
BuildIt: A Type-Based Multi-stage Programming
Framework for Code Generation in C++

Ajay Brahmakshatriya
CSAIL, MIT

Cambridge, USA
ajaybr@mit.edu

Saman Amarasinghe
CSAIL, MIT

Cambridge, USA
saman@csail.mit.edu

Abstract—The simplest implementation of a domain-specific
language is to embed it in an existing language using operator
overloading. This way, the DSL can inherit parsing, syntax and
type checking, error handling, and the toolchain of debuggers
and IDEs from the host language. A natural host language
choice for most high-performance DSLs is the de-facto high-
performance language, C++. However, DSL designers quickly
run into the problem of not being able to extract control flows
due to a lack of introspection in C++ and have to resort to special
functions with lambdas to represent loops and conditionals. This
approach introduces unnecessary syntax and does not capture
the side effects of updates inside the lambdas in a safe way. We
present BuildIt, a type-based multi-stage execution framework
that solves this problem by extracting all control flow operators
like if-then-else conditionals and for and while loops
using a pure library approach. BuildIt achieves this by repeated
execution of the program to explore all control flow paths and
construct the AST piece by piece. We show that BuildIt can do
this without exponential blow-up in terms of output size and
execution time.

We apply BuildIt’s staging capabilities to the state-of-the-art
tensor compiler TACO to generate low-level IR for custom-level
formats. Thus, BuildIt offers a way to get both generalization
and programmability for the user while generating specialized
and efficient code. We also demonstrate that BuildIt can generate
rich control-flow from relatively simple code by using it to stage
an interpreter for an esoteric language.

BuildIt changes the way we think about multi-staging as a
problem by reducing the PL complexity of a supposedly harder
problem requiring features like introspection or specialized
compiler support to a set of common features found in most
languages.

Index Terms—multi-stage programming, domain-specific lan-
guages, code generation, meta-programming

I. INTRODUCTION

Multi-stage programming or generative programming has
many applications, ranging from efficient execution for deep
neural network models and serving dynamic websites to
generating efficient code for applications in specific scientific
domains. Multi-stage programming provides a way of getting
generality and simplicity of programming while maintaining
high performance and specialization [1]–[4]. Domain-specific
languages like TACO [5], Tensorflow [6], Halide [7] and
GraphIt [8], [9] are simply two-stage programming frameworks
in which the first stage is the high-level DSL specification, and

BuildIt is available open-source under the MIT license at https://github.com/
BuildIt-lang/buildit.

the second stage is the generated low-level efficient C++/CUDA
code targeting CPU/GPUs. TensorFlow [6] extracts static
and dynamic execution graphs from the input program to
automatically calculate gradients for the neural network layers
and to efficiently execute the networks when the inputs are
available. In the most general sense, multi-stage programming
has several stages in which the output of a particular stage
is the code for the next stage. Figure 2 shows a comparison
between traditional single-stage programming and multi-stage
programming. Each stage can use a different programming
language and different libraries and has its own set of inputs.
For example, in dynamic websites, server-side languages like
PHP and NodeJS produce HTML, JavaScript and CSS for
second stage execution in the user’s browser. One can think
of traditional single-stage programming as a special case of
multi-stage programming with one stage.

SymbolicInt v1, v2, v3;
v1 = (v2 + 3) * v3;

=

v1 *

+ v3

v2 3

(a)

if (v1 > 3)
v2 = 10;

else
v2 = 5;

=

v2 10

=

v2 5

>

v1 3

(b)

if (v1 > 3)
v2 = 10;

else
v2 = 5;

=

v2 10

=

v2 5

>

v1 3

BuildIt

if-
cond

(c)

Fig. 1: a) Operators =, + and * (in red) overloaded for the new
SymbolicIntType type (in blue) to create an AST for the expression.
b) Shows similar ASTs created for the subexpressions, but there is no way to
combine the three into an if-then-else because C++ does not support
overloading control flow and lacks introspection. c) BuildIt is able to construct
the full AST

Generating code for different stages can take multiple
approaches. The user explicitly outputs as strings the code for
the next stage (PHP outputting HTML) or uses a language like
MetaOCaml [10] that has built-in support for multiple stages
using a specialized compiler. We will discuss the pros and cons
of each of these approaches in detail in Section II. One popular
approach taken by many multi-stage programming frameworks,
such as Tensorflow [6] or Halide [7], is to introduce a new type
and use operator overloading and symbolic execution to extract
the program representation for the next stage. Figure 1 a) shows
how in an imperative and statically typed language like C++,

978-1-7281-8613-9/21 c© 2021 IEEE CGO 2021, Virtual, Republic of Korea

Accepted for publication by IEEE. c© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

39

https://github.com/BuildIt-lang/buildit
https://github.com/BuildIt-lang/buildit

Code Compile Run Output

Input

a) Typical single stage program

Code Compile Run

Input-1

Run

Input-2

Run

Input-3

... Output

b) Multi-stage program

Compile

Compile

Fig. 2: Comparison between a) traditional single-stage programming and b) multi-stage/generative programming. Notice each stage in b) has its own compilation
and execution step with its own set of inputs.

the addition, multiplication, and assignment operators can be
overloaded to create the abstract syntax tree (AST) for the
next stage. This approach quickly runs into a major problem
that data-dependent control flow cannot be extracted because
C++ does not support overloading conditions and loops, as
shown in the second example of Figure 1 b). With the lack
of introspection in C++, it is practically impossible to get
a similar effect without relying on compiler changes. Since
C++ is used in code generation and lowering phases of many
high-performance language backends, looking for alternatives
to introspection is important. In addition, using compiler
modification approaches generally compromises portability and
increases the complexity of codebases.

We present BuildIt, a type-based multi-stage programming
framework for C++ that solves this exact problem. BuildIt
uses a purely library-based approach that doesn’t require any
compiler changes and is capable of extracting ASTs for the
next stage from the input code with all the rich data-dependent
structured control flow elements, like if-then-else con-
ditions, while and for loops and recursion. BuildIt makes
a key observation that the input program can be executed
several times to explore different control flow paths in the
program. This is combined with traditional operator overloading
and symbolic execution to get the entire AST for the next
stages program. BuildIt further makes the extraction process
tractable and efficient by applying novel static tags and known
techniques, like memoization.

Unlike introspective solutions, BuildIt does not have a full
view of the program. Instead, it examines the program through
the narrow window of the calls to the overloaded operators.
This is analogous to a person trying to navigate a maze. They
see only one small part of the maze at a time, but by carefully
recording observations and leaving markers on paths explored,
the person can successfully navigate the maze. BuildIt also uses
memoization and early merging of control flow paths to reduce
the extraction complexity from exponential to polynomial in
the number of branches.

A. Type-Based Multi-stage Programming

Different multi-stage programming frameworks further vary
by the way the binding times of subexpressions and variables
are decided. The binding time means the stage in which a
particular subexpression is evaluated with concrete values
instead of just producing the code for the next stage. For

frameworks that use different languages for each stage, the
binding times are decided by the language in which the
expression is written. BuildIt is a type-based multi-stage
programming framework, meaning the types of the variables
and subexpressions decide in which stage they will be bound.
Since C++ is a statically typed language, the declared types
decide the binding times. BuildIt provides different types for
each stage, and these will be explained in detail in Section III.

B. Rethinking Meta-programming

Multi-stage programming has been studied extensively in the
literature, with an understanding that multi-stage programming
requires specialized language constructs to be implemented in
the language with a compiler([4], [11]) or the existence of
features like introspection in the host language([6], [12]–[14]).

BuildIt has both theoretical and practical implications in
this field. The ideas presented in this paper have foundational
implications for our understanding of PL complexity. Most
features in languages can be simplified to a composition of
control flow (like loops and conditionals) and basic binary and
unary operations. However, to-date staging requires additional
PL complexity, such as access to program AST or specialized
constructs and compiler support. BuildIt shows that we can
reduce the complexity of a supposedly harder problem to a
simpler problem. With this, we try to change the way we
think about staging as a class of problems. By implementing
our framework in C++, we show that staging is in fact
a subclass of a class of problems that require only basic
operations to implement. In addition, this has several practical
implications. Because we rely on only standard C++ constructs,
our implementation is portable across platforms and compilers.
C++ is also one of the most commonly used languages for high-
performance applications, and domain experts already have
familiarity with the language and the optimizations it requires.
This is important because staging was either not possible or
very difficult to use with C++. Although our implementation
is specific to C++, the ideas presented can also be applied
to other languages since BuildIt relies only on the common
features found in most programming languages.

