
A Deep Dive Into Understanding The

Random Walk-Based Temporal Graph Learning

Nishil Talati†§ Di Jin†§ Haojie Ye† Ajay Brahmakshatriya‡

Ganesh Dasika* Saman Amarasinghe‡ Trevor Mudge† Danai Koutra† Ronald Dreslinski†

†University of Michigan ‡Massachusetts Institute of Technology *Advanced Micro Devices, Inc.

Email: talatin@umich.edu

Abstract—Machine learning on graph data has gained sig-
nificant interest because of its applicability to various domains
ranging from product recommendations to drug discovery. While
there is a rapid growth in the algorithmic community, the com-
puter architecture community has so far focused on a subset of
graph learning algorithms including Graph Convolution Network
(GCN), and a few others. In this paper, we study another,
more scalable, graph learning algorithm based on random walks,
which operates on dynamic input graphs and has attracted less
attention in the architecture community compared to GCN. We
propose high-performance CPU and GPU implementations of
two important graph learning tasks, that cover a broad class of
applications, using random walks on continuous-time dynamic
graphs: link prediction and node classification. We show that the
resulting workload exhibits distinct characteristics, measured in
terms of irregularity, core and memory utilization, and cache hit
rates, compared to graph traversals, deep learning, and GCN.
We further conduct an in-depth performance analysis focused on
both algorithm and hardware to guide future software optimiza-
tion and architecture exploration. The algorithm-focused study
presents a rich trade-off space between algorithmic performance
and runtime complexity to identify optimization opportunities.
We find an optimal hyperparameter setting that strikes balance
in this trade-off space. Using this setting, we also perform a
detailed microarchitectural characterization to analyze hardware
behavior of these applications and uncover execution bottlenecks,
which include high cache misses and dependency-related stalls.
The outcome of our study includes recommendations for further
performance optimization, and open-source implementations for
future investigation.

Index Terms—Characterization, CPU, dynamic graph, graph
learning, GPU, random walk, temporal graph, and word2vec.

I. INTRODUCTION

A graph1 is a ubiquitous data structure that models entities

and their interactions through the collections of nodes and

edges. It is widely employed in many domains ranging from

social media [1] to bioinformatics [2], [3]. More recently,

the process of learning representation of graph structured

data, i.e., graph representation learning, has gained significant

popularity in the algorithmic community [4]–[8]. This is due to

its superiority on multiple machine learning tasks in domains

ranging from social science [9], [10], computer vision [11],

physics, chemistry, and biology [12]–[15]. Following this algo-

rithmic evolution, several works in the architecture community

have analyzed its workload characteristics [16]–[18], and built

domain-specific hardware [19]–[21] for acceleration.

§Equal contribution.
1In this work, we use the term “graph” and “network” interchangeably.

Temporal

Random

Walk

Word2vec
Data

Prep
Training Testing

Learning Node Embeddings Downstream ML Task

u v

w

y

x

1
0

2

5 3

Temporal

Graph

O
u
tp
u
t

In
p
u
t

w y

v xLink

Prediction

Figure 1: A high-level overview of our modeled pipeline that

takes a temporal graph as an input and learns the network dy-

namics to encode each node into a low-dimension embedding

space by using temporal random walk and word2vec. These

embeddings are then fed into a downstream machine learning

task such as link prediction or node classification.

The scope of these works, however, has so far been limited

to (a) static input graphs [22], and (b) a subset of graph

learning algorithms including Graph Convolution Network

(GCN) [7], and a few others [5], [23]. Nonetheless, most real-

word graphs are dynamic in nature, i.e., naturally evolving over

time by adding, deleting, or changing their nodes and edges.

Modeling these dynamic graphs as static would inevitably

incur information loss and performance deterioration of down-

stream predictive tasks. Moreover, while GCN has shown

state-of-the-art algorithmic performance on various prediction

tasks [22], it mostly works on static graphs and cannot model

the graph dynamics such as the sequential interactions between

nodes and temporal dependency between graph snapshots.

Besides, high computation and memory complexity of GCN

makes it difficult to scale to large-scale graphs [22].

In this paper, we investigate the behavior of a funda-

mentally new class of graph learning algorithms for temporal

graphs based on random walks, namely, temporal random

walk [6]. Temporal graphs are a category of dynamically

evolving networks with timestamp information associated with

each network interaction (i.e., temporal edge). Informally,

a temporal walk is defined as a sequence of temporally-

valid edges {(u, v1, t1), (v1, v2, t2), · · · , (vi−1, vi, ti)}, where

ti−1 ti. As an example, for the temporal graph shown in

Fig. 1, the walk {u, v, x} is temporally-valid as it naturally

indicates how the node u interacts with its neighbors with

respect to time, while {u, v, w} is invalid. Temporal random

walk is an important algorithm that underlies a wide range

of applications on graphs such as information cascading [24],

87

2021 IEEE International Symposium on Workload Characterization (IISWC)

978-1-6654-4173-5/21/$31.00 ©2021 IEEE
DOI 10.1109/IISWC53511.2021.00019

20
21

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n
W

or
kl

oa
d

Ch
ar

ac
te

riz
at

io
n

(II
SW

C)
 |

 9
78

-1
-6

65
4-

41
73

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I:
10

.1
10

9/
IIS

W
C5

35
11

.2
02

1.
00

01
9

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

user behavior modeling [25]. It is also the foundation of many

follow-up research in the field of machine learning and repre-

sentation learning [26]–[28]. However, temporal random walk

has gained relatively less popularity in the architecture com-

munity so far. Additionally, this conceptually straightforward

algorithm could effectively model the temporally-valid node

interactions while being more scalable [4] to handle large-

scale graphs. Furthermore, we show that a workload resulting

from temporal random walks exhibits distinct characteristics

compared to traditional graph processing and GCN algorithms

(see §IV-D).

Fig. 1 shows an overview of a canonical pipeline based

on a prior algorithmic work [6]. We model high-performance

implementations of two variants of this pipeline for both the

CPU and GPU-based computing. The front-end of the pipeline

employs temporally-valid random walks and word2vec, a

technique from Natural Language Processing (NLP), to map

nodes into a low-dimension embedding space. This process

translates the similarity between nodes in the original network

into closeness in the embedding space. Then, these node

embeddings are fed into downstream machine learning tasks.

Specifically, this part models the two most widely-known

graph learning tasks, used in several applications, as follows.

• Link prediction. This task predicts the presence/absence

of an edge between a given pair of nodes. A concrete

application of this task is product recommendation from

the online sales websites such as Amazon.

• Node classification. This task assigns labels to nodes. Its

concrete application is identifying the professional role of

a user in social networks such as LinkedIn.

Based on this pipeline, we perform detailed two-step

performance characterization: (a) algorithm-focused, and (b)

hardware-focused. This reveals a rich design space and per-

formance acceleration opportunities as listed below.

(a) Accuracy-complexity trade-off. While high prediction

accuracy is desirable, it does not always come with high cost.

We use three hyperparameters to show this: (a) number of

random walks per node, (b) random walk length, and (c) em-

bedding space dimensionality. While increasing these values

monotonically increases workload memory consumption and

execution time, their benefit in accuracy are limited. While

prior works [4], [6], [29] often over-provision these values, we

find optimal parameters balancing accuracy and complexity.

(b.1) Instruction diversity. By analyzing dynamic instruction

types of individual kernels, we find the dominance of both

memory and compute instructions, indicating the necessity

to optimize both types of operations. This is particularly

interesting for temporal random walk that executes more

compute operations than traditional graph processing.

(b.2) Thread scalability. Despite irregularity, individual work-

load kernels can scale well using work stealing.

(b.3) Time Breakdown and CPU versus GPU. Classifier

training dominates the execution time of end-to-end workload;

accelerating training will yield high workload speedup. A

cross-platform workload comparison reveals that the GPU

outperforms CPU at large graph sizes.

(b.4) Execution Bottlenecks. GPU workload characterization

reveals that individual kernels exhibit diversity of bottlenecks

including cache misses, and compute and memory dependency.

Using these insights, we discuss strategies to optimize

this workload for future exploration using: algorithm, ML

framework, GEMM library, compiler, and hardware.

This is the first work introducing the random walk-based

learning pipeline on dynamic graphs for computer architecture

research. In summary, we make the following contributions:

• High-performance CPU and GPU implementations of

random walk-based temporal graph learning tasks.

• A detailed algorithic workload characterization presenting

a rich accuracy-complexity trade-off space.

• An in-depth hardware-focused performance characteriza-

tion uncovering future optimization opportunities.

• Open-source benchmark implementations and datasets for

the benefit of the broader research community at

https://github.com/talnish/iiswc21_rwalk.

II. RELATED WORK

A. Graph Representation Learning

Recently, graph representation learning or node embedding

has attracted massive research attention from both academia

and industry due to its success in downstream tasks like link

prediction and node classification. Inspired by the notion of

word proximity from NLP, early research in graph learning

focused mainly on leveraging the node proximity in a graph,

such as DeepWalk [4] and node2vec [29]. These works either

leverage first or second-order node proximity [30], or higher-

order (> 2) [31] to construct the global node representa-

tions. Additionally, there are works based on graph structural

properties. For example, struc2vec [14] defines similarity in

terms of degree sequences in node-centric subgraphs, and

role2vec [32] inductively learns structural similarity by in-

troducing attributed random walk atop relational operators.

Furthermore, other works attempt to incorporate external node

features with the graph structures [5], [7], [8]. For instance,

Graph Neural Network (GNN) [33], [34] and its variants

propose to aggregate node features in its dependent contexts

with arbitrary depth via propagation/diffusion. Representative

works include GCN [7], GraphSAGE [5], and GAT [8].

