
Optimizing Parallel Graph Algorithms by Extending
the GraphIt DSL

by

Tugsbayasgalan Manlaibaatar

B.S., Massachusetts Institute of Technology (2019)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2020

c○ Massachusetts Institute of Technology 2020. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

Aug 31, 2020

Certified by. .
Saman Amarasinghe

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Masters of Engineering Thesis Committee

2

Optimizing Parallel Graph Algorithms by Extending the

GraphIt DSL

by

Tugsbayasgalan Manlaibaatar

Submitted to the Department of Electrical Engineering and Computer Science
on Aug 31, 2020, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

High-performance graph processing is often very challenging because real life graphs
vastly differ from each other in their sizes and structures. Therefore, we need to use
many different graph specific performance optimizations and a programming system
that allows domain experts to easily write high-performance graph applications.

GraphIt, a domain-specific language, is one such programming system that achieves
high-performance across different algorithms, graphs, and architectures, while offer-
ing an easy-to-use high-level programming model. GraphIt decouples algorithms from
performance optimizations (schedules) for graph applications to make it easy to ex-
plore a large space of optimizations. Yet, there are still many graph applications that
GraphIt currently doesn’t support.

In this thesis, we present a number of new additions to GraphIt to extend its’
current use cases. Namely, we introduce a new operator called intersection that
is widely used in Triangular Counting algorithm. We also introduce functor and
par_for to improve current Multiple Starting Point applications by adding nested
parallelization. Using the new features, we are able to get up to 16x speedup over
the GraphIt implementation without the added features on road graphs that don’t
benefit from single level parallelization.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to express my gratitude to many people without whom this thesis would

not have been possible.

I would like to thank my thesis advisor, Professor Saman Amarasinghe, for pa-

tiently guiding me through my MEng studies. Ever since I started working in his

research group, he has always been very helpful and always reminded me the big

picture of the research and high-level future directions. I also want to thank Profes-

sor Julian Shun for giving valuable feedbacks throughout my SuperUROP and MEng

studies.

I would also like to acknowledge my mentor, Yunming Zhang, for being there for

me all the time. I had the pleasure of working with him ever since Fall 2018 on various

projects for my SuperUROP and MEng. He was extremely hands-on and helpful for

everything I did and taught me many techniques in performance engineering and

research. He also spent a lot of time helping me to debug my code and even gave me

useful tips for job search and technical interviews.

I want to thank Ajay Brahmakshatriya for his help on brainstorming and many

C++ crash courses. He was always very responsive to my questions and helped me

tremendously through my MEng studies.

Next, I would like to express my appreciation for other members of the COMMIT

group. I am thankful to Changwang Hong for joining our meetings and providing

useful insights; to all the other members for the great research talks during our Friday

group meetings.

I want to thank my parents, Oyunbeleg Bayandorj and Manlaibaatar Choidog-

suren, for raising me and providing me with the opportunity to study in the US. I

am also grateful for my siblings and my grandparents for their love and support. I

would not be here without the strong support from my family members.

Finally, I want to thank my Buddhist community back in Mongolia for their prays

and wishes. I want to thank Altangerel Zundui for his valuable guidance.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 15

1.1 Motivation . 15

1.2 Contribution . 16

1.3 Thesis Organization . 17

2 Background 19

2.1 Notations . 19

2.2 Graph Algorithm Descriptions . 19

2.2.1 Triangular Counting . 20

2.2.2 Betweenness Centrality . 21

2.2.3 Closeness Centrality . 22

2.2.4 Local Graph Clustering . 23

2.2.5 Maximum Inner Product Search 24

2.3 GraphIt Overview . 25

2.3.1 GraphIt Frontend . 26

2.3.2 GraphIt Midend . 27

2.3.3 GraphIt Backend . 27

2.4 Multiple Starting Point Applications 28

2.4.1 Initial Benchmarks . 28

2.5 Summary . 30

3 Performance Optimizations 31

3.1 Optimizations for Triangular Counting Algorithm 31

7

3.1.1 Different Schedules . 32

3.2 Optimizations for Multiple Starting Points 34

3.2.1 Vertex Deduplication for Multiple Starting Points 34

3.3 Optimizations for IPNSW . 36

3.3.1 Constructing Graphs Optimizations 38

3.3.2 Greedy Walk Optimizations 40

3.3.3 Multiple Query optimizations 40

3.4 Summary . 40

4 Programming Models 41

4.1 Intersection Operator . 41

4.2 Functor . 42

4.3 Parallel For . 43

4.3.1 Design Decision . 44

4.3.2 GraphIt Representation . 45

4.4 Summary . 46

5 Compiler Implementation 47

5.1 Intersection Operator . 47

5.1.1 Frontend . 47

5.1.2 Midend . 48

5.1.3 Backend . 48

5.2 Functor . 48

5.2.1 Frontend . 49

5.2.2 Midend . 49

5.2.3 Backend . 50

5.3 Parallel For . 51

5.3.1 Frontend . 51

5.3.2 Midend . 51

5.3.3 Backend . 51

5.4 Summary . 52

8

6 Use Cases 53

6.1 Triangular Counting in GraphIt . 53

6.2 Closeness Centrality in GraphIt . 55

6.3 Summary . 57

7 Evaluation 59

7.1 Machine Description . 59

7.2 Dataset Description . 59

7.3 Results . 60

7.3.1 Intersection Operator . 60

7.3.2 Multiple Starting Points . 61

7.3.3 IPNSW . 68

8 Conclusion & Future Work 71

8.1 Conclusion . 71

8.2 Future Work . 71

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Figures

2-1 Some GraphIt Schedules [26] . 26

3-1 IPNSW Pseudocode. 37

3-2 Sequential Construction of Edges . 38

3-3 Parallel Construction of Edges . 39

4-1 Intersection Operator in GraphIt . 42

4-2 Functor vs Function in GraphIt . 44

4-3 Parallel For in GraphIt . 46

5-1 Intersection Operator Design in GraphIt 48

5-2 FuncExpr Abstraction . 49

5-3 Functor Design in GraphIt . 50

5-4 Functor in GraphIt vs Functor in C++. Left is the GraphIt code and

right is the generated C++ code. 51

5-5 Parallel For in GraphIt vs Functor in C++. Left is the GraphIt code

and right is the generated C++ code. 52

6-1 Triangular Counting in GraphIt . 54

6-2 Unweighted version of Closeness Centrality 56

6-3 Schedules for Closeness Centrality UnWeighted 56

7-1 Relative Speedup vs Number of Outer Threads for BC on social graphs 63

7-2 Relative Speedup vs Number of Outer Threads for BC on road graphs 64

11

7-3 Relative Speedup vs Number of Outer Threads for Closeness Centrality

on social graphs . 65

7-4 Relative Speedup vs Number of Outer Threads for Closeness Centrality

on road graphs . 66

12

List of Tables

2.1 Average scalability within each starting point of Betweenness Central-

ity. 29

2.2 Average Breakdown of Total Computation Time for Betweenness Cen-

trality . 30

4.1 Different Intersection Schedules in GraphIt 41

7.1 Graphs used for evaluation . 60

7.2 Triangular Counting Benchmarking Results 61

7.3 Betweenness Centrality Benchmark Results. 63

7.4 Closeness Centrality Unweighted Benchmark Results. 65

7.5 Closeness Centrality Weighted Benchmark Results. 66

7.6 PageRank-Nibble Benchmark Results. 67

7.7 IPNSW results on 1024 concurrent queries. 69

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

Chapter 1

Introduction

Graph analytics is widely used in many large-scale real-world applications. For ex-

ample, friend suggestion problem can be modeled as triangle counting on a social

graph [9], fraud detection is same as detecting a cycle in a transaction graph, and

subgraph matching algorithms can be used for detecting cancer in a protein interac-

tion network [17]. Many real-world graphs, however, are large in size and irregular in

shape, thus imposing a challenge to many text book graph algorithms. Therefore, we

want to achieve high performance graph algorithms by considering both theoretical

improvements and real-life properties of graphs.

1.1 Motivation

GraphIt [26, 27] is a new domain-specific language that achieves high-performance

across different algorithms, graphs, and architectures, while offering an easy-to-use

high-level programming model. GraphIt decouples algorithms from performance op-

timizations (schedules) for graph applications to make it easy to explore a large space

of cache, NUMA, load balance, and data layout optimizations. As of now, GraphIt

supports a wide range of applications, many different data structures, and numerous

performance optimizations.

However, there are still a number of applications that GraphIt doesn’t support

yet. For example, GraphIt originally doesn’t support Triangular Counting Algorithm

15

which is specified as one of the applications in GAP Benchmarking Suite [4]. GAP

is used for evaluating high performance graph algorithm frameworks by providing

benchmarking specifications for five algorithms and six different graphs. (total of

30 tests). GAP also provides high-performance reference implementations for those

algorithms.

Furthermore, some applications in GraphIt can be improved even further. For

instance, our initial benchmarks reveal that the current GraphIt centrality measure

applications that are run from multiple starting points can be further improved by

running those starting points in parallel. Therefore, the goal of this thesis is to extend

GraphIt’s compiler to support Triangular Counting and faster multiple starting point

applications.

1.2 Contribution

In this thesis, we present a number of improvements to the ongoing development of

GraphIt. We can frame the improvements into three main categories.

Firstly, we implement Triangular Counting Algorithm in GraphIt in accordance

to GAP Benchmarking suite. The key idea of the implementation is that Triangular

Counting algorithm can be entirely written as the intersection of neighboring sets for

each edge. Since each vertex can have a different characteristic requiring us to use

different intersection methods, we use extended GraphIt to schedule different types of

intersections. Using different schedules, we are able to obtain faster implementation

than the Triangular Counting algorithm in GAP which uses the naive intersection

algorithm. We discuss our optimization more in detail in Chapter 3.1.1.

Secondly, we implement a set of centrality measure applications and a simple

local graph clustering algorithm that can be run from multiple starting points. Even

though GraphIt already has the versions of those applications where each starting

points are run serially (there is a parallelism within the starting point, but not across

all starting points), we want to achieve better performance by parallelizing over the

starting points by introducing new programming models into GraphIt. Specifically,

16

we introduce configurable parallel for to parallelize over starting points and functor

to operate on starting point specific data structures. We discuss these new additions

more in detail in Chapter 4 and 5. By using these features, we are able to get up to

16x speedup over the GraphIt implementation with serial starting points on certain

graphs.

Finally, we develop several optimizations over the naive implementation on an

approximate maximum inner product search algorithm which is used as a part of the

annual evaluation from DARPA SDH program [1]. This application is an interest-

ing use case of calling external functions in GraphIt where the data parsing part is

done in python and some part of the search algorithm is written as external C++

functions. The approximate algorithm involves three phases which can be optimized

independently:

1. Graph Setup Phase: We introduce a faster graph builder for GraphIt using

parallel prefix sum.