This paper makes the following contributions:

• BuildIt combines operator overloading and symbolic
execution with repeated executions to explore all control
flow paths and is the first framework that can extract

40

the AST with all loops and conditionals for multi-stage
execution in C++.

• BuildIt does not require a separate syntax or specialized
constructs for control flow like if-then-else and for

and while loops. This makes it extremely easy to change
the binding times of subexpressions without a lot of code
rewriting.

• BuildIt is the first framework for imperative languages to
allow side-effects on unstaged variables inside conditions
on staged variables. This allows rich patterns to be
extracted and generated. BuildIt is implemented as a
library by overloading basic binary and unary operators
and does not require any compiler changes, making BuildIt
quite portable and lightweight.

• We also show how generative multi-stage programming
can be applied to code generation for DSLs, thus offering
generalizability and programmability while providing
specialization and efficient code generation.

• Finally, BuildIt changes the way we think about multi-
staging as a problem by reducing the complexity of a
supposedly harder problem to a set of basic PL features.

The rest of the paper is structured as described below:
• Section II discusses different approaches to extracting the

AST of programs.
• Section III introduces the BuildIt programming model and

describes the static<T> and dyn<T> types.
• Section IV describes in detail the AST extraction process

in BuildIt and how control flow is handled with repeated
execution.

• Section V shows two case studies in which BuildIt can
be applied and how BuildIt significantly improves the
programmability while providing specialization.

• Section VI talks about different related works in generative
and multi-stage programming and the difference in the
approaches they take.

II. BACKGROUND

This section discusses different AST extraction methodolo-
gies and the pros and cons of each approach. We then describe
the approach taken by BuildIt and how it approaches some of
the relevant problems.

A. Text-Based Generative Programming

Text-based multi-staging requires the user to print the code
for the next stage, making it the easiest to understand and
implement. This approach is taken by server-side languages
in webservers like PHP and NodeJS. Figure 3 shows a loop
written in PHP that produces a list of items in the generated
HTML. Notice how PHP treats the code for the HTML stage
as just a string and echoes it to the standard output.

This approach does not require any special compiler or
library support as long as the language natively supports strings.
The output of the program is simply fed into the compiler for
the next stage. The main limitation of the text-based approach
is that it doesn’t allow for any optimizations or type-checking
of the generated code because the generated code is merely

1 <?php echo ’’;
2 for ($i = 0; $i < 3; $i++)
3 echo ’Item’.$i.’’;
4 echo ’’;
5 ?>

1
2 Item 1
3 Item 2
4 Item 3
5

Fig. 3: The PHP code on the left executes on the webserver to produce the
HTML code on the right to be executed in the user’s browser. Notice how the
PHP code treats the HTML as strings.

1 template<int M>
2 void init(int arr[M]){
3 for (int x = 0; x < M; x++)
4 arr[x] = val;
5 }
6 init<20>(0, array1);
7 init<10>(0, array2);

1 ...
2 for (x=0; x<20; x++)
3 arr[x] = val;
4 ...
5 for (x=0; x<10; x++)
6 arr[x] = val;
7 ...

Fig. 4: The C++ template code on the left defines a function where the M
value is a template argument. On the right, the different versions of the same
function are generated for different template arguments.

a string. The code would need to be parsed and analyzed
before any meaningful transformations or optimizations could
be applied. In addition, IDE/debugger support is lacking until
the generated code is compiled/run.

B. Compiler-Based with New Language Syntax

This approach adds a specialized syntax for the code of each
stage and supports its execution in different stages with a help
of a specialized compiler/interpreter. A common example of
such a technique is the C++ template language, in which the
templates use a different syntax from the rest of the C++ code
and are handled specifically by the compiler. Figure 4 shows
how templated functions (or classes) can be instantiated with
different arguments to produce different code to be compiled.

With a compiler-based technique, many rich features like
optimizations, type checking, and debugger support can be
integrated into the compiler for all stages. However, the
main disadvantage is that a specialized compiler needs to
be implemented and maintained instead of maintaining just a
library. In addition, the user must learn and adapt to a new
syntax for each stage.

Both of the techniques above, text-based and specialized
syntax-based, suffer from another common drawback. Because
the code for each of the stages looks very different, it is very
difficult to move code between different stages. Generally,
moving code between stages requires rewriting the entire
program, which greatly hampers the productivity of the user.

C. Operator Overloading and Special Functions for Control-
Flow

One of the most promising approaches for seamless multi-
stage programming is to use operator overloading with symbolic
execution, as mentioned in Section I. To handle control flow,
the framework can add through a library specialized operators
that take in lambdas and subexpressions. This approach is used
in the first version of TensorFlow to construct dynamic graphs,
as shown in Figure 5.

This approach solves most of the limitations mentioned
above, but it still uses a specialized syntax for control flow
elements. For this reason, it is difficult to move code between

41

1 import tensorflow as tf
2 z = a * b
3 result = tf.cond(x < y,
4 lambda: x + z,
5 lambda: y ** 2)

1 z = a * b
2 if (x < y):
3 result = x + z
4 else
5 result = y ** 2

Fig. 5: A sample if-then-else condition written in TensorFlow. Notice
that the condition to be checked and the body of the then and else branches
are supplied as lambdas. In addition, the operators like <and + are overloaded
for the type tf.Tensor. The figure on the right shows what the constructed
condition would look like.

Code Compile Run

Static
input

Run

Dynamic
input

Output

Static stage Dynamic stage

Compile

Fig. 6: To explain the programming model, we first describe a simple, two-stage
execution case and then generalize it to arbitrarily many stages in Section IV.

two stages. This approach also doesn’t allow side effects
on non-staged variables inside control flow based on staged
variables. We will see how this is relevant in Section V and
what limitations it presents.

BuildIt solves all of the above mentioned problems by using
the same general C++ syntax for handling control flow using
only a library. Additionally, BuildIt allows seamless updates to
stage n variables inside conditionals and loops on stage n+1. As
mentioned before, BuildIt executes the program repeatedly to
extract all control flow paths. Thus, the updates to the unstaged
variables are limited to only the cases in which the branch is
taken during the next stage execution.

III. PROGRAMMING MODEL

In this section, we describe in detail the programming
model for BuildIt programs. This includes the two new types
static<T> and dyn<T> and the constraints which all BuildIt
programs must satisfy.

A. A Library-Based Approach
As mentioned before in Section I, BuildIt takes a purely

library approach. This means users can start using BuildIt by
including the BuildIt headers that define the new types and the
overloaded operators and linking against the runtime library that
has the AST extraction and code generation implementation.

B. Multi-stage to Two Stage Relaxation
We will introduce the programming model by first describing

a two-stage BuildIt program. We do this to make it easy to
understand the terminology and how the extraction process
works. We then generalize the programming model to arbitrary
many stages in Section IV. As shown in Figure 6, we call the
two stages the static stage and the dynamic stage. We call the
inputs taken by these stages static inputs and dynamic inputs.

C. Type-Based Programming Model
As mentioned before, BuildIt is a type-based programming

framework. This means that BuildIt uses declared types of
the variables and subexpressions to decide binding times.
We explain below the two new types BuildIt introduces,
static<T> and dyn<T>:

1 int power(int base, int exponent) {
2 int res = 1, x = base;
3 while (exponent > 0) {
4 if (exponent % 2 == 1)
5 res = res * x;
6 x = x * x;
7 exponent = exponent / 2;
8 }
9 return res;

10 }

Fig. 7: A typical implementation of the power function that calculates
baseexponent using repeated squaring

1 dyn<int> x = 0;
2 dyn<long> y = 0;
3 static<int> z = 10;
4 if (x > z)
5 x = x + y;
6 else
7 x = x * y;

1 int var1 = 0;
2 long var2 = 0;
3 /*No trace of z*/
4 if (var1 > 10)
5 var1 = var1 + var2;
6 else
7 var1 = var1 * var2;

Fig. 8: The BuildIt code shown in the left executes in the static stage to
produce the code shown on the right, to be executed in the dynamic stage.
Notice how dyn<int> produces variables and expressions of type int in
the generated code. The conditions on expressions of type dyn<T> produce
the same conditions in the generated program.

1) Static Type: static<T>: A user can declare variables
of type static<T> (where T is any C++ primitive type) to
indicate variables and expressions that should be evaluated in
the static stage. static<T> variables have concrete values of
type T during the static stage. Control flow dependent only on
expressions of type static<T>, is resolved during the static
stage and does not produce any conditionals or loops in the
generated code. static<T> currently supports wrapping only
primitive C++ types that have a comparison operator defined.