B. Temporal Network Modeling

Temporal network modeling has been widely studied in dy-

namic network analysis [35], [36]. Most existing works in

the field of machine learning and representation learning

empirically process the temporal graph as a sequence of

snapshots [28], [37], [38]. While the sequential order of

the snapshots models the evolution of temporal dynamics,

each individual snapshot is static and analyzed without the

temporal information. Streaming graph models can be seen as

an extreme case of the snapshot model, where the most recent

snapshot is a dynamically changing graph in real time [39],

[40]. Another direction that is orthogonal to snapshot-based

methods is based on sequential interactions between node pairs

in the graph. In this paper, we follow an earlier algorithmic

88

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

Symbol Definition

G(V, E) a directed temporal network with |V| nodes and |E| edges
Gt(Vt, Et) a snapshot of the temporal network G at time t with |Vt|

nodes and |Et| temporal edges
A, At adjacency matrix for graph G and Gt, respectively
wu,v a temporal walk reaching out from u to v
f arbitrary base embedding method
d dimensionality of the embedding
Z |V|× d embedding matrix

Table I: Summary of notation.

work CTDNE [6], which proposes the notion of temporal

walks and leverages it to learn embeddings directly from the

stream of timestamped edges at the finest temporal granular-

ity. Other works [41], [42] propose to model the sequential

interaction as the point-process to predict the occurrence of

link over time.

C. Software Frameworks

Several software frameworks have been proposed to under-

stand performance implications of different graph learning al-

gorithms [43]–[47]. However, these frameworks mostly model

GCN algorithm and a few others [7]. This paper, on the other

hand, models random walk-based graph learning. Addition-

ally, there has been tremendous efforts for developing high-

performance implementations for traditional bulk-synchronous

graph applications on shared memory systems [48]–[60].

These frameworks implement abstractions for programming

graph applications as a library of high-level primitives or a

new programming language and compilers [61]–[63]. They

also combine optimizations with different iteration orders,

data structures, direction-optimization [63] etc. to improve

performance across different graph inputs and applications.

D. Hardware Proposals

Several prior works accelerate similar algorithms using novel

hardware designs. In the context of our paper, similar al-

gorithms include graph traversals, traditional deep learning,

and graph neural networks. A subset of prior works focus

on optimizing graph algorithms on the CPU using techniques

such as hardware prefetching [64]–[66]. Other works op-

timize graph algorithms on GPUs [67]–[69]. Additionally,

several accelerators have also been proposed to accelerate

graph traversals [70]–[73]. Both traditional deep learning and

graph neural networks have been extensively optimized using

hardware accelerators [19]–[21], [74]–[77]. However, random

walk based graph learning is not well studied in the context of

hardware accelerators. In §IV-D, we show that random walk-

based graph learning exhibits significantly different nature in

terms of its characteristics compared to aforementioned well-

studies application domains, motivating the need for our study.

III. PRELIMINARIES

This section provides the definitions of notions used in this

paper. The related symbols are listed in Table I.

Definition III.1 (Temporal Graph). A temporal graph G

consists of a set of nodes V and a set of temporal edges

E ✓ V ⇥ V ⇥ R
+, where t 2 R

+ represents the timestamp

of an edge (u, v, t) 2 E .

At a high level, a collection of temporal edges {(u, v, t)}
forms a time-evolving network structure. For example, the

time-evolving email exchange network is constituted by in-

dividual contacts from user u to v at time t. Comparing

with static networks, the edge timestamps endorse in-depth

analysis of the network dynamics over time. A fundamental

data structure defined in temporal networks is a set of temporal

walks, i.e., a sequence of walks with respect to time [6], [25].

Definition III.2 (Temporal Walk). A temporal walk w from u

to v in the network G(V, E) is defined as a sequence of con-

nected edges wu,v = {(u, u1, t1), (u1, u2, t2), · · · (uk, v, tk)}
where ti < ti+1 for i = 1, 2, · · · , k.

A temporal walk indicates the reachability from the source

to destination node in a time-increasing order, which encapsu-

lates detailed information about network dynamics as well as

node characteristics. In the email exchange network example,

temporal walks denote the paths of a user reaching out to

another. These walks reflect how people get to know each

other and further expand their social networks over time. In

this process, detailed user activities such as reply, forward, etc.

are critical to user profiling and behavioral analysis.

In order to mathematically characterize such node properties

in the graph, the notion of graph representation learning has

been proposed and widely applied in practice. The high-

level idea is to map the nodes from the graph space to a

low-dimensional distance space (e.g., 128-d Euclidean space)

such that the computational complexity is reduced while the

similarity between nodes is preserved. As a result, the low-

dimensional representation can be applied to various machine

learning tasks such as link prediction, clustering, and node

classification. The formal definition of graph representation

learning is given as follows.

Definition III.3 (Graph Representation Learning). Given a

graph G(V, E), graph representation learning aims to learn a

function f : G(V, E) ! R
d that maps nodes from the graph

to a low-dimensional space such that d ⌧ |V| and d ⌧ |E|

while preserving the notion of similarity between nodes.

Depending on specific approaches, the notion of similarity

can be defined as the proximity between nodes. Intuitively,

a node is more similar to its 1-hop neighbors than its 2-

hop neighbors and other distant nodes. Thus, nodes that share

common neighbors are embedded closely. On the other hand,

node similarity can be measured through the functionality or

structural role of a node in terms of its connection to its

neighbors. For example, the centers of two star-like subgraphs

are structurally similar to each other because they both are at

the center and thus behave like “hubs” that bridge other nodes.

In this work, we address the first type of node similarity in

graphs through temporal proximity.

IV. BACKGROUND AND MOTIVATION

In this section, we discuss the workload that performs link

prediction and node classification based on temporal random

walk on the graph. Specifically, the workload first generates

89

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

u v x

w

y

1

0

2

5 3

(a) Illustration of

temporal neighborhood

v w

y x

v y

x v

y w

x y

Training

Testing

(b) Positive and negative edges

for link prediction

Positive Negative

Figure 2: Illustration of temporal the neighborhood and pos-

itive/negative edges. At timestamp 1, the random walker

reaches node v, then the set of nodes {x, y} forms the temporal

neighbors of node v.

the temporally-valid walks to characterize the structure of

the subgraph centering around each node, and then leverages

word2vec to encode it into the low-dimensional Euclidean

space as the node embeddings (§IV-A). Then, depending on

specific downstream tasks, the workload feeds the derived

node embeddings into the neural network architectures, and

trains the model to minimize the training loss (§IV-B). Finally,

training is performed. After discussing this background, we

briefly show how this workload is different from other standard

benchmarks (specifically GCN) to motivate our study.

A. Background: Temporal Random Walk based Representation

1) Temporal Random Walk

We follow an earlier algorithmic work, CTDNE [6], to

deploy the workload. Specifically, for a node v in graph G, our

workload leverages a set of temporally-valid walks originating

from v as the characteristic features to derive the embeddings.

As mentioned in Definition III.2, the temporally-valid walks

reflect the reachability of nodes following the graph structure

over time, which further reflects how a node v dynamically

interacts with its neighbors in the graph.

We leverage temporal random walk to collect the neighbor-

hood information for each node v 2 G. In typical temporal

random walks, the nodes along the walks are chosen ran-

domly without a specific destination as long as the associated

timestamps are increasing. The transitional probability p(v|u)
is denoted as p(v|u) = 1

|Nu|
, where Nu denotes the set of

nodes that are reachable from u following the connected edges.

Thus, as long as Nu for u 2 V is computed efficiently, the

temporal walks can be collected efficiently. We detail the

implementation of Nu in §V-A. As an example shown in

Fig. 2, the random walker currently reaches node v following

the edge with timestamp 1. The next node it reaches would

be either node x or y with equal probability 0.5.

While a typical transitional probability marks an efficient

way to gather temporal walks, it fails to incorporate the

temporal continuity. Again, in the example shown in Fig. 2,

an edge from node v to x appears immediately after the edge

from the source node u to v. Compared to node y that appears

later in time, node x is more correlated with v.

In order to capture this notion of temporal continuity in

the graph dynamics, we follow Jin et al. [25] to model the

transition probability using the softmax function:

Pr[v|u] =
exp (−τ(u, v)/r)

P
i∈Nu

exp (−τ(u, i)/r)
, (1)

where τ(u, v) denotes the timestamp associated with the edge

u, v in the graph, and r is the normalization term that denotes

the total range of timespan.

With the transitional probability, our workload performs

|W| walks with lengths L per node, and collect them as

the features to describe each individual node in the graph

Wu = {v1, v2, · · · , vL}. Next, we describe the derivation of

node embeddings based on these walks.

2) Node Embedding

Given the set of temporal walks as features per node, our

workload then leverages the skip-gram model [6], [29] to learn

the node embeddings, where the objective function is

max
f

logPr(Wu|f(u)), (2)

where f(u) denotes the embedding for node u to optimize.

To solve Equation (2), we assume conditional independence

between nodes in Wu, generating a relaxed objective

Pr(Wu|f(u)) =
Y

v∈Wu

Pr(v|f(u)), (3)

where Pr denotes the softmax function (Eq. (1)). As the

output, our workload generates the embedding function f =
G ! R

d for each node u 2 G. For our implementation we

leverage the word2vec [78] framework.

