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Abstract

High-performance DSL developers work hard to take ad-
vantage of modern hardware. The DSL compilers have to
build their own complex middle-ends before they can tar-
get a common back-end such as LLVM, which only handles
single instruction streams with SIMD instructions. We in-
troduce Tiramisu, a common middle-end that can generate
efficient code for modern processors and accelerators such as
multicores, GPUs, FPGAs and distributed clusters. Tiramisu
introduces a novel three-level IR that separates the algo-
rithm, how that algorithm is executed, and where intermedi-
ate data are stored. This separation simplifies optimization
and makes targeting multiple hardware architectures from
the same algorithm easier. As a result, DSL compilers can
be made considerably less complex with no loss of perfor-
mance while immediately targeting multiple hardware or
hardware combinations such as distributed nodes with both
CPUs and GPUs. We evaluated Tiramisu by creating a new
middle-end for the Halide and Julia compilers. We show that
Tiramisu extends Halide and Julia with many new capabili-
ties including the ability to: express new algorithms (such
as recurrent filters and non-rectangular iteration spaces),
perform new complex loop nest transformations (such as
wavefront parallelization, loop shifting and loop fusion) and
generate efficient code for more architectures (such as combi-
nations of distributed clusters, multicores, GPUs and FPGAs).
Finally, we demonstrate that Tiramisu can generate very
efficient code that matches the highly optimized Intel MKL
gemm (generalized matrix multiplication) implementation.
We show that Tiramisu can generate code that outperforms
Intel MKL DNN convolutions and show speedups reaching
4× over the original Halide and 16× over the original Julia
due to optimizations enabled by Tiramisu.
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1 Introduction

With a diverse set of high-performance hardware platforms
available, the development of a credible high-performance
Domain Specific Language (DSL) compiler requires cross
platform code generation [1, 2, 7, 14, 45, 49, 50]. Many of
these DSL compilers target intermediate representations (IRs)
such as the LLVM IR [36], a low-level representation that
models an abstract, RISC-like CPU with infinite registers.
However, before generating the low-level LLVM IR, the DSL
compilers must create their own middle-end passes that
transform their own architecture-independent high-level
IR to take advantage of target hardware platforms such as
multicores, distributed clusters, GPUs, and FPGAs, each with
very different requirements.

These platform specific transformations cannot be done in
the LLVM IR, as it encodes memory accesses with a concrete
memory layout, which reduces optimization opportunities.
This also adds unnecessary dependences such as anti- and
output-dependences, forcing the compiler to modify data
layout in order to perform certain optimizations. For example,
compilers privatize [26, 38, 56] and expand [22, 43, 44] arrays
and scalars in order to parallelize loop nests; subsequently,
the arrays are contracted [19, 37, 48] tominimize thememory
footprint.

This paper presents Tiramisu, a compiler middle-end that
hides the complexity of the large variety of execution plat-
forms and reduces the burden on DSL creators by providing
a multi-layer representation suitable for transforming from
the high-level, domain-specific representation of the DSL to
GPUs, multicore CPUs, distributed machines, and FPGAs.
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The novel multi-layer design exposes three different rep-
resentations that make it easier to perform each program
transformation at the right level of abstraction.

The top layer representation (abstract computation layer)
describes the pure algorithm using producer-consumer re-
lationships without memory locations. The second layer
(computation placement layer) specifies the order of the com-
putations, along with which processor computes each value;
this layer is suitable for performing a vast number of opti-
mizations without dealing with concrete memory layouts.
Finally, the third layer (concrete computation layer) specifies
where to store intermediate data before they are consumed.
Tiramisu then lowers the third layer to a target architecture
while performing back-end-specific code optimizations.

Tiramisu does not automatically parallelize or perform
other transformation decisions; the goal of the middle-end
framework is to provide mechanisms and not policy, which is
the responsibility of the DSL compiler or the application pro-
grammer as in Halide [49]. Instead, Tiramisu concentrates
on providing scheduling primitives that can be used to trans-
form andmap the programs to the underlying hardware. This
frees the DSL designers from needless bookkeeping, analysis,
and redundant implementation of code transformations and
provides multiple architecture-specific code generation.
Tiramisu uses a unified framework based on polyhedral

sets to represent the three layers. This makes it simple for
Tiramisu to reason about and implement iteration space and
data layout transformations, since these are represented as
transformations on polyhedral sets. It also simplifies deciding
about the legality of transformations (based on dependence
analysis). The use of a unified general framework relieves
compiler developers from developing custom algorithms and
analyses that only work in certain situations and cannot be
composed with other optimizations passes.

This paper makes the following contributions:

• We show that a unifiedmiddle-end for DSL compilers can
generate code for multiple high-performance architec-
tures such as multicore CPUs, GPUs, FPGAs, distributed
machines, or any combination of these, using a set of
simple scheduling commands to guide the program trans-
formation and code generation.
• We present the first compiler framework that matches
the performance of the highly optimized IntelMKL gemm
(comparing a single gemm kernel from MKL to a single
gemm kernel generated by Tiramisu). To the best of
our knowledge, this is the first compiler framework that
can demonstrate such performance. Former frameworks
could outperform Intel MKL but by fusing multiple ker-
nels, since a library such as IntelMKL cannot fuse kernels.
Tiramisu can also do that to get even better performance.
• We introduce a novel three-layer intermediate represen-
tation for the middle-end that separates the algorithm

from the code transformations and the data layout trans-
formations, simplifying the composition of architecture-
specific lowering transformations.
• We implemented this middle-end, Tiramisu, and demon-
strate its power and viability by using it as the middle-
end for Halide [49, 50] and Julia [7] compilers.
• We demonstrate the expressiveness of Tiramisu by ex-
tending Halide with many new capabilities such as tiling
recurrent filters, performing precise bound inference
for non-rectangular iteration spaces, and performing
advanced loop nest transformations such as skewing,
shifting, and loop fusion.
• We evaluate Tiramisu and show that we match Intel
MKL gemm, show up to 4× performance gains in Halide
and 16× in Julia.

2 Middle-End Challenges

Building a compiler middle-end requires overcoming many
challenges. The middle-end must support a large enough
class of computations to be usable by multiple DSLs. The
middle-end must also produce code for most of the popular
high-performance computing systems, including multicore
CPUs, clusters of compute nodes and accelerators such as
GPUs and FPGAs in many combinations. Finally, the middle-
end has to be able to perform heroic program and data trans-
formations and compose them together to generate highly
efficient code. These transformations must be orchestrated
and tailored to the application as well as the underlying
execution hardware.

2.1 The Data Dependence Challenge

Most IRs use memory as a means of communication be-
tween program statements. This creates memory-based de-
pendences in the program. It also means that the data-layout
is chosen before optimizing the code. Optimizing a program
for different hardware architectures usually requires modify-
ing the data-layout (since different data layouts are suitable
for different hardware architectures) and requires eliminat-
ing memory-based dependences since they restrict optimiza-
tions [42].

Consider the simple image processing pipeline in Figure 1-
(a) (left), which has not been optimized yet. In order to opti-
mize it for a multicore machine, we can parallelize the outer-
most loop (over the i iterator). To do so, we must first expand
the two-dimensional arrays b1 and b2 into three-dimensional
arrays. In addition to the parallelization, data locality can be
improved by fusing the brightening and clamp stages. After
fusion, we can replace the b1 array accesses with accesses to
a scalar. After applying these optimizations, we get the code
shown in Figure 1-(b) (left). Assuming now that the target
architecture is multi-GPU instead of CPU, changing from an
Array-of-Structures (AoS) layout to a Structure-of-Arrays
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(SoA) memory layout may lead to better performance. In or-
der to maximize parallelism on GPU, we apply loop fission to
the loop over b2 and the loop over out. The result of applying
these optimizations is shown in Figure 1-(c) (left).
Applying the previous data-layout transformations and

the elimination of memory-based dependencies is, in gen-
eral, challenging [19, 22, 26, 37, 38, 43, 44, 48, 56]. However,
if the program dependencies are captured using producer-
consumer relationships and the data-layout is not specified
early on, all program transformations can be performed with-
out the complexity of memory layout transformations. Most
modern DSL IRs capture the dependencies with producer-
consumer relationships. Thus, the middle-end compiler can
implement program transformations using the producer-
consumer relationships first and then introduce memory
layouts as a further lowering step. This requires carefully
designing the middle-end IR in multiple layers. We show
that a three-layer IR design can overcome these difficulties.