2) Dynamic Type: dyn<T>: The user can declare variables
of type dyn<T> (where T is any type) to indicate variables and
expressions that should be executed in the dynamic stage. An
expression written using variables of type dyn<T> does not
have concrete values during the static stage. Instead, it produces
the exact same expression with type T, to be evaluated during
the dynamic stage. For example, the BuildIt code shown in the
left of Figure 8 produces code shown in the right of Figure 8
for dynamic stage evaluation. Notice how declarations of type
dyn<int> produce declarations of type int. We can also see
in the figure that the expressions of type static<int> are
completely evaluated in the static stage and have their values
appear as int constants in the generated code. Moreover,
dyn<T> variables can be used inside the boolean expressions
for conditions and loops to produce control-flow elements in
the generated code for the dynamic stage.

3) BuildIt Programs: BuildIt programs look like any other
C++ program except that it uses two extra types to decide
the binding times of all expressions. BuildIt does not use any
new syntax or special function calls for control flow elements
like if-then-else conditions, for loops, or while loops.
This makes migrating existing code to different variations of
multi-stage code easy. For example, Figure 7 shows a single-
stage implementation of the power function. This function
takes two inputs, base and exponent of type int and returns
baseexponent using repeated squaring.

42

1 dyn<int> power(dyn<int>
2 base, static<int> exp){
3 dyn<int> x=base, res=1;
4 while (exp > 0) {
5 if (exp % 2 == 1)
6 res = res * x;
7 x = x * x;
8 exp = exp / 2;
9 }

10 return res;
11 }

1 int power_15(int base){
2 int res = 1;
3 int x = base;
4 res = res * x;
5 x = x * x;
6 res = res * x;
7 x = x * x;
8 res = res * x;
9 ...

10 return res;
11 }

Fig. 9: The power function where the exponent is bound in the static stage
and the base is bound during the dynamic stage. On the right is the generated
code when the static input (exponent) is supplied 15.

1 dyn<int> power(static<int>
2 base, dyn<int> exp) {
3 dyn<int> res=1, x=base;
4 while (exp > 0) {
5 if (exp % 2 == 1)
6 res = res * x;
7 x = x * x;
8 exp = exp / 2;
9 }

10 return res;
11 }

1 int power_5(int exp){
2 int res = 1;
3 int x = 5;
4 while (exp > 0) {
5 if (exp % 2 == 1)
6 res = res * x;
7 x = x * x;
8 exp = exp / 2;
9 }

10 return res;
11 }

Fig. 10: The power function where the base is bound in the static stage and
the exponent is bound during the dynamic stage. On the right is the generated
code when the static input (base) is set as 5.

Figure 9 shows how the program can be specialized for a
particular exponent in BuildIt by declaring the exponent as
static<int> and the base as dyn<int>. The code on the
right shows the generated code for exponent specialized as 15.
Since all of the loops and conditions are based on static<T>

expressions, they are evaluated away to produce straight-line
code. Figure 10 shows the same function specialized for a
particular base by declaring the base as static<int> and
the exponent as dyn<int>. The figure on the right shows
the code generated for the base specialized as 5. Since the
loop is now based on a dyn<T> expression, it is present in the
output code.

All BuildIt programs must use static<T> and dyn<T> to
declare variables and write expressions. In addition, BuildIt
programs can use expressions that are not static<T> or
dyn<T>, but they can be accessed solely in read-only mode.
These variables would exhibit the same behavior as static<T>
and would be completely evaluated in the static stage.

IV. AST EXTRACTION METHODOLOGY

In this section, we describe in detail the methodology BuildIt
follows to extract the AST for the program to be executed in
the dynamic stage.

A. Handling Static Variables

Variables of type static<T> are simply wrappers around
variables of type T and mimic the behavior of the enclosed type.
An implicit conversion operator is defined to expose the value
of the wrapped type. Thus, we can perform all of the operations
on static<T> that are valid for T, including assignment and
binary and unary operators, using them in if-then-else and
loops without any change.

1 builder_context context;
2 //non BuildIt type read only vars here
3 const int iter = atoi(argv[2]);
4 auto ast = context.extract([=] {
5 for (dyn<int> x = 0; x < iter; x++)
6 ...
7 });
8 ast->dump(std::cout, 0);

Fig. 11: Example showing how to wrap BuildIt code inside a lambda and
pass it to a Builder Context object. The code can also be wrapped inside a
function that takes arguments.

*

v1 v2

a)

*

v1 v2

+

v3

b)

*

v1 v2

+

v3

VarDecl (v4)

int

StmtBlock

c)

Fig. 12: Step-by-step construction of expression trees. Notice that the
expressions are shown in blue, statements are show in red, and types are
show in green. The VarDecl AST node has int as a type attached to it.

B. Extracting Straight-Line Code

Like other works, BuildIt uses operator overloading and
symbolic execution to extract information about the operators
and variable declarations for dyn<T> expressions and variables.
Using operator overloading preserves the syntax for these op-
erators while hiding the complexity of creating the expressions
from the user. The programmer wraps the code to be extracted
in a function or a lambda and passes it to a Builder Context
object. This allows BuildIt to execute the code repeatedly to
explore all control flow paths. Figure 11 shows an example of
how the Builder Context object is invoked with the lambda.

BuildIt overloads all of the binary and unary operators
for expressions of type dyn<T> to create appropriate AST
nodes and return a reference to the created nodes. These AST
references are further combined to create more AST nodes and
to construct the AST for the entire expression. For example,
suppose we have the expression v1 * v2 + v3 where v1, v2
and v3 are of type dyn<T>. Since usual C++ precedence rules
follow, the subexpression v1 * v2 is evaluated first to create
an AST node for the * operator, as shown in Figure 12 a).
When the + operator is evaluated next, BuildIt creates a new
AST node for the + operator and nests the previously created
AST as a subexpression, as show in Figure 12 b).

All of the constructors for the variables of type
dyn<T> are overloaded to create variable declaration state-
ments in the AST being constructed. For example, sup-
pose we have a variable declaration of type dyn<int>

as dyn<int> v4 = v1 * v2 + v3;. First, the AST for
v1 * v2 + v3 is created, as explained as above. The copy
constructor for v4 is called with the AST for v1 * v2 + v3

as the parameter. This creates a variable declaration statement
AST node and adds it to the AST being constructed, as shown
in Figure 12 c).

The other type of statement in straight-line code is an
expression statement, and BuildIt captures this with some
bookkeeping to identify the end of a statement. The Builder
Context object holds an ordered list of uncommitted expressions.
Whenever an AST node for an expression is created, it is

43

v1 = v2 * v3 + v4 / v5;

v6 = v7 && v8;

dyn<int> v9;

1 234

56

7

Fig. 13: Sample straight-line code to be extracted. Overloaded operators are
in red, and one possible execution order for the operators is show above each
of them.

1) UL: [”v2 * v3”]
2) UL: [”v2 * v3”, ”v4 / v5”]
3) UL: [”v2 * v3 + v4 / v5”]
4) UL: [”v1 = v2 * v3 + v4 / v5”]
5) UL: [”v1 = v2 * v3 + v4 / v5”, ”v7 && v8”]
6) UL: [”v1 = v2 * v3 + v4 / v5”, ”v6 = v7 && v8”]
7) UL: []

Fig. 14: State of the Uncommitted List (UL) after each call to overloaded
operator in Figure 13.

also added to this list and is removed when it is used as a
child in another expression. Thus, this list holds only those
expressions that do not have a parent. Whenever the execution
reaches an obvious end of a statement (for example, a variable
declaration or the end of the program), all of the expressions
in the uncommitted list are converted to expression statements
and are added to the AST. Figure 13 and Figure 14 show an
example of a straight-line code, the step-by-step execution, and
the the uncommitted list after call to each overloaded operator.

C. Extracting if-then-else Conditions

In this section, we introduce our novel repeated execution
strategy to explore all control flow paths in the program. This
technique builds on the techniques for extracting straight-line
code explained above.

Before we can extract the conditions, we must detect that
we have encountered a condition. A condition on expression of
type dyn<T> looks like if (expr) where expr is of dyn<T>.
We overload the explicit cast operator from dyn<T> to bool,
which is requested when an expression of type dyn<T> is used
inside a condition. At this point, we must determine how the
program would proceed in both cases if the expression returned
true or false in the dynamic stage.