B. Background: Downstream Tasks

Given the d-dimensional embedding vector per node, our

workload leverages the feed forward neural network architec-

ture (FNN) to perform two representative downstream tasks:

link prediction and (multi-class) node classification. The pa-

rameters of FNN are updated in the training set Str and tested

on the testing set Ste. The optimizers used for both tasks are

Stochastic Gradient Descent (SGD).

Depending on the tasks, the specific network architecture

and loss function adopted in our workload is given as follows.

Link Prediction. The goal of link prediction is to correctly

predict the existence of edges that occur later in time based

on the initial graph temporal connectivity. Our workload casts

link prediction as a classification task, so that the trained FNN

can distinguish edges in temporal graph G (positive edges)

from the non-existing ones (negative edges). An example is

shown in Fig. 2(b), where the goal is to predict the recent edge

e(v,y) in the toy graph. Our workload randomly samples two

early edges as the positive samples with the same number of

negative edges to train the neural network. In the testing stage,

the same amount of negative samples are generated as well.

The embedding for edge e(u,v) is derived by concatenating

the embedding of the source and destination nodes, i.e.,

f(e(u,v)) = [f(u), f(v)] following [31].

In this task, we deploy the 2-layer FNN, where the out-

put layer generates the probability of classification. We use

a binary cross-entropy loss function in the training stage

90

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

Figure 3: Hardware metric comparison of purely graph traver-

sal (BFS), deep learning inference (VGG), graph convolution

network inference (GCN), and modelled pipeline: RW-P1 (ran-

dom walk), RW-P2 (word2vec), RW-P3 (training), and RW-P4

(testing) The figure showcases unique behavior of modeled

application compared to other well-studied benchmarks.

L = �
P2

k=1 pk log qk, where pk is the binary target ({0, 1})

and qk is the output probability of the neural net, i.e., q =
FNNLP(f(e+, f(e−))).
Node Classification. Multi-class classification is another

widely studied task, where the goal is to classify the multi-

class labels of nodes in the graph. In our workload, we cast the

multi-class classification task by feeding the node-wise embed-

dings as well as their labels to a 3-layer neural network. The

output layer has |C| neurons, each of which indicates the prob-

ability of the input node belonging to the class c 2 C. The loss

function used is negative log likelihood loss L = � log(qc),
where qc is the output probability of a node belonging to the

ground-truth class c, i.e., q = FNNNC(f(u), l(u))), where l(u)
denotes the label for node u.

C. Motivation: GCN versus Random Walk-based Graph

Learning

In comparison with GCN that performs spectral convolutional

operation over a node’s neighbors up to a pre-defined number

of hops, temporally-valid random walk captures the sequential

interactions with respect to time. As a basic way to explore

the spatial property on temporal graphs, the presented al-

gorithm exploits global graph property that is beyond the

local node-centric subgraphs. Therefore, it is more powerful

in predictive tasks such as link prediction. Furthermore, the

presented algorithm works on feature-less graphs and uses

a single-integer vertex-identifier as a feature, whereas GCN

requires vertex-wise long feature vectors. Interestingly, there is

connection between GCN and random walk, for example, [79]

shows that random walk can be used to supplement GCN to

improve performance on static graphs. However, the difference

in these patterns result in different workload characterization

and performance optimization strategies on temporal graphs.

D. Motivation: Why Study this Workload?

Fig. 3 compares the hardware characteristics of a traditional

graph traversal (BFS), deep learning inference (VGG), graph

convolution network inference (GCN), and different workload

phases of random walk based graph learning application (RW-

P[1:4]) on a GPU. The figure shows GPU core utilization

(SM Util), L2 cache hit rate, DRAM bandwidth utilization,

load imbalance, and a measure of irregularity (ratio of number

of replayed to issued instructions) [80] normalized to BFS.

The datasets used for these tasks are the following: BFS—a

synthetic graph using graphgen utility from Rodinia [81]

with 16M nodes and 117M edges, VGG—ImageNet [82],

GCN—Reddit [5], and this work—a synthetic Erdős-Renyi

graph with 10M nodes and 200M edges.

The figure clearly shows that random walk based graph

learning pipeline yields unique characteristics compared to

other applications, which warrants its further investigation.

Specifically, the amount of irregularity (measured using a ratio

of the number of replayed to issued GPU instructions) is high,

which can be because of long-latency load instructions and/or

load/branch divergence. These characteristics further results in

low SM and DRAM bandwidth utilization.

V. BENCHMARK IMPLEMENTATION

This section presents implementation details of modeled graph

learning applications for both CPU and GPU. At a high-level,

this follows the flow presented in Fig. 1. We first present the

temporal random walk algorithm and a modified version of

word2vec that outperforms its open-source counterparts. Then,

we briefly discuss the data preparation and classifier steps.

A. Temporal Random Walk

This is the first step of modeled pipeline that takes a temporal

graph G as an input, and outputs temporally-valid random

walks starting from each node in the graph. We build this

kernel by extending a high-performance graph processing

framework — the GAP benchmark suite (GAPBS) [83].

We use the weighted graph structure WGraph for storing a

temporal network, which stores graph edges as an array of

structures (i.e., destination and weight). The weight field is re-

purposed to store timestamps with appropriate changes in the

data type. Furthermore, we add support to preserve multiple

edges between the same source and destination vertices. This is

important to preserve multiple temporally-distant interactions

between the same set of nodes.

This algorithm is shown in Algorithm 1. Its time complexity

is O(KN |V|M), where K is the number of random walks per

node, N is the length of each random walk, |V| is the total

number of vertices in the graph, and M is the max degree of

all the vertices in the graph. The factor of M comes from the

call to the G.sampleLatent function (line 12) that iterates

through all the neighbors of the vertex and compares each edge

against the timestamp. With any value of currVertex, this

would have to process edges equal to the maximum degree

in the graph. There are three nested loops: 1) the outer loop

to iterate over the walk number per node when performing

multiple random walks per node (line 4); 2) the middle loop

to iterate over all the vertices in the graph (line 5); and 3) the

inner loop to iterate over an individual step of a walk (line 8).

In our implementation, we parallelize the middle loop that

iterates over all vertices, based on an empirical finding that it

offers optimal performance compared to alternative settings.

B. Word2vec

This algorithm takes a series of temporally-valid random walks

as an input and outputs node embeddings. For the CPU,

91

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Pseudocode for temporal random walk

1: Input: Graph G in CSR format, temporal walk length N, Number of walks per

vertex K

2: Output: Temporal walk output matrix of dimensions |G.V| × K × N, W

3: W ← new matrix [|G.V|][K][N]
4: for w : 0 → K do

5: par_for v : 0 → |G.V| do

6: currVertex ← v

7: currTime ← 0
8: for i : 0 → N do

9: if G.neighbors(currVertex) == 0 then

10: break

11: end if

12: currVertex , currTime ←

G.sampleLatent(currVertex , currTime)
13: W [v][w][i] ← currVertex

14: end for

15: end par_for

16: end for

Figure 4: The power-law distribution of temporal random

walk lengths on wiki-talk dataset (in linear and log scales).

Most walks are of short lengths, and the frequency of longer

walk length decreases exponentially. Other datasets also show

similar patterns.

we adopt an open-source implementation [84]. However, we

find that the available GPU implementations [85], [86] have

sub-optimal performance when applied to the graph learning

problem. This is because of their parallelism model. These

implementations parallelize word embedding updates within

each sentence, and processes different sentences sequentially.

While this might be optimal in NLP with long sentences, it

leads to poor parallelism in the graph learning context. This is

because, as shown in Fig. 4, the random walk lengths (i.e., the

number of walks that complete for a given length given the

timestamp constraints) are centered around 1 to 5. As the walk

length is analogous to sentence length, the word2vec input

constitutes a large number of short sentences. This causes

the GPU resources to be under-utilized and launches a large

number of GPU kernels, one launch for each sentence.

To improve this implementation, we propose the following

optimizations. First, we batch multiple sentences together, and

process sentences within a batch in parallel. This adds a

new possibility to read from a stale word embedding model,

potentially reducing accuracy, as we process multiple word

embedding updates concurrently. However, because the model

update is a sparse operation [4], concurrently updating word

embedding model does not result in an accuracy loss. On

the flip side, this technique greatly improves the GPU core

utilization. Empirically, Fig. 5 shows that the batch size of 16k

achieves a 124.2⇥ speedup over no batching without accuracy

loss. The speedup is attributed to (a) improved GPU core

Figure 5: Sensitivity of word2vec phase speedup and end-to-

end link prediction accuracy for different batched sentence

sizes on a GPU using wiki-talk dataset. Compared to a baseline

open-source implementation [85], [86], our batch implemen-

tation gains 124.2⇥ speedup without a loss in accuracy at a

batch size of 16k sentences.

Figure 6: Speedup of the word2vec phase on a GPU for dif-

ferent optimizations. Compared to baseline, batched sentences

(Batched), no cache line padding (No-pad), memory operation

coalescing (Coalesce), and parallel reduction (Par-red) result

in an end-to-end speedup of 220.5⇥ on wiki-talk dataset.

utilization, (b) CPU-GPU data transfer cost amortization over

long computation, and (c) reduced kernel launch overhead.

Second, a prior implementation [86] uses cache line padding

to address false sharing at the private L1 caches. This heavily

under-utilizes cache lines as our embedding space dimension

is small (i.e., 8 as shown in §VII-A). To optimize cache

line utilization, we remove the cache line padding (No-pad)

and add support to bypass the L1 cache. Third, we assign

multiple GPU threads to process each embedding dimension in

a coalesced manner (Coalesced), and use parallel reduction for

accumulation (Par-red). With a small embedding dimension,

we also eliminate all the __syncthreads(), and rely on

the in-warp synchronization. Fig. 6 shows the benefit of each

of these optimizations, leading up to an end-to-end speedup

of 220.5⇥ on the wiki-talk dataset without accuracy loss.