2.2 The Program Representation Challenge

Lowering code to complex hardware architectures requires
many transformations such as loop interchange, blocking,
skewing, fission, fusion, and distribution. These transforma-
tions change the loop structure in complex ways by introduc-
ing new loops, complex loop bounds, and non-trivial access
functions [59]. Analyzing code generated by one of these
transformations is challenging, which complicates composi-
tion with other transformations. This problem can be solved
if the loops are kept within a single unified representation
through all the transformations. However, many representa-
tions are inadequate or too conservative to support complex
transformations. They are also inadequate for performing
tasks such as dependence analysis (which is necessary for de-
ciding the correctness of optimizations) and the computation
of communication sets in the general case. For example, the
interval-based representation used in Halide [49] is unable
to support accurate bounds computation for non-rectangular
iteration spaces. It also cannot represent programs that have
cyclic dependence graphs, and does not naturally support
complex transformations such as loop skewing (wavefront
parallelism). We show that a polyhedral based representation
is more flexible, powerful, and is capable of supporting all
transformations necessary in the middle-end.

2.3 The Optimization Orchestration Challenge

Producing high-performance code for a computer system
from an architecture-independent algorithm requires a se-
ries of program transformations. These transformations are
non-trivial and highly dependent on the program structure,
input data, and the target architecture. Parallelizing compil-
ers have worked to fully automate this process using cost
models, heuristics [28], and machine learning [54]. However,
obtaining performance comparable to hand-coded imple-
mentations using such fully automated approaches is still

a challenging problem. A more promising approach is to
expose optimizations to the user by providing a set of opti-
mization directives. Languages such as Halide [13, 49] have
shown that this approach is a viable one. However, in or-
der to expand this to a common middle-end, the scheduling
language must encompass a much broader set of transfor-
mations and seamlessly compose these transformations. Fig-
ures 1-(b) (Schedule) and 1-(c) (Schedule) show how a simple
collection of scheduling commands can map the architecture
independent program into different architectural configura-
tions.

2.4 The MPI+OpenMP+CUDA Challenge

Most high performance computer systems are complex and
heterogeneous. A typical supercomputer has multiple inter-
connected nodes equipped with multicore CPU processors
with vector units connected using NUMA shared memory.
They may also have multiple GPU accelerators per node [39].
Recently, data centers have been adding FPGA accelerators to
this mix [10]. Getting the best performance requires the pro-
gram to take full advantage of all these different components.
In the supercomputing community this is usually referred
to as the MPI+OpenMP+CUDA challenge [60]. Writing code
that targets such heterogeneous systems is non-trivial, as
each of these require drastically different styles of code and
optimizations, all using different libraries and languages.
Getting all of these components to communicate and syn-
chronize is non-trivial as well. The state-of-the-art practice
is to manually write the program in separate language ex-
tensions. However, any changes to the program partitioning
between these heterogeneous units will normally require a
complete rewrite of the program. With Tiramisu, it is possi-
ble to generate code for these complex computer systems in
a simple, flexible and malleable way. Figure 1-(c) (left) shows
an example where the algorithm is mapped to a GPU cluster
using simple scheduling commands and without the need to
change the algorithm or to write code in different languages
and libraries.

3 Tiramisu Overview

Tiramisu is a middle-end compiler framework for DSLs.
Using this framework, DSLs can transform their architecture-
independent IRs into architecture-specific, low-level IRswhile
taking advantage of modern architectural features such as
multicore parallelism, non-uniform memory (NUMA) hi-
erarchies, clusters, and accelerators like GPUs and FPGAs.
Tiramisu is designed for DSLs that logically operate over
dense data using loop nests and sequences of statements,
which is the case of DSLs for image processing, dense linear
algebra, and stencil computations, among others.
3.1 The Three-Layer Intermediate Representation

Tiramisu uses polyhedral sets to represent each one of the
three IR layers and uses polyhedral set and relation operations
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Constraints: Cn : 0 ≤ i < N , Cm : 0 ≤ j < M , Cm′ : 1 ≤ j < M − 1, Ck : 0 ≤ c < 3, Cq : 0 ≤ q < N U M _N ODES
Different Code Optimizations Tiramisu representation (Layer I, Layer II and Layer III)

(a)

1 // Original unoptimized code
2 for (i in 0..N)
3 for (j in 0..M)
4 for (c in 0..3)
5 b1[j][c] = 1.5*img[i][j][c] // brightening
6 for (j in 0..M )
7 for (c in 0..2)
8 b2[j][c] = clamp(b1[j][c], 0, 255)
9 for (j in 1..M-1)
10 for (c in 0..3)
11 out[i][j][c] = (b2[j-1][c] + b2[j][c] +
12 b2[j+1][c])/3

Layer I

The constraints Cn , Cm and Ck are defined above.
{b1 (i, j, c ) : Cn ∧Cm ∧Ck } : 1.5 ∗ imд (i, j, c )
{b2 (i, j, c ) : Cn ∧Cm ∧Ck } : clamp (b1 (i, j, c ), 0, 255)
{out (i, j, c ) : Cn ∧Cm′ ∧Ck } : (b2 (i, j − 1, c ) + b2 (i, j, c ) + b2 (i, j + 1, c ))/3

(b)

1 // Code optimized for CPU
2 parallel for (i in 0..N)
3 for (j in 0..M)
4 for (c in 0..3)
5 float t = 1.5*img[i][j][c]
6 b2[i][j][c] = clamp(t, 0, 255)
7 for (j in 1..M-1)
8 for (c in 0..3)
9 out[i][j][c] = (b2[i][j-1][c] +
10 b2[i][j][c] +
11 b2[i][j+1][c])/3

Schedule

b2 .after(b1 , c)
b1 .parallel(i); b2 .parallel(i); out .parallel(i)
b1 .store_in(t ); b2 .store_in(bufb2[i, j, c]); out .store_in(bufout [i, j, c]);

Layer II

// Layer II generated from Layer I using the schedule

{ b1 (i (cpu ), 0, j, c, 0) : Cn ∧Cm ∧Ck }: 1.5 ∗ imд (i, j, c )
{ b2 (i (cpu ), 0, j, c, 1) : Cn ∧Cm ∧Ck } : clamp (b1 (i, 0, j, c, 0), 0, 255)
{out (i (cpu ), 1, j, c, 0) : Cn ∧Cm′ ∧Ck }:
(b2 (i, 0, j − 1, c, 1) + b2 (i, 0, j, c, 1) + b2 (i, 0, j + 1, c, 1))/3

Layer III

Layer III = Layer II representation + the following data mapping

{b1 (i (cpu ), 0, j, c, 0) → t : Cn ∧Cm ∧Ck }
{b2 (i (cpu ), 0, j, c, 1) → bufb2[i, j, c] : Cn ∧Cm ∧Ck }
{out (i (cpu ), 1, j, c, 0) → bufout [i, j, c] : Cn ∧Cm′ ∧Ck }

(c)

1 // Code optimized for multi-GPU
2 distributed for (q in 0..NUM_NODES)
3 gpu for (i in 0..N/NUM_NODES)
4 gpu for (j in 0..M)
5 for (c in 0..3)
6 float t = 1.5*img[i][j][c]
7 b2[c][i][j] = clamp(t, 0, 255)
8 distributed for (q in 0..NUM_NODES)
9 gpu for (i in 0..N/NUM_NODES)
10 gpu for (j in 1..M-1)
11 for (c in 0..3)
12 out[i][j][c] = (b2[c][i][j-1] +
13 b2[c][i][j] +
14 b2[c][i][j+1])/3

Schedule

b2 .after(b1 , c); out .after(b2 , root);
b1 .split(i, N/NUM_NODES, q, i); b2 .split(i, N/NUM_NODES, q, i);
out .split(i, N/NUM_NODES, q, i);
b1 .store_in(t ); b2 .store_in(bufb2[c, i, j]); out .store_in(bufout [i, j, c]);
b1 .gpu(i,j); b2 .gpu(i,j); out .gpu(i,j)
b1 .distribute(q); b2 .distribute(q); out .distribute(q);

