
TIRAMISU: A Polyhedral Compiler for Expressing
Fast and Portable Code

Riyadh Baghdadi
MIT, USA

baghdadi@mit.edu

Jessica Ray
MIT

jray@csail.mit.edu

Malek Ben Romdhane
MIT

malek@mit.edu

Emanuele Del Sozzo
Politecnico di Milano

emanuele.delsozzo@polimi.it

Abdurrahman Akkas
MIT

akkas@mit.edu

Yunming Zhang
MIT

yunming@mit.edu

Patricia Suriana
Google

psuriana@google.com

Shoaib Kamil
Adobe

kamil@adobe.com

Saman Amarasinghe
MIT

saman@mit.edu

Abstract—This paper introduces TIRAMISU, a polyhedral
framework designed to generate high performance code for
multiple platforms including multicores, GPUs, and distributed
machines. TIRAMISU introduces a scheduling language with
novel commands to explicitly manage the complexities that
arise when targeting these systems. The framework is designed
for the areas of image processing, stencils, linear algebra and
deep learning. TIRAMISU has two main features: it relies on
a flexible representation based on the polyhedral model and
it has a rich scheduling language allowing fine-grained control
of optimizations. TIRAMISU uses a four-level intermediate rep-
resentation that allows full separation between the algorithms,
loop transformations, data layouts, and communication. This
separation simplifies targeting multiple hardware architectures
with the same algorithm. We evaluate TIRAMISU by writing
a set of image processing, deep learning, and linear algebra
benchmarks and compare them with state-of-the-art compilers
and hand-tuned libraries. We show that TIRAMISU matches
or outperforms existing compilers and libraries on different
hardware architectures, including multicore CPUs, GPUs, and
distributed machines.

Index Terms—Code Optimization, Code Generation, Polyhe-
dral Model, Deep Learning, Tensors, GPUs, Distributed Systems

I. INTRODUCTION

Generating efficient code for high performance systems
is becoming more and more difficult as these architectures
are increasing in complexity and diversity. Obtaining the
best performance requires complex code and data layout
transformations, management of complex memory hierarchies,
and efficient data communication and synchronization.

For example, consider generalized matrix multiplication
(gemm), which computes C = αAB + βC and is a building
block of numerous algorithms, including simulations and
convolutional neural networks. Highly-tuned implementations
require fusing the multiplication and addition loops, as well
as applying two-level tiling, vectorization, loop unrolling,
array packing [20], register blocking, and data prefetching.
Furthermore, tuned implementations separate partial tiles from
full tiles, since partial tiles cannot fully benefit from the
same optimizations. High performance GPU implementations
require even more optimizations, including coalescing memory

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

1

2

5

20

10

Intel
 M

KL

LLV
M-P

olly

AlphaZ
Pluto

Tira
misu

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

1.0
1.5
2.0

4.0

10.0

cu
BLAS

PENCIL TC

Tira
misu

Fig. 1: Normalized execution times of code generated for
sgemm on CPU (left) and GPU (right).

accesses, managing data movement between global, shared,
and register memory, and inserting synchronization primitives.
Automatically generating such complex code is still beyond
the capabilities of state-of-the-art compilers. The importance of
kernels such as gemm motivates vendors to release immensely
complex hand-optimized libraries for these kernels. However,
for most users, obtaining this level of performance for their
own code is challenging, since the effort required to explore
the space of possible implementations is intractable when hand-
coding complicated code transformations.

Previous work using the polyhedral model has shown success
in implementing complex iteration space transformations [49],
[8], [44], [22], [46], [37], data locality optimizations [27],
[21], and memory management optimizations [17], [43], [29],
[38], [13]. Although polyhedral compilers can represent these
program and data transformations, they still do not successfully
select transformations that result in the best performance.
Currently, these compilers do not match the performance
of hand-optimized kernels for algorithms such as gemm.
The blue bars in Figure 1 show the performance of state-
of-the-art polyhedral compilers for gemm compared to the
Intel MKL [26] and Nvidia cuBLAS [35] libraries. Fully-
automatic polyhedral compilers such as Polly [22] and Pluto [8]
improve productivity, but do not obtain the desired level of
performance since their search techniques consider only a
subset of the necessary optimizations and rely on less accurate
machine models, leading the compiler to make suboptimal
decisions. Other polyhedral frameworks, such as AlphaZ [51]
and CHiLL [10], eschew full automation and instead expose a



scheduling language that enables users to productively explore
the space of possible transformations. While these frameworks
achieve better performance, their scheduling languages are not
designed to target distributed systems. For example, they do
not allow the user to partition computations, send data across
nodes, or insert required synchronization.