1 dyn<int> v1 = ...;
2 if (v1) {

3 v2 = v3 + v4;

4 v5 = v6;
5 } else {

6 v2 = 0;

7 v3 *= 2;
8 }

9 v4 = v4 || v5 || v6;

v2 = v3 + v4

StmtBlock

v5 = v6

v4 = v4 || v5 || v6;

v2 = 0

StmtBlock

V3 *= 2

v4 = v4 || v5 || v6;

if-then-else

v1

Fig. 15: The ASTs constructed for the if-then-else. The block in green
is extracted by the fork that returned true. The block in red is extracted
by the fork that returned false. The two ASTs are combined to create an
if-then-else.

We continue by remembering this expression inside the if

condition. We then logically fork the execution at this point
by creating two new, identical Builder Context objects. These
objects restart the execution, following the exact same path
until they reach the conditional. At this point, they take separate
paths by returning true and false as a result of the cast to

bool operator respectively. Both of the forks then continue
execution and produce two different but complete ASTs for
the rest of the program. These two ASTs are the straight-line
paths the program would take in the dynamic stage based on
whether the expression inside the if() evaluates to true or
false. To create a single program that has this same behavior,
we finally merge the two ASTs by adding an if-then-else

node in the AST and adding the two ASTs as the sub-tree
inside the then and else branch, respectively.

Figure 15 shows a simple if condition on the expression
v1. The code in green shows the code executed by the fork
that returned true. The code in red shows the code executed
by the fork that returned false. The last line is executed by
both of the executions. Finally, Figure 15 shows the two ASTs
produced by the two executions (in green and red).

D. Need for Static Tags

The conditions extracted from the process described above
is correct but has an obvious flaw. In Figure 15, we can
see that the statements that appear after the conditions
(v4 = v4 || v5 || v6;) are duplicated on both sides of the
if-then-else. This leads to exponential blowup in the size
of generated code with respect to the number of if conditions.
We must uniquely identify statements in the generated ASTs
across executions so that we can merge those from the then

and else branches. To achieve this, we introduce static tags.
The static tag comprises two parts: the stack trace (array of
RIPs) at the point when the statement was created and the state
of all static variables at the point the statement was created. To
facilitate this, the Builder Context object maintains a reference
of all currently alive static variables. When the overloaded
operators on dyn<T> are called, we create a static tag from
the stack trace and snapshots of the static variables and attach
it to the generated expression.

We assert that if two statements have this same 2-tuple (static
tag), the execution following those will be identical and will
thus produce the same AST. It is obvious why this is true.
Recollect from Section III that a BuildIt program can use three
types of values: dyn<T>, static<T>, and other types in read-
only mode. The execution of a program depends on its current
state. Since the tags for the two statements are the same, the
instruction pointers (and the return addresses on the stack) are
all the same. Furthermore, all of the values the program can
access are also the same because the static tag also includes a
snapshot of all of the live static<T> variables. In addition,
the variables of non-BuildIt types will be the same because
they are read-only for the duration of the BuildIt program.
Thus, the two programs at this point are indistinguishable and
will run in the same way to produce the same AST.

We use this property to trim the common suffix of the ASTs
generated in the if-then-else. We begin from the end of
the two statement blocks and keep removing statements as
long as they have the same static tag. Once we find the first
pair of statements that do not have the same static tag, we stop.
After this transformation, the AST for the above example will
look like that in Figure 16

44

v2 = v3 + v4

StmtBlock

v5 = v6

v4 = v4 || v5 || v6;

v2 = 0

StmtBlock

V3 *= 2

if-then-else

v1

StmtBlock

Fig. 16: The AST for the code in Figure 15 after trimming using static tags

E. Improving Extraction Complexity

The above trimming transformation reduces the output AST
from exponential in size to linear in size, but the process of
extraction still takes exponential time because we delay the
trimming process after the entire AST has been extracted. If
we can identify merge points between two executions eagerly,
we can avoid traversing an exponential number of paths.

Once again, we can use static tags and apply classic
memoization on the extracted AST to avoid doing redundant
work. The Builder Context object maintains a map that maps
static tags to the AST produced from that point onward in the
program. This map is updated whenever the Builder Context
object finishes the execution of the program for all the static
tags seen in the program. Before creating any statement, we
check if the map already has this static tag; if it does, we
directly copy over the remaining AST from the map instead
of constructing it again. This optimization is valid because, as
we have shown before, when two statements have the same
static tag, the execution from that point onward will be exactly
the same and will produce the same AST.

Let us give an intuition of how this optimization ensures
that the AST can be extracted in polynomial time. Since the
output program size is linear in the number of sequential
if-then-else conditions, the total number of unique tags
and thus the total number of forks in the execution in the
program are also linear. If n+1 forks occur, at least two of
them will occur at the same static tag, which the memoization
would avoid. With n forks, we are guaranteed to have at most
2n executions. Finally, each execution produces at most n

statements (each execution is a straight line AST). Thus, a
total of O(n2) statement are created. Creating a statement
requires at most a linear amount of work, bringing the worst-
case execution time of the extraction process to O(n3).

To demonstrate this polynomiality, we observe the program
shown in Figure 17. The outer loop will completely execute
iter number of times in the static stage to produce a number of
conditions. We run this program with BuildIt with increasing
values of iter and record the number of Builder Context
objects created by the program. We record these numbers with
and without the memoization optimization. Table 18 shows the
results of this experiment. We can clearly see that the number of
executions is linear with memoization and exponential without
memoization.

1 // param: iter(int)
2 dyn<int> a;
3 static<int> i;
4 for(i=0; i<iter; i++) {
5 if (a) {
6 a = a + i;
7 } else {
8 a = a - i;
9 }

10 }

Fig. 17: Code that generates iter number of if-then-else for the
dynamic stage

iter with mem-Z without mem-Z
count time(sec) count time(sec)

1 3 0.01 3 0.01
5 11 0.01 63 0.01

10 21 0.01 2047 0.11
15 31 0.01 65535 2.99
18 37 0.01 524287 23.79
19 39 0.01 1048575 48.24
20 41 0.01 2097151 96.45

iter 2 * iter + 1 2iter+1 - 1

Fig. 18: Number of Builder Context objects created with increasing value of
iter for Figure 17 and the corresponding execution times

F. Extracting Loops

After straight-line code and if-then-else conditionals,
all that remain are while and for loops. Both while and for

loops appear with a condition on an expression of type dyn<T>.
If we try to handle loops just like we handled if-then-else,
by forking every time we see the condition, we will get stuck
in an infinite loop in the static stage. For a simple while loop,
the execution that takes the true path will always come back
to the beginning of the loop and will spawn more executions.

Figure 19 shows a simple while loop with a dyn<T>

expression as a condition. Figure 20 shows the code that we
would extract if we naively apply the technique above. To fix
this, we use the static tags again. Apart from the shared map of
static tags for memoization, we also maintain a list of visited
static tags private to each Builder Context object. Every time
we insert a statement in the statement block, we insert the
static tag in this list. Before inserting a new statement, we scan
this list to check if the static tag has been visited before. If
we find the static tag in the list, we insert a goto statement
to the original statement and terminate the execution. We have
already shown that if two statements have the same static tag,
they will have the same execution after that point. Thus, it is
correct to add only a goto to the previous statement instead of
repeating the execution. Figure 21 shows the code we would
generate with this technique.

Notice that the technique described above does not stop
the execution when there is a loop on an iterator of type

1 dyn<int> iter = 0;
2 // Condition based on
3 // dyn<int> expression
4 while (iter < 10) {
5 iter = iter + 1;
6 }
7 ...

Fig. 19: A simple while loop with a
condition based on an expression of
type dyn<T>

1 int iter = 0;
2 if (iter < 10) {
3 iter = iter + 1;
4 if (iter < 10) {
5 ...
6 }
7 }

Fig. 20: The code generated if
we naively apply the fork and re-
execute strategy

45

1 int iter = 0;
2 label:
3 if (iter < 10) {
4 iter = iter + 1;
5 goto label1;
6 }
7 ...

Fig. 21: The generated code with the static tag list technique has a if and
goto

static<T>. This is because every time the execution reaches
the beginning of the loop, the static tag is different. This is
correct and important because we want all iterations of purely
static loops to be executed in the static stage.

G. Extracting Recursive Functions

Special care must be taken while handling recursive functions
that call themselves based purely on a dynamic condition.
Because BuildIt explores all control flow paths, the function
will end up calling itself infinitely. The condition to identify
such a recursive call is similar to loop. Instead of looking
for an exact match of tags, BuildIt seeks a series of stack
frames in the static tags that are repeated exactly. In addition,
BuildIt ensures that all the static<T> variables defined in
these frames have the exact same value. When such a condition
is detected, BuildIt halts the execution and inserts a recursive
call to the function in the extracted AST.