Layer II

// Layer II generated from Layer I using the following schedule

{ b1 (0, q (node ), i (дpu ), j (дpu ), c, 0) : Cq ∧Cn ∧Cm ∧Ck }: 1.5 ∗ imд (i, j, c )
{ b2 (0, q (node ), i (дpu ), j (дpu ), c, 1) : Cq ∧Cn ∧Cm ∧Ck } :
clamp (b1 (0, q, i, j, c, 0), 0, 255)
{out (1, q (node ), i (дpu ), j (дpu ), c, 0) : Cq ∧Cn ∧Cm′ ∧Ck }:
(b2 (0, q, i, j − 1, c, 0) + b2 (0, q, i, j, c, 1) + b2 (1, q, i, j + 1, c, 0))/3

Layer III

// Same as Layer III in (b) except the mapping of b1 and b2 should be replaced
with the following

{b1 (0, q (node ), i (дpu ), j (дpu ), c, 0) → t : Cq ∧Cn ∧Cm ∧Ck }
{b2 (0, q (node ), i (дpu ), j (дpu ), c, 1) → bufb2[c, i, j] : Cq ∧Cn ∧Cm ∧Ck }

Figure 1. Three versions of the motivating example (left) and their equivalent Layer I, II and III representations (right)

to represent transformations on the iteration domain and
data layout. Polyhedral sets and relations are described using
affine (linear) constraints over loop iterators and program
parameters (invariants) and are implemented in Tiramisu
using ISL [58]. We use a combination of classical extensions
to the polyhedral model in order to support non-affine itera-
tion spaces; these extensions are sufficient and practical for
large classes of programs [4, 5].
A typical workflow for using Tiramisu is illustrated in

Figure 2. DSL compilers parse input programs and perform
domain specific optimizations before translating the DSL
program into Layer I of the Tiramisu IR. The first layer of
the IR is then transformed to lower layers (Layer II and Layer
III), and finally LLVM or other low-level IR is generated.

The three layers of the Tiramisu IR are:

Layer I (Abstract Computation Layer) which specifies
the algorithm without specifying the schedule (when and
where the computations occur) or how data should be stored

in memory (data layout). As there is no notion of data loca-
tion, values are communicated via explicit producer-consumer
relationships.

Layer II (Computation Placement Layer) which speci-
fies the order of execution of computations and the pro-
cessor on which they execute. This layer does not specify
how intermediate values are stored in memory; this sim-
plifies optimization passes since these passes do not need
to perform complicated data-layout transformations. The
transformation of Layer I into Layer II is done automatically
using scheduling and data layout commands. Examples of the
scheduling commands supported in Tiramisu are presented
in Table 1.

Layer III (Concrete Computation Layer) which makes
the data layout concrete, specifying where intermediate val-
ues are stored.

The separation into levels does not force data-layout map-
ping to occur after scheduling; in Tiramisu, the user can still
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Code generation: Abstract Syntax Tree

...

Figure 2. Tiramisu overview

specify data layout before scheduling (to constrain schedul-
ing, for example). The separation ensures that the scheduling
phase can safely assume no data-layout transformations are
required, greatly simplifying scheduling transformations. If
a user requests a transformation that cannot be performed
with the specified data layout, Tiramisu will prevent the
illegal transformation from occurring, ensuring correctness.
In the following section, we provide more details about

the three layers of Tiramisu.

4 The Tiramisu IR

The input to Tiramisu is the Layer I computations and a
set of scheduling and data layout commands. Layer II is
generated by applying the schedule to Layer I. Commands for
buffer allocation, data layout mapping, and communication
(between CPU nodes for example) are then added to the
Layer II representation; the result constitutes Layer III. An
annotated abstract syntax tree (AST) is then generated from
Layer III. This AST is traversed to generate the target code.
In this section, we describe in detail the three represen-

tations used in Tiramisu. We also describe scheduling via
high-level scheduling commands as well as low level sched-
uling maps. We begin by showing an example.
4.1 An Example in the Three-Layer IR

We first provide an overview of the concepts of polyhedral
sets and maps. More details and a formal definition of these
concepts are provided in the Appendix.
An integer set is a set of integer tuples described using

affine constraints. An example of a set of integer tuples is
{(1, 1); (2, 1); (3, 1); (1, 2); (2, 2); (3, 2)}. Instead of listing all

Commands to transform Layer I into Layer II

We assume that C and P are computations
Command Description

C.interchange(i, j) Interchange the dimensions of C (loop interchange)
C.shift(i, s) Loop shifting (shift the dimension i by s iterations)
C.split(i, s, i0, i1) Split the dimension i by s. (i0, i1) are the new dimensions
C.tile( i,j,t1,t2,

i0,j0,i1,j1)
Tile the dimensions (i,j) of the computation C by t1 × t2.
The names of the new dimensions are (i0, j0, i1, j1).

P.compute_at(C, j) Compute the computation P in the loop nest of C at loop
level j. This might introduce redundant computations.

C.vectorize(i, v) Vectorize the dimension i by a vector size v
C.unroll(i, v) Unroll the dimension i by a factor v
C.parallelize(i) Mark the dimension i as a space dimension (cpu)
C.distribute(i) Mark the dimension i as a space dimension (node)
C.after(B, i) Indicate that C should be ordered after B at the loop level i

(they have the same order in all the loop levels above i)
C.inline() Inline C in all of its consumers
C.set_schedule() Set the schedule of C, i.e.,a map that transforms Layer I to

Layer II
C.gpu(i0,i1,i2) Mark the dimensions i0, i1 and i2 to be executed on the GPU
C.fpga() Generate HLS code for the computation C
C.pipeline(i) Mark the dimension i to be pipelined (FPGA)

Commands to add data mapping to Layer III

Buffer b(...) Declare a buffer b (size, type, ...)
C.set_access() Set the access relation for the computation C
C.store_in(buff[i0,..]) Store the result of the computation C (i0, ...) in buff[i0, ...]
C.auto_allocate_map() Allocate a buffer for C and map C to it
C.set_access() Map C to a buffer access
C.storage_fold(i, d) Contract the dimension i of the buffer associated to C to

make its size d
create_transfer(...) Create a pair of send & receive communication statements
C.partition(b, type) Mark the buffer b to be partitioned in a complete, cyclic or

block way (FPGA)

Table 1. Examples of Tiramisu Scheduling Commands

tuples in a set, we describe the set using affine constraints
over loop iterators and symbolic constants: {S (i, j ) : 1 ≤ i ≤
3 ∧ 1 ≤ j ≤ 2} where i and j are the dimensions of the set.

A map is a relation between two integer sets. For example
{S1(i, j ) → S2(i + 2, j + 2) : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 2} is a
map between tuples in the set S1 and tuples in the set S2 (e.g.
the tuple S1(i, j ) maps to tuple S2(i + 2, j + 2)). We use the
Integer Set Library (ISL) [58] notation for sets and maps.
Figure 1 shows the code for each optimized implementa-

tion discussed in the previous section. The original, unop-
timized code is shown in Figure 1-(a), with the right side
showing the Layer I representation. This Layer I represen-
tation is the same for all the code variants, as this layer
specifies the computation in a high-level form separate from
scheduling.

Each line in Layer I of Figure 1-(a) (right side in the figure)
corresponds to a statement in the algorithm (left side of the
figure): for example, the first line of Layer I represents the
line 5 in Figure 1-(a). The first part of that line1, which is

{b1(i,j,c): 0<=i<N and 0<=j<M and 0<=c<3}

specifies the iteration domain of the statement, while the
second part, 1.5 ∗ imд(i, j, c ), is the computed expression.
The iteration domain is the set of tuples b1 (i, j, c ) such that
0 ≤ i < N ∧ 0 ≤ j < M ∧ 0 ≤ c < 3. Computations in Layer
I are not ordered. The declaration order does not affect their
order of execution, which is specified in Layer II.

1The constraints Cn , Cm , and Ck have been expanded inline
5
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Figure 1-(b) shows the first optimized version of the code.
The schedule on the right side is the set of scheduling and
data layout commands that produce this version of the code.
The scheduling commands are presented in Table 1. Layer II
is generated automatically by applying these commands to
Layer I. Tiramisu provides a large set of high-level schedul-
ing and data layout transformation commands.The Layer II
representation is also shown in Figure 1-(b). Computations
in Layer II are ordered based on their lexicographical order2.
The set
{b1(i (cpu), 0, j, c, 0): 0<=i<N and 0<=j<M and 0<=c<3}

in the example, is an ordered set of computations. The tag
(cpu) for the i dimension indicates that this dimension is a
space dimension and that each ith iteration is mapped to the
ith CPU. In Layer II, the computation order is controlled by
a total ordering of these tuples.