In this paper, we introduce TIRAMISU1, a polyhedral com-
piler with a scheduling language featuring novel commands for
targeting multiple high performance architectures. TIRAMISU
is well-suited for implementing data parallel algorithms (loop
nests manipulating arrays). It takes a high level representation
of the program (a pure algorithm and a set of scheduling
commands), applies the necessary code transformations, and
generates highly-optimized code for the target architecture.
In addition to scheduling commands for loop and data-
layout transformations, the TIRAMISU scheduling language
introduces novel commands for explicit communication and
synchronization, and for mapping buffers to different mem-
ory hierarchies. In order to simplify the implementation of
the scheduling language, TIRAMISU explicitly divides the
intermediate representation into four layers designed to hide
the complexity and large variety of execution platforms by
separating the architecture-independent algorithm from code
transformations, data layout, and communication. TIRAMISU
targets multicore CPUs, CUDA GPUs, distributed architectures,
and FPGA. This paper presents the first three backends while
Del Sozzo et al. [14] describe an FPGA backend.

The use of a scheduling language has been shown effective
for generating efficient code by multiple compilers including
CHiLL, AlphaZ, and Halide [39], [40]. In comparison with
Halide in particular, not only does TIRAMISU introduce novel
scheduling extensions, TIRAMISU fundamentally differs in that
it relies on the expressive polyhedral representation instead of
the interval-based representation used by Halide. This allows
TIRAMISU to naturally express non-rectangular iteration spaces,
to support programs with cyclic data-flow graphs, and to apply
any affine transformation (including iteration space skewing),
all of which are not naturally expressible in Halide.

This paper makes the following contributions:
• We introduce a polyhedral compiler with a scheduling

language that features novel commands for controlling
data communication, synchronization, and for mapping
to different memory hierarchies. These extensions enable
targeting multiple high-performance architectures including
multicore CPUs, GPUs, and distributed machines.

• We explicitly divide the intermediate representation into
four layers to simplify the implementation of the schedul-
ing language. The four-layer IR separates the algorithm
from code transformations and data-layout transformations,
allowing for portability and simplifying the composition
of architecture-specific lowering transformations.

• We evaluate TIRAMISU on a set of deep learning and linear
algebra kernels and show that TIRAMISU can generate
efficient code that outperforms Intel MKL by up to

1http://tiramisu-compiler.org/

2.3×. We also evaluate TIRAMISU on a set of image
processing benchmarks and show that TIRAMISU matches
or outperforms state-of-the-art compilers on different hard-
ware architectures, including multicore CPUs, GPUs, and
distributed machines.

II. RELATED WORK

a) Polyhedral compilers with automatic scheduling:
Polyhedral compilers such as PENCIL [4], [3], Pluto [8],
Polly [22], Tensor Comprehensions [46], and PolyMage [34]
are fully automatic. Some of them are designed for specific
domains (such as Tensor Comprehensions and PolyMage),
while Pluto, PENCIL, and Polly are more general. While fully
automatic compilers provide productivity, they may not always
obtain the best performance. This suboptimal performance is
due to several reasons: first, these compilers do not implement
some key optimizations such as array packing [20], register
blocking, data prefetching, and asynchronous communication
(which are all supported by TIRAMISU); second, they do not
have a precise cost-model to decide which optimizations are
profitable. For example, the Pluto [8] automatic scheduling
algorithm (used in Pluto, PENCIL and Polly) tries to minimize
the distance between producer and consumer statements while
maximizing outermost parallelism, but it does not consider
data layout, redundant computations, or the complexity of
the control of the generated code. Instead of fully automatic
scheduling, TIRAMISU relies on a set of scheduling commands,
giving the user full control over scheduling.