2. Greedy Walk Phase: We optimize this phase by rewriting it in C++ from python.

3. Query Search Phase: Since each query is almost independent from each other,

we parallelize over multiple queries. We get great speedup since the work done

for each query is very small so that we don’t have to parallelize within each

query. By not parallelizing within each query, we can easily spawn many threads

when parallelizing over multiple query points.

Using above optimization strategies, we get nearly 7x speedup over the naive

implementation. We discuss the optimization strategies more in detail in Chapter

3.3.

1.3 Thesis Organization

In Chapter 2, we give a brief overview on graph algorithms that are used in this thesis

and talk about potential optimization ideas. We also talk about the infrastructure of

17

the GraphIt compiler. Significant portion of this thesis serves as an extension to the

GraphIt compiler. Finally, we talk about our initial benchmark results for Multiple

Starting Point applications.

In Chapter 3, we present some of the performance optimization steps we took

while working on different graph applications and some more general optimizations

that were helpful across the framework. In Chapter 4, we present the design of newly

added features in GraphIt. In Chapter 5, we discuss the important implementation

details of the newly added features from the compiler point of view. In Chapter 6,

we present some use cases to show how all the new features fit together.

In Chapter 7, we analyze our new optimizations with respect to the GraphIt

version without these optimizations. Finally, Chapter 8 summarizes our work and

talks about some future research directions.

18

Chapter 2

Background

In this chapter, we talk about notations we use throughout this thesis and different

graph algorithms we use for evaluation. Then, we give a brief overview on GraphIt

compiler which we extend for our use cases. Finally, we give a background on Mul-

tiple Starting Point applications and talk about initial benchmarks to motivate the

problem.

2.1 Notations

We denote a graph network by 𝐺 = (𝑉,𝐸) where 𝑉 represents the set of vertices

and 𝐸 represents the set of directed edges. A single vertex is denoted by 𝑣. We also

denote |𝑉 |and |𝐸| as the number of vertices and the number of edges respectively.

We denote 𝐺.𝑛𝑔ℎ𝑠(𝑣) for a vertex 𝑣 as a list of neighbors of 𝑣 ordered by their

IDs. For example, if a vertex 𝑣 is a neighbor of 3, 5, 7, and 4, then the output will be

{3, 4, 5, 7}. We also denote 𝐺.𝑑𝑒𝑔(𝑣) for the degree of a vertex 𝑣. In addition, DAG

refers to a directed acyclic graph.

2.2 Graph Algorithm Descriptions

In this section, we talk about different graph algorithms used for this thesis. We

use Triangular Counting as an example of intersection operator. In addition, we

19

use several centrality measures and local graph clustering algorithm as use cases for

our new operators functor and parallel for. These applications are chosen as they

can be from multiple sources that can be parallelizable. Finally, we briefly discuss

about IPNSW algorithm which is used for approximating maximum inner product

search. Finally, we discuss about our approach to implementing Multiple Starting

Point applications including initial benchmarks.

2.2.1 Triangular Counting

Triangular Counting counts the number of triangles (cliques of size 3) in the graph.

It counts each triangle once regardless of the permutation of its constituent vertex

identifiers. The most of the computation breaks down into intersecting two sorted sets

of potentially very different sizes. Below we present the pseudocode for Triangular

Counting algorithm:

Algorithm 1: Triangular Counting Algorithm
Data: 𝐸

Result: 𝑐𝑜𝑢𝑛𝑡

1 𝑐𝑜𝑢𝑛𝑡← 0;

2 for 𝑣 ∈ 𝑉 do

3 𝑣_𝑑𝑒𝑔𝑟𝑒𝑒← 𝐺.𝑑𝑒𝑔𝑟𝑒𝑒(𝑣);

4 for 𝑢,𝑤 ∈ 𝑁(𝑣) do

5 if 𝐺.𝑑𝑒𝑔𝑟𝑒𝑒(𝑢) > 𝑣_𝑑𝑒𝑔𝑟𝑒𝑒 && 𝐺.𝑑𝑒𝑔𝑟𝑒𝑒(𝑤) > 𝑣_𝑑𝑒𝑔𝑟𝑒𝑒 then

6 if 𝑐𝑎𝑛_𝑓𝑜𝑟𝑚_𝑡𝑟𝑖𝑎𝑛𝑔𝑒(𝑢, 𝑣, 𝑤) then

7 𝑐𝑜𝑢𝑛𝑡← 𝑐𝑜𝑢𝑛𝑡+ 1;

8 end

9 end

10 end

11 end

Line 5 ensures that we do not count a same triangle triplets multiple times by con-

sidering only vertices with higher number of neighbors.

Many frameworks such as GraphIt and Ligra [23] work by providing user-defined

functions over vertices and edges. Since we aim to develop a fast Triangular Count-

ing Algorithm on GraphIt, it is essential to frame this algorithm as an operation over

edges or vertices. Below pseudocode shows the one possible implementation:

20

Algorithm 2: Triangular Counting over edges
Data: 𝐸

Result: 𝑐𝑜𝑢𝑛𝑡

1 𝑐𝑜𝑢𝑛𝑡← 0;

2 for (𝑠𝑟𝑐, 𝑑𝑒𝑠𝑡) ∈ 𝐸 do

3 𝑐𝑜𝑢𝑛𝑡 += 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡(𝐺.𝑛𝑔ℎ𝑠(𝑠𝑟𝑐), 𝐺.𝑛𝑔ℎ𝑠(𝑑𝑒𝑠𝑡))

4 end

We can pass in 𝑑𝑒𝑠𝑡 to the intersection method in Line 3 to make sure we don’t

count vertices that have higher ID than 𝑑𝑒𝑠𝑡. This will eliminate the issue of over

counting triangles.

We can see that Triangular Counting is all about intersecting neighboring vertices

of the 𝑠𝑟𝑐 and 𝑑𝑒𝑠𝑡 of every edge.

2.2.2 Betweenness Centrality

Betweenness Centrality (BC) of the vertex 𝑣 measures the importance of the vertex

in a graph network. Given a graph 𝐺 = (𝑉,𝐸) and vertices 𝑠, 𝑡 ∈ 𝑉 , let 𝜎𝑠𝑡 be

the number of the shortest paths from 𝑠 to 𝑡 in 𝐺, and 𝜎𝑠𝑡(𝑣) be the number of

the shortest paths that pass through a specified vertex 𝑣. Then, BC of a vertex 𝑣:

𝐵𝐶(𝑣) =
∑︀

𝑠 ̸=𝑣 ̸=𝑡∈𝑉
𝜎𝑠𝑡(𝑣)
𝜎𝑠𝑡

. Brandes algorithm [6] efficiently computes BC in 𝑂(|𝑉 | ×

|𝐸|) time on unweighted graphs based on a new accumulation technique. By defining

the dependency of a source vertex 𝑠 on any given vertex 𝑣 as: 𝛿𝑠(𝑣) =
∑︀

𝑡∈𝑉
𝜎𝑠𝑡(𝑣)
𝜎𝑠𝑡

,

we can rewrite a BC of 𝑣:
∑︀

𝑠 ̸=𝑣∈𝑉 𝛿𝑠(𝑣). Given pairwise distances and shortest path

counts, we can also see the following recursive relation

𝛿𝑠(𝑣) =
∑︁

𝑤:𝑣∈𝑃 (𝑤)

𝜎𝑠𝑣

𝜎𝑠𝑤

(1 + 𝛿𝑠(𝑤))

where 𝑃 (𝑤) is the set of immediate predecessors of vertex 𝑤 on the shortest paths

starting from 𝑠 [24]. Brandes algorithms works by accumulating dependencies using

above relation. It performs breadth-first-search (BFS) (forward pass) to count the

number of shortest paths and constructs DAG of the shortest paths from each vertex.

Then, the algorithm traverses the DAG (backward pass) to accumulate dependen-

21

cies and add them to BC score. Pseudocode below shows the high level Brandes

Algorithm.

Algorithm 3: Brandes Algorithm
Data: 𝐺

Result: 𝐵𝐶

// Initialize BC score array

1 forall 𝑣 ∈ 𝑉 do

2 𝑐𝑙𝑒𝑎𝑟 𝐵𝐶[𝑣]

3 end

4 foreach 𝑣 ∈ 𝑉 do

// Initialize

5 forall 𝑣 ∈ 𝑉 do

6 𝑐𝑙𝑒𝑎𝑟 𝜎𝑠𝑡𝑣, 𝑃 (𝑣), 𝛿𝑠(𝑣)

7 end

// Construct shortest path DAG (forward pass)

8 forall 𝑣 ∈ 𝑉 do

9 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝜎𝑠𝑡𝑣, 𝑃 (𝑤) 𝑢𝑠𝑖𝑛𝑔 𝐵𝐹𝑆

10 end

// Backward pass to compute BC scores

11 forall 𝑣 ∈ 𝐷𝐴𝐺 do

12 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝛿𝑠(𝑣)

13 𝐵𝐶[𝑣] += 𝛿𝑠(𝑣)

14 end

15 end

Computing exact score takes unreasonably long time as it essentially requires us

to run Brandes algorithm [6] from every single vertex in the graph 𝐺 as can be seen

from Algorithm 3. Therefore, we only use few starting vertices to approximate the

total score. In this thesis, we aim to get faster performance by parallelizing over those

starting vertices.

2.2.3 Closeness Centrality

Closeness Centrality (CC) of the vertex 𝑣 measures the importance of the vertex in a

graph network and it is based on the ensemble of its’ distances to all the other nodes

in the graph. More formally, we define the CC score of a vertex 𝑣 as:

𝐶𝐶(𝑣) =
1∑︀

𝑡∈𝑉 𝑑(𝑣, 𝑡)

22

where 𝑑(𝑣, 𝑡) is a shortest distance between vertices 𝑡 and 𝑣. If the CC metric of

this vertex 𝑣 is high, it implies that the node is important as this vertex is relatively

close to other vertices. One of the typical ways to calculate CC scores for unweighted

graphs is to run BFS from the vertex of interest, and store the distances. In the

cases of weighted graphs, we make use of Dijkstra Algorithm to compute the shortest

distances. Algorithm 4 shows the pseudocode for Closeness Centrality on undirected

graphs using BFS.