C. Data Preparation

Inputs to this step include the node embeddings from

word2vec, and a temporal edge list/a labeled node list for link

prediction/node classification. This step outputs datasets for

training (Str), validation (Svd), and testing (Ste).

Fig. 7 shows the data preparation algorithm for link pre-

diction. First, the input edges are sorted by their timestamps

(1) and then 20% of the edges are chosen for testing from

the end of this list. The intuition behind sorting the edges is

92

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

t0

t1

t|E|-1

{e00 … e0d-1}

{e10 … e1d-1}

{e|V|-10 …

e|V|-1d-1}

0

1

|V|-1

T
e

m
p

o
ra

l
e

d
g

e
lis

t
N

o
d

e
 e

m
b

e
d

d
in

g
s

ta

tb

tk

(ta<tb<…<tk)

Sort

Testing
Dataset

division

Training

Validation

20%

20%

60%

S
a

m
p

lin
g

Negative Sampling

Str

Svd

Ste

Edge feature construction

{ek00 … ek1d-1}

{el00 … el1d-1}

{em00 … em1d-1}

{ep00 … ep1d-1}

0

1

1

0

…

…

…

Desired output

In
p

u
ts

Feature vectors Labels

1 2

3

4

Figure 7: Data preparation step for link prediction.

to train the classifier on the past edges and test it on the future

edges. Excluding the testing edges, 60% and 20% of the total

edges are randomly sampled for training and validation (2),

respectively. Because these edges exist in the original input

network, they form positive edge sets with a label 1. Negative

sampling (3) is used to construct negative edges with a label

0. This is done by altering one/both vertex IDs of positive

edges so that the resulting edge is absent in the input graph.

After constructing these sets, edge features are computed by

concatenating node embeddings as described in §IV-B (4). A

similar mechanism is employed for node classification, where

labeled dataset precludes the need for negative sampling.

D. Classifier

Data obtained in the previous stage is fed into the classifier,

which goes through training and testing phases. We use an

FNN-based classifier as discussed in §IV-B.

VI. EXPERIMENTAL METHODOLOGY

This section details our experimental methodology. Specif-

ically, we talk about our hardware platforms, software

toolchain, and input graph datasets used for evaluation.

A. Hardware Platforms

We characterize modeled applications on two platforms —

CPU and GPU. We use a dual-socket server with two AMD

EPYCTM 7742 CPUs with 128 physical cores (256 SMT

threads). The aggregate Last Level Cache (LLC) size is

2⇥256MB. The size of main memory is 512GB. Additionally,

we use a discrete NVIDIA GPU with Ampere architecture.

B. Software Toolchain

We model our applications in C++ and compile them using

the g++ v7.5 compiler with -O3 optimization level for

the CPU. We compile CUDA programs using nvcc v11.2

with -O3 and -arch=sm_80 flags. For hardware profiling,

we use manual instrumentation and MICA Pintool [87] for

the CPU, and NVIDIA Nsight Compute [88] for the GPU.

We use dynamically scheduled OpenMP threads for CPU

parallelism. The downstream ML task is implemented using

the PyTorch-C++ API [89].

C. Input Datasets

We use both real-world and synthetic graphs for evaluation.

Because the publicly available real-world temporal datasets

are limited in size, we use them for algorithmic evaluation.

Table II shows the list of these datasets and their proper-

ties. For hardware study, we use large-scale synthetic graph

datasets generated using Python-based networkx library.

Specifically, we generate Erdős-Renyi random graphs, with

varying sizes and degrees, with synthetic timestamps.

VII. RESULTS AND ANALYSIS

Presented analysis is divided into two parts: (a) algorithm-

focused study, and (b) hardware-focused study. The former

presents the trade-off between prediction accuracy and runtime

performance. The latter focuses on understanding the workload

characteristics to find performance optimization opportunities.

A. Algorithmic Analysis

We study the effect of three important algorithmic parame-

ters: number of random walks per node, walk length, and

embedding space dimension. As shown in §V-A, runtime

complexity of the random walk algorithm is proportional

to the number of random walks per node and walk length.

Additionally, the runtime complexities of word2vec and clas-

sifier training/testing are dependent on the embedding space

dimension as it decides the feature vector length. Therefore,

increasing these parameter values will increase the execution

times of different kernels. Fig. 8a empirically confirms this

finding by showing the increase in random walk execution

time when increasing in the number of walks per node for the

stackoverflow dataset. A similar trend is observed for random

walk length and embedding space dimension. In general, we

find that the performance on link prediction tasks is better

than node classification. This is because that temporal random

walk exploits global graph property that is beyond the local

node-centric subgraphs. As the task of node classification re-

quires detailed information centric to specific nodes, temporal

random walk is not the optimal algorithm for it. Thus, as link

prediction requires more global information about the graph

connectivity, the performance is better. Next, we present the

parameter sensitivity on prediction accuracy of downstream

tasks.

Number of Random Walks Per Node. As shown in prior

works [4], [6], [29], the network is best sampled by performing

multiple random walks from the same node. This is because

one walk can only sample a vertex neighborhood via one of

its neighbors. Performing multiple walks from a node can

potentially sample a wider vertex neighborhood, enriching the

amount of information used for downstream learning tasks.

Fig. 8b shows the effect of performing multiple random walks

from a node on the prediction accuracy of link prediction and

node classification. The figure confirms that more walks from

the same node increases the prediction accuracy. Interestingly,

this improvement saturates after 8-10 walks. This is because

of the power-law nature of real-world graphs, i.e., most nodes

have few neighbors. In a majority of sparsely connected nodes,

performing 8-10 walks are enough to cover most neighbors.

Beyond this, there is limited value by performing more walks.

Random Walk Length. Length of the random walks in-

dicates the distance of sampled neighbor from the source.

93

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

Task Dataset Name #Nodes #Temporal Edges Description

Link prediction ia-email [90], [91] 87,274 1,148,072 Enron email network from Jan. 1998 until Feb. 2004
Link prediction wiki-talk [92]–[94] 1,140,149 7,833,140 User editing network of Wikipedia Talk pages
Link prediction stackoverflow [92], [93] 6,024,271 63,497,050 Stack exchange interaction network on Stack Overflow

Node classification dblp5 [95] 6,606 42,815 Co-author network from DBLP from 5 research areas
Node classification dblp3 [95] 4,257 23,540 Co-author network from DBLP from 3 research areas
Node classification brain [95], [96] 5,000 1,955,488 Connectivity network of tidy cubes of brain tissues

Table II: Real-world temporal networks used for algorithmic evaluation.

(a) (b) (c) (d)

Figure 8: Accuracy-complexity trade-off. (a) Normalized execution time of the random walk kernel for different number of

walks per node, and (b-d) Accuracy of link prediction and node classification with respect to different parameter values.

For example, a random walk of length 5 will sample a 5-hop

neighbor from a source vertex. While multiple random walks

per node sample wide neighborhoods, larger random walk

length indicates the sampled neighborhood depth. Intuitively,

larger the length of random walk, deeper the network can be

sampled. Fig. 8c shows an increase in prediction accuracy with

an increase in the random walk length. This trend, however,

saturates after a walk length of 4-6, which can be described

using an earlier finding. Fig. 4 shows that the frequency of

random walks decreases with increased walk length. This

translates into marginal information gain with large walk

lengths and saturation in prediction accuracy.

Embedding Space Dimension. At a high level, a graph

learning task maps each node to an embedding space, where

the dimension of the embedding space defines complexity

of interactions that can be modeled. While prior algorithmic

works [4], [6], [29] use a fixed dimension size (d) of 128, we

analyze how this affects end-to-end accuracy. Fig. 8d shows

the effect of changing d on the prediction accuracy. Increasing

d from 1 to 8 results in gain in prediction accuracy as higher

dimensions can model more complex network interactions.

Interestingly, we find that an embedding space of dimension

8 is enough to make meaningful network predictions.

To summarize, there exists a rich trade-off space between

algorithmic performance and runtime complexity. While in-

creasing the value of aforementioned hyperparameters will

monotonically increase the execution time of different kernels,

their effect on prediction accuracy is limited. Based on our

empirical findings, we find the optimal values of number of

random walks per node, random walk length, and embedding

space dimension to be 10, 6, and 8, respectively.

B. Hardware Analysis

Next, we perform a detailed hardware analysis based on the

optimal parameter values found above. Using real-world and

synthetic graph datasets, we study the instruction diversity,

Figure 9: Dynamic instruction breakdown of different kernels

involved in link prediction for ia-email dataset. The figure

shows that all kernels have a high number of both compute

and memory instructions.

scalability, time breakdown, and execution bottlenecks.

Instruction Diversity. Instruction diversity characterization

helps understanding the operation types present in a work-

load, which can be used to make design decisions building

specialized hardware. Fig. 9 shows the breakdown of dynamic

instruction types of individual kernels on a CPU for the link

prediction task on ia-email dataset. This is divided in terms of

memory, branch, compute (both arithmetic and floating point),

and others. The others category includes instructions for stack

usage, bitwise shifts, string operations, SIMD, etc.

The figure shows that both compute (36.6% on average)

and memory (30.4% on average) operations are dominant in

all kernels. Word2vec and classifier training/testing phases use

neural network-type computation, hence, this breakdown is not

surprising. However, a similar count of compute and memory

instructions for random walk is surprising as graph traversals

are known to have a low memory-to-compute operation ratio.