Polyhedral frameworks proposed by Amarasinghe et al. [1]
and Bondhugula et al. [7] address the problem of automatic
code generation for distributed systems. Instead of being
fully automatic, TIRAMISU relies on the user to provide
scheduling commands to control choices in the generated code
(synchronous/asynchronous communication, the granularity of
communication, buffer sizes, when to send and receive, cost
of communication versus re-computation, etc.).

b) Polyhedral compilers with a scheduling language:
AlphaZ [51], CHiLL [10], [24] and URUK [19] are polyhedral
frameworks developed to allow users to express high-level
transformations using scheduling commands. Since these
frameworks are polyhedral, they can express any affine transfor-
mation. However, their scheduling languages do not target dis-
tributed architectures. In contrast, TIRAMISU features schedul-
ing commands for partitioning computations (for distributed
systems), synchronization and distribution of data across nodes.
The first four columns of Table I compare between TIRAMISU
and three representative polyhedral frameworks.

c) Non-polyhedral compilers with a scheduling language:
Halide [39] is an image processing DSL with a scheduling
language that uses intervals to represent iteration spaces instead
of the polyhedral model. This limits the expressiveness of
Halide. For example, unlike TIRAMISU, Halide cannot naturally
represent non-rectangular iteration spaces, and this is the reason
why distributed Halide [15] over-approximates the amount
of data to communicate (send and receive) when generating

http://tiramisu-compiler.org/


Feature Tiramisu AlphaZ PENCIL Pluto Halide
CPU code generation Yes Yes Yes Yes Yes
GPU code generation Yes No Yes Yes Yes
Distributed CPU code generation Yes No No Yes Yes
Distributed GPU code generation Yes No No No No
Support all affine loop transformations Yes Yes Yes Yes No
Commands for loop transformations Yes Yes No No Yes
Commands for optimizing data accesses Yes Yes No No Yes
Commands for communication Yes No No No No
Commands for memory hierarchies Yes No No No Limited

Expressing cyclic data-flow graphs Yes Yes Yes Yes No
Non-rectangular iteration spaces Yes Yes Yes Yes Limited

Exact dependence analysis Yes Yes Yes Yes No
Compile-time set emptiness check Yes Yes Yes Yes No
Implement parametric tiling No Yes No No Yes

TABLE I: Comparison between different frameworks.

distributed code. This also makes some Halide passes over-
approximate non-rectangular iteration spaces, potentially lead-
ing to less efficient code (for example, it prevents Halide
from performing precise bounds inference for non-rectangular
iteration spaces). The use of intervals also prevents Halide
from performing many complex affine transformations, such
as iteration space skewing.

Halide does not have dependence analysis and thus relies
on conservative rules to determine whether a schedule is legal.
For example, Halide does not allow the fusion of two loops
(using the compute_with command) if the second loop
reads a value produced by the first loop. While this rule
avoids illegal fusion, it prevents fusing many legal cases, which
may lead to suboptimal performance. Halide also assumes the
program has an acyclic dataflow graph in order to simplify
checking the legality of a schedule. This prevents users from
expressing many programs with cyclic dataflow. It is possible
in some cases to work around the above restrictions, but such
work-around methods are not general. TIRAMISU avoids over-
conservative constraints by relying on dependence analysis to
check for the correctness of code transformations, enabling
more possible schedules. Table I summarizes the comparison
between TIRAMISU and Halide.

Vocke et al. [48] extend Halide to target DSPs, and add
scheduling commands such as store_in to specify in which
memory hierarchy data should be stored. TVM [11] is another
system that shares many similarities with Halide. It uses a
modified form of the Halide IR internally. Since TVM is also
a non-polyhedral compiler, the differences between Halide and
TIRAMISU that are due to the use of polyhedral model also
apply to TVM.

POET [50] is a system that uses an XML-based description
of code and transformation behavior to parametrize loop trans-
formations. It uses syntactic transformations, which are less
general than the polyhedral transformations used in TIRAMISU.
GraphIt [52] is another compiler that has a scheduling language
but that is mainly designed for the area of graph applications.

d) Other Compilers: Delite [9] is a generic framework for
building DSL compilers. It exposes several parallel computation
patterns that DSLs can use to express parallelism. NOVA [12]
and Lift [42] are IRs for DSL compilers. They are functional

1 // Declare the iterators i, j and c.
2 Var i(0, N-2), j(0, M-2), c(0, 3);
3
4 Computation bx(i, j, c), by(i, j, c);
5
6 // Algorithm.
7 bx(i,j,c) = (in(i,j,c)+in(i,j+1,c)+in(i,j+2,c))/3;
8 by(i,j,c) = (bx(i,j,c)+bx(i+1,j,c)+bx(i+2,j,c))/3);

Fig. 2: Blur algorithm without scheduling commands.

languages that rely on a suite of higher-order functions such
as map, reduce, and scan to express parallelism. TIRAMISU
is complementary to these frameworks as TIRAMISU allows
complex affine transformations that are easier to express in the
polyhedral model.