Layer III in Figure 1-(b) adds data layout mapping to Layer
II, concretizing where each computation is stored (memory
buffers and scalars are also declared in this layer). In the
example, the data mapping
{b2(0,i(cpu),j,c,1) → buf b2[i,j,c]:

0<=i<N and 0<=j<M and 0<=c<3}

indicates that the result of the computationb2 (0, i (cpu), j, c, 1)
is stored in the array element bu f b2[i, j, c]. Data mapping
in Tiramisu is an affine relation that maps a computation
from Layer II to a buffer element; scalars are single-element
buffers. Tiramisu allows the expression of any data-layout
mapping that can be expressed as an affine relation (exam-
ples provided in Section 12.3). For brevity, the declaration
of buffers, their types, their allocation (including when and
where they are allocated), are all omitted from the exam-
ple, but such information must be specified for correct code
generation.
4.2 Layer I: Abstract Computation Layer

The first layer defines abstract computations, which are not
yet scheduled or mapped to memory. Each computation rep-
resents an expression that should be computed.

As an example, the following code
1 for (i in 0..4)
2 for (j in 0..4)
3 if (i < j && i != 2)
4 A[i][j] = cos(i);

can be represented in Layer I as
{A(i,j): 0<=i<4 and 0<=j<4 and i<j and i!= 2}: cos(i)

though it is important to remember that this representation,
unlike the pseudocode above, does not necessarily store re-
sults to memory locations. A(i, j ) is the computation, while
the constraints over i and j define the iteration domain. The
second part, cos (i ), is the computed expression.

2For example the computation S0(0, 0, 0) is lexicographically before the
computation S0(0, 0, 1) and the computations S0(0, i, 0) are lexicographi-
cally before the computations S0(1, i, 0)

Computations in Layer I are in Static Single Assignment
(SSA) form [18]; each computation is defined only once (we
use the ϕ operator to deal with branches as in classical SSA).

Reductions and Updates Reductions and updates do not
fit naturally in the memory-independent model used within
Tiramisu, and thus we treat them as a special case. To im-
plement algorithms that perform a reduction or update a
variable (a histogram for example), we declare a new com-
putation for each update. These computations will all be
mapped to the same buffer in Layer III. For example, a dense
matrix multiplication, which has a reduction, is represented
in Layer I as follows:
{c0(i,j): 0<=i<N and 0<=j<N}: 0
{c1(i,j,k): 0<=i<N and 0<=j<N and 1<=k<N}:

ϕ (c0(i,j), c1(i,j,k-1)) + A(i,k) * B(k,j)

Since c1(i, j,k ) needs to read the results of the computa-
tions c0(i, j ) and c1(i, j,k − 1), we use the ϕ node to merge
them into one expression ϕ (c0(i, j ), c1(i, j,k − 1)) (although
the use of ϕ nodes in this case can be avoided, in the general
case the use of ϕ nodes is necessary to support cases such
as the definition of computations within data-dependent
conditions).

Support forNon-Static-Affine Iteration Spaces Tiramisu
can represent non-static-affine code. In particular, Tiramisu
can represent non-static-affine array accesses, while loops,
non-static-affine loop bounds and non-static-affine condi-
tionals. Tiramisu treats any non-static-affine conditional in
a way similar to [4]: the conditional is represented as a single
macro-statement together with its body (i.e., as a statement
encapsulating both the control and the body). while loops
and loops with non-static-affine bounds are handled in a way
similar to [6].
4.3 Layer II: Computation Placement Layer

The computation placement layer describes when and where
each computation is computed. Unlike computations in the
first layer, computations in this layer are ordered (specifying
when) and are assigned to a particular processor (specifying
where). This order is dictated by space dimensions and time
dimensions. Space dimensions specify on which processor
computations should be executed; such dimensions are not
relevant for determining the order of execution. On the other
hand, time dimensions specify the order of execution relative
to other computations. The order of execution of computa-
tions is determined by the lexicographical ordering of the
dimensions. Space dimensions are distinguished from time
dimensions using tags, which consist of a processor type
followed by zero or more properties. Currently, Tiramisu
supports the following space tags:
cpu the dimension runs on a CPU in a shared memory system
node the dimension maps to nodes in a distributed system
gpu_thread_X the dimension runs on a gpu thread (dimension X where

X=0 for outermost and 2 for innermost). Similar tags are
used for blocks.
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Tagging a dimension with a processor type indicates that
the dimension should be distributed over processors of that
type in a system; for example, tagging a dimension with cpu
will execute each iteration in that dimension on a separate
CPU.

In addition to processor type, tags can optionally include
one of the following dimension properties:
vec(s) vectorize the dimension (s is the vector length)
unroll unroll the dimension
pipeline pipeline the dimension (FPGA only)
Computations mapped to the same processor are ordered

by projecting the computation set onto the time dimensions
and comparing their lexicographical order, without consid-
ering the name of the computation, since all computations
in this layer are in the same time-space domain.

4.4 Layer III: Concrete Computation Layer

The concrete computation layer specifies memory locations
for storing computed values. It consists of the Layer II repre-
sentation along with allocation/deallocation statements, and
a set of access relations, which map computations from Layer
II to array elements read or written by those computations.
Scalars are treated as single-element arrays. For each buffer,
an allocation statement is created, specifying the type of
the buffer (or scalar) and its size, and is scheduled by being
mapped to the time-space domain. Similarly, a deallocation
statement is also added.
Possible data mappings in Tiramisu include mapping

computations to structures-of-arrays, arrays-of-structures,
and contraction of multidimensional arrays into arrays with
fewer dimensions or into scalars. It is also possible to specify
more complicated accesses such as the storage of computa-
tions c (i, j ) into the array elements c (i%2, j%2) or into c (j, i ).

4.5 Generating Layer II and III from Layer I

Transforming the first layer into the second layer is usually
done using an affine relation called a scheduling map. This
maps each computation in the first layer into a particular
position in time-space. Composing many transformations
can be done simply by composing different scheduling maps.

4.5.1 Scheduling Maps

Affine transformations including loop tiling, skewing, loop
fusion, distribution, splitting, reordering, and many others
can be expressed as an affine map that maps computations
from Layer I into the time-space domain in Layer II. A sched-
uling map takes as input the iteration domain from Layer I
and transforms it into a new set that represents the compu-
tation in the time-space domain. For example, suppose we
want to tile the following computation (which is in Layer I)
into 16 × 16 tiles and parallelize the outermost loop:
{C(i,j): 0<=i<N and 0<=j<N}: A(i,j) + B(i,j)

To do so, we provide the following scheduling map to
Tiramisu:

{C(i,j)->C(i1(cpu),j1,i2,j2):i1=floor(i/16)
and i2=i%16 and j1=floor(j/16) and j2=j%16 and 0<=i<N and

0<=j<N}

which will produce the following set in Layer II:
{C(i1(cpu),j1,i2,j2): i1=floor(i/16) and i2=i% 16

and j1=floor(j/16) and j2=j%16 and 0<=i<N and 0<=j<N}:
A(i1*16+i2, j1*16+j2) * B(i1*16+i2, j1*16+j2)

4.5.2 High Level Scheduling Commands

Tiramisu provides a set of predefined scheduling maps for
common affine loop nest transformations. Table 1, presented
previously, shows examples of Tiramisu high-level sched-
uling commands. These commands are similar to those in
Halide [49] and ChiLL [13]. The high-level scheduling com-
mands in Tiramisu provide an easy-to-use interface for
advanced loop nest transformations in a composable way,
while still enabling advanced users to provide their own low-
level scheduling maps to modify the space-time mapping for
scheduling not covered by typical compiler transformations.
4.5.3 Checking the Validity of Schedules

In order to check the validity of transformations, we first
compute the dependences of the input program, then we
check the validity of transformations using violated depen-
dence analysis [57].

5 Generating Tiramisu from DSLs

To demonstrate the utility of Tiramisu, we integrated it
into two DSL compilers: Halide [49] and Julia [7]. A DSL
compiler that uses Tiramisu must generate three pieces of
information:
• Layer I, which describes the algorithm;
• A scheduling map or a scheduling command;
• Commands declaring the buffers and mapping the com-
putations to buffer elements.