H. Post Extraction Processing

In this section, we discuss some of the transformation and
canonicalization passes that run on the extracted AST before
code generation. BuildIt provides rich visitor patterns to easily
analyze and transform AST nodes.

1) While Loop Detector: Loop detection by itself is a
well-studied problem, and a variety of techniques have been
proposed [15]–[18]. We apply a control flow analysis simplified
from previous techniques to canonicalize all if-then-else
and goto loops into equivalent while loops. The transforma-
tion pass finds all the labels in the generated AST and then
identifies the last statement that jumps back to this loop. All
the statements from the label to this statement become the
body of the while loop. Additionally, the pass explores all
paths inside the body and inserts continue or break at the
end, depending on where the control flow goes. Finally, the
pass attaches an appropriate condition to the created while

loop by matching a pattern on the if-then-else.
2) For Loop Detector: A final pass checks all the while

loops in the AST. If a loop has a variable declared just before
it, that variable is checked in the while loop condition, and
the same variable is updated at the end of every control flow
path inside the loop that loops back, this loop is converted into
a for loop with an initialization, condition, and update.

All the aforementioned passes do not change the behavior
of the extracted AST and thus are correct by construction.

3) C++ Code Generation: Finally, with the BuildIt frame-
work, we provide a C++ code generator that can be invoked
by a user to generate C++ code from the extracted AST. This
makes it easy for the user to compile the code for the next

stage and execute it. This C++ code generator is optional, and
the user can use the visitor library in BuildIt to write their own
code generator for different languages, including LLVM IR and
other compiler intermediate representations for optimization.

I. From Two Stages to Multiple Stages

To support true multi-staging (as opposed to only two
stages) in BuildIt, we allow the dyn<T> template to wrap
around BuildIt types (static<T> and dyn<T>). With this, the
user can declare variables of types like dyn<dyn<int>> or
dyn<static<int>> or nest these types even more than twice
to add more stages. The C++ code generator in the BuildIt
framework can generate type declarations for the static<T>

and dyn<T> variables. Thus, the code generated from the first
stage can be immediately compiled and run again in the second
stage to produce code for the third stage and so on. However,
such wrapping is not required for static<T> because multiple
static<T> can be collapsed into a single one.

With the nested template types dyn<T> and static<T>, the
code seems to get complicated and we run into the same issues
found in C++ templates. The key difference here is that the
complexity of all these stages and templates is confined to the
variable declaration. The actual code operating on these types
looks exactly the same regardless of what stage it executes
in. Not only does this make it easy to write code in multiple
stages, but it also simplifies moving code between stages. The
binding time of an expression or the stage in which it is actually
evaluated can be changed by simply changing its declared type.
This is much easier than dealing with traditional template
metaprogramming in C++.

J. Dealing with Undefined Behavior and Dead Branches

During the course of execution, programs run into unexpected
cases due to programming bugs, like divide by zero errors,
out-of-bound accesses, or null pointer dereference. If the input
program has any kind of undefined behaviors, any program
that BuildIt generates is completely valid. However, BuildIt
must strive not to introduce any new, undefined behaviors. This
is tricky because BuildIt explores all possible branches in the
program, some of which might be dead branches.

Figure 22 shows an example of one such case, in which
a divide by zero is hidden under a dead branch. We have to
be extremely careful with such cases in the code extraction
process and in the generated code. We will divide the undefined
behaviors into two categories.

1) Undefined Behavior on dyn<T> State: : These kinds of
errors happen when variables and expressions of type dyn<T>

invoke undefined behavior. For example, dividing a dyn<int>

variable by 0. These errors are easy to handle, because BuildIt
in its static stage while exploring all of the static paths never
evaluates any dyn<T> expressions. If a dyn<int> is divided
by 0, we simply produce the same code. If this code happens to
be on a dead branch like in Figure 22, this path is never taken,
and the undefined behavior is not invoked. If this undefined
behavior happens to be on a path that can be taken, then the
input program is malformed, and any output is valid.

46

1 dyn<int> x = ...;
2 if (x > 100) {
3 if (x < 80) { // Dead branch
4 x = x / 0; // x cannot be < 80
5 } // if x > 100
6 }

Fig. 22: Code snippet showing how undefined behavior on a dyn<T>
expression can be hidden behind a dead branch. BuildIt can potentially run
into problems because it explores all of the branches.

2) Undefined Behavior on static<T> State: : These kinds
of errors, as the name suggests, are invoked by the static<T>
expressions that are actually evaluated in the static stage. These
are trickier to handle if they are behind a dead branch that
can never be taken dynamically because BuildIt executes all
branches in the static stage. When BuildIt encounters any
exception during the static stage, it halts the execution of
the current context and simply inserts an abort(); in the
generated dynamic stage code. This abort(); is inserted
only in the path that invokes the undefined behavior. Again,
if this branch is a dead branch, the path is never taken, and
the abort(); is not executed. If the abort(); actually gets
executed in the dynamic stage, the input program is malformed,
and it is a valid behavior of the program to abort.

V. CASE STUDIES

In this section, we describe how we apply BuildIt for code
generation to a real-world compiler, TACO [5]. We also discuss
certain other examples, in which BuildIt’s code specialization
abilities are useful.

A. TACO Lowering

The Tensor Algebra COmpiler (TACO) is a fast, versatile
library for tensor algebra that generates high-performance
C++/CUDA code from high-level expressions in tensor-index
notations by the means of a specialized compiler. TACO’s
performance is competitive with best-in-class, hand-optimized
kernels in popular libraries while supporting far more tensor
operations. Another recent work [19] extends TACO to allow
users to implement custom-level formats to support different
formats for the tensors.

To add a new level format, the user must implement lowering
functions that generate code for operations on the level format.
This requires the user to build the AST of the generated code
by calling constructors of the IR classes and piecing them
together. Figure 23 shows one such function implemented by
the user for the compressed level format that generates code
for adjusting the size of an array at runtime. Notice the call
to the constructor for IfThenElse, Assign and other TACO
IR nodes. The user can further specialize the generated code
for scenarios by writing conditions based on compile-time
parameters, as shown in Line 8.

Writing such code is typically difficult for domain experts
who are not familiar with compiler techniques. Even for
compiler experts, mixing runtime and compile-time conditions
is not very intuitive and can be error-prone. We solve these
problems by using BuildIt to enable easy code generation. We
provide an abstract interface that users can implement for each

1 Stmt increaseSizeIfFull(Expr a, Expr size,
2 Expr needed) {
3 Stmt realloc, resize;
4 if (mode.useLinearRescale) {
5 realloc = Allocate(a, Add(size, mode.growth),
6 true, size);
7 resize = Assign(size, Add(size, mode.growth));
8 } else {
9 realloc = Allocate(a, Mul(size, 2), 1, size);

10 resize = Assign(size, Mul(size, 2));
11 }
12

13 Stmt ifBody = Block({realloc, resize});
14 return IfThenElse(Lte::make(size, needed),ifBody);
15 }

Fig. 23: Implementation of the increaseSizeIfFull helper function
used by the level formats

1 void increaseSizeIfFull(dyn<int*> &array,
2 dyn<int> &size, dyn<int> needed) {
3 if (size <= needed) {
4 if (mode.useLinearRescale) {
5 array = realloc(array, size * 2);
6 size = size * 2;
7 } else {
8 array = realloc(array, size + mode.growth);
9 size = size + mode.growth;

10 }
11 }
12 }

Fig. 24: BuildIt implementation of the increaseSizeIfFull helper
function

level format. Instead of writing code to generate the AST,
they implement the level format like a library with BuildIt’s
dyn<T> type. Furthermore, all of the specialization for compile-
time conditions are implemented using static<T> variables
and expressions. The same function now implemented with
BuildIt can be seen in Figure 24. Instead of using specialized
IfThenElse constructors, the user must simply write an if

condition. Beyond this, the conditions on static<T> can be
interleaved with the dynamic control flow using the same syntax
as on Line 4.

BuildIt extracts an AST from the user-supplied code, which is
written exactly how a library would be written. We implement a
lowering pass using BuildIt’s AST visitor to generate TACO’s
IR from the AST to complete the code-generation process.
Both of these approaches generate the exact same code, and
thus the performance of the generated code is unaltered. The
same methodology can be used by domain experts to rapidly
prototype lightweight DSLs from existing high-performance
library implementations and specialize the generated code for
certain scenarios.