III. THE TIRAMISU EMBEDDED DSL
TIRAMISU is a domain-specific language (DSL) embedded

in C++. It provides a C++ API that allows users to write
a high level, architecture-independent algorithm and a set
of scheduling commands that guide code generation. Input
TIRAMISU code can either be written directly by a programmer,
or generated by a different DSL compiler. TIRAMISU then
constructs a high level intermediate representation (IR), applies
the user-specified loop and data-layout transformations, and
generates optimized backend code that takes advantage of target
hardware features (LLVM IR for multicores and distributed
machines and LLVM IR + CUDA for GPUs).

A. Scope of TIRAMISU

TIRAMISU is designed for expressing data parallel algo-
rithms, especially those that operate over dense arrays using
loop nests and sequences of statements. These algorithms are
often found in the areas of image processing, deep learning,
dense linear algebra, tensor operations and stencil computations.

B. Specifying the Algorithm

The first part of a TIRAMISU program specifies the algorithm
without specifying loop optimizations (when and where the
computations occur), data layout (how data should be stored in
memory), or communication. At this level there is no notion
of data location; rather, values are communicated via explicit
producer-consumer relationships.

The algorithm is a pure function that has inputs, outputs, and
is composed of a sequence of computations. A computation
is used to represent a statement in TIRAMISU. Flow-control
around computations is restricted to for loops and conditionals.
While loops, early exits, and GOTOs cannot be expressed. To
declare a computation, the user provides both the iteration
domain of the computation and the expression to compute.

Figure 2 shows a blur algorithm written in TIRAMISU. This
algorithm declares two computations, bx and by. The first
computation, bx, computes a horizontal blur of the input,
while the second computation, by, computes the final blur by
averaging the output of the first stage. The iterators i, j, and c
in line 2 define the iteration domain of bx and by (for brevity
we ignore boundary conditions). The algorithm is semantically
equivalent to the following code.



for (i in 0..N-2)
for (j in 0..M-2)
for (c in 0..3)
bx[i][j][c] =

(in[i][j][c]+in[i][j+1][c]+in[i][j+2][c])/3
for (i in 0..N-2)
for (j in 0..M-2)
for (c in 0..3)
by[i][j][c] =

(bx[i][j][c]+bx[i+1][j][c]+bx[i+2][j][c])/3

C. Scheduling Commands

TIRAMISU provides a set of high-level scheduling commands
for common optimizations; Table II shows some examples.
There are four types of scheduling commands:
• Commands for loop nest transformations: these commands

include common affine transformations such as loop tiling,
splitting, shifting, etc. For example, applying 32×32 loop
tiling to a computation C can be done by calling
C.tile(i,j,32,32,i0,j0,i1,j1) where i and j
are the original loop iterators and i0, j0, i1, and j1 are
the names of the loop iterators after tiling.

• Commands for mapping loop levels to hardware: examples
of these include loop parallelization, vectorization, and
mapping loop levels to GPU block or thread dimensions.
For example, calling C.vectorize(j, 4) splits the j
loop by a factor of 4 and maps the inner loop to vector
lanes.

• Commands for manipulating data: these include (1) al-
locating arrays; (2) setting array properties including
whether the array is stored in host, device, shared, or
local memory (GPU); (3) copying data (between levels
of memory hierarchies or between nodes); and (4) setting
array accesses. In most cases, users need only to use high
level commands for data manipulation. If the high level
commands are not expressive enough, the user can use the
more expressive low level commands.

• Commands for adding synchronization operations: the user
can either declare a barrier or use the send and receive
functions for point-to-point synchronization.

Novel commands introduced by TIRAMISU are high-
lighted in bold in Table II. They include array alloca-
tion, copying data between memory hierarchies, sending
and receiving data between nodes, and synchronization.
Calls to cache_shared_at(), cache_local_at(),
allocate_at(), copy_at(), barrier_at() return
an operation that can be scheduled like any other com-
putation (an operation in TIRAMISU is a special type of
computation that does not return any value). The operations
cache_shared_at() and cache_local_at() can be
used to create a cache for a buffer (GPU only). They automati-
cally compute the amount of data needing to be cached, perform
the data copy, and insert any necessary synchronization.