Tiramisu takes the three inputs and generates Layer II and
Layer III automatically, and then generates an Abstract Syn-
tax Tree (AST) from Layer III. The AST is traversed to gen-
erate target code (LLVM IR, Nvidia PTX, ...).
5.1 Halide to Tiramisu

Halide [49] is an industrial-quality DSL for image process-
ing. We generate Tiramisu IR from Halide by mapping a
Halide Func, which is equivalent to a statement in a loop nest,
directly to a Tiramisu computation (Layer I). Reductions,
which update the same function, are mapped to Tiramisu
computations as described in Section 4.2. Halide scheduling
directives, such as tiling, splitting, reordering, paralleliza-
tion, vectorization, etc., are directly mapped to the equivalent
high level set of scheduling commands defined in Tiramisu.
Finally, we map computations to buffer elements using the
default Halide mappings, while allowing Halide scheduling
commands that control data mappings to perform equivalent
transformations for the Layer III representation. The rest of
the code generation to low-level executable code takes place
within Tiramisu.
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5.2 Julia to Tiramisu

Julia is a high-level dynamically-typed programming lan-
guage designed for numerical computing. However, in con-
trast to Halide, Julia is more general: it supports while loops
and recurrent computations and is memory-based (i.e., it
uses variables unlike Halide which defines pure functions
mostly). We extend Julia with a set of scheduling directives
and function annotations. Functions annotated with the @acc

macro are optimized with Tiramisu.
We generate Tiramisu from the low-level Julia IR (which

is in SSA form) by translating each statement in the Julia
IR into a computation in Tiramisu. This Julia low-level IR
does not have high level control flow (it only has gotos); thus
we change the compilation flow of Julia to annotate the low-
level IR with information about the original control flow of
the program. We use the annotations to recover the control
flow and generate the iteration domain of each computation.
Although Julia has another high level IR that has control
flow information, we cannot use that IR because it lacks the
necessary data type annotations.

We transform thememory-based Julia IR into the producer-
consumer Tiramisu IR using classical array expansion tech-
niques [22, 43, 44]. The goal here is to extract the data-flow
representation of the code. The user is then free to change
the data layout of computations using high level data-layout
directives.

6 Generating Code for Different Platforms

Generating code from Layer III (an ordered set of computa-
tions) amounts to generating nested loops (AST) that visit
each computation in the set, once and only once, while fol-
lowing the lexicographical ordering between integer tuples.
Array accesses are generated from the maps that describe the
data mapping. The Tiramisu code generator (which uses the
ISL [58] library for code generation) takes Layer III as input
and generates an AST as output. The AST is then traversed
to generate lower level code targeting different hardware
architectures.

6.1 Multicore CPU

When generating code that targets multicore shared memory
systems, loop levels that are tagged as space cpu dimensions
are translated into parallel loops in the generated code, using
OpenMP-style parallelism. Loops that are tagged with the
vec space dimensions are translated into vectorized loops.
Currently we only support the vectorization of loops that do
not contain any control flow.

6.2 GPU

For GPU code generation, data copy commands are provided
in Layer III of Tiramisu. These commands are translated into
the equivalent data copy calls in the lowered code. Computa-
tion dimensions tagged with GPU thread or GPU block tags

1 // Layer I
2 {bx(y,x): 0<=y<rows and 0<=x<cols} :
3 (in(y,x) + in(y,x+1) + in(y,x+2))/3);
4 {by(y,x): 0<=y<rows and 0<=x<cols} :
5 (bx(y,x) + bx(y+1,x) + bx(y+2,x))/3);
6 // Layer II
7 bx.split(y,chunk_sz,y1,y2); by.split(y,chunk_sz,y1,y2);
8 // Layer III
9 comm_prop blk({BLOCK}), ablk({ASYNC,BLOCK});
10 send_recv xfer = create_transfer("{(q,y,x): 1<=q<N-1 and 0<=

y<2 and 0<=x<cols}","{(q,y,x): 0<=q<N-2 and 0<=y<2 and
0<=x<cols}",q-1,q,ablk,blk,bx(y,x));

11 bx.distribute(y1); by.distribute(y1);
12 xfer.s->distribute(q); xfer.r->distribute(q);

Figure 3. Tiramisu pseudocode for a 3x3 distributed blur

are translated into the appropriate GPU thread and block
IDs in the lowered code.

6.3 Distributed Memory Systems

Tiramisu utilizes MPI to generate code for distributed mem-
ory systems. Figure 3 shows Tiramisu pseudocode for a 3x3
distributed box blur. Lines 2 and 4 define the blur computa-
tion. This code remains the same regardless of whether we
use a shared memory or distributed memory back-end.
For this example, we want to distribute the computation

such that each MPI rank (process) operates on contiguous
rows of the input data. Each rank gets chunk_sz rows. On line
7, the outer loop is split by chunk_sz. The resulting inner loop
ranges over the rows in the chunk, and the outer loop ranges
over the number of MPI ranks we want to use.

Lines 9 and 10 deal with communication. We assume that
our image data is already distributed, thus only boundary
rows need to be communicated among adjacent ranks. Line
9 defines two communication types, which will be used to se-
lect the appropriate MPI function. blk represents a blocking
call, and ablk represents an asynchronous, blocking call. We
use two-sided communication in Tiramisu, meaning com-
munication is done with pairs of send and receive operations.
The actual transfer is defined by create_transfer on line 10,
which takes as input the send and receive iteration domains,
the source and destination ranks, the communication types
for send and receive, and the access into the producer for
the send.

Line 11 tags dimension y1 of bx and by as distributed, and
line 12 tags dimension q of the send and receive as distributed.
During code generation, we postprocess the generated code
and convert each distributed loop into a conditional based
on the rank of the executing process. For example:
for(q in 1..N-1) {...} // distribute on q

becomes:
q = get_rank(); if (q≥1 and q<N-1) {...}

All of the other scheduling commands in Tiramisu can
be composed with transfers and distributed loops, as long
as the composition is semantically correct. This means we
can do everything from basic transformations (e.g. tiling a

8



, ,

1 input.copy_to_device();
2 bx.gpu(y2,x); by.gpu(y2,x);
3 output.copy_to_host();

Figure 4. Additional Tiramisu commands needed to gener-
ate a 3x3 distributed GPU box blur

transfer) to more advanced transformations (e.g. specializing
a distributed computation based on rank).
GPU scheduling can also be composed with distribution,

allowing programs to execute in either a multi-GPU or het-
erogeneous CPU-GPU environment. Only a few extra sched-
uling commands need to be added to distributed Tiramisu
code to enable the use of GPU. Figure 4 shows the four
additional scheduling commands needed to convert the dis-
tributed box blur code in Figure 3 to distributed GPU code.
Lines 1 and 3 copy data from the host (CPU) to the device
(GPU) and from the device to the host, respectively. Line 2
tags the computations to run on the GPU. The resulting code
can be used to distribute the box blur computation across
multiple GPUs that reside on different nodes. As with CPU
distribution, we use MPI to control the inter-node communi-
cation.

6.4 FPGA

Tiramisu relies on FROST [20] to generate code for FPGAs.
FROST is a common back-end for the hardware acceleration
of DSLs on FPGA. It exposes an IR that DSLs can target, as
well as a high level scheduling language to express FPGA-
specific optimizations.

We integrated FROST within Tiramisu, enabling us to tar-
get FPGAs. We use Tiramisu to perform loop nest transfor-
mations that are necessary to prepare the code for lowering
to FPGA, while FROST focuses on the actual lowering to the
target High-Level Synthesis (HLS) toolchain. For example,
in order to vectorize a loop, Tiramisu first splits the loop
so that the innermost loop has a fixed number of iterations
and then tags that loop for later vectorization by FROST.
FROST then performs the actual vectorization of both loop
and input/output buffers.
The output of FROST is a C++ implementation of the

input code suitable for HLS tools, like Xilinx Vivado HLS
[33]. Finally, FROST leverages Xilinx SDAccel to synthesize
the resulting FPGA design and produce the bitstream file for
execution on actual hardware.