Algorithm 4: Closeness Centrality Algorithm for undirected graphs
Data: 𝐺

Result: 𝐵𝐶

// Initialize CC score array

1 forall 𝑣 ∈ 𝑉 do

2 𝑐𝑙𝑒𝑎𝑟 𝐶𝐶[𝑣]

3 end

4 foreach 𝑣 ∈ 𝑉 do

5 forall 𝑣 ∈ 𝑉 do

6 𝑐𝑙𝑒𝑎𝑟 𝑣

7 end

8 forall 𝑤 ∈ 𝑉 do

9 𝑐𝑜𝑚𝑝𝑢𝑡𝑒 𝑑𝑒𝑝𝑡ℎ(𝑤) 𝑢𝑠𝑖𝑛𝑔 𝐵𝐹𝑆

10 end

11 𝐶𝐶[𝑣] = 1
𝑑𝑒𝑝𝑡ℎ.𝑠𝑢𝑚()

12 end

2.2.4 Local Graph Clustering

Graph Clustering has many important applications in computing, but due to the

increasing size of the real life graphs, it is computationally expensive to find the

global graph clustering as you have to look at the entire graph in most cases. The

local graph clustering algorithms mitigate this issue by just returning a single cluster

based on the seed node. These algorithms scale well [11] in practice because they

only depend on the size of the cluster rather than the entire graph. In this thesis, we

extend one of local clustering algorithms, PageRank-Nibble algorithm [2], to support

multiple seeds. PageRank-Nibble works by iteratively spreading the probability mass

23

around graph. Below we present the pseudocode for Pagerank-Nibble:
Algorithm 5: Pagerank-Nibble Algorithm
1 𝑟 ← {(𝑠𝑒𝑒𝑑, 1.0)}

2 𝑝← {}

3 while 𝑎𝑛𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑢 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑟[𝑢]/𝐺.𝑑𝑒𝑔(𝑢) ≥ 𝜖 do

4 𝐶ℎ𝑜𝑜𝑠𝑒 𝑎𝑛𝑦 𝑣𝑒𝑟𝑡𝑒𝑥 𝑢 𝑤ℎ𝑒𝑟𝑒 𝑟[𝑢]/𝐺.𝑑𝑒𝑔(𝑢) ≥ 𝜖

5 𝑝[𝑢]← 𝑝[𝑢] + 𝛼𝑟[𝑢]

6 for 𝑛𝑔ℎ ∈ 𝐺.𝑛𝑔ℎ𝑠(𝑢) do

7 𝑟[𝑛𝑔ℎ]← 𝑟[𝑛𝑔ℎ] + (1− 𝛼)
𝑟[𝑢]

2×𝐺.𝑑𝑒𝑔(𝑢)

8 end

9 𝑟[𝑢] = (1− 𝛼)
𝑟[𝑢]
2

10 end

Note that the seed initially has a probability of 1.0 (Line 1)and iteratively spreads

it to other vertices.

2.2.5 Maximum Inner Product Search

Maximum Inner Product Search (MIPS) is important in a number of machine learning

tasks such as efficient Bayesian inference, memory networks training, and reinforce-

ment learning. MIPS essentially tries to find a set of points that have the maximum

dot product with a query point. Given a set of 𝑑 dimensional vectors 𝑋 and a query

vector 𝑞, the goal of MIPS is to find the 𝐾 elements of 𝑋 that have the largest inner

product with 𝑞. The inner product is a commonly used measure of similarity between

two vectors. Thus, being able to find elements that have a large inner product with

your query is useful for things like search engines or recommender systems. As a

reminder, for a vector 𝑎 = [𝑎1, 𝑎2, . . . , 𝑎𝑑] and a vector 𝑏 = [𝑏1, 𝑏2, . . . , 𝑏𝑛], we define

the dot product as:

𝑎 * 𝑏 =
𝑑∑︁

𝑖=1

𝑎𝑖𝑏𝑖

The brute force approach would be to compute the inner product of all vectors

in 𝑋 with the query point and choose the top 𝐾. This has runtime of 𝑂(|𝑋| * 𝑑)

and as the number of vectors increase, this approach gets computationally slow and

expensive.

Hence, algorithms like Inner Product Navigable Small World (IPNSW) [19, 18]

try to reduce the cost of each query by building a special data structure called an

24

"index" that can be used to do cheap, fast and approximate MIPS. Further details

will be discussed in Chapter 3.3.

2.3 GraphIt Overview

This thesis contributes to the ongoing development of the GraphIt, a high perfor-

mance DSL for graph analytics. GraphIt achieves consistent high-performance across

different algorithms, graphs, and architectures while offering an easy-to-use high-level

programming model. GraphIt achieves this by decoupling the algorithm specification

from optimization strategies for graph applications. Many graph applications require

different optimization techniques therefore users normally have to try out a large

set of such techniques to achieve high performance. GraphIt solves this problem by

separating the high-level algorithms from performance optimizations.

Users specify graph algorithms using the algorithmic language involving just high-

level operations on sets of vertices and edges. They use the separate scheduling lan-

guage to compose different optimizations. The algorithmic language exposes different

high-level optimization opportunities, such as parallelization and edge traversal di-

rection.

The scheduling language supports a large space of optimization techniques, such

as edge traversal direction, data layout, parallelization, cache efficiency, NUMA, and

kernel fusion optimizations. GraphIt uses scoped labels to target specific operations

to optimize. Moreover, it uses an abstract graph iteration space model to represent,

compose, and ensure the correctness of edge traversal optimizations.

GraphIt compiler has three main components: a frontend that scans and parses

the high-level algorithm and the specific optimization chosen by the user, a midend

that interprets and analyzes through schedules via multiple lowering passes to ensure

correctness, and a backend that generates high-performance C++ implementations

with given optimizations. This section gives a brief overview on how each of these

components work together.

25

2.3.1 GraphIt Frontend

GraphIt frontend is adapted from the frontend of Simit [13], a DSL for physical sim-

ulation, to handle scanning, tokenizing, parsing, and semantic analysis. The frontend

supports various data types such as primitive types, edgeset, vertexset, and many

more. In addition, the frontend has many built-in operators including parallel sum,

parallel max/min over arrays and other atomic operators.

GraphIt’s scheduling language exposes a family of C-like function calls with com-

mon config prefix followed by the name of a specific optimization and additional func-

tion arguments. For instance, configApplyParallelization can be used to specify

what kind of parallelization strategy users want to use and configApplyDirection

is used for traversal direction optimizations. Figure 2-1 shows some of the supported

schedules in GraphIt.

Figure 2-1: Some GraphIt Schedules [26]. The default option for an operator is shown
in bold. Optional arguments are shown in []. If the optional direction argument is
not specified, the configuration is applied to all relevant directions. We use a default
grain size of 256 for parallelization

The frontend parses the high-level algorithm code to construct frontend Interme-

diate Representation (FIR) objects to represent the program. Moreover, the frontend

reads scheduling C-like function calls and constructs scheduling objects that contain

three types ofinformation: the physical layout of the vertex data, the edge traversal

optimization, and the frontier data structures. The frontend then passes the FIR

26

objects along with the scheduling objects to the midend for further analysis.

2.3.2 GraphIt Midend

The midend consists of multiple optimization and correctness lowering passes which

transform the scheduling objects and FIRs into a midend Intermediate Representation

(MIR) objects that are used for backend code generation.

In general, the midend lowering passes are responsible for gathering any global

information concerning this pass from the MIR context and modifying local proper-

ties of MIR objects. For instance, through midend lowering passes, GraphIt inserts

atomic operators whenever certain data structures can potentially be accessed by

multiple threads. We refer to this pass as dependency analysis pass. Just like FIR,

MIR nodes are abstract structures that represent things like expressions, statements,

and variable declarations. For example, EdgeSetApplyExpr is an MIR object that

contain information such as whether the edge traversal should enable vertex dedu-

plication. GraphIt heavily uses a visitor pattern, where an additional visitor class

implements the appropriate specializations in each MIR node. Each of the lowering

passes constructs an MIR visitor or rewriter, gets a list of function from the MIR

context, and "visits" each function to modify MIR nodes according to the scheduling

objects.

2.3.3 GraphIt Backend

After the midend finishes processing the program, MIR nodes are recursively visited

for the code generation. For instance, if the is_parallel flag of EdgeSetApplyExpr is

set to true, the backend generates C++ code with parallel primitives such as OPENMP,

CILK, or TBB.

27

2.4 Multiple Starting Point Applications

Many algorithms like Betweenness Centrality (BC), Closeness Centrality (CC), and

PR-Nibble are usually run from a single starting vertex to compute scores for each

vertices. Therefore, there are many fast algorithms that efficiently parallelize the com-

putation within each starting point. For example, GraphIt uses a direction-optimized

BFS [3] that achieve high parallelization on multicore machines by switching between

top-down and bottom-up approaches depending on the frontier size for the forward

run of BC and unweighted version of CC.

But, it is sometimes necessary to run above applications from multiple starting

points. For example, in BC, the exact score for each vertex is calculated by running

BC from every vertices in the graph. Since it is computationally too expensive, we

usually approximate BC score by running from certain chosen vertices. For instance,

GAP Benchmarking Suite [4] use 4 vertices. In the case of CC, running from a single

source only gives you a score for the source. Therefore, we have to run CC for every

vertices we are interested in.

While it is certainly possible to run those chosen starting points sequentially, we

want to further utilize hardware by running the starting points in parallel. However,

we can’t run the starting points completely independent because all the computations

done within each starting points have to converge back to a global answer in the end.

2.4.1 Initial Benchmarks

As per our discussion above, we hope to gain better performance on multiple starting

point applications by further parallelizing (parallelizing over starting points). How-

ever, we have to ensure following two properties through our initial benchmarks.

∙ Parallelization within each starting point: If the parallelization within

each starting point is already too high, we won’t get any performance gain by

parallelizing over starting points. For example, if the program scales close to

24 times on a 24-core machine relative to its’ serial version, it implies that the

program almost fully takes advantage of the hardware. Therefore, parallelizing

28

over starting points in this case wouldn’t help. On the other hand, if the pro-

gram scales many fewer than 24 times, we might be able to get more scalability

by parallelizing over starting points.

∙ Allocation of local data structures: For many multiple starting point ap-

plications, we need to maintain local arrays to keep track of the local score

from each starting points which, in the end, are reduced to global score array.

Therefore, we need to make sure that allocating such local arrays don’t take too

much of the computation time.

Scalability Within A Single Starting Point

In this experiment, we run Betweenness Centrality on 10 different starting points and

average the results for both one core and 24 cores. Table 2.1 summarizes the result

for five graphs. The descriptions of the graphs can be found in section 7.2. As you

can see from the table, Road-USA has a very bad scalability (around 1.4x) while

Kron and Twitter have good scalabilities (around 16x - 18x). In addition, socLive

and Web graphs have some mild speedup of around 12x. Therefore, we can at least

expect to get better performance by parallelizing over starting points on graphs such

as socLive, Web, and Road-USA.

Graphs One Core, s 24 Cores, s Scalability
Web 16.512 1.347 12.26
Road-USA 4.717 3.388 1.39
Kron 77.784 4.27 18.22
Twitter 28.118 1.74 16.16
socLive 1.4838 0.117 12.70

Table 2.1: Average scalability within each starting point of Betweenness Centrality.