The use of allocate_at(), copy_at(), and
barrier_at() allows TIRAMISU to automatically
compute iteration domains for the data copy, allocation, and
synchronization operations. This is important because it
relieves the user from guessing or computing the iteration
domain manually, especially when exploring different possible

We assume that C and P are computations, b is a buffer
i and j are loop iterators

Commands for loop nest transformations
Command Description

C.tile( i,j,t1,t2,
i0,j0,i1,j1)

Tile the loop levels (i, j) of the computation C
by t1× t2. The names of the new loop levels
are (i0, j0, i1, j1) where i0 is the outermost
loop level and j1 is the innermost.

C.interchange(i, j) Interchange the i and j loop levels of C.
C.shift(i, s) Loop shifting (shift the loop level i by s

iterations).
C.split(i, s, i0, i1) Split the loop level i by s. (i0, i1) are the new

loop levels.
P.compute_at(C, j) Compute the computation P in the loop nest of C

at loop level j. This might introduce redundant
computations.

C.unroll(i, v) Unroll the loop level i by a factor v.
C.after(B, i) Indicate that C should be ordered after B at the

loop level i (they have the same order in all
the loop levels above i).

C.inline() Inline C in all of its consumers.
C.set_schedule() Transform the iteration domain of C using an

affine relation (a map to transform Layer I to
II expressed in the ISL syntax).

Commands for mapping loop levels to hardware
C.parallelize(i) Parallelize the i loop level for execution on a

shared memory system.
C.vectorize(i, v) Vectorize the loop level i by a vector size v.
C.gpu(i0, i1, i2, i3) Mark the loop levels i0, i1, i2 and i3 to be

executed on GPU. (i0, i1) are mapped to block
IDs and (i2, i3) to thread IDs.

C.tile_gpu(i0,i1,t1,t2) Tile the loops i0 and i1 by t1× t2 and map
them to GPU.

C.distribute(i) Parallelize the loop level i for execution on a
distributed memory system.

High level commands for data manipulation
C.store_in(b,{i, j}) Store the result of the computation C(i,j) in b[i,j].
C.cache_shared_at(P,i) Cache (copy) the buffer of C in shared memory.

Copying from global to shared GPU memory
will be done at loop level i of the computation P.
The amount of data to copy, the access functions,
and synchronization are computed automatically.

C.cache_local_at(P, i) Similar to cache_shared_at but stores in
local GPU memory.

send(d, src, s, q, p) Create a send operation. d: vector of iterators
to represent the iteration domain of the send;
src: source buffer; s: size; q: destination node;
p: properties (synchronous, asynchronous,
blocking, ...).

receive(d,dst,s,q,p) Create a receive operation. Arguments similar
to send except q, which is the source node.

Low level commands for data manipulation
Buffer b(sizes, type) Declare a buffer (sizes: a vector of dimension

sizes).
b.allocate_at(p, i) Return an operation that allocates b at the loop

i of p. An operation can be scheduled like
any computation.

C.buffer() Return the buffer associated to the computation
C.

b.set_size(sizes) Set the size of a buffer. sizes: a vector of
dimension sizes.

b.tag_gpu_global() Tag buffer to be stored in global GPU memory.
b.tag_gpu_shared() Tag buffer to be stored in shared GPU memory.
b.tag_gpu_local() Tag buffer to be stored in local GPU memory.
b.tag_gpu_constant() Tag buffer to be stored in constant GPU memory.
C.host_to_device() Return an operation that copies C.buffer() from

host to device.
C.device_to_host() Return an operation that copies C.buffer() from

device to host.
copy_at(p, i, bs, bd) Return an operation that copies the buffer bs

to the buffer bd at the loop i of p. Used for
copies between global, shared and local.

Commands for synchronization
barrier_at(p, i) Create a barrier at the loop p of i.