7 Evaluation

We performed the evaluation on a cluster of dual-socket
machines with two 24-core Intel Xeon E5-2680 v3 CPUs
running at 2.50GHz running Ubuntu 14.04.5 LTS, with an
Infiniband interconnect.
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7.1 Halide to Tiramisu

To evaluate the integration of Tiramisu with Halide, we
used the following benchmarks: cvtColor, which converts
RGB to grayscale; convolution, a simple 2D convolution;
gaussian, which performs a gaussian blur; warpAffine,
which does affine warping on an image; heat2D, a simu-
lation of the 2D heat equation; nb pipeline, a synthetic
pipeline that computes two outputs from the same image,
a negative and a brightened image; rgbyuv420, an image
conversion from RGB to YUV420; heat3D, the 3D heat equa-
tion with timestepping; and ticket #2373, a code snippet
from a bug filed against Halide where the bounds inference
is over-approximated, leading the generated code to fail in
execution.
Figure 5 compares the execution time of code generated

by Halide and Halide-Tiramisu. In five of the benchmarks
(namely convolution, cvtColor, gaussian, heat2D, and
warpAffine), the performance of the code generated by
Halide-Tiramisu matches the performance of Halide. We
use the same schedule for both implementations.

Two of the other benchmarks , heat3D and ticket #2373,
cannot be implemented in Halide. The following is an ex-
ample of a recurrent filter extracted from [12], a compiler
designed to support recurrent filters.
heat3d(x,y,z,0) = a*in(x, y, z) +

b*(in(x+1, y, z) + in(x-1, y, z)+
in(x, y+1, z) + in(x, y-1, z) +
in(x, y, z+1) + in(x, y, z-1));

heat3d(x,y,z,t) = a*heat3d(x, y, z, time.x-1) +
b*(heat3d(x+1, y, z, t-1) + heat3d(x-1, y, z, t-1)+

heat3d(x, y+1, z, t-1) + heat3d(x, y-1, z, t-1) +
heat3d(x, y, z+1, t-1) + heat3d(x, y, z-1, t-1));

This code cannot be implemented in Halide because it
contains a cyclic dependence graph due to the loop over
timesteps while the Halide compiler assumes that the depen-
dence graph is a DAG (directed acyclic graph). This limitation
is mainly because it is difficult to prove the legality of opti-
mizations in an interval-based representation in the case of
a cyclic dependence graph. This is not the case for Tiramisu,
which relies on a precise dependence analysis [23] and on
checking the legality of transformations using the polyhedral
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model [55] to decide whether a transformation can be per-
formed. In ticket #2373, which exhibits a triangular itera-
tion domain, Halide’s bounds inference over-approximates
the computed bounds which leads the generated code to fail
in execution. This over-approximation in Halide is due to
the use of intervals to represent iteration domains, which
prevents Halide from performing precise bounds inference
on non-rectangular iteration spaces. Tiramisu can handle
this case naturally since it relies on a polyhedral based model
where sets can include any affine constraint in addition to the
min and max bounds. These examples show that the model
exposed by Tiramisu naturally supports more complicated
code patterns than an advanced, mature DSL compiler.
For nb pipeline and rgbyuv420, the code generated

from Halide-Tiramisu achieves a 4× speedup over the code
generated from Halide. This is primarily due to fusion. In
both cases, Tiramisu can fuse multiple loops into one loop
which enhances data locality; loop fusion is currently unsup-
ported in Halide. This is another case that demonstrates that
the expressiveness of the polyhedral-based representation in
Tiramisu allows the framework to naturally perform certain
iteration domain transformations that are difficult in other
models.

7.2 Julia to Tiramisu

We used the following benchmarks to evaluate the integra-
tion of Tiramisu within Julia: bicg, a biconjugate gradient
method; doitgen, a multiresolution analysis kernel; mttkrp,
the matricized tensor times Khatri-Rao product; covariance,
which performs a covariance computation; and gesummv,
which is summed matrix-vector multiplications. For a fair
comparison, the Julia code was tagged with the inbounds
macro to remove any boundary checks on buffer accesses.
Figure 6 shows the execution time of code generated by

Julia-Tiramisu compared to Julia without Tiramisu. The
speedups of Julia-Tiramisu in covariance, doitgen, mttkrp
and bicg are mainly due to the improved data locality ob-
tained after tiling using Tiramisu, which is not possible in
Julia.
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7.3 Evaluating Backends

7.3.1 FPGA Backend

We evaluate the FPGA backend in Tiramisu using 6 im-
age processing kernels: convolution, cvtColor, gaussian,
scale, sobel, and threshold. We chose these kernels be-
cause they are already implemented in the Vivado HLS Video
Library [32], which implements several OpenCV functions
for FPGA. We compare the execution time of code generated
from Tiramisu with the codes extracted from the Vivado
HLS Video Library. These codes are synthesized using the
Xilinx SDAccel 2016.4 toolchain at 200MHz and ran on a
ADM-PCIE-7V3 board by Alpha Data (powered by a Xilinx
Virtex 7 FPGA). For all the kernels, we use a 512 × 384 RGB
image, except for the threshold kernel, which takes as input
a single channel image.

The HLS Video Library kernels expect the input image to
be arranged with channels as the innermost dimension of
the image. The accelerator on the FPGA receives a stream of
pixels from the off-chip memory, and processes each channel
of the pixel completely in parallel.

While the HLS Video Library parallelizes only the channel
dimension, the flexibility of the Tiramisu scheduling com-
mands allowed us to explore other alternatives including
the parallelization over the width dimension of the image
leading to better performance (at the expense of more FPGA
resources). Indeed, while the Video Library performs, at most,
three computations in parallel (on the channels), the code
generated from Tiramisu can perform, at most, sixty-four
computations in parallel, in the case of a 512-bit vectorization
of the input/output buffers for a 8-bit image.
Figure 7 shows the execution time of Tiramisu/FROST

and the Vivado HLS Video Library. Tiramisu with FROST
outperformed the Video Library implementations by at least
3×. For each kernel, we used Tiramisu to arrange the input
image and split the innermost loop to prepare for vectoriza-
tion (we applied vectorization to both input/output buffers).
We also applied loop pipelining and array partitioning (for
convolution, gaussian and sobel).
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7.4 Generating BLAS sgemm using Tiramisu

To evaluate the performance of Tiramisu on an extreme case,
we used Tiramisu to generate the BLAS generalized matrix
multiplication (sgemm) which computes C = αAB + βC . The
sgemm implementation in the Intel MKL library is known
to be one of the most highly hand-optimized implementa-
tions for Intel CPU architectures. We used a large set of
optimizations including three-dimensional L2 and L3 block-
ing, fusion of the computation of T = αAB and C = T + βC
into a single loop, vectorization, unrolling, array packing
(as described in [25]), register blocking, separation of full
and partial tiles (which is crucial to enable vectorization, un-
rolling, and reduce control overhead). We also tuned the tile
size and unrolling factor for the machine on which we run
our experiments. The resulting kernel matches the Intel MKL
implementation as shown in 8. The Tiramisu implementa-
tion of saxpy, convolution and two fused convolutions all
outperform or match the Intel MKL implementation (lower
is better).
7.4.1 Distributed and GPU Backend

For the Tiramisu distributed backend, we used 6 kernels for
evaluation: blurxy, sobel, convolution, gaussian, pipeline,
and cvtColor (we chose these kernels because these are al-
ready implemented in the distributed Halide compiler [21]).
We assume that the data is already distributed across the
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Figure 10. Execution time of distributed Tiramisu for 2, 4,
8, and 16 nodes (s)

nodes by rows. Of these benchmarks, pipeline, and cvtColor
do not require any communication; the other four require
communication due to overlapping boundary regions in the
distributed data. For the distributed CPU-only tests, we use
the MVAPICH2 2.0 [31] implementation of MPI.

Figure 9 compares the execution time of distributedTiramisu
and distributed Halide on 16 nodes for each of the kernels.
Tiramisu is faster than distributed Halide in each case. For
the kernels involving communication, code generated by
distributed Halide has two problems compared to Tiramisu:
(1) It overestimates the amount of data it needs to send; (2) It
unnecessarily packs together contiguous data into a separate
buffer before sending.
Figure 10 shows the execution time of the kernels with

distributed Tiramisu when running on 2, 4, 8, and 16 nodes.
As expected, execution time decreases for these kernels as
the number of nodes increases.