Local Array Allocation

In this experiment, we want to show that allocating local arrays within each start-

ing point is not the bottleneck of the performance. For that, we run Betweenness

29

Centrality algorithm on 10 different starting points and average the results. As you

can see from Table 2.2, it is clear that allocating local arrays and initializing local

arrays is very small compared to the main body of the program. Note that the time

of initializing local arrays consists of allocating the necessary memory and clearing

them. For example, we only spend 0.231 seconds on initializing arrays while we spend

3.361 seconds on the main computation on Kron graph. Reducing the local score to

the global score takes even less time than the local array initialization. Therefore, we

can conclude that we can safely use local arrays for each starting point when running

multiple starting point applications. We, however, have to deallocate local arrays

frequently to prevent running out of memory since some of the graphs are very big.

It is also

Graphs Local Array Allocations, s Main Body, s Reduce, s Total, s
Web 0.103 1.378 0.017 1.490
Road-USA 0.058 3.557 0.008 3.623
Kron 0.231 3.361 0.046 3.638
Twitter 0.123 1.617 0.021 1.761
socLive 0.025 0.088 0.002 0.115

Table 2.2: Average Breakdown of Total Computation Time for Betweenness Central-
ity. Local Array Allocation column refers to the time it requires to initialize local
arrays necessary for BC. The Main Body column refers to the forward and backward
passes of BC. The Reduce column refers to the time that requires to reduce the local
score to the global score.

2.5 Summary

In this chapter, we gave a brief overview of GraphIt compiler which we will extend

further for Triangular Counting algorithm and Multiple Starting Point Applications.

We also conducted some initial experiments to motivate our work in the future sec-

tions regarding Multiple Starting Point applications. In addition, we gave detailed

descriptions of graph algorithms we use for the evaluation of this thesis.

30

Chapter 3

Performance Optimizations

In this section, we present compiler optimizations we develop for Triangular Counting

Algorithm and Multiple Starting Point applications, and handwritten optimizations

for IPNSW applications. Since the optimizations for IPNSW are hard to follow

without extensive background information, we also present how IPNSW works in

detail. Firstly, we talk about different intersection methods we can use for optimizing

Triangular Counting Algorithm as GraphIt schedules. Then, we talk about compiler

optimizations we develop for direction-optimized versions of Multiple Starting Point

applications. Finally, we talk about our hand-optimization version of IPNSW.

3.1 Optimizations for Triangular Counting Algorithm

Intersecting two sorted sets is an essential part of Triangular Counting Algorithm.

As we discussed in Chapter 2.2.1, Triangular Counting boils down to many sorted

set intersections with different sizes because some vertices can have few neighbors

while others can have a large number of neighbors in power-law graphs. Therefore, a

method that works well with particular combination of two sorted sets might not work

well with other settings. As a result, we need to have multiple intersection methods

that can be switched easily. Therefore, we aim to optimize the baseline Triangular

Counting in GAP which uses only one type of intersection.

31

3.1.1 Different Schedules

We support following set intersection methods with the intersection operator.

∙ NaiveIntersection: A standard way to compute the intersection where we

have two pointers that are incremented one by one. Algorithm 6 shows the

pseudocode for the naive intersection. It is also the intersection method used

in GAP Benchmarking Suite.

Algorithm 6: Naive Set Intersection Method
Data: 𝐴,𝐵
Result: 𝑐𝑜𝑢𝑛𝑡

1 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 ← 0
2 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 ← 0
3 𝑐𝑜𝑢𝑛𝑡← 0
4 while 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 < 𝐴.𝑠𝑖𝑧𝑒() && 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 < 𝐵.𝑠𝑖𝑧𝑒() do
5 if 𝐴[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴] > 𝐵[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵] then
6 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 += 1
7 else if 𝐴[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴] < 𝐵[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵] then
8 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 += 1
9 else

10 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 += 1
11 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 += 1
12 𝑐𝑜𝑢𝑛𝑡 += 1

13 end
14 end

∙ HiroshiIntersection: Compare elements of two sets 3 by 3. This method

was inspired from the paper by Inoue et al. [12]. For the sake of simplicity,

Algorithm 7 shows the pseudo code for 2 by 2 intersection. This type of in-

tersection significantly reduces branch misprediction overhead by replacing few

expensive (e.g. inequality check) branch mispredictions with simpler branch

mispredictions (e.g. equality check). For instance, in Algorithm 7, we compare

2 × 2 = 4 pairs for every two elements as opposed to 2 pairs in the naive set

intersection algorithm and Line 18 shows the hard-to-predict conditional branch

(highlighted in red). Even though this approach does more work in general, it

reduces the branch misprediction cost significantly. Therefore, we get overall

performance improvement when intersecting two sets with comparable sizes.

∙ BinarySearchIntersection: This method intersects two sets by looking up

the elements of the smaller set in the larger set in a binary search fashion.

32

Algorithm 7: Hiroshi Intersection Method
Data: 𝐴,𝐵
Result: 𝑐𝑜𝑢𝑛𝑡

1 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 ← 0
2 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 ← 0
3 𝑐𝑜𝑢𝑛𝑡← 0
4 while (1) do
5 𝐴0 = 𝐴[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴]
6 𝐴1 = 𝐴[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 + 1]
7 𝐵0 = 𝐵[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵]
8 𝐵1 = 𝐵[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 + 1]
9 if 𝐴0 == 𝐵0 then

10 𝑐𝑜𝑢𝑛𝑡 += 1
11 else if 𝐴0 == 𝐵1 then
12 𝑐𝑜𝑢𝑛𝑡 += 1
13 𝑔𝑜𝑡𝑜 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝐵

14 else if 𝐴1 == 𝐵0 then
15 𝑐𝑜𝑢𝑛𝑡 += 1
16 𝑔𝑜𝑡𝑜 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝐴

17 end
18 if 𝐴1 == 𝐵1 then
19 𝑐𝑜𝑢𝑛𝑡 += 1
20 𝑔𝑜𝑡𝑜 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝐴𝐵

21 else if 𝐴0 > 𝐵1 then
22 𝑔𝑜𝑡𝑜 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝐵
23 else
24 𝑔𝑜𝑡𝑜 𝑎𝑑𝑣𝑎𝑛𝑐𝑒𝐴
25 end
26 advanceA:
27 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 += 2
28 if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 ≥ 𝐴𝑒𝑛𝑑 then
29 𝑏𝑟𝑒𝑎𝑘
30 else
31 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
32 end
33 advanceB:
34 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 += 2
35 if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 ≥ 𝐵𝑒𝑛𝑑 then
36 𝑏𝑟𝑒𝑎𝑘
37 else
38 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑒
39 end
40 advanceAB:
41 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 += 2; 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 += 2
42 if 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 ≥ 𝐴𝑒𝑛𝑑 ‖ 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐵 ≥ 𝐵𝑒𝑛𝑑 then
43 𝑏𝑟𝑒𝑎𝑘
44 end
45 end

// fall back to naive intersection

33

Since we assume that each set is sorted, the search space reduces each time

we look up an element. For example, if we find the match of the first element

of the smaller set at index 10 of the bigger set, we can start the search of the

second element of the smaller set starting at index 10 of the bigger set. This

strategy works well for the cases where input sets are extremely unbalanced.

The pseudocode is given in Algorithm 8.

Algorithm 8: Binary Search Intersection Method
Data: 𝐴,𝐵
Result: 𝑐𝑜𝑢𝑛𝑡

1 𝑠𝑡𝑎𝑟𝑡← 0
2 𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑟𝑡← 0
3 𝑐𝑜𝑢𝑛𝑡← 0
4 for 𝑖← 0 to 𝐴.𝑠𝑖𝑧𝑒() do

// binarySearch method looks up 𝐴[𝑖] in set 𝐵 at starting index of 𝑠𝑡𝑎𝑟𝑡
5 𝑠𝑡𝑎𝑟𝑡← 𝑏𝑖𝑛𝑎𝑟𝑦𝑆𝑒𝑎𝑟𝑐ℎ(𝐴,𝐵, 𝑖, 𝑠𝑡𝑎𝑟𝑡)
6 if 𝑠𝑡𝑎𝑟𝑡 ̸= −1 then
7 𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑟𝑡← 𝑠𝑡𝑎𝑟𝑡
8 𝑐𝑜𝑢𝑛𝑡 += 1

9 else
10 𝑠𝑡𝑎𝑟𝑡← 𝑝𝑟𝑒𝑣𝑆𝑡𝑎𝑟𝑡
11 end
12 end

∙ MultiskipIntersection: This method is similar to NaiveIntersection but it

increments the pointer by some 𝑘. For the correctness purposes, whenever the

pointer skips through a potential intersection, it checks surrounding window of

size 𝑘. Empirically, we find that 𝑘 = 3 gives the best result thus 3 is used

internally. Even though this method does roughly the same amount of work

as naive intersection method in the worst case (e.g. intersection is dense), we

observe some speedup in real life cases because intersection is sparse. Algorithm

9 shows the pseudocode for this approach.

3.2 Optimizations for Multiple Starting Points

3.2.1 Vertex Deduplication for Multiple Starting Points

Vertex Deduplication is used to make sure that each vertex is inserted into the out-

going edges only once. In general, we maintain a deduplication flag array which is

34

Algorithm 9: MultiSkip Intersection Method
Data: 𝐴,𝐵
Result: 𝑐𝑜𝑢𝑛𝑡

1 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 ← 0
2 𝑐𝑜𝑢𝑛𝑡← 0
3 for 𝑖← 0 to 𝐵.𝑠𝑖𝑧𝑒() do
4 𝐵_𝑠𝑡𝑜𝑝← 𝐵[𝑖]
5 while 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 < 𝐴.𝑠𝑖𝑧𝑒() && 𝐴[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴] < 𝐵_𝑠𝑡𝑜𝑝 do
6 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 += 3
7 end
8 if 𝐴[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴] == 𝐵_𝑠𝑡𝑜𝑝 then
9 𝑐𝑜𝑢𝑛𝑡 += 1

10 else
// If above is not true, we rollback by 2 to make sure we do not skip possible
intersection

11 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 −= 2
12 if 𝐴[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴] == 𝐵_𝑠𝑡𝑜𝑝 then 𝑐𝑜𝑢𝑛𝑡 += 1
13 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 += 1
14 if 𝐴[𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴] == 𝐵_𝑠𝑡𝑜𝑝 then 𝑐𝑜𝑢𝑛𝑡 += 1
15 𝑝𝑜𝑖𝑛𝑡𝑒𝑟𝐴 += 1

16 end
17 end

an array of integers that can be either 0 or 1 to keep track if the vertices are al-

ready included. Therefore, the size of the array is equal to the number of vertices

in the graph. Depending on traversal direction, we might need to add compare-

and-swap (CAS) on the deduplication flag array for correctness. We use integers

instead of booleans for the deduplication flag array because CAS is not supported on

booleans. Since applications such as Betweenness Centrality and Closeness Central-

ity are direction-optimized, we need to use vertex deduplication with CAS as they

include both traversal directions. Originally, GraphIt uses a single deduplication flag

array which is a field of the input graph object but this is not thread safe if we run

multiple starting points in parallel.