Figure 25 and Figure 26 show another example of how
BuildIt makes generating code for TACO easy. Line 8 shows
an example of how a compile-time condition is implemented.
Line 12 shows how increaseSizeIfFull is called after the
append logic and the resulting statements are inserted into the
statement block before the append statements. In Figure 26,
increaseSizeIfFull is simply called conditionally and
BuildIt takes care of inserting the statement in the right order.
This lets the programmer write the logic in the natural execution
order, as they would write in a library.

47

1 Stmt CompressedModeFormat::getAppendCoord(Expr p,
2 Expr i, Mode mode) {
3 taco_iassert(mode.getPackLocation() == 0);
4 Expr idxArray =getCoordArray(mode.getModePack());
5 Expr stride = mode.getModePack().getNumModes();
6 Stmt storeIdx = Store::make(idxArray,
7 Mul::make(p, stride), i);
8 if (mode.getModePack().getNumModes() > 1) {
9 return storeIdx;

10 }
11 Stmt maybeResizeIdx = increaseSizeIfFull(
12 idxArray, getCoordCapacity(mode), p);
13 return Block::make({maybeResizeIdx, storeIdx});
14 }

Fig. 25: Implementation of the getAppendCoord function in TACO for
the compressed-level format. Notice the expressions and statements explicitly
created by calling the constructors for the AST nodes

1 void BICompressedModeFormat::getAppendCoord(
2 dyn<int> p, dyn<int> i, Mode mode) {
3 taco_iassert(mode.getPackLocation() == 0);
4 dyn<int*> &idxArray = getCoordArray(
5 mode.getModePack());
6 dyn<int> &capacity = getCoordCapacity(mode);
7 if (mode.getModePack().getNumModes() <= 1)
8 increaseSizeIfFull(idxArray, capacity, p);
9 static<int> stride =

10 mode.getModePack().getNumModes();
11 idxArray[p * stride] = i;
12 }

Fig. 26: BuildIt implementation of the getAppendCoord function for
the compressed-level format

B. Interpreter to a Compiler for an Esoteric Language

We present this simple yet convincing case study that
demonstrates how the staging capabilities of BuildIt can be
used to automatically create compilers for simple languages.
We choose a very simple esoteric language, BrainFuck (BF),
derived from the parent language P” [20], [21] for the purpose
of this case study. Because the BF language is small, we can
show the entire implementation here. At the same time, BF also
has some interesting control flow-like loops and conditionals.

In addition, BF has only eight characters in its grammar
+-,.><[], which mimic operations on a hypothetical turing
machine. Apart from the program input and the program
counter(PC), the runtime of BF has a fixed size tape and a tape
head that points to one of the locations in the fixed-size tape.
The "+", "-", ".", "," instructions are for incrementing,
decrementing, outputting, and inputting the character at the
current tape head position, respectively. The ">", "<" move
the tape head one position right and left. The "[", "]" provide
data dependent control flow. The "[" moves the PC to the
matching "]" if the value at the current tape position is 0,
and the "]" moves the PC back to the matching "[" if the
value at the current tape head position is non-zero. These can
be used to implement conditionals and loops.

Figure 27 shows a simple interpreter written for BF with
BuildIt types. The input program and the PC are static states,
and the tape contents and the tape head are dynamic states
(Line 14). The rest of the code below goes through the entire
input program and updates the states accordingly. First, this
interpreter written with BuildIt looks exactly like a single-stage
interpreter for BF (except for the declarations at the top).

1 // Input bf_program: const char*
2 static<int> pc = 0;
3 dyn<int> ptr = 0;
4 dyn<int[256]> tape = {0};
5 while (bf_program[pc] != 0) {
6 if (bf_program[pc] == ’>’) {
7 ptr = ptr + 1;
8 } else if (bf_program[pc] == ’<’) {
9 ptr = ptr - 1;

10 } else if (bf_program[pc] == ’+’) {
11 tape[ptr] = (tape[ptr] + 1) % 256;
12 } else if (bf_program[pc] == ’-’) {
13 tape[ptr] = (tape[ptr] - 1) % 256;
14 } else if (bf_program[pc] == ’.’) {
15 print_value(tape[ptr]);
16 } else if (bf_program[pc] == ’,’) {
17 tape[ptr] = get_value();
18 } else if (bf_program[pc] == ’[’) {
19 if (tape[ptr] == 0) {
20 pc = find_match(pc);
21 }
22 } else if (bf_program[pc] == ’]’) {
23 pc = find_match(pc); - 1;
24 }
25 pc += 1;
26 }

Fig. 27: Implementation of the BF interpreter written with BuildIt. This inter-
preter takes a BF program as input in a const char*. find_match
is a helper static functions that find the position of the matching "[" or "]"
for a PC

1 int ptr = 0;
2 int tape[256] = {0};
3 tape[ptr] = (tape[ptr] + 1) % 256;
4 while (!(tape[ptr] == 0)) {
5 tape[ptr] = (tape[ptr] + 1) % 256;
6 while (!(tape[ptr] == 0)) {
7 tape[ptr] = (tape[ptr] + 1) % 256;
8 while (!(tape[ptr] == 0)) {
9 tape[ptr] = (tape[ptr] - 1) % 256;

10 }
11 }
12 }

Fig. 28: Output from Figure 27 with the input program "+[+[+[-]]]".
Notice the nested while loops generated that do not exist in the original
program.

Previous works [22] have shown that “a staged interpreter
is a compiler. Because we are completely evaluating the BF
program input in the first stage, the output of this BuildIt
program would be a program that behaves just like the BF
program would. Figure 28 shows the output of this program
for a particular input "+[+[+[-]]]". All of the references to
the input program and the PC have disappeared, and we are
left with a C code that behaves exactly like the BF program.
This simple example demonstrates how easily one can turn
interpreters (which are easy to write) into compilers (which
are generally hard to write and debug).

The reason this particular input is interesting is because it has
a triply nested while loop in the generated code. Such a nested
loop doesn’t exist in the interpreter code but BuildIt is still
able to extract it. This is mainly because BuildIt allows side
effects on static<T> variables based on dyn<T> conditions,
as shown in Line 19. Other techniques that use parsing the
input program or lambdas for control flow (TensorFlow) would
not be able to handle these rich control flow structures.

48

Writing compilers this way has several other advantages.
Besides being easy to implement and debug, interpreters
are relatively easier to verify. Previous works [23] have
shown that “Staged verified interpreters are verified compilers.
Thus BuildIt’s staging capabilities can be used to implement
compilers with certain guarantees. In addition, optimizations
can be incorporated into the compiler by implementing special
cases (static conditions) in the interpreter to generate different
code for specific scenarios. Again, reasoning about such cases
is much easier with an interpreter.

C. Other BuildIt Applications

We have also applied BuildIt to generate efficient matrix
multiplication CUDA code to run on GPUs, in which one
of the sparse matrices is known at the time of compilation.
By moving certain operations between the static and dynamic
stage, we tune what fraction of the matrix is read at runtime
along with what fraction of the matrix is baked as instructions
into the generated program. This allows us to better utilize
the instruction cache and the data caches for maximum
performance. Implementing such a fine-tuning framework
otherwise requires rewriting a lot of code every time we wish
to move computations between stages.

VI. RELATED WORKS

[2] introduces many of the ideas used in this paper, including
multi-stage programming and implementing compilers and
DSLs using stage interpreters with Futamura projections [22].
This work is heavily based on the BUILDER library [24]
for the SUIF [25] compiler system, which, as far as we
know, is the earliest attempt at multi-stage programming
using operator overloading in C++. BUILDER used operator
overloading and symbolic execution for expressions but lacked
support for extracting control flow and used specialized
functions/constructors for loops and conditionals. In addition,
C++ templates [26] and Haskell templates [27] by themselves
are ways of implementing static meta-programming.

Specialized multi-stage languages like MetaML [10], MetaO-
CAML [28], and Mint [29] that are a more principled
approach for staging have been used for code generation and
building DSLs. These take the compiler approach for extracting
the program representation by the means of annotations or
specialized syntax. MetaML and MetaOCAML either have a
lot of code duplication [30] [31] [32] due to continuous style
monadic execution or have to handle side effects through the
means of a global state or delimited control operators. These
can pose safety problems and invalidate guarantees of multi-
stage programming languages. BuildIt’s re-execution strategy
confines the side effects to a particular branch and attempts
to preserve these guarantees in an imperative language like
C++ with explicit side effects. [33], [34] and Mint [29] have
managed to deal with side effects without monadic execution.
Terra [3], [35] is a meta-programming language that leverages
a popular scripting language, Lua, to stage its execution.