7.4.2 Putting it All Together

As a final experiment, we ran a modified version of the cvt-
Color kernel in a distributed GPU configuration and com-
pared it with a distributed CPU configuration. For this exper-
iment, we ran on a small cluster of 4 nodes, each consisting
of a single Nvidia K40 GPU and a 12-core Intel Xeon E5-2695
v2 CPU clocked at 2.40GHz. We used OpenMPI 1.6.5 [46] as
our MPI implementation.
Figure 11 shows the results of this experiment. The back

row shows the results for running the cvtColor kernel on one
node, using either 1 core, 10 cores, or 1 GPU. As expected,
10 cores is better than 1 core and the GPU outperforms the
CPU. The front row shows the same configuration, expect
distributed across 4 nodes. So, from left-to-right, the columns
of the front row represent a total of 4 cores, then 40 cores,
and then 4 GPUs. As with the the single node performance,
40 cores is better than 4 cores, and 4 GPUs is better than the
CPUs.
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Experiment	# #	Nodes #	Procs	(1	per	rank) #	GPUs #	Cores Total	execution	time	(ms)

0 1 1 0 1 49034
1 1 1 0 10 23650
4 1 1 1 0 7675
5 1 2 1 1 25290
6 1 2 1 10 12487

14 4 4 0 1 14131
15 4 4 0 10 8200
18 4 4 1 0 2477
19 4 8 1 1 25254
20 4 8 1 10 11928

4 1
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Figure 11. Results for either CPU or GPU running on a
single node (back row), and distributed across 4 nodes (front
row).

7.5 Evaluation Summary

Overall, the experiments demonstrated the use of Tiramisu
as an IR and optimization framework for two DSLs and multi-
ple backends. We show that Tiramisu is expressive: it allows
both Halide and Julia to perform new optimizations and al-
lows Halide to express new algorithms. The experiments
also show that Tiramisu is suitable for targeting multiple
hardware architectures, such as multicore, GPUs, distributed
systems, and FPGA. And thanks to its flexible scheduling
commands, it can generate highly optimized code for a vari-
ety of of architectures and algorithms.

8 Related Work

8.1 High Performance DSL Compilers

High performanceDSL compilers such asHalide [50], Diderot
[14], Simit [35], Polymage[45], OoLaLa [41] and others build
custom compilation pipelines for specific domains such as
image processing or linear algebra. These compilers have
shown that it is possible to obtain high performance by ap-
plying domain-specific optimizations in the course of com-
pilation. However, such compilers map DSL code directly to
the target hardware, sometimes using a low-level compiler
framework like LLVM. Our goal in this work is to build a
more generic framework and intermediate representation
that can be used by domain-specific language compilers in
place of ad-hoc re-implementations of compute and data
transformations.
8.2 DSL IRs and Optimization Frameworks

Delite [11] is a generic framework for building DSL compilers
using Lightweight Modular Staging (LMS) [51], a technique
for embedding code generators and compilers in Scala. Delite
exposes several parallel computation patterns that DSLs can
use to express computation; however, it has no facilities for
advanced loop nest transformations. We therefore believe

that generic DSL frameworks like Delite can benefit from
using Tiramisu.
PENCIL [3, 4] is another generic DSL IR and automatic

optimization framework which uses a polyhedral represen-
tation internally. It is a subset of C99 with additional con-
structs to help parallelizing compilers performmore accurate
static analyses, and as a result generate more efficient code.
The Pluto [9] automatic scheduling algorithm used within
PENCIL can be integrated seamlessly in Tiramisu on top
of the first layer. The main difference between PENCIL and
Tiramisu is that Tiramisu separates computation, schedule,
and data layout. In contrast, the PENCIL IR is a subset of C99
with arrays, scalar variables, etc. and thus successful paral-
lelization and optimization sometimes requires data-layout
transformations such as expansion and privatization which
are not necessary in Tiramisu.

CHiLL [13, 27] is a polyhedral based compiler framework
for Fortran that allows users to express a composition of high-
level transformations such as tiling and unrolling, which the
system performs, freeing users from having to implement
them. URUK [24] is a similar framework that also uses a
polyhedral representation. Other systems such as POET [61]
parametrize loop transformations with a language-agnostic,
purely-syntactic transformation system. These frameworks
require working with concrete data layouts, in contrast to
Tiramisu that does not have a concrete data layout in its
first layer.

Darkroom [29] is a language and compiler for image pro-
cessing pipelines. Darkoom compiles the input programs into
optimized line-buffered pipelines (it relies on an ILP solver
to optimally schedule the pipelines), and then synthesizes
them for ASIC, FPGA, or CPU. Similarly, [47] presents an
extension to Halide to hardware accelerate applications on
FPGA. The authors implemented additional scheduling com-
mands to define and control the code generated for FPGA.
These works are designed for image processing applications
only, while Tiramisu with FROST can support also other
types of computations (e.g. linear algebra).

8.3 Data-layout Transformation

Techniques such as scalar and array expansion remove false
dependencies, enabling loop nest transformation and paral-
lelization [22, 34]. Expansion increases dimensionality to cre-
ate private copies of data for each loop iteration. In Tiramisu,
computations are single assignment, and thus are fully ex-
panded, obviating the need for privatization.
A family of array contraction techniques attempts to re-

duce the memory footprint without constraining loop nest
transformations [19, 37, 48]: the compiler performs a max-
imal expansion before applying loop transformations, and
then attempts to contract the expanded arrays. Tiramisu sim-
plifies this process, since maximal expansion is not needed.
This is similar toHalide [49] where computations aremapped
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by default to fully expanded arrays and then a compiler pass
performs storage folding to contract arrays.

Several alternative approaches try to constrain expansion.
Maximal static expansion (MSE) restricts the elimination of
dependencies to the situations where the data flow can be
captured accurately at compilation time [16]. It is impor-
tant when generalizing array dependence analyses and loop
transformations to dynamic control flow, and it can be com-
bined with array contraction [15]. A priori constraints on
memory footprint can also be enforced, up to linear volume
approximations [53], and more generally, trade-offs between
parallelism and storage allocation can be explored. These
techniques can also be applied in Tiramisu to constrain the
schedule.

Data layout transformations for specific dependence pat-
terns using the polyhedral model have been used to elimi-
nate SIMD intra-vector operations [30] and for enhancing
cache locality in non-uniform cache access (NUCA) archi-
tectures [40]. These kinds of transformations can be easily
implemented in Tiramisu.

8.4 Functional IRs and Data Layout

Transformations

The NOVA functional language [17] was designed to be used
as an IR for DSL compilers. It is a polymorphic, statically-
typed functional language with a suite of higher-order func-
tions such as map, reduce and scan that are used to express
parallelism. Although the NOVA IR does not represent mem-
ory explicitly, it does not provide any framework for ad-
vanced loop nest transformations. For example, only map
functions that iterate over the same ranges can be fused.
Iteration space transformations such as skewing are not ad-
dressed. Transformations such as fusion are done at the func-
tion level. Tiramisu provides an IR that allows advanced
iteration space transformations while still separating the
algorithm from the schedule and the data layout.

Most functional languages do not expose notions of mem-
ory layout to programmers. Instead, programmers rely on
profiling tools to characterize data movement [52] or de-
sign algorithms around models of memory traffic for such
programming languages [8]. In contrast, Tiramisu enables
writing the algorithm in a functional manner while sepa-
rately dealing with data layout and computation scheduling.

9 Conclusion

In this paper we introduce Tiramisu, a middle-end compiler
for domain specific languages that separates the algorithm,
the schedule and the data layout in a three-layer intermediate
representation. Tiramisu supports backend code generation
for multicore CPUs, GPUs, FPGAs, and distributed systems,
as well as machines that contain any combination of these
architectures.

Tiramisu is designed so most DSLs can use high-level
scheduling and data mapping constructs to control the low-
ering from the algorithm to the backend, cross-platform code.
In addition, the underlying representations are accessible to
advanced users that wish to implement new optimizations
and transformations.
We evaluate Tiramisu by creating a new middle-end for

the Halide and Julia compilers, targeting a variety of back-
ends. We also demonstrate transformations made possible by
Tiramisu increasing performance by up to 4× in Halide and
16× in Julia and demonstrate that Tiramisu can generate
very fast code matching one of the most hand optimized
kernels (Intel MKL gemm).
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10 Notation and Definitions

10.1 Presburger formula

We use an EBNF (Extended Backus-Naur Form) grammar to
define Presburger formulas.