This distribution is attributed to the compute-intensive opera-

tions used in selecting a neighbor to walk as shown in Eq. (1).

As a takeaway, system designers should target both compute

and memory operations for optimizing all workload kernels.

Scaling Analysis. Fig. 10 shows the thread scaling behavior

of temporal random walk and word2vec kernels for stackover-

flow. Additionally, it shows GPU performance normalized to a

94

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

Figure 10: CPU thread scaling analysis and its comparison

with GPU implementation for temporal random walk and

word2vec kernels on the stackoverflow dataset. The speedups

are normalized to a single-thread implementation. The figure

shows reasonable scaling trend.
rwalk word2vec training/epoch testing

|V|,|E| CPU GPU CPU GPU CPU GPU CPU GPU

10k,50k 0.0 1.2 0.3 0.4 0.3 0.7 0.1 0.0

10k,100k 0.0 1.2 0.3 0.3 0.6 0.8 0.4 0.1

10k,200k 0.0 1.2 0.3 0.4 0.8 1.2 0.2 0.2

100k,500k 0.1 1.2 0.7 0.4 2.4 2.3 0.5 0.5

100k,1M 0.1 1.2 0.6 0.4 4.1 3.4 1.2 0.8

100k,2M 0.1 1.1 0.6 0.4 5.1 8.0 2.2 1.6

1M,5M 0.9 1.4 2.7 1.3 13.7 15.5 6.0 4.2

1M,10M 1.2 1.4 3.4 1.4 32.5 28.3 7.8 7.0

1M,20M 1.8 1.4 3.2 1.6 62.2 58.6 20.7 14.7

10M,50M 12.2 4.0 25.4 20.0 147.7 147.1 56.3 44.2

10M,100M 14.2 4.0 27.3 22.1 315.8 303.9 133.0 87.8

10M,200M 18.7 4.2 36.8 27.4 695.2 668.5 233.1 206.9

Table III: Execution times of workload phases in seconds for

both CPU and GPU implementations. Cell colored in green

indicates a faster implementation between CPU and GPU.

serial CPU implementation. Using more than 64 threads does

not improve performance further as the thread creation/logic

logic dominates the computation cost. We do not show the

scaling of classifier training/testing as its Pytorch-based im-

plementation does not offer an explicit thread-scaling control2.

The figure shows that both kernels show a reasonable

thread scaling trend despite irregularity. For the random walk

kernel, the amount of work per thread is dependent on the

outgoing degree and timestamp distribution, which leads to

heavy load imbalance in a naïve implementation. To alleviate

this problem, we employ work stealing using dynamically

scheduled OpenMP threads. The GPU performs similar to 32

CPU threads. This is because of the CPU-GPU data transfer

time, and workload irregularity leading to branch divergence

and non-coalesced memory accesses. On the other hand, the

GPU implementation of word2vec performs much better than

CPU, despite the data transfer cost and irregularity. This is

because of the proposed optimizations discussed in §V-B.

Execution Time Breakdown. Using synthetic Erdős-Renyi

graphs of varying sizes and degrees, Table III shows the exe-

cution time breakdown of end-to-end workload. The training

and testing times are reported for link prediction classifier. A

similar trend follows for node classification. Note that Table III

shows per-epoch training time; the actual number of training

2PyTorch API uses workers for parallel data-loading, which spawns multi-
ple processes replicating the memory space.

Figure 11: Characterization of stalls in different kernels on a

GPU. There is a diversity of stalls observed across kernels;

most stalls are caused by immediate constant cache (IMC)

misses, and compute and memory dependencies.

epochs is dependent on other hyperparameter values (e.g.,

batch size, learning rate, and rate decay).

There are two main insights here. First, the training time

dominate an end-to-end execution time of the workload. The

motivation of examining end-to-end workload time breakdown

is that in a real-world deployment, the graph evolves over

time. With this evolution, an entire pipeline needs to run to

account for new nodes/connections. This study shows that

optimizing classifier training would yield maximum benefits in

reducing the end-to-end workload time. Second, the execution

times of classifier training/testing increase monotonically with

the graph size. To understand this performance further, we

compare the testing time per instruction for modeled pipeline

and VGG. This comparison finds that per-instruction execution

time of random walk-based training is 37.4⇥ slower than

VGG. We believe this is because of discrepancy in the matrix

sizes. For example, the largest layer size in VGG is 3136⇥

larger than the largest layer in the studied pipeline limiting

its potential for parallelism. Both applications are modeled

using PyTorch, which internally calls GEMM kernels. While

the performance of GEMM kernels are highly optimized for

popular network sizes (e.g., VGG), our study shows that there

is a significant room for improvement for other network sizes.

Cross-platform Performance Comparison. Table III also

compares the CPU and GPU performance. GPU implemen-

tations outperform its CPU counterpart at large graph sizes.

This is not surprising because CPU-GPU data transfer time

dominates computation time with small graphs. With large

graph sizes, this time is amortized over longer, more efficient

GPU computation, making it faster than the CPU. Addition-

ally, the workload irregularity hurts GPU performance causing

divergent thread pools and non-coalesced load operations.

Execution Bottlenecks. Finally, we perform a detailed mi-

croarchitectural analysis to characterize stall cycles of different

kernels. We perform this analysis on a large synthetic graph

with 10M nodes and 200M edges. We use the GPU for

this analysis because of its superior performance. Fig. 11

shows the characterization of stalls in terms of (from top to

bottom on the legend): 1) immediate constant cache (IMC)

misses, 2) compute dependencies (unresolved register depen-

dencies because of long fixed-latency compute instructions),

3) instruction cache misses, 4) scoreboard dependencies on

95

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

L1TEX operation, 5) execution pipe and MIO (memory I/O)

instruction queue busy, 6) memory/CTA (cooperative thread

array) barrier, 7) L1TEX instruction queue busy, and 8) others.

We observe two primary insights. First, each kernel exhibits

unique hardware characteristics and stall cycles. For exam-

ple, major causes of stalls in the random walk, word2vec,

and classifier training/testing are compute dependencies (i.e.,

54.1%), memory dependencies (i.e., 46.2%), and IMC cache

misses (i.e., 23.6/30.6%), respectively. As a result, no one

optimization strategy can significantly speed up all workload

phases, and kernel-wise investigation is necessary.

Second, on average, 65.5% of stall cycles across kernels

are caused by IMC cache misses, and memory and compute

dependencies. For the random walk kernel, the TEX I-cache

queuing delay and compute dependencies cause the majority

of the stall cycles. TEX I-cache stall is caused by the frequent

control flow divergence as a result of the workload imbalance

in sampling vertex neighborhoods. This sampling involves

several long fixed-latency compute instructions (see Eq. (1)),

causing compute dependencies. The memory dependency stall

is relatively low because a large portion of the work performed

for a single vertex exhibits spatial locality. The word2vec

kernel is mostly bounded by a significant portion of memory

dependencies. This is because this kernel fetches and updates

the model weights by sliding through a vertex window. The

vertex window being updated is dependent on the random walk

result, which contains a random set of vertex IDs, generating

irregular memory accesses. The training and testing phases

show a similar stall distribution, which is attributed to small

dimensions of our kernels [97], launching a small number

of warps. This is further corroborated by the SM utilization

for training/testing classifier being less than 10%. Therefore,

loading immediate data has low reuse, causing high stall rates.

VIII. DISCUSSION

This section discusses the employment of this framework to

conduct optimization studies and incorporate new tasks.

A. Optimization Opportunities

For algorithm designers. In this work, we leverage the

forward neural network for learning (§IV-B) as a basic model

for the workload analysis. It can be easily replaced by more

advanced neural network architectures such as ResNet [98]

or DenseNet [99]. Empirically, we observe at least ⇠ 2%
accuracy improvement for link prediction using ResNet, and

we leave the detailed investigation for future work.

For PyTorch framework designers. As briefly discussed

in §VII-B, the PyTorch framework uses multi-processing to

employ multiple data loading workers. This significantly in-

creases the memory consumption of the workload and hurts

scalability. Multi-threading support with optimized memory

usage will significantly improve the classifier performance.

For GEMM library designers. As shown in §VII-B, training

time per instruction of the modeled pipeline is 37.4⇥ slower

than VGG. This is owing to the differences in matrix sizes,

and low-level demand-based math library optimization model.

Optimizing the GEMM kernel performance for matrix sizes

1. #include </* std header files */>

2. #include <rwalk.h>

3. #include <word2vec.h>

4. #include <data_preproc.h>

5. #include <model.h>

6. #include <classifier.h>

7.

8. int main(args) {

9. // Call graph reading API

10. compute_rwalk(...);

11. word2vec(...);

12. data_preproc(...); // Implement data_preproc.h

13. model_train(...); // Modify model.h, classifier.h

14. model_test(...); // Modify model.h, classifier.h

15. // Memory cleanup

16. return 0;

17. }

Figure 12: Sample source code for incorporating new tasks.

used in our pipeline can improve the performance of classifier

training/testing by one-to-two orders of magnitude.

For compiler and hardware designers. Based on the exe-

cution stall characterization shown in §VII-B, compiler opti-

mization techniques such as operator fusion, loop interchange,

and data structure changes can alleviate kernel launch and

data transfer overheads. Additionally, compiler-based block-

ing, graph partitioning, and tiling [100] can improve memory

performance. Furthermore, employing domain-specific hard-

ware acceleration can significantly optimize this workload.