Lightweight Modular Staging (LMS) [36] is the closest work
to this paper and creates a staging system in Scala. It is also

applied for code generation and embedding DSLs. Since the
host language Scala is a functional programming language
with reflection support, the challenges faced by this work are
different. Notably, LMS uses reflection and introspection to
extract conditionals. Their approach does model side effects
through a global state, but the strategy is significantly different.

Recently, many frameworks like Tensorflow [6],
TACO [5] [19], Tiramisu [37] and Halide [38] have
used operator overloading and symbolic execution to embed
their DSLs in host languages like C++ and Python. Although
DSLs like Cimple [39] and Tensorflow have also used
specialized functions that input lambdas (or equivalent
constructs in the host language) to handle control flows,
supplying control structure through lambdas causes side effects
on unstaged variables to spill out of the branches. Completely
different from these approaches, DSLs like GraphIt [8] [9] and
Simit [40] take the compiler approach for two-stage execution.
A specialized compiler parses all operators and control flow
structures from the input program and compiles them down to
low-level C++/CUDA code. Web server languages like PHP,
NGINX, NodeJS, and Asp.net use text-based, multi-stage
programming for generating client code. Text-based generative
programming can face the problems of code duplication and
generally lack IDE and debugging support.

Applications of multi-stage programming: [41] have applied
multi-stage execution in Scala using LMS [36] for achieving
fast, modular whole program analysis using stage abstract
interpreters. [23] have shown that verified staged interpreters
are verified compilers. This extends the applications of multi-
stage programming and BuildIt to program verification domains.
Terra [3] generates and autotunes high-performance code for
BLAS routines and stencil computations. Intel’s ArBB [42]
enables runtime generation of vector-style code using a
combination of operator overloading and macros in C++.

VII. CONCLUSION

In this paper, we present BuildIt, which is, to the best of our
knowledge, the first framework for imperative languages like
C++ that can extract ASTs with control flows with a pure library
approach, thus making it extremely lightweight and portable.
We achieve this with repeated execution of the program to
explore all control flow paths. We apply BuildIt’s multi-stage
programming capabilities for efficient code generation in DSLs
and demonstrate that BuildIt can generate rich control flow from
seemingly simple code by staging an interpreter for an esoteric
language. In addition, we show how these techniques can be
used for optimizations or providing guarantees in program.

BuildIt also changes the way we think about multi-staging as
a problem reducing the PL complexity of a supposedly harder
problem to a set of common features found in most languages.

ACKNOWLEDGMENTS

This research was supported by DARPA SDH Award
#HR0011-18-3-0007, Applications Driving Architectures
(ADA) Research Center, a JUMP Center co-sponsored by SRC
and DARPA.

49

REFERENCES

[1] J. Infantolino, J. Ross, and D. Richie, “Portable high-performance
software design using templated meta-programming for em calculations,”
in 2017 International Applied Computational Electromagnetics Society
Symposium - Italy (ACES), 2017, pp. 1–2.

[2] W. Taha, “A gentle introduction to multi-stage programming,” in Domain-
Specific Program Generation. Springer, 2004, pp. 30–50.

[3] Z. DeVito, J. Hegarty, A. Aiken, P. Hanrahan, and J. Vitek, “Terra: a
multi-stage language for high-performance computing,” in Proceedings
of the 34th ACM SIGPLAN conference on Programming language design
and implementation, 2013, pp. 105–116.

[4] W. Taha and T. Sheard, “Multi-stage programming with explicit
annotations,” in Proceedings of the 1997 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-Based Program Manipulation,
ser. PEPM 97. New York, NY, USA: Association for Computing
Machinery, 1997, p. 203217. [Online]. Available: https://doi.org/10.1145/
258993.259019

[5] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe,
“The tensor algebra compiler,” Proc. ACM Program. Lang., vol. 1,
no. OOPSLA, pp. 77:1–77:29, Oct. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3133901

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow:
Large-scale machine learning on heterogeneous systems,” 2015, software
available from tensorflow.org. [Online]. Available: http://tensorflow.org/

[7] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, and
S. Amarasinghe, “Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines,”
in Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’13. New York, NY,
USA: Association for Computing Machinery, 2013, p. 519530. [Online].
Available: https://doi.org/10.1145/2491956.2462176

[8] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, and
S. Amarasinghe, “Graphit: A high-performance graph dsl,” Proc. ACM
Program. Lang., vol. 2, no. OOPSLA, Oct. 2018. [Online]. Available:
https://doi.org/10.1145/3276491

[9] Y. Zhang, A. Brahmakshatriya, X. Chen, L. Dhulipala, S. Kamil,
S. Amarasinghe, and J. Shun, “Optimizing ordered graph algorithms
with graphit,” in Proceedings of the 18th ACM/IEEE International
Symposium on Code Generation and Optimization, ser. CGO 2020.
New York, NY, USA: Association for Computing Machinery, 2020, p.
158170. [Online]. Available: https://doi.org/10.1145/3368826.3377909

[10] W. Taha and T. Sheard, “Multi-stage programming with explicit
annotations,” SIGPLAN Not., vol. 32, no. 12, p. 203217, Dec. 1997.
[Online]. Available: https://doi.org/10.1145/258994.259019

[11] T. Sheard and S. P. Jones, “Template meta-programming for haskell,”
in Proceedings of the 2002 ACM SIGPLAN Workshop on Haskell, ser.
Haskell ’02. New York, NY, USA: Association for Computing Machinery,
2002, p. 116. [Online]. Available: https://doi.org/10.1145/581690.581691

[12] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Mohamed Abdellatif, and
W. Taha, “Mint: Java multi-stage programming using weak separability,”
vol. 45, 07 2010, pp. 400–411.

[13] G. Neverov and P. Roe, “Metaphor: A multi-stage, object-oriented
programming language,” in Generative Programming and Component
Engineering, G. Karsai and E. Visser, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 168–185.

[14] A. Agrawal, A. N. Modi, A. Passos, A. Lavoie, A. Agarwal, A. Shankar,
I. Ganichev, J. Levenberg, M. Hong, R. Monga, and S. Cai, “Tensorflow
eager: A multi-stage, python-embedded dsl for machine learning,” 2019.

[15] “On loops, dominators, and dominance frontiers,” ACM Trans. Program.
Lang. Syst., vol. 24, no. 5, p. 455490, Sep. 2002. [Online]. Available:
https://doi.org/10.1145/570886.570887

[16] G. Ramalingam, “Identifying loops in almost linear time,” ACM Trans.
Program. Lang. Syst., vol. 21, no. 2, p. 175188, Mar. 1999. [Online].
Available: https://doi.org/10.1145/316686.316687

[17] V. C. Sreedhar, G. R. Gao, and Y.-F. Lee, “Identifying loops using dj
graphs,” ACM Trans. Program. Lang. Syst., vol. 18, no. 6, p. 649658,
Nov. 1996. [Online]. Available: https://doi.org/10.1145/236114.236115

[18] M. S. Hecht and J. D. Ullman, “Characterizations of reducible flow
graphs,” J. ACM, vol. 21, no. 3, p. 367375, Jul. 1974. [Online].
Available: https://doi.org/10.1145/321832.321835

[19] S. Chou, F. Kjolstad, and S. Amarasinghe, “Format abstraction for
sparse tensor algebra compilers,” Proc. ACM Program. Lang., vol. 2,
no. OOPSLA, pp. 123:1–123:30, Oct. 2018. [Online]. Available:
http://doi.acm.org/10.1145/3276493

[20] M. Davis, “Bhm corrado. on a family of turing machines and the related
programming language. icc bulletin, vol. 3 (1964), pp. 185194.” The
Journal of Symbolic Logic, vol. 31, p. 140, 03 2014.