Hence, we modify GraphIt compiler to maintain a simple memory manager of

local deduplication flag arrays. Then, whenever a thread needs a deduplication flag

array, it gets the latest available flag array from the memory manager. In addition,

a thread returns the deduplication flag back to the memory manager as soon as it is

done. By doing so, we guarantee that the number of deduplication flag arrays is at

most equal to the number of outer threads used in parallelizing over starting points.

It is fine for other threads to work on already used deduplication flag array since all

we care is if the value at certain indices are flipped during the process. Each operation

35

(asking for a flag and returning a flag to the pool of flags) to the memory manager is

guarded by a global lock to ensure correctness.

3.3 Optimizations for IPNSW

As we discussed in Chapter 2.2.5, we only focus on "search" portion of the IPNSW

algorithm (Figure 3-1). When we do a "search", we "zoom in" from the broadest

similarity graph to the finest. Roughly, given a query 𝑞, we interpret as "find the

large cluster that 𝑞 is close to, then find a subcluster that 𝑞 is even closer to, then

find a subcluster . . . ". A good analogy would be if we are trying to efficiently find all

of person 𝑞’s family members, we might start by:

1. find everyone from same city as 𝑞, then

2. find everyone from same district as 𝑞, then

3. find everyone from same street as 𝑞 . . .

Therefore, this procedure eliminates the search space significantly. To implement this

procedure, we need to do the following:

1. Constructing hierarchical graphs from the input. In our analogy, the

first level would be the city, the second would be the district, and so on.

2. Greedy walk to find the most optimal subgraph to start. We start

from a "entrypoint node" at the highest level (city in our analogy). At every

step, we "greedily" walk to the neighbor of the current node with the maximum

similarity to our query 𝑞. When we reach the local maximum where there is no

neighbors that has higher similarity than the current node, we "descend" to the

next "zoomed in" graph and continue the walk. (descending from a city level

to district level in our analogy)

3. Find the closest points to multiple queries Once we enter the appropriate

level, we do "beam search" procedure as described in Figure 3-1.

36

Figure 3-1: IPNSW Pseudocode.

37

Since GraphIt doesn’t fully support all the required data structures such as priority

queue for custom types and list of graphs, we have to use them as external functions

in GraphIt. For example, reading input data (list of hierarchical graphs) is written

in python and finding the closest points to queries is written in C++.

Since IPNSW is divided into three distinct phases, we can optimize them sepa-

rately.

3.3.1 Constructing Graphs Optimizations

GraphIt internally uses GAP Benchmarking Suite [4] graph builder to construct the

input graph which takes the list of Edge objects. Therefore, GraphIt provides many

utility functions to convert from different graph formats to GAP format. In addition,

IPNSW requires us to read input data in python CSR (Compressed Sparse Row)

format [22].

In the original GraphIt version, we do the conversion from python CSR to GAP

graph object sequentially as can be seen from Figure 3-2. This sequential function

takes in indptr which is an offset array of size |𝑉 | where each index indicates the

starting location of edges for that index in array indices. Then, this function just

loops through every vertex, find the start and end of edges for that vertex from

indices array, and construct edges sequentially.

Figure 3-2: Sequential Construction of Edges

But, the outer loop (Line 69) is easily parallelizable since each element of the loop

accesses the different chunks of indices array and the starts and ends of those chunks

are specified by indptr array.

38

To parallelize the outer loop, we need to know the exact location of the edge

that we are adding into the edge list. We don’t need this functionality in serial case

because we could just keep inserting the edges at the end of edge list. To know the

exact location, we need to maintain a prefix sum array of vertex degrees so that we

know where to start looking from indices array. Prefix sum array can be constructed

in parallel using a variant of parallel prefix sum algorithm used in GAP. Figure 3-3

shows the final code snippet. The new function does the following:

1. Construct the vertex degree array (Line 165 - 169 of Figure 3-3)

2. Does prefix sum on vertex degree array in parallel (Line 173 of Figure 3-3)

3. Create edges in parallel (Line 175 - 181 of Figure 3-3)

Figure 3-3: Parallel Construction of Edges

This new function is already integrated into GraphIt.

39

3.3.2 Greedy Walk Optimizations

In the original IPNSW code, greedy walk phase is written in Python and run sequen-

tially for every query points. We are able to get a good performance improvement

by parallelizing this phase over query points and rewriting everything in C++. For

example, we are able to cut down the time from 0.61 seconds to 0.0064 seconds on

1024 queries. Since this phase is relatively straightforward, we get very good speedup

on multicore machines.

3.3.3 Multiple Query optimizations

In the original IPNSW code, we find the closest points to the query by using priority

queues to keep track of the shortest distances to the query. Since the initialization of

those priority queues are negligible and sizes of those priority queues are constant, we

can easily maintain a different priority queues for every query points. As each query

has its’ own priority queue, they can be easily parallelized over query points. Since

GraphIt currently doesn’t support custom type for priority queues, this function is

implemented in C++ and called as an extern function into GraphIt.

3.4 Summary

In this chapter, we presented some of the performance optimizations we develop for

Triangular Counting Algorithm, Multiple Starting Point applications, and IPNSW.

For Triangular Counting, we developed different intersection methods that can be

configured depending on the nature of the input. For Multiple Starting Point ap-

plications, we modified current GraphIt implementation of the vertex deduplication

method for the direction optimization to make it thread safe for concurrent access.

Finally, we hand-optimized the naive version of IPNSW in C++. We will present the

results of above optimizations in Chapter 7.

40

Chapter 4

Programming Models

In this section, we introduce programming models and design decisions needed for

implementing some of the graph applications. First, we talk about the design of

intersection operator. Then we talk about the design of functor in GraphIt. Finally,

we discuss about parallel for in GraphIt.

4.1 Intersection Operator

We design intersection operator as a part of Triangular Counting Algorithm 2.2.1 that

can be scheduled through GraphIt’s usual scheduling language. Table 4.1 summarizes

all the intersection methods we currently support along with their advantages. You

can find a detailed explanation of how those different schedules from Section 3.1.1.

Intersection Methods When to use
Naive Intersection When both sorted sets are small

Hiroshi Intersection When both sorted sets are comparable in size and large
Binary Search Intersection When sorted sets are extremely unbalanced

MultiSkip Intersection When the intersection is sparse and one set is small

Table 4.1: Different Intersection Schedules in GraphIt

In GraphIt, intersection takes in four required parameters and an optional pa-

rameter 𝑟𝑒𝑓 that tells us to not count vertices labeled beyond 𝑟𝑒𝑓 . (Figure 4-1) The

optional parameter is used for Triangular Counting to avoid double counting. it is

41

Figure 4-1: Intersection Operator in GraphIt

same as the internal check we discussed in 2.2.1. We have to pass in the sizes of

the sets (𝑠𝑟𝑐_𝑛𝑔ℎ_𝑠𝑖𝑧𝑒, 𝑑𝑠𝑡_𝑛𝑔ℎ_𝑠𝑖𝑧𝑒) since they are internally represented as C++

arrays which don’t have size information. We can also use a scoped label (#s1#) to

schedule different intersections. The different intersection methods are included in

GraphIt as runtime library functions that can be called directly.

4.2 Functor

In Mathematics, functor is defined as a map from categories to categories while

function is a map from sets to sets. Therefore, functor serves as a higher order

operation compared to function. Roughly, we can think of functor operation as:

1. "Unboxes" the value (special case can be a set) from the category from incoming

functor 𝐹𝑖𝑛.

2. Maps the value to a new value using function 𝑓 .

3. "Boxes" the result into outgoing functor 𝐹𝑜𝑢𝑡.

In C++, functor works as a function with its’ own state such that it still works as

a higher order function. functor is useful when we want to do certain operations only

on non global data structures. For example, in the case of Betweenness Centrality,

we need to maintain the count of paths that each vertex is crossed starting from one

specific starting point. Therefore when running multiple starting point in parallel, it

42

is important to have the count of paths to be local for each starting point. To support

this family of applications (application with multiple starting points), we decide to

extend current GraphIt compiler to support functor operations. While it is certainly

possible to pass the local data as extra parameters to an ordinary function, we decide

it is better to implement functor for following reasons:

∙ Parameterization: functors are easy to parameterize thus making the code

logic more modular.

∙ Performance: C++ functors can often be inlined by the compiler unlike func-

tion pointers for better performance.

∙ Abstraction: functions can be interpreted as functors without states (e.g.

special case), therefore functor support adds another level of abstraction to the

program

∙ Convenience: By default, GraphIt already generates functions as template

objects with empty states. Therefore, it is easier to extend the GraphIt compiler

to add state information to those template objects.

As shown in Figure 4-2, functor in GraphIt has the following syntax (highlighted

in blue). All the functor states are given inside the square brackets. Notice that

the body inside functor is working with local_score which is a local data that is

initialized inside a for loop whereas the function is updating the globally declared

variable (global_score).

4.3 Parallel For

In our initial experiments with multiple starting point applications, we discover that

treating each point independently and running them in parallel gives us better per-

formance than running them in serial. Our initial concern is that parallelizing in

terms of starting points can hurt the performance because we could potentially lose

some amount of parallelization within each starting point. If the inner parallelization

43

Figure 4-2: Functor vs Function in GraphIt. Function operations are in red and
Functor operations are in blue.

is too good, we won’t gain much performance improvement from parallelizing the

starting points. But, according to our micro benchmark, we notice that the inner

parallelization can’t fully take advantage of the all cores.

It is essential, however, that we need to be careful about the number of threads that

are used in parallelizing over starting points. If the number of threads are too high,

this will hurt the inner parallelism within each starting point because of the overhead

of spawning too many threads. For example, if we are running 64 starting points in

parallel, we find that using 4 threads for (e.g 16 starting points per thread) have better

performance than running them using 64 threads (e.g one starting point per thread).

Since the outer number of threads can potentially depend on different applications,

we decide to implement a new GraphIt operator that can support running multiple

starting points in parallel - parallel for with the option to tune the grain size (e.g

outer thread numbers).

4.3.1 Design Decision

In the current state of GraphIt compiler, we have two options to implement parallel

for.

44

∙ Simulate the parallel for operation with an user defined function that is applied

over 𝑉 𝑒𝑟𝑡𝑒𝑥𝑆𝑢𝑏𝑠𝑒𝑡.

∙ Explicitly add parallel for as a GraphIt statement.

The first option suits better in GraphIt’s general convention that is to define

functions over edges or vertices. However, this approach makes it virtually impossible

to reason about the correctness through our usual dependency analysis. Since we want

to make sure that we guarantee correctness for the logic inside user defined functions,

we decide that this approach is not feasible.

The second approach is against usual GraphIt convention but we can at least

guarantee the correctness of user defined functions. However, we cannot guarantee

correctness for the body of the parallel for loop. This design decision is similar to how

parfor in MATLAB also do not execute iterations in a guaranteed order. Since we

don’t guarantee correctness inside parallel for, we implement many atomic operations

such as atomicAdd and compare_and_swap to the GraphIt frontend such that users

can freely use them when writing GraphIt code involving parallel for.