<formula> ← <formula> ∧ <formula>
| <formula> ∨ <formula>
| ¬<formula> | ∃<var>.<formula>
| ∀<var>.<formula> | <atom>

<atom> ← <term><relop><term>
<term> ← <numeral> | <term> + <term>

| − <term>
| <numeral> ∗ <term> | <var>

<relop> ← < | ≤ | = | > | ≥
<var> ← x | y | z | . . .
<numeral> ← 0 | 1 | 2 | . . .

Note that <numeral> ∗ <term> is not a general multiplica-
tion operator; it is a shortcut for <term> + · · · + <term>.

Presburger arithmetic is used mainly because it is a decid-
able arithmetic. That is, there exists an algorithm which de-
cides whether an arbitrary Presburger formula is true (valid)
or not, which is important for many polyhedral operations.

10.2 Quasi-Affine Constraints

A quasi-affine constraint is a constraint over integer values
and integer variables involving only the operators +, -, ×, /,
mod, &&, ||, <, <=, >, >=, ==, !=, and the ternary ?: operator, where
the second argument of / and modmust be a (positive) integer
literal, and where at least one of the arguments of×must be a
constant expression. An example of a quasi-affine constraint
for a statement in a loop nest is 10×i+ j+n > 0, where i and j
are loop iterators and n is a symbolic constant (i.e., a variable
that has an unknown but fixed value for the duration of an
execution). An example of a non-quasi-affine constraint is
i × i > 0, because we require one of the arguments be a
constant.

11 Integer Sets

An integer set is a set of integer tuples from Zd that can be
specified using affine constraints. d is the dimensionality of
the set (the number of integers in each tuple) and a d-tuple is
represented as (a1,a2, . . . ,ad ). An example of a set of integer
tuples is:

{(1, 1); (2, 1); (3, 1); (1, 2); (2, 2); (3, 2)}

Instead of listing all the integer tuples of the set, we de-
scribe the set using affine constraints:

{S (i, j ) : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 2}

where i and j are the dimensions of the set. The tuples of a
set can optionally have a common name, such as S in this
example. Figure 12 shows a graphical representation of the
map S .
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Figure 12. Graphical repre-
sentation of a set
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Figure 13. Graphical repre-
sentation of a map

In general, an integer set has the form

S = {N (⃗s ) | f (⃗s, p⃗)}

with s⃗ representing the integer tuples of the integer set (⃗s ∈
Zd ), N , a common name for all the tuples s⃗ usually used as
the name of computations, d the dimensionality of the set,
p⃗ ∈ Ze a vector of e parameters and f (⃗s, p⃗) a Presburger
formula that evaluates to true, if and only if s⃗ is an element
of S for the given parameters p⃗.

11.1 Relations (maps)

A map is a relation between two integer sets. For example

M = {S1(i, j ) → S1(i + 2, j + 2) : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 2}

represents a relation between two sets. The first set is called
the domain or the source and the second is called the range
or the sink. Figure 13 shows a graphical representation of
the mapM .

In general, a map has the form

M = {A(⃗s ) → B (o⃗), (⃗s, o⃗) ∈ Zd1 × Zd2 | f (⃗s, o⃗, p⃗)}

where A(⃗s ) represents the domain or the source and B (o⃗)
represents the range or the sink. d1 and d2 are the dimen-
sionalities of s⃗ and o⃗, p⃗ ∈ Ze is a vector of e parameters and
f (⃗s, o⃗, p⃗) is a Presburger formula that evaluates to true if
and only if there is a relation from s⃗ to o⃗ inM for the given
parameters p⃗.

12 Three-Layer IR

12.1 Layer I: Abstract Computation Layer

The first layer is a union of computation sets such that each
computation set describes one statement in the program.
Each computation set is defined as follows:

{N 1 (⃗s ) | f (⃗s, p⃗)} : д(N 2 (⃗s ),N 3 (⃗s ), ...,N 4 (⃗s ))

where N1 (⃗s ) is a computation that has the name N1, and
where д(N2 (⃗s ),N3 (⃗s ), ...,N4 (⃗s )) is the expression that the
computation computes and f (⃗s, p⃗) is a Presburger formula
that evaluates to true, if and only if s⃗ is an element of S for
the given parameters p⃗.
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, ,

1 for (i in 0..N)
2 for (j in 0..M)
3 S1
4 S2

(a) Original computation expressed as an imperative program

S1: ( i, j, 0)
S2: ( i , j, 1)
(b) Sequential

S1: ( j, i , 0)
S2: ( j, i , 1)
(c) Transposed

S1: ( i , 0, j)
S2: ( i , 1, j)
(d) Inner loop fission

S1: ( 0, i , j)
S2: ( 1, i , j)
(e) Outer loop fission

S1: ( i/N , i%N , j, 0)
S2: ( i/N , i%N , j, 1)
(f) Loop split

S1: ( i/N , j, i%N , 0)
S2: ( i/N , j, i%N , 1)
(g) ... & permuted

S1: ( i%P (cpu), j, i/P , 0)
S2: ( i%P (cpu), j, i/P , 1)
(h) Outer parallel

S1: ( i , j/4, 0, j%4 (vec))
S2: ( i , j/4, 1, j%4 (vec))
(i) Inner vectorized

Figure 14. For a simple loop next with two statements, ex-
amples of different time-processor vectors leading to many
possible execution arrangements.

12.2 Layer II: Computation Placement Layer

The second layer is identical to the first layer except that
computations in this layer are ordered based on their lexico-
graphical order.

12.3 Layer III: Concrete Computation Layer

The third layer is a union of computation sets and a set of
access relations. The computation sets are identical to the
Layer II computation sets except that new allocation/deal-
location statements are added. The set of access relations is
described as follows:

{N 1 (⃗s ) → B (o⃗), (⃗s, o⃗) ∈ Zd1 × Zd2 | f (⃗s, o⃗, p⃗)}

where N 1 (⃗s ) is a computation mapped to the buffer element
B[o⃗] and f (⃗s, o⃗, p⃗) is a Presburger formula that evaluates to
true if and only if there is a relation from s⃗ to o⃗ for the given
parameters p⃗.

12.4 Time-Processor Vectors

The time-space vector in Layer II is a vector indicates the
logical time of execution of computations and the proces-
sor on which they should be executed. Each one of those
vectors has a name associated to it (the name of the computa-
tion). S1(0, 0, 0), S2(0, 0, 1), S1(i, j, 0) and S2(i (cpu), j, 1) are
examples of time-space vectors representing computations
in Layer II. In general, the time-space vector has two types
of dimensions: time dimensions and space dimensions. The
time dimensions provide the logical order of execution of the
computations while the space dimensions indicate on which
processor the computations should be executed. In the pre-
vious example, the first three vectors have time dimensions

only, while the last vector has one space dimension. We use
a tag to indicate that a given dimension is a space dimension;
this tag indicates mainly the type of processor to which the
computations are mapped.
Assuming that we have two time-space vectors we want

to know which vector among the two executes first, then all
we need to do is to compare the two vectors lexicographi-
cally 3. In the example, S1(0, 0, 0] precedes S2(0, 0, 1) lexico-
graphically, so S1(0, 0, 0) is scheduled to be executed before
S2(0, 0, 1). The ability to add dimensions and reorder them
freely enables the expression of multiple possible mappings
from the original iteration space of the computations to com-
plex execution scenarios. Figure 14 provides examples of
different optimizations for a simple algorithm and shows the
time-space vectors used to express those optimizations. Each
of the dimensions of the vector can be an indexed variable,
distributing the computation over that dimension or a con-
stant providing a lexical ordering between statements. The
algorithms will be using a custom intermediate representa-
tion within each DSL, however, we use a classical imperative
language representation to describe them in this paper. A
value can be annotated by a processor type, indicating where
that computation will be placed, and indicating that dimen-
sion will be run in parallel.

3A time-space vector (i1, . . . , ik , . . . , in ) lexicographically precedes an-
other time-space vector (i′1, . . . , i

′
k , . . . , i

′
n ) if and only if ∃k ∈ N such

that i1 = i′1 ∧ i2 = i
′
2 ∧ · · · ∧ ik < i′k
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