[21] C. Böhm and G. Jacopini, “Flow diagrams, turing machines and languages
with only two formation rules,” Commun. ACM, vol. 9, no. 5, p. 366371,
May 1966. [Online]. Available: https://doi.org/10.1145/355592.365646

[22] Y. Futamura, “Partial evaluation of computation process, revisited,”
Higher Order Symbol. Comput., vol. 12, no. 4, p. 377380, Dec. 1999.
[Online]. Available: https://doi.org/10.1023/A:1010043619517

[23] E. Brady and K. Hammond, “A verified staged interpreter is a verified
compiler,” in Proceedings of the 5th International Conference on
Generative Programming and Component Engineering, ser. GPCE 06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
111120. [Online]. Available: https://doi.org/10.1145/1173706.1173724

[24] Stanford Compiler Group, “The builder library, a tool to construct or
modify suif code within the suif compiler,” 1994. [Online]. Available:
https://suif.stanford.edu/suif/suif1/docs/builder toc.html

[25] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang,
S. Liao, C. Tseng, M. Hall, M. Lam, and J. Hennessy, “The suif compiler
system: A parallelizing and optimizing research compiler,” Stanford, CA,
USA, Tech. Rep., 1994.

[26] D. Vandevoorde and N. M. Josuttis, C++ Templates. Addison-Wesley
Longman Publishing Co., Inc., 2002.

[27] T. Sheard and S. P. Jones, “Template meta-programming for haskell,” in
Proceedings of the 2002 ACM SIGPLAN workshop on Haskell, 2002, pp.
1–16.

[28] C. Calcagno, W. Taha, L. Huang, and X. Leroy, “Implementing multi-
stage languages using asts, gensym, and reflection,” in Proceedings
of the 2nd International Conference on Generative Programming and
Component Engineering, ser. GPCE 03. Berlin, Heidelberg: Springer-
Verlag, 2003, p. 5776.

[29] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif, and W. Taha,
“Mint: Java multi-stage programming using weak separability,” SIGPLAN
Not., vol. 45, no. 6, p. 400411, Jun. 2010. [Online]. Available:
https://doi.org/10.1145/1809028.1806642

[30] J. Carette and O. Kiselyov, “Multi-stage programming with functors
and monads: Eliminating abstraction overhead from generic code,” Sci.
Comput. Program., vol. 76, no. 5, p. 349375, May 2011. [Online].
Available: https://doi.org/10.1016/j.scico.2008.09.008

[31] A. Cohen, S. Donadio, M.-J. Garzaran, C. Herrmann, O. Kiselyov,
and D. Padua, “In search of a program generator to implement
generic transformations for high-performance computing,” Sci. Comput.
Program., vol. 62, no. 1, p. 2546, Sep. 2006. [Online]. Available:
https://doi.org/10.1016/j.scico.2005.10.013

[32] K. Swadi, W. Taha, O. Kiselyov, and E. Pasalic, “A monadic approach
for avoiding code duplication when staging memoized functions,”
in Proceedings of the 2006 ACM SIGPLAN Symposium on Partial
Evaluation and Semantics-Based Program Manipulation, ser. PEPM 06.
New York, NY, USA: Association for Computing Machinery, 2006, p.
160169. [Online]. Available: https://doi.org/10.1145/1111542.1111570

[33] Y. Kameyama, O. Kiselyov, and C.-c. Shan, “Closing the stage: From
staged code to typed closures,” in Proceedings of the 2008 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based
Program Manipulation, ser. PEPM 08. New York, NY, USA:
Association for Computing Machinery, 2008, p. 147157. [Online].
Available: https://doi.org/10.1145/1328408.1328430

[34] ——, “Shifting the stage: Staging with delimited control,” in Proceedings
of the 2009 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, ser. PEPM 09. New York, NY, USA:
Association for Computing Machinery, 2009, p. 111120. [Online].
Available: https://doi.org/10.1145/1480945.1480962

[35] Z. DeVito, D. Ritchie, M. Fisher, A. Aiken, and P. Hanrahan, “First-
class runtime generation of high-performance types using exotypes,”
SIGPLAN Not., vol. 49, no. 6, p. 7788, Jun. 2014. [Online]. Available:
https://doi.org/10.1145/2666356.2594307

[36] T. Rompf and M. Odersky, “Lightweight modular staging: A pragmatic
approach to runtime code generation and compiled dsls,” SIGPLAN

50

https://doi.org/10.1145/258993.259019
https://doi.org/10.1145/258993.259019
http://doi.acm.org/10.1145/3133901
http://tensorflow.org/
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/3276491
https://doi.org/10.1145/3368826.3377909
https://doi.org/10.1145/258994.259019
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/570886.570887
https://doi.org/10.1145/316686.316687
https://doi.org/10.1145/236114.236115
https://doi.org/10.1145/321832.321835
http://doi.acm.org/10.1145/3276493
https://doi.org/10.1145/355592.365646
https://doi.org/10.1023/A:1010043619517
https://doi.org/10.1145/1173706.1173724
https://suif.stanford.edu/suif/suif1/docs/builder_toc.html
https://doi.org/10.1145/1809028.1806642
https://doi.org/10.1016/j.scico.2008.09.008
https://doi.org/10.1016/j.scico.2005.10.013
https://doi.org/10.1145/1111542.1111570
https://doi.org/10.1145/1328408.1328430
https://doi.org/10.1145/1480945.1480962
https://doi.org/10.1145/2666356.2594307

Not., vol. 46, no. 2, p. 127136, Oct. 2010. [Online]. Available:
https://doi.org/10.1145/1942788.1868314

[37] R. Baghdadi, J. Ray, M. B. Romdhane, E. Del Sozzo, A. Akkas, Y. Zhang,
P. Suriana, S. Kamil, and S. Amarasinghe, “Tiramisu: A polyhedral
compiler for expressing fast and portable code,” in Proceedings of the
2019 IEEE/ACM International Symposium on Code Generation and
Optimization, ser. CGO 2019. IEEE Press, 2019, p. 193205.

[38] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy, S. Amarasinghe, and
F. Durand, “Decoupling algorithms from schedules for easy optimization
of image processing pipelines,” ACM Trans. Graph., vol. 31, no. 4, Jul.
2012. [Online]. Available: https://doi.org/10.1145/2185520.2185528

[39] V. Kiriansky, H. Xu, M. Rinard, and S. Amarasinghe, “Cimple:
Instruction and memory level parallelism: A dsl for uncovering ilp
and mlp,” in Proceedings of the 27th International Conference on
Parallel Architectures and Compilation Techniques, ser. PACT 18. New
York, NY, USA: Association for Computing Machinery, 2018. [Online].

Available: https://doi.org/10.1145/3243176.3243185
[40] F. Kjolstad, S. Kamil, J. Ragan-Kelley, D. I. W. Levin, S. Sueda,

D. Chen, E. Vouga, D. M. Kaufman, G. Kanwar, W. Matusik, and
S. Amarasinghe, “Simit: A language for physical simulation,” ACM
Trans. Graph., vol. 35, no. 2, pp. 20:1–20:21, May 2016. [Online].
Available: http://doi.acm.org/10.1145/2866569

[41] G. Wei, Y. Chen, and T. Rompf, “Staged abstract interpreters: Fast and
modular whole-program analysis via meta-programming,” Proc. ACM
Program. Lang., vol. 3, no. OOPSLA, Oct. 2019. [Online]. Available:
https://doi.org/10.1145/3360552

[42] C. J. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Du Toit,
Z. G. Wang, Z. H. Du, Y. Chen, G. Wu et al., “Intel’s array building
blocks: A retargetable, dynamic compiler and embedded language,” in
International Symposium on Code Generation and Optimization (CGO

2011). IEEE, 2011, pp. 224–235.

51

https://doi.org/10.1145/1942788.1868314
https://doi.org/10.1145/2185520.2185528
https://doi.org/10.1145/3243176.3243185
http://doi.acm.org/10.1145/2866569
https://doi.org/10.1145/3360552

	Introduction
	Type-Based Multi-stage Programming
	Rethinking Meta-programming

	Background
	Text-Based Generative Programming
	Compiler-Based with New Language Syntax
	Operator Overloading and Special Functions for Control-Flow

	Programming model
	A Library-Based Approach
	Multi-stage to Two Stage Relaxation
	Type-Based Programming Model
	Static Type: static<T>
	Dynamic Type: dyn<T>
	BuildIt Programs

	AST Extraction Methodology
	Handling Static Variables
	Extracting Straight-Line Code
	Extracting if-then-else Conditions
	Need for Static Tags
	Improving Extraction Complexity
	Extracting Loops
	Extracting Recursive Functions
	Post Extraction Processing
	While Loop Detector
	For Loop Detector
	C++ Code Generation

	From Two Stages to Multiple Stages
	Dealing with Undefined Behavior and Dead Branches
	Undefined Behavior on dyn<T> State
	Undefined Behavior on static<T> State

	Case Studies
	TACO Lowering
	Interpreter to a Compiler for an Esoteric Language
	Other BuildIt Applications

	Related Works
	Conclusion
	References