4.3.2 GraphIt Representation

Figure 4-3 shows how parallel for is represented in GraphIt with its’ schedule (high-

lighted in blue). We use the label (#l1# in this case) to tune the parallel for perfor-

mance through GraphIt scheduling language.

We currently support following scheduling option for the parallel for :

∙ configParForGrainSize: We find it useful to tune the grain size when running

multiple starting points. For example, if we run 𝑛 starting points with 𝑘 grain

size, there will be 𝑛
𝑘

threads running the starting points in parallel. When

nothing is supplied, the grain size will be 𝑚𝑖𝑛(2048, 𝑐𝑒𝑖𝑙(𝑛
8×𝑝)) where 𝑝 is

the number of workers created.

45

Figure 4-3: Parallel For in GraphIt

4.4 Summary

In this chapter, we presented programming models for intersection operator, functor,

and parallel for. We can tune intersection operator using GraphIt scheduling language

by calling appropriate library functions based on the user schedule. In addition, we

implemented functor which works as a function with states in GraphIt. Functors are

useful when working with non global data structures. Finally, we added parallel for

which can be tuned through grain size. (how much work each thread completes).

In the next chapter, we will discuss how we implement above features in GraphIt

Compiler. We will also discuss some uses cases using these features in Chapter 6 and

performance results in Chapter 7.

46

Chapter 5

Compiler Implementation

In this chapter, we discuss the implementation details of the newly added features in

GraphIt compiler. This chapter solely focuses on how the new features implemented

internally while the previous chapter focuses on the programming models to the user.

For the sake of consistency, we talk about how GraphIt frontend, midend, and backend

are changed for each new additions: intersection, functor, and parallel for.

5.1 Intersection Operator

As we discussed in 4.1, intersection is a GraphIt operator that can be tuned through

the scheduling language. Therefore, this new addition requires changes in all major

components of GraphIt Compiler.

5.1.1 Frontend

We construct a new FIR node for the intersection operator that stores all the meta

information such as which sorted sets we intersect and sizes of those sets. We decide

to keep the sizes of the sets in the argument because sets are internally represented

as C++ arrays. Moreover, we register different intersection methods in the scheduling

object.

47

5.1.2 Midend

As per GraphIt design, we construct a new MIR node for the intersection operator

that contains exactly the same information as the corresponding FIR node along with

the specified schedule. The schedule is added through the MIR Lowering pass.

5.1.3 Backend

Since our original C++ implementations of different intersection algorithms were de-

veloped on top of GAP Benchmarking Suite [4] and some part of GraphIt runtime

library is inspired from GAP, we decide to use the C++ implementations as a runtime

library such that the generated code can directly call them. Therefore, in the back-

end, we directly call the intersection method that corresponds to the user specified

schedule.

Putting everything together, Figure 5-1 shows the flow of intersection operator in

GraphIt.

Figure 5-1: Intersection Operator Design in GraphIt

5.2 Functor

Functor is used for Multiple Starting Point applications since functor can work on

starting point specific data structures unlike regular functions. In this section, we

discuss how it is implemented in GraphIt compiler.

48

5.2.1 Frontend

Originally, GraphIt uses just the function name as the identifier for every function in

the program. However, the drawback of this approach is we have no way to store the

local state information of functors in the function identifier since it is represented as

a plain string. Therefore, we decide to introduce a new FIR node called FuncExpr

that include the function/functor name and all the state information with it. Since

normal functions can be treated as functors without any states, FuncExpr work as

an abstraction on top of both function and functor. (Figure 5-2)

Figure 5-2: FuncExpr Abstraction

Moreover, GraphIt originally only used to work on globally declared arrays thus

making it impossible to create local arrays inside functions. Therefore, we extend the

GraphIt compiler to support initializing local arrays. Since we use TensorArrayExpr

FIR node as an abstraction for arrays, adding local array support involves a simple

changes in the parser. Specifically, we use const keyword for global objects and var

keyword for local objects. Therefore, we just need to make sure that the parser

function for arrays recognize var keyword.

5.2.2 Midend

As we discussed in the above section, we also introduce MIR node called FuncExpr

which is pretty much identical to FIR FuncExpr especially since there is no schedule

to attach. Therefore most of the changes involve rewriting some visitor methods to

accept FuncExpr instead of plain strings.

GraphIt guarantees correctness inside user defined functions through its’ depen-

dency analysis in the MIR Lowering passes. This includes detecting which operations

49

need to be thread-safe and replacing them with atomic operations. But the original

GraphIt compiler does the dependency analysis only on global arrays, therefore we

extend the current analysis to support local arrays as well. In the original GraphIt

dependency analysis, we find the meta information about the array operations from

the context map on global arrays which cannot be extended to local arrays. There-

fore, we replace this logic by relying solely on the information that is stored inside

TensorArrayExpr MIR node which represents both local and global arrays.

5.2.3 Backend

This part involves adding new visitor methods for FuncExpr in the backend and

rewriting some methods to accept FuncExpr instead of plain function identifier strings.

Putting everything together, Figure 5-3 summarizes how functor is generated in

GraphIt. First, both function and functor are parsed into a FIR node FuncExpr.

Then, we create a MIR node FuncExpr and pass it through dependency analysis

lowering pass to add atomic operators if necessary. Finally, we generate a C++ functor.

Figure 5-3: Functor Design in GraphIt

In Figure 5-4, we see that an array 𝑎 is initialized as a field to a functor 𝑎𝑑𝑑𝑂𝑛𝑒

and the main operation of the functor 𝑎𝑑𝑑𝑂𝑛𝑒 operates only on the field array 𝑎.

50

Figure 5-4: Functor in GraphIt vs Functor in C++. Left is the GraphIt code and right
is the generated C++ code.

5.3 Parallel For

We implement parallel for as a way to parallelize over starting points in GraphIt. In

GraphIt, users can configure parallel for ’s grain size for better performance. In this

part, we discuss how we integrate it to GraphIt compiler.

5.3.1 Frontend

Similar to other additions, we create a new FIR node called ParForStmt which

contains the body of the parallel for, the loop domain, the loop variable, and the

statement label. We also register a new scheduling object which specifies the grain

size for the parallel for loop discussed in 4.3.2. The scheduling object is similar to

OPENMP/CILK in that we tune the grain size to achieve better performance.

5.3.2 Midend

Similar to the Frontend changes, we create a new MIR node called ParForStmt which

contains all the meta information along with the scheduling parameters that is added

through the MIR Lowering Pass.

5.3.3 Backend

As parallel for is somewhat an independent feature, the backend changes only involve

adding a visitor function for ParForStmt. We use cilk_for macro from CILK for

tuning the parallel for.

In Figure 5-5, we show how a simple GraphIt par_for snippet translates into C++

code. We use grain size of 4 in the schedule which directly translates to CILK grain

51

Figure 5-5: Parallel For in GraphIt vs Functor in C++. Left is the GraphIt code and
right is the generated C++ code.

size of 4.

5.4 Summary

In this chapter, we discuss how intersection operator, functor, and parallel for are

implemented in GraphIt compiler. For intersection operator, we introduce Inter-

sectionExpr FIR, MIR nodes to represent it internally. For functor, we introduce

FuncExpr abstraction for both functor and function and rewrite significant portion

of GraphIt compiler visitor functions to accept FuncExpr. Finally, we add ParForStmt

to represent parallel for in GraphIt.

In the next chapter, we show how all the new features work together to implement

certain applications.

52

Chapter 6

Use Cases

In this chapter, we present two applications - Triangular Counting and Closeness

Centrality as use cases for our new features. Triangular Counting uses intersection

operator while Closeness Centrality uses both functor and parallel for.

6.1 Triangular Counting in GraphIt

Putting everything together, Triangular Counting algorithm can be implemented in

GraphIt shown in 6-1.

In Line 24, we relabel the vertices by degree. This is useful when the average

degree is high enough and and if the degree distribution is dense power-law graph.

By doing so, we put neighboring vertices adjacent to each other in term of their vertex

IDs such that they can be be accessed in a cache efficient manner. This method is

heavily inspired by GAP [4].

In Line 25, we apply incrementing_count method, a bulk of our Triangular Count-

ing Algorithm, over the edges of the graph which is then parallelized over source

vertices through the GraphIt scheduling language. This can be seen from the label

#𝑠1# and Line 32.

In Line 7, we intersect the neighboring vertices of both src and dst for each edge.

We implement a check 𝑑𝑠𝑡 > 𝑠𝑟𝑐 to ensure we count each triangle only once. Without

this check, each triangle would be double counted since Triangular Counting works

53

Figure 6-1: Triangular Counting in GraphIt

54

on undirected graphs. #𝑠2# is used to tune the intersection operator. We also store

the number of triangles involving 𝑠𝑟𝑐 in vertexArray and sum all the elements of

vertexArray in parallel. By doing so, we eliminate synchronization overhead because

each vertex of the parallel region touches different part of vertexArray. Summing

vertexArray in parallel takes a negligible amount of time compared to the Triangular

Counting Algorithm.

6.2 Closeness Centrality in GraphIt

We discuss the Closeness Centrality Algorithm with multiple starting points on un-

weighted graphs. A brief description of how this algorithm works can be found in

2.2.3. In our version of Closeness Centrality for unweighted graphs, there are multiple

starting points where each starting point runs a direction-optimized BFS [3] to keep

track of distances of each vertex from itself. To further speed up our program, we run

each starting point in parallel such that each starting point maintain it’s local data

to keep track of distances to other vertices. By making each start point to work on

their own local data, we reduce the synchronization overhead.

In Figure 6-2, we initialize a local array checked_local for each starting point in

Line 22 and all the operations which are related to BFS work on checked_local (Lines

23-36). Then, we just sum values in checked_local to obtain the score for the specific

starting point (Lines 38 - 41). Note that we are heavily using GraphIt functors over a

local array checked_local throughout the program. We also free checked_local array

as soon as we are done working on it (Line 41) to make sure other threads which

are running different starting points can pick up the recently freed space for better

performance.

To run the starting points in parallel, we make use of parallel for defined as

par_for in GraphIt. The usage of parallel for can be seen in Line 20 of Figure 6-2.

The label #l1# indicates that we can tune the parallel for for this specific use case.

Figure 6-3 shows the schedule that is used for the Closeness Centrality Algorithm.

The first schedule (Line 50) is used to tune the parallel for thus each thread pro-

55

cesses 16 starting points. The second schedule (Line 52-54) is used for the direction-

optimized BFS within each starting point. Note that l1:s1 label ensures that the

direction-optimized BFS is within the parallel for scope.

Figure 6-2: Unweighted version of Closeness Centrality

Figure 6-3: Schedules for Closeness Centrality UnWeighted

56

6.3 Summary

In this chapter, we present two applications as use cases for our new additions to

GraphIt. Triangular Counting algorithm uses our new operator - intersection which

can be tuned through GraphIt scheduling language. Closeness Centrality algorithm

uses functor and parallel for. We use functor to operate on start point specific data

structures and parallel for for parallelizing over starting points.