The word2vec and classifier phases are similar to traditional

deep-learning pipelines, hence, mapping them to an already

existing accelerator [74] would be sufficient. However, the ran-

dom walk kernel exhibits significantly different characteristics

and bottlenecks than traditional graph traversals (i.e., presence

of complicated compute primitives as shown in Eq. 1). This

calls for exploring a novel accelerator design for the random

walk kernel. This design must focus on optimizing both the

compute pipeline for long-latency arithmetic and floating point

operations, and the memory system to speed up data-dependent

loads for traversing sparse graph data structures (e.g., [64]).

B. Incorporating New Tasks

While this work presents two important graph learning tasks

used in several application domains, our framework can be

easily extended to realize other tasks. For example, if a user

wants to implement link property prediction (i.e., predicting

edge labels), Fig. 12 shows the modification of main source

file that calls different pipeline stages. A user can re-purpose

random walk and word2vec implementations by simply calling

functions shown in lines 11 and 12. As the step of preparing

classifier data is unique to each task, a user has to implement

an appropriate data preparation step. Finally, a classifier con-

taining neural network model, training, and testing loops can

be incorporated by modifying already implemented modules

in our framework.

IX. CONCLUSION

This paper presented high-performance implementations of

two important graph learning tasks on continuous-time dy-

namic networks, optimized individually to run both on the

CPU and GPU. We used a scalable random walk-based

algorithm for learning node embeddings of a graph. Based

on these implementations, we conducted an in-depth perfor-

96

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

mance analysis from both algorithmic and hardware fronts.

The algorithm-focused study presented a rich trade-off space

between prediction accuracy and runtime complexity. The

hardware-focused investigation analyzed different phases of

the application to find their instruction type diversity, thread

scalability, execution time breakdown, and execution bottle-

necks. Based on these insights, we made recommendations

to further optimize the workload performance for designers

of algorithms, ML frameworks, GEMM library, compiler,

and hardware. The proposed implementations will be open-

sourced to the broader research community to encourage

further investigation.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful feed-

back. The material is based on research sponsored by Air Force

Research Laboratory (AFRL), Defense Advanced Research

Projects Agency (DARPA), the National Science Foundation

(NSF), and Army Research Office under agreement numbers

FA8650-18-2-7864, HR0011-18-3-0007, HR0011-20-9-0017,

CAREER Grant No. IIS 1845491, and Army Young Investi-

gator Award No. W911NF1810397. The U.S. Government is

authorized to reproduce and distribute reprints for Governmen-

tal purposes notwithstanding any copyright notation thereon.

The views and conclusions contained herein are those of the

authors and should not be interpreted as necessarily repre-

senting the official policies or endorsements, either expressed

or implied, of Air Force Research Laboratory (AFRL) and

Defense Advanced Research Projects Agency (DARPA) or the

U.S. Government. AMD, EPYC and combinations thereof are

trademarks of Advanced Micro Devices, Inc. Other product

names used in this publication are for identification purposes

only and may be trademarks of their respective companies.

REFERENCES

[1] L. Backstrom and J. Leskovec, “Supervised random walks: predicting
and recommending links in social networks,” in Proceedings of the

fourth ACM international conference on Web search and data mining,
2011, pp. 635–644.

[2] H. Jeong et al., “Lethality and centrality in protein networks,” Nature,
vol. 411, no. 6833, pp. 41–42, 2001.

[3] S. Maslov and K. Sneppen, “Specificity and stability in topology of
protein networks,” Science, vol. 296, no. 5569, pp. 910–913, 2002.

[4] B. Perozzi et al., “Deepwalk: Online learning of social representations,”
in ACM SIGKDD, 2014.

[5] W. Hamilton et al., “Inductive representation learning on large graphs,”
in Advances in neural information processing systems, 2017, pp. 1024–
1034.

[6] G. H. Nguyen et al., “Continuous-time dynamic network embeddings,”
in Companion Proceedings of the The Web Conference 2018, 2018, pp.
969–976.

[7] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[8] P. Veličković et al., “Graph attention networks,” arXiv preprint

arXiv:1710.10903, 2017.
[9] F. Monti et al., “Fake news detection on social media using geometric

deep learning,” arXiv preprint arXiv:1902.06673, 2019.
[10] R. Ying et al., “Graph convolutional neural networks for web-scale

recommender systems,” in ACM SIGKDD, 2018.
[11] O. Litany et al., “Deep functional maps: Structured prediction for dense

shape correspondence,” ICCV, 2017.
[12] N. Choma et al., “Graph neural networks for icecube signal classi-

fication,” in 2018 17th IEEE International Conference on Machine

Learning and Applications (ICMLA). IEEE, 2018, pp. 386–391.

[13] D. K. Duvenaud et al., “Convolutional networks on graphs for learning
molecular fingerprints,” in Advances in neural information processing

systems, 2015, pp. 2224–2232.

[14] L. F. Ribeiro et al., “struc2vec: Learning node representations from
structural identity,” in Proceedings of the 23rd ACM SIGKDD interna-

tional conference on knowledge discovery and data mining, 2017, pp.
385–394.

[15] J. M. Stokes et al., “A deep learning approach to antibiotic discovery,”
Cell, 2020.

[16] M. Yan et al., “characterizing and understanding gcns on gpu,” IEEE

Computer Architecture Letters.

[17] Z. Zhang et al., “Architectural implications of graph neural networks,”
IEEE Computer Architecture Letters, vol. 19, no. 1, pp. 59–62, 2020.

[18] T. Baruah et al., “GNNMark: A Benchmark Suite to Characterize
Graph Neural Network Training on GPUs,” in ISPASS), 2021.

[19] M. Yan et al., “HyGCN: A GCN Accelerator with Hybrid Architec-
ture,” in 2020 IEEE International Symposium on High Performance

Computer Architecture (HPCA), 2020.

[20] T. Geng et al., “AWB-GCN: A Graph Convolutional Network Accel-
erator with Runtime Workload Rebalancing,” in MICRO, 2020.

[21] J. Li et al., “GCNAX: A flexible and energy-efficient accelerator for
graph convolutional neural networks,” in HPCA, 2021.

[22] W. Hu et al., “Open Graph Benchmark: Datasets for Machine Learning
on Graphs,” arXiv preprint arXiv:2005.00687, 2020.

[23] K. Xu et al., “How powerful are graph neural networks?” in Interna-

tional Conference on Learning Representations, 2019.

[24] J. Leskovec et al., “Cascading behavior in large blog graphs: Patterns
and a model,” Society of Applied and Industrial Mathematics: Data

Mining, 2007.

[25] D. Jin et al., “node2bits: Compact time-and attribute-aware node
representations for user stitching,” in Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, 2019.

[26] A. Pareja et al., “Evolvegcn: Evolving graph convolutional networks for
dynamic graphs,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 34, no. 04, 2020, pp. 5363–5370.

[27] R. Trivedi et al., “Dyrep: Learning representations over dynamic
graphs,” in International conference on learning representations, 2019.

[28] A. Sankar et al., “Dysat: Deep neural representation learning on
dynamic graphs via self-attention networks,” in Proceedings of the 13th

International Conference on Web Search and Data Mining, 2020.

[29] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, ser. KDD ’16.
New York, NY, USA: Association for Computing Machinery, 2016,
p. 855–864. [Online]. Available: https://doi.org/10.1145/2939672.
2939754

[30] J. Tang et al., “Line: Large-scale information network embedding,” in
Proceedings of the 24th international conference on world wide web,
2015, pp. 1067–1077.

[31] S. Cao et al., “Grarep: Learning graph representations with global
structural information,” in Proceedings of the 24th ACM international

on conference on information and knowledge management, 2015, pp.
891–900.

[32] N. K. Ahmed et al., “role2vec: Role-based network embeddings,” in
Proc. DLG KDD, 2019.

[33] F. Scarselli et al., “The graph neural network model,” IEEE Transac-

tions on Neural Networks, vol. 20, no. 1, pp. 61–80, 2008.

[34] J. Zhou et al., “Graph neural networks: A review of methods and
applications,” arXiv preprint arXiv:1812.08434, 2018.

[35] P. Holme and J. Saramäki, “Temporal networks,” Physics reports, vol.
519, no. 3, pp. 97–125, 2012.

[36] C. Aggarwal and K. Subbian, “Evolutionary network analysis: A
survey,” CSUR, 2014.

[37] P. Goyal et al., “dyngraph2vec: Capturing network dynamics using
dynamic graph representation learning,” Knowledge-Based Systems,
vol. 187, p. 104816, 2020.

[38] J. Li et al., “Attributed network embedding for learning in a dynamic
environment,” in Proceedings of the 2017 ACM on Conference on

Information and Knowledge Management, 2017, pp. 387–396.

[39] C. C. Aggarwal et al., “On clustering graph streams,” in Proceedings

of the 2010 SIAM International Conference on Data Mining. SIAM,
2010, pp. 478–489.

[40] D. Le-Phuoc et al., “Linked stream data processing engines: Facts and
figures,” in International Semantic Web Conference. Springer, 2012.

97

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

[41] Y. Zuo et al., “Embedding temporal network via neighborhood forma-
tion,” in ACM SIGKDD, 2018.

[42] S. Kumar et al., “Predicting dynamic embedding trajectory in temporal
interaction networks,” in Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining,
2019, pp. 1269–1278.

[43] M. Fey and J. E. Lenssen, “Fast graph representation learning with
pytorch geometric,” arXiv preprint arXiv:1903.02428, 2019.

