via staging with buildsl.” [Online].
Available: https://n2t.net/10.5281/zenodo.5788581

65

https://n2t.net/10.5281/zenodo.5788581

	Introduction
	Motivating Example
	Background and Challenges
	The GraphIt DSL
	Staging with BuildIt
	UDF Analysis and Transformations
	Scheduling Language and Specialization
	GPU Code Generation
	Kernel Fusion

	Implementation
	Graph DSL Programming Model
	GPU Code Generation
	Kernel Fusion
	UDF Analysis and Transformations
	Scheduling language and specialization
	Runtime Library

	Evaluations
	Implementation Complexity
	Performance Evaluations

	Related Works
	Conclusion
	Data Availability Statement
	References