In the next chapter, we present the whole evaluation of our new additions to

GraphIt based on graph algorithms discussed in 2.2.

57

THIS PAGE INTENTIONALLY LEFT BLANK

58

Chapter 7

Evaluation

7.1 Machine Description

For the evaluation of our work, we use a dual-socket system with Intel Xeon E5-2695

v3 CPUs with 12 cores each for a total of 24 cores and 48 hyper-threads. Each core

has the clock speed of 1.20 GHz. The system has 128 GB of DDR3-1600 memory and

30 MB last level cache on each socket and runs with Transparent Huge Pages (THP)

enabled and Ubuntu 18.04.

7.2 Dataset Description

The evaluation of Intersection Operator (Triangular Counting) uses five graphs: Road-

USA, Twitter, Web, Kron, and Urand graphs. This is in accordance with GAP

Benchmark Suite [4].

The evaluation of Multiple Starting Point applications uses ten graphs. Note

that we don’t use all ten of them in some applications such as Closeness Centrality

Weighted since the weighted version of those graphs are not available.

Table 7.1 summarizes the descriptions of the graphs that are used in both Trian-

gular Counting and Multiple Starting Point applications.

The evaluation of IPNSW uses a graph provided from annual DARPA TA2 eval-

uation. The graph contains one million vertices and 16 million edges.

59

Name Description Vertices (M) Edges (M) Degree Degree Dist Diameter References
Road-USA Roads of USA 23.9 57.7 2.4 bounded 6,304 [8]
Twitter Twitter Follow

Links
61.6 1,468.4 23.8 power 14 [14]

Web Web Crawl of
.sk Domain

50.6 1,930.3 38.1 power 135 [5]

Kron Kronecker Syn-
thetic Graph

134.2 2,111.6 15.7 power 6 [20, 16]

Urand Uniform Ran-
dom Graph

134.2 2,147.5 16.0 normal 7 [10]

socLive LiveJournal
Community

4.85 68.99 16.0 power 16 [21]

com_orkut Orkut Commu-
nity

3.07 117.2 16.0 power 9 [25]

Road-Germany Roads of Ger-
many

11.5 12.4 2 bounded 0 [21]

Road-CA Roads of CA 1.96 2.77 16.0 bounded 849 [15]
Road-TX Roads of TX 1.38 1.92 16.0 bounded 1054 [15]
Rmat17 Recursive Ma-

trix Model
0.13 3.73 28.4 power 8 [7]

Table 7.1: Graphs used for evaluation

7.3 Results

In this section, we measure performance as a total execution time of the program. We

compile all of our programs with GNU C++ Compiler version 7.5.0. First, we present

results of the new intersection operator in Triangular Counting algorithm. Then

we discuss the results of multiple starting point applications which are implemented

using functor and parallel for. Finally, we reveal the optimization results for IPNSW.

7.3.1 Intersection Operator

In this part, we present the best performance numbers of Triangular Counting Algo-

rithm in GraphIt versus the GAP Benchmarking Suite [4]. The results are summa-

rized in Table 7.2. We find that HiroshiIntersection is the fastest intersection method

on Kron, Twitter, and Urand graphs since they have many vertices that have huge

neighboring list of vertices. On the other hand, we use NaiveIntersection for the

Road-USA and Web graphs since the average degree of those graphs are low making

many of the vertices to have a small number of vertices. Even though we use same

intersection method as GAP on Road-USA and Web graphs, we see some slowdown

due to framework overhead.

60

Moreover, we notice that MultiskipIntersection method performs almost as good as

HiroshiIntersection on Urand graph because the number of intersections is very sparse.

(Urand only has 5,378 triangles) However, MultiskipIntersection is significantly slower

on other graphs as they have more triangles compared to Urand graph.

We also see that BinarySearchIntersection is much slower than other intersection

methods because it works the best when the set sizea are extremely unbalanced which

occurs very rarely.

Graphs GAPBS Hiroshi BinarySearch Multiskip Naive # of triangles
Web 20.35 20.62 239.20 26.77 19.22 84,907,041,475
Road-USA 0.036 0.057 0.067 0.047 0.037 438,804
Kron 300.63 281.03 — 405.82 299.16 106,873,365,648
Twitter 68.17 63.678 — 76.70 69.96 34,824,916,864
Urand 18.22 17.46 47.78 17.90 18.84 5,378

Table 7.2: Triangular Counting Benchmarking Results. Highlighted ones are the
fastest numbers and each column name is the name of the intersection method we
use. Kron and Twitter numbers for BinarySearch intersection are omitted since they
were too slow. All numbers except the last column (number of triangles in a graph)
are recorded in seconds.

7.3.2 Multiple Starting Points

In this part, we present how much improvement we gain from running multiple start-

ing points in parallel. For the baseline, we use the version that each starting points

are run sequentially. In other words, the baseline numbers only parallelize within

each starting point. For the consistency purposes, every program is compiled with

CILK and all the numbers are reported in seconds. For each graph application, we use

64 starting points that are chosen randomly. In addition, we refer to parallelization

within each starting point as inner parallelism and parallelization over starting points

as outer parallelism. After presenting the results for each application, we conclude

with some common takeaways.

61

Betweenness Centrality

Table 7.3 summarizes the result. As we can see from the table, we are almost 3.4x

- 15x faster on road graphs (Road-USA, Road-Germany, Road-CA, Road-TX) and

2.6x faster on Rmat17 graph. This result agrees with our initial benchmark discussed

in 2.4.1 that road graphs have a bad inner parallelism. For Rmat17 graph, we also

get good speedup because it is a relatively small graph thus not benefiting from inner

parallelism as the frontier sizes in the forward run of Betweenness Centrality are

always small.

On the other hand, we get some mild improvement on socLive and Web graphs

(around 13%) and no improvement on Kron and Twitter graphs. We don’t get im-

provements on Kron and Twitter graphs because they already have high inner paral-

lelism. However, socLive and Web graphs have worse inner parallelism than Kron and

Twitter therefore we are able to get some improvements by adding outer parallelism.

Another observation we can make is that we use more outer threads on road

graphs and small graphs like Rmat17 (8 - 32 threads) than social and big graphs (2 -

4 threads). As we can see from Figure 7-2, we get even more speedup as we increase

the number of threads on road graphs. For relatively bigger graphs such as Road-

USA and Road-Germany, the performance saturates around 8 - 16 outer threads while

we get the best performance for smaller road graphs even after 16 threads. These

observations support our point that road graphs and small graphs don’t benefit from

inner parallelism such that using few threads is as effective as using many threads

within each starting point.

In the case of social graphs, we can see Kron and Twitter graphs significantly

slow down as we increase the number outer threads (Figure 7-1). On the other hand,

Web and socLive graphs tend to speed up the most around 2 - 4 outer threads and

slow down afterwards. In addition, we can see that Web graph performance doesn’t

change as much as others as we increase the number of outer threads.

62

Graphs Inner Par-
allelism, s

Inner & Outer Paral-
lelism, s

Outer
Threads

Speedup

Web 69.90 61.87 4 1.13
Road-USA 217.60 30.92 32 7.04
Kron 240.95 266.94 2 0.90
Twitter 92.15 91.01 2 1.01
socLive 4.49 3.98 4 1.13
Rmat17 0.31 0.12 16 2.66
Road-Germany 82.66 24.48 8 3.38
Road-CA 18.21 1.60 32 11.40
Road-TX 19.51 1.29 32 15.12

Table 7.3: Betweenness Centrality Benchmark Results.

Figure 7-1: Relative Speedup vs Number of Outer Threads for BC on social graphs

63

Figure 7-2: Relative Speedup vs Number of Outer Threads for BC on road graphs

Closeness Centrality Unweighted

Table 7.4 summarizes the benchmark result of the unweighted version of Closeness

Centrality. In general, we observe similar characteristics as Betweenness Centrality

benchmark results. We have a very good speedup on road Graphs (Road-USA, Road-

Germany, Road-CA, and Road-TX) and small graphs such as Rmat17. On the other

hand, we don’t get any improvement on Kron and Web graphs because they already

have good inner parallelism. In addition, we get some improvements on socLive and

Twitter graphs.

Furthermore, we get the best performance using around 16 - 32 threads on outer

parallelism on road graphs and 8 threads for small graphs such as socLive and Rmat17

graphs (Figure 7-4) Yet we use 2 - 4 threads on the rest of the graphs. In Figure 7-3,

all social graphs except Kron graph speeds up the most around 2 - 4 threads and slow

down afterwards. We can also see that Web graph performance stays relatively the

same as we increase the number of outer threads.

64

Graphs Inner Par-
allelism, s

Inner & Outer Paral-
lelism, s

Outer
Threads

Speedup

Web 35.34 34.41 4 1.03
Road-USA 117.71 14.86 32 7.92
Kron 36.92 36.83 2 1.00
Twitter 23.74 20.08 4 1.18
socLive 1.90 1.37 8 1.39
Rmat17 0.19 0.07 8 2.66
Road-Germany 43.51 10.07 16 4.32
Road-CA 10.10 0.85 32 11.85
Road-TX 10.67 0.73 32 14.68

Table 7.4: Closeness Centrality Unweighted Benchmark Results.

Figure 7-3: Relative Speedup vs Number of Outer Threads for Closeness Centrality
on social graphs

65

Figure 7-4: Relative Speedup vs Number of Outer Threads for Closeness Centrality
on road graphs

Closeness Centrality Weighted

Table 7.5 summarizes the result for the weighted version of Closeness Centrality. Note

that we only use five graphs in this part since some graphs don’t have the weighted

versions. Since we don’t have the weighted versions of road graphs, we use Rmat17

as an example of a graph which has bad inner parallelism and we can see that there

is almost 2x speedup when we add outer parallelism. For social graphs, we have some

mild improvements. As usual, we don’t get a speedup on Kron graph due to its’

already high inner parallelism.

Graphs Inner Par-
allelism, s

Inner & Outer Paral-
lelism, s

Outer
Threads

Speedup

web 140.21 109.30 8 1.28
kron 249.23 263.60 2 0.95
twitter 93.06 92.10 2 1.01
socLive 4.44 4.05 8 1.10
Rmat17 0.27 0.13 8 2.10

Table 7.5: Closeness Centrality Weighted Benchmark Results.

66

PR-Nibble

Table 7.6 summarizes the result for PageRank-Nibble. Unlike the other applications,

we don’t get very good speedup. This is because PR-Nibble is inherently hard to

parallelize. PR-Nibble runs for many rounds and it maintains vertex frontiers that

reduce in size after every round. Therefore, PR-Nibble achieves a very good paral-

lelization in the beginning when there are many vertices in the frontier and it suffers

from parallelization afterwards when there are very few vertices in the frontier. Since

this transition happens very quickly, the overall program doesn’t get good parallelism.

As a result, outer parallelism doesn’t help much.