[44] M. Wang et al., “Deep graph library: Towards efficient and scalable
deep learning on graphs,” arXiv preprint arXiv:1909.01315, 2019.

[45] D. Zhang et al., “AGL: a Scalable System for Industrial-purpose Graph
Machine Learning,” 2020.

[46] R. Zhu et al., “Aligraph: A comprehensive graph neural network
platform,” arXiv preprint arXiv:1902.08730, 2019.

[47] L. Ma et al., “Neugraph: parallel deep neural network computation on
large graphs,” in 2019 USENIX Annual Technical Conference (USENIX

ATC 19), 2019, pp. 443–458.

[48] J. Sun et al., “GraphGrind: Addressing Load Imbalance of Graph
Partitioning,” in Proceedings of the International Conference on Su-

percomputing, ser. ICS ’17, 2017, pp. 16:1–16:10.

[49] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing
framework for shared memory,” in PPoPP, 2013, pp. 135–146.

[50] J. Shun et al., “Smaller and faster: Parallel processing of compressed
graphs with ligra+,” in IEEE DCC, 2015, pp. 403–412.

[51] K. Zhang et al., “NUMA-aware graph-structured analytics,” in PPoPP,
2015, pp. 183–193.

[52] S. Grossman et al., “Making pull-based graph processing performant,”
in PPoPP, 2018, pp. 246–260.

[53] N. Sundaram et al., “GraphMat: High performance graph analytics
made productive,” Proc. VLDB Endow., 2015.

[54] Z. Peng et al., “Graphphi: efficient parallel graph processing on
emerging throughput-oriented architectures,” in Proceedings of the 27th

International Conference on Parallel Architectures and Compilation

Techniques (PACT), 2018.

[55] S. Hong et al., “Green-Marl: A DSL for Easy and Efficient Graph
Analysis,” in Proceedings of the Seventeenth International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS), 2012, pp. 349–362.

[56] M. S. Lam et al., “Socialite: Datalog extensions for efficient social net-
work analysis,” in IEEE International Conference on Data Engineering

(ICDE), 2013, pp. 278–289.

[57] G. Gill et al., “Abelian: A compiler for graph analytics on distributed,
heterogeneous platforms,” in Euro-Par, 2018, pp. 249–264.

[58] C. R. Aberger et al., “Emptyheaded: A relational engine for graph
processing,” vol. 42, no. 4, Oct. 2017, pp. 20:1–20:44.

[59] K. Vora et al., “Kickstarter: Fast and accurate computations on stream-
ing graphs via trimmed approximations,” in ASPLOS, 2017, pp. 237–
251.

[60] Y. Zhang et al., “Making caches work for graph analytics,” in 2017

IEEE International Conference on Big Data (Big Data), 2017, pp.
293–302.

[61] S. Pai and K. Pingali, “A compiler for throughput optimization of graph
algorithms on gpus,” in OOPSLA, 2016, pp. 1–19.

[62] Y. Zhang et al., “Graphit: A high-performance graph dsl,” OOPSLA,
vol. 2, pp. 121:1–121:30, Oct. 2018.

[63] ——, “Optimizing ordered graph algorithms with graphit,” in CGO,
2020.

[64] N. Talati et al., “Prodigy: Improving the memory latency of data-
indirect irregular workloads using hardware-software co-design,” in
2021 IEEE International Symposium on High-Performance Computer

Architecture (HPCA), 2021, pp. 654–667.

[65] S. Ainsworth and T. M. Jones, “Graph prefetching using data structure
knowledge,” in ICS, New York, NY, USA, 2016, pp. 39:1–39:11.

[66] A. Basak et al., “Analysis and optimization of the memory hierarchy
for graph processing workloads,” in HPCA, Feb 2019, pp. 373–386.

[67] A. Segura et al., “SCU: A GPU Stream Compaction Unit for Graph
Processing,” in ISCA, 2019, pp. 424–435.

[68] F. Khorasani et al., “Scalable simd-efficient graph processing on gpus,”
in PACT. IEEE, 2015, pp. 39–50.

[69] S. Hong et al., “Accelerating cuda graph algorithms at maximum warp,”
Acm Sigplan Notices, vol. 46, no. 8, pp. 267–276, 2011.

[70] T. J. Ham et al., “Graphicionado: A high-performance and energy-
efficient accelerator for graph analytics,” in MICRO, 2016, pp. 1–13.

[71] M. M. Ozdal et al., “Energy efficient architecture for graph analytics
accelerators,” in ISCA, 2016, pp. 166–177.

[72] M. Yan et al., “Alleviating irregularity in graph analytics acceleration:
A hardware/software co-design approach,” in MICRO. New York, NY,
USA: ACM, 2019, pp. 615–628.

[73] S. Rahman et al., “Graphpulse: An event-driven hardware accelerator
for asynchronous graph processing,” in MICRO, 2020, pp. 908–921.

[74] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” in ISCA, 2017, pp. 1–12.

[75] Y. Chen et al., “DaDianNao: A Machine-Learning Supercomputer,” in
MICRO, 2014, pp. 609–622.

[76] S. Liang et al., “EnGN: A High-Throughput and Energy-Efficient
Accelerator for Large Graph Neural Networks,” IEEE Transactions on

Computers, 2020.
[77] H. Zeng and V. Prasanna, “Graphact: Accelerating gcn training on cpu-

fpga heterogeneous platforms,” in International Symposium on Field-

Programmable Gate Arrays, 2020, pp. 255–265.
[78] T. Mikolov et al., “Efficient estimation of word representations in

vector space,” International Conference on Representation Learning,
2013.

[79] Q. Li et al., “Deeper insights into graph convolutional networks for
semi-supervised learning,” in Proceedings of the AAAI Conference on

Artificial Intelligence, vol. 32, no. 1, 2018.
[80] M. Burtscher et al., “A quantitative study of irregular programs on

gpus,” in IISWC. IEEE, 2012, pp. 141–151.
[81] S. Che et al., “Rodinia: A benchmark suite for heterogeneous comput-

ing,” in IISWC, 2009, pp. 44–54.
[82] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”

in 2009 IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248–255.

[83] S. Beamer and others, “The GAP Benchmark Suite,” in
arXiv:1508.03619 [cs.DC], 2015.

[84] T. Mikolov, “Word2vec implementation in C.” [Online]. Available:
https://github.com/tmikolov/word2vec

[85] T. M. Simonton and G. Alaghband, “Efficient and accurate word2vec
implementations in gpu and shared-memory multicore architectures,”
in HPEC. IEEE, 2017, pp. 1–7.

[86] T. Nguyen, “Cuda implementation of cbow word2vec.” [Online].
Available: https://github.com/cudabigdata/word2vec_cuda

[87] K. Hoste and L. Eeckhout, “Microarchitecture-independent workload
characterization,” IEEE Micro, vol. 27, no. 3, pp. 63–72, 2007.

[88] “Nvidia nsight compute cli.” [Online]. Available: https://docs.nvidia.
com/nsight-compute/NsightComputeCli/

[89] [Online]. Available: https://pytorch.org/cppdocs/
[90] R. A. Rossi and N. K. Ahmed, “The network data repository with

interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

[91] W. Cohen, “Enron email dataset,” http://www.cs.cmu.edu/ enron/. Ac-
cessed in 2009.

[92] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[93] A. Paranjape et al., “Motifs in temporal networks,” in WSDM. New
York, NY, USA: Association for Computing Machinery, 2017.

[94] J. Leskovec et al., “Governance in social media: A case study of the
wikipedia promotion process,” in AAAI Conference on Web and Social

Media, 2010.
[95] D. Xu et al., “Spatio-temporal attentive rnn for node classification in

temporal attributed graphs.” in IJCAI, 2019.
[96] M. G. Preti et al., “The dynamic functional connectome: State-of-the-

art and perspectives,” Neuroimage, 2017.
[97] NVIDIA Forum, “https://forums.developer.nvidia.com/t/some-

questions-about-metrics-global-hit-rate-stall-constant-memory-
dependency-etc-of-nvprof/63997.”

[98] K. He et al., “Deep residual learning for image recognition,” in IEEE

conference on computer vision and pattern recognition, 2016.
[99] G. Huang et al., “Densely connected convolutional networks,” in IEEE

conference on computer vision and pattern recognition, 2017.
[100] A. Brahmakshatriya et al., “Compiling graph applications for gpus with

graphit,” in CGO, 2021.

98

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

A. Artifact Appendix

A.1 Abstract

This document describes the process of acquiring and reproduc-
ing the experimental results presented in “A Deep Dive Into Un-
derstanding The Random Walk-Based Temporal Graph Learning.”
This paper is accepted for publication at 2021 IEEE International
Symposium on Workload Characterization (IISWC 2021). The ar-
tifacts include implementations of link prediction and node classi-
fication algorithms both on CPU and GPU. To run these artifacts, a
multi-threaded CPU and a GPU are required.

A.2 Artifact check-list (meta-information)

• Algorithm: link prediction and node classification

• Compilation: g++ v7.5 for CPU and nvcc v11.2 for GPU; cmake
files included for compilation

• Data set: ia-email, wiki-talk, stackoverflow for link prediction, and
dblp5, dblp3, and brain for node classification

• Run-time environment: CPU implementations should run natively.
For GPU implementation, we provide a Docker image that resolves
runtime dependencies

• Hardware: Multi-threaded CPU and an NVIDIA GPU

• Execution: Bash script for automatic compilation and execution

• Metrics: Prediction accuracy, execution time, GPU execution stalls

• Output: Terminal logs showing progress and execution time of dif-
ferent phases of the application along with prediction accuracy of an
end-to-end task

• Experiments: Fig. 5, 6 (performance improvement of word2vec GPU
implementation), Fig. 8 (accuracy-runtime complexity trade-off), Table
III (execution time breakdown), Fig. 9 (Dynamic instruction breakdown
of different kernels), Fig. 10 (performance scalability) and Fig. 11
(execution stall characterization on a GPU)

• Publicly available?: Yes

• Code licenses (if publicly available)?: BSD 3-Clause License

A.3 Description

A.3.1 How to access

The artifact code base can be obtained by downloading from
https://zenodo.org/record/5555384.
A more updated version is maintained on GitHub here
https://github.com/talnish/iiswc21_rwalk.
The README files in the main and data/ directories con-
tain instructions to download open-source data sets. Additionally,
README file in the main directory also contains instructions to
run a Docker image for GPU.

A.3.2 Hardware dependencies

Although we have used an AMD CPU for evaluation, any commod-
ity multi-core CPU should be adequate for running CPU implemen-
tations. Additionally, an NVIDIA GPU is required for running GPU
implementations.

A.3.3 Software dependencies

We use PyTorch framework to execute the ML part of our work-
load. For our CPU implementations, a pre-compiled PyTorch bi-
nary (i.e., libtorch.so) is dynamically linked during runtime.
The REDME file in the main directory contains instructions on
how to download and link this library. For the GPU version, the
Docker environment already has this dependency resolved. There-
fore, no additional software dependencies are necessary for GPU
implementations.

A.3.4 Data sets

We use real-world temporal data sets [1–7] for evaluation. The
datasets are obtained from the following websites:

• http://snap.stanford.edu/data/index.html

• https://networkrepository.com/dynamic.php

• https://tinyurl.com/y67ywq6j

In addition to real-world datasets, we provide scripts to generate
synthetic Erdős-Renyi graphs using Python-based networkx li-
brary in data/link pred directory.

A.4 Installation

For CPU implementation, the benchmark can run natively with a
pre-compiled PyTorch binary.

Downloading and linking pre-compiled PyTorch binary.
Download the latest C++ distribution of libtorch from
https://pytorch.org/cppdocs/installing.html.
Link the pre-compiled PyTorch binary to the benchmark compil-
ing phase by replacing the CMAKE PREFIX PATH with the newly
installed libtorch path in
build cpu/build {linkpred/nodeclass} run.sh.

For GPU implementation, we provide the procedure to build and
run the Docker image with the correct environment. Note that you
may need to run the Docker commands as sudo.

Setting up Docker. Download Docker from
https://docs.docker.com/get-docker/ and start the Docker
daemon. Verify that Docker is working by running docker run -t
hello-world.

Cloning the Artifact Repository. We have created Zenodo and
GitHub repositories to clone our artifacts. The repository links are
as follows.

• https://zenodo.org/record/5555384

• https://github.com/talnish/iiswc21_rwalk

Start the Docker Shell Prompt. We have uploaded the Docker
image for GPU execution at rwalklearn/iiswc21 in DockerHub.
Users can run the Docker image using the following command:
sudo docker run --cap-add SYS ADMIN --security-opt
seccomp=unconfined --gpus all -it --shm-size 8G -v
/your/directory/to/rwalk:/rwalk rwalklearn/iiswc21.
This step should start a shell prompt. This step provides all the
environment and all tests can be run after cd /rwalk in the new
shell prompt.

A.5 Preparing datasets

The datasets for link prediction and node classification need to be
prepared separately. Link prediction only requires a temporal graph
as the input dataset. Node classification, on the other hand, requires
a temporal graph, and labeled training/validation/testing datasets as
input. The following instructions detail how to prepare datasets.

Link prediction. This process is detailed in the README file
in data/link pred/ directory. The real-world datasets used in
this paper can be obtained from:

• http://networkrepository.com/dynamic.php

• http://snap.stanford.edu/data/index.html#temporal

First, download and unzip a dataset using gunzip or unzip
command. Open the dataset file and make sure that there are no
comment present in the dataset (typically they start with ‘#’). If
there are text-based lines starting from ‘#’, remove them. After
this, each row of the dataset should have the following format:

• <node id node id timestamp>.

99

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

After this, preprocess the dataset using the following command.

• python preprocess dataset.py -i dataset-filename.ext
#TODO: add dataset-filename.ext

After running this command, the script will generate a dataset
called dataset-filename.wel that is ready for link prediction.
Note that each row of the prepared dataset will have the following
format:

• <node id node id norm timestamp>,

where norm timestamp contains normalized timestamp between
0 and 1.

We also provide a script to generate synthetic datasets in the
same directory. To generate a synthetic graph with n number of
nodes, e number of vertices, using a seed s, run the following
command:

• python genereate synthetic.py -n n -e e -s s.

Node classification. The dataset for node classification in-
cludes a temporal graph, and labeled training/validation, and test-
ing datasets. We place all of these files for one dataset with generic
names in a directory. The name of the directory is representative
of the dataset. For example, data/node class/dblp3 contains
instructions to generate and store data for the dblp3 dataset. The
real-world input dataset for node classification are obtained from

• https://tinyurl.com/y67ywq6j

Download the datasets from the link above. The datasets have
.npz file extension. Use process dataset.py script to generate
a temporal graph, and training/testing/validation datasets for node
classification as follows.

• python process dataset.py -i DBLP3.npz

This will create four files: (a) tgraph.wel, (b) train.tsv, (c)
valid.tsv, and (d) test.tsv. By indicating the name of the
dataset (same as the name of this directory), the application will
automatically detect and use these four files.

A.6 Experiment workflow

Following instructions in A.4, a path to your local libtorch.so
file should have been added in the following files:

• build cpu/build linkpred run.sh

• build cpu/build nodeclass run.sh

Additionally, add the appropriate dataset names in:

• build cpu/build linkpred run.sh

• build cpu/build nodeclass run.sh

• build gpu/build linkpred run.sh

• build gpu/build nodeclass run.sh

Finally, to run the benchmarks, execute the following commands
(these will compile and run the benchmarks).

• Link prediction on CPU:
cd build cpu/ && ./build linkpred run.sh

• Node classificaiton on CPU:
cd build cpu/ && ./build nodeclass run.sh

• Link prediction on GPU:
cd build gpu/ && ./build linkpred run.sh

• Node classificaiton on GPU:
cd build gpu/ && ./build nodeclass run.sh

The profiling scripts using nv-nsight-cu-cli tool (for GPU
implementation only) are also available by uncommenting the com-
mands at the end of the corresponding run scripts.

A.7 Evaluation and expected results

After the runs are completed, the key information of each stage
(random walk, word2vec, training, and testing) is shown in the
terminal. The detailed output of each stage can also be documented
by enabling the print flag of each stage.

The parameters in the link prediction/node classification tasks
are tuned to the sweet spots discussed in Figure 8 in the paper.
Sweeping the parameters should generate similar data points as
shown in the Figure 8 in the paper. The major source of variability
may come from the different hardware that executes the workload.

A.8 Experiment customization

We outline some customization that can apply to the benchmark.
The parameter values can be easily altered by modifying the pa-
rameter files present in build {cpu/gpu}/params files.

Sweeping the parameters for individual stages. We provide
the source code for enabling and tuning the parameters for indi-
vidual stages (some parameters are only used in GPU instances).
These parameters include the following,

• System-level: number of allocated threads, number of parallel
data loaders

• Random walk: number of walks, maximum depth of each walk.

• Word2vec: dimension of generated embeddings, cacheline
alignment (GPU), batch size of feature update (GPU), paral-
lel reduction (GPU). (Word2vec GPU features can be tuned by
changing the macro definition in src gpu/word2vec.cuh.)

• Training and testing: number of epochs, hidden layer dimen-
sions, learning rate, batch size of training, target accuracy.

Profiling metric collection. We use different tools to profile the
CPU and GPU implementation of the random-walk based temporal
graph learning. For CPU profiling, we use MICA to extract the in-
struction breakdown. This tool can be obtained from MICA Github
repository. For GPU profiling, we use the nv-nsight-cu-cli
to extract the instruction breakdown, characterization of GPU
stalls, and other hardware performance counters (L2 cache hit
rate, SM utilization, bandwidth utilization, etc). Users can de-
fine their own interested metrics by switching to the correspond-
ing nsight profiler commands. The profiling instructions used to
generate our plots are present in the last few commented lines of
build gpu/build {linkpred/nodeclass} run.sh

References

[1] R. A. Rossi and N. K. Ahmed, “The network data repository with
interactive graph analytics and visualization,” in AAAI, 2015. [Online].
Available: http://networkrepository.com

[2] W. Cohen, “Enron email dataset,” http://www.cs.cmu.edu/ enron/. Ac-
cessed in 2009.

[3] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[4] A. Paranjape et al., “Motifs in temporal networks,” in WSDM. New
York, NY, USA: Association for Computing Machinery, 2017.

[5] J. Leskovec et al., “Governance in social media: A case study of the
wikipedia promotion process,” in AAAI Conference on Web and Social

Media, 2010.

[6] D. Xu et al., “Spatio-temporal attentive rnn for node classification in
temporal attributed graphs.” in IJCAI, 2019.

[7] M. G. Preti et al., “The dynamic functional connectome: State-of-the-
art and perspectives,” Neuroimage, 2017.

100

Authorized licensed use limited to: MIT Libraries. Downloaded on August 22,2022 at 14:20:44 UTC from IEEE Xplore. Restrictions apply.