Another interesting observation is that we have to use more outer CILK threads

to achieve better performance than other applications on all graphs. For example,

we normally find using two threads for Twitter graph is the best in other application

but we use 16 threads in PR-Nibble. This is related to the point we make earlier that

PR-Nibble doesn’t achieve good parallelization.

Graphs Inner Par-
allelism, s

Inner & Outer Paral-
lelism, s

Outer
Threads

Speedup

Web 32.73 27.27 32 1.20
Road-USA 24.44 19.79 16 1.23
Kron 33.06 34.53 16 0.96
Twitter 26.96 21.38 16 1.26
socLive 2.53 2.23 16 1.13
Rmat17 1.90 0.94 32 2.04
Road-Germany 10.17 9.52 16 1.07
Road-TX 1.90 0.94 4 2.04

Table 7.6: PageRank-Nibble Benchmark Results.

Common Takeaways

In this part, we summarize our results from previous sections and comment on obser-

vations we made.

We notice that Road graphs and small graphs benefit the most from outer par-

allelism since they don’t scale well from inner parallelism. In some extreme cases,

67

we are able to get 16x speedup over the baseline. Road graphs are known to have

high diameters and low average degrees so many applications tend to run for many

rounds to converge and each round works with small number of vertices making it

hard parallelize.

In addition, Kron graph does not benefit from outer parallelism. This is because

Kron graph already achieves high inner parallelism for BC, unweighted CC, and

weighted CC. For PR-Nibble, the overall program doesn’t benefit too much from

parallelization in general.

Furthermore, we notice that the most optimal configuration for outer threads in

large graphs (social graphs in our case) is 2 ∼ 4 threads while road graphs work well

with 16 ∼ 32 threads.

While tuning the number of outer threads for Web graph on all applications, we

notice that Web graph doesn’t get significantly slower or faster with respect to outer

threads. This can be explained by the fact that Web graph has good locality and

similarity between vertices [5]. Good locality implies that vertices are clustered

around a common prefix making it easy for threads to work on same number of

vertices. Good similarity implies that threads can roughly do equal work leading to

a better load balance.

7.3.3 IPNSW

In this section, we talk about the performance improvements we get on IPNSW which

is summarized in Table 7.7. We use 1024 query points and we return 10 closest points

to each query as per DAPRA SDH TA2 evaluation [1].

As we mentioned in Section 3, the IPNSW algorithm is divided into three main

steps and each steps can be optimized separately.

In the first phase, we deal with constructing graphs to be used by GraphIt from

python CSR format. We are able to get almost 5x speedup by parallelizing the edge

construction. The more in detail discussion about this optimization can be found at

3.3.1.

In the second phase, we greedily traverse the graphs to find the appropriate graph

68

to search for the closest points for the query. As per our discussion in 3.3.2, we rewrite

the original implementation in C++ and parallelize over query points. Since this phase

is straightforward, we get a very good speedup. The original python implementation

takes about 0.61 seconds while the our optimized version takes 0.0064 seconds.

In the last phase, we find the 10 closest points to each queries. The original

implementation is implemented serially, but it is easy to parallelize and the overhead

of maintaining additional query specific local data structures are negligible compared

to the main computation. By parallelizing over query points, we are able to cut down

the computation time from 0.42 seconds to 0.058 seconds. For the parallelization, we

just use OPENMP with a grain size of 64. We don’t need to carefully tune the grain

size for this application because finding the closest points to each query is roughly

the same and there is no inner parallelization.

To sum up, we are able to cut down the original implementation runtime from

2.32 seconds to 0.349 seconds. (roughly 7x speedup) Note that since GraphIt doesn’t

support custom type priority queues, majority of IPNSW are implemented as extern

C++ functions in GraphIt.

Original, seconds Optimized, seconds Speedup
Graph Construction Phase 1.29 0.28 4.6
Hierarchical Greedy Walk Phase 0.61 0.0064 95
Query Phase 0.42 0.058 7.2
Total 2.32 0.35 6.6

Table 7.7: IPNSW results on 1024 concurrent queries.

69

THIS PAGE INTENTIONALLY LEFT BLANK

70

Chapter 8

Conclusion & Future Work

8.1 Conclusion

In this thesis, we added several new features to GraphIt that allowed us to extend

GraphIt’s current use cases. Specifically, we added intersection operator which is

widely used for Triangular Counting Algorithm. Our version of Triangular Counting

Algorithm is faster than the reference implementation given by GAP Benchmarking

Suite. We also added functor and par_for to support multiple starting point ap-

plications which get up to 16x speed up over the GraphIt implementations without

the new features. Finally, we did some performance optimzations for IPNSW that

achieved around 7x speedup over the naive implementation on the evaluation dataset.

8.2 Future Work

There are number of future directions that this thesis can take. Firstly, we can further

extend GraphIt compiler to support custom types and more general array operations

(for example, array of graphs) which will allow us to implement IPNSW completely

in GraphIt. By doing so, we might be able to achieve even better performance.

Secondly, we can further improve GraphIt’s dependency analysis to detect potential

atomic operations from nested user defined functions. Lastly, we can integrate our

newly added features into the ongoing development of GraphIt GPU support.

71

THIS PAGE INTENTIONALLY LEFT BLANK

72

Bibliography

[1] Software defined hardware (sdh). https://www.darpa.mil/program/
softwaredefined-hardware.

[2] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank
vectors. In 2006 47th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’06), pages 475–486, 2006.

[3] S. Beamer, K. Asanovic, and D. Patterson. Direction-optimizing breadth-first
search. In SC ’12: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis, pages 1–10, 2012.

[4] Scott Beamer, Krste Asanović, and David Patterson. The gap benchmark suite.
arXiv preprint arXiv:1508.03619, 2015.

[5] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression
techniques. WWW, pages 595–601, 2004.

[6] Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal of
Mathematical Sociology, 25, 03 2004.

[7] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-mat: A recursive
model for graph mining. volume 6, 04 2004.

[8] 9th DIMACS implementation challenge - Shortest paths.
http://www.dis.uniroma1.it/challenge9/, 2006.

[9] Alessandro Epasto, Silvio Lattanzi, Vahab S. Mirrokni, Ismail Sebe, Ahmed Taei,
and Sunita Verma. Ego-net community mining applied to friend suggestion. In
Proceedings of VLDB, 2016.

[10] Paul Erdős and Alfréd Rényi. On random graphs. I. Publicationes Mathematicae,
6:290–297, 1959.

[11] Kimon Fountoulakis, David F Gleich, and Michael W Mahoney. A short in-
troduction to local graph clustering methods and software. arXiv preprint
arXiv:1810.07324, 2018.

[12] Hiroshi Inoue, Moriyoshi Ohara, and Kenjiro Taura. Faster set intersection
with simd instructions by reducing branch mispredictions. Proc. VLDB Endow.,
8(3):293–304, November 2014.

73

 https://www.darpa.mil/program/softwaredefined-hardware
 https://www.darpa.mil/program/softwaredefined-hardware

[13] Fredrik Kjolstad, Shoaib Kamil, Jonathan Ragan-Kelley, David I. W. Levin,
Shinjiro Sueda, Desai Chen, Etienne Vouga, Danny M. Kaufman, Gurtej Kanwar,
Wojciech Matusik, and Saman Amarasinghe. Simit: A language for physical
simulation. ACM Trans. Graph., 35(2):20:1–20:21, May 2016.

[14] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is Twitter,
a social network or a news media? WWW, 2010.

[15] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[16] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos.
Realistic, mathematically tractable graph generation and evolution, using Kro-
necker multiplication. PKDD, 2005.

[17] Haibin Liu, Karin M. Verspoor, Donald C. Comeau, Andrew MacKinlay, and
W. John Wilbur. Generalizing an approximate subgraph matching-based system
to extract events in molecular biology and cancer genetics. In BioNLP at ACL,
2013.

[18] Y. A. Malkov and D. A. Yashunin. Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 42(4):824–836, 2020.

[19] Stanislav Morozov and Artem Babenko. Non-metric similarity graphs for maxi-
mum inner product search. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, NIPS’18, page 4726–4735, Red Hook,
NY, USA, 2018. Curran Associates Inc.

[20] Richard C. Murphy, Kyle B. Wheeler, Brian W Barrett, and James A. Ang.
Introducing the Graph 500. In Cray User’s Group. CUG, 2010.

[21] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with inter-
active graph analytics and visualization. In AAAI, 2015.

[22] Yousef Saad. Iterative methods for sparse linear systems. SIAM, 2003.

[23] Julian Shun and Guy E Blelloch. Ligra: a lightweight graph processing frame-
work for shared memory. In Proceedings of the 18th ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 135–146, 2013.

[24] Lei Wang, Fan Yang, Liangji Zhuang, Huimin Cui, Fang Lu, and Xiaobing Feng.
Articulation points guided redundancy elimination for betweenness centrality.
ACM SIGPLAN Notices, 51:1–13, 02 2016.

[25] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities
based on ground-truth. Knowledge and Information Systems, 42(1):181–213,
2015.

74

http://snap.stanford.edu/data

[26] Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib
Kamil, Saman Amarasinghe, and Julian Shun. Optimizing ordered graph algo-
rithms with graphit. In Proceedings of the 18th ACM/IEEE International Sym-
posium on Code Generation and Optimization, CGO 2020, page 158–170, New
York, NY, USA, 2020. Association for Computing Machinery.

[27] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun,
and Saman Amarasinghe. Graphit: A high-performance graph dsl. Proc. ACM
Program. Lang., 2(OOPSLA), October 2018.

75

	Introduction
	Motivation
	Contribution
	Thesis Organization

	Background
	Notations
	Graph Algorithm Descriptions
	Triangular Counting
	Betweenness Centrality
	Closeness Centrality
	Local Graph Clustering
	Maximum Inner Product Search

	GraphIt Overview
	GraphIt Frontend
	GraphIt Midend
	GraphIt Backend

	Multiple Starting Point Applications
	Initial Benchmarks

	Summary

	Performance Optimizations
	Optimizations for Triangular Counting Algorithm
	Different Schedules

	Optimizations for Multiple Starting Points
	Vertex Deduplication for Multiple Starting Points

	Optimizations for IPNSW
	Constructing Graphs Optimizations
	Greedy Walk Optimizations
	Multiple Query optimizations

	Summary

	Programming Models
	Intersection Operator
	Functor
	Parallel For
	Design Decision
	GraphIt Representation

	Summary

	Compiler Implementation
	Intersection Operator
	Frontend
	Midend
	Backend

	Functor
	Frontend
	Midend
	Backend

	Parallel For
	Frontend
	Midend
	Backend

	Summary

	Use Cases
	Triangular Counting in GraphIt
	Closeness Centrality in GraphIt
	Summary

	Evaluation
	Machine Description
	Dataset Description
	Results
	Intersection Operator
	Multiple Starting Points
	IPNSW

	Conclusion & Future Work
	Conclusion
	Future Work