TABLE II: Examples of TIRAMISU Scheduling Commands



TIRAMISU Scheduling Commands Pseudocode Representing Code Generated by TIRAMISU

(a)

1 // Scheduling commands for targeting
2 // a multicore architecture.
3
4 // Tiling and parallelization.
5 Var i0, j0, i1, j1;
6 by.tile(i, j, 32, 32, i0, j0, i1, j1);
7 by.parallelize(i0);
8 bx.compute_at(by, j0);

1
2 Parallel for(i0 in 0..floor((N-2)/32))
3 for(j0 in 0..floor((M-2)/32))
4 bx[32,34,3];
5 // Tiling with redundancy
6 for(i1 in 0..min((N-2)%32,32)+2)
7 for(j1 in 0..min((M-2)%32,32)+2)
8 int i = i0*32+i1
9 int j = j0*32+j1

10 for (c in 0..3)
11 bx[i1][j1][c]=
12 (in[i][j][c] + in[i][j+1][c]
13 + in[i][j+2][c])/3
14
15 for(i1 in 0..min(N-2,32))
16 for(j1 in 0..min(M-2,32))
17 int i = i0*32+i1
18 int j = j0*32+j1
19 for (c in 0..3)
20 by[i][j][c]=
21 (bx[i][j][c] + bx[i+1][j][c]
22 + bx[i+2][j][c])/3

(b)

1 // Scheduling commands for targeting GPU.
2
3 // Tile i and j and map the resulting dimensions
4 // to GPU
5 Var i0, j0, i1, j1;
6 by.tile_gpu(i, j, 32, 32, i0, j0, i1, j1);
7 bx.compute_at(by, j0);
8 bx.cache_shared_at(by, j0);
9

10 // Use struct-of-array data layout
11 // for bx and by.
12 bx.store_in({c,i,j});
13 by.store_in({c,i,j});
14
15 // Create data copy operations
16 operation cp1 = in.host_to_device();
17 operation cp2 = by.device_to_host();
18
19 // Specify the order of execution of copies
20 cp1.before(bx, root);
21 cp2.after(by, root);

1
2 host_to_device_copy(in_host, in);
3
4 GPUBlock for(i0 in 0..floor((N-2)/32))
5 GPUBlock for(j0 in 0..floor((M-2)/32))
6 shared bx[3,32,34];
7 // Tiling with redundancy
8 GPUThread for(i1 in 0..min((N-2)%32,32)+2)
9 GPUThread for(j1 in 0..min((M-2)%32,32)+2)

10 int i = i0*32+i1
11 int j = j0*32+j1
12 for (c in 0..3)
13 bx[c][i1][j1]=
14 (in[i][j][c] + in[i][j+1][c]
15 + in[i][j+2][c])/3
16
17 GPUThread for(i1 in 0..min(N-2,32))
18 GPUThread for(j1 in 0..min(M-2,32))
19 int i = i0*32+i1
20 int j = j0*32+j1
21 for (c in 0..3)
22 by[c][i][j]=
23 (bx[c][i][j] + bx[c][i+1][j]
24 + bx[c][i+2][j])/3
25
26 device_to_host_copy(by, by_host);

(c)

1 // Scheduling commands for targeting
2 // a distributed system
3
4 // Declare additional iterators
5 Var is(1, Nodes), ir(0,Nodes-1), i0, i1;
6
7 // Split loop i into loops i0 and i1 and
8 // parallelize i1
9 bx.split(i,N/Ranks,i0,i1); bx.parallelize(i1);

10 by.split(i,N/Ranks,i0,i1); by.parallelize(i1);
11
12 // Communicate the border rows where necessary
13 send s =
14 send({is}, lin(0,0,0), M*2*3, is-1, {ASYNC});
15 recv r =
16 receive({ir}, lin(N,0,0), M*2*3, ir+1,{SYNC},s);
17
18 // Order execution
19 s.before(r,root);
20 r.before(bx,root)
21
22 // Distribute the outermost loops
23 bx.distribute(i0); by.distribute(i0);
24 s.distribute(is); r.distribute(ir);

1 // We assume that in[][][] is initially
2 // distributed across nodes. Each node
3 // has a chunk of the original
4 // in[][][] that we call lin[][][].
5
6 // Start by exchanging border rows of
7 // lin[][][]
8 distributed for (is in 1..Nodes)
9 send(lin(0,0,0), M*2*3, is-1,{ASYNC})

10 distributed for (ir in 0..Nodes-1)
11 recv(lin(N,0,0), M*2*3, ir+1, {SYNC})
12
13 distributed for (i0 in 0..Nodes)
14 parallel for (i1 in 0..(N-2)/Nodes)
15 int i = i0*((N-2)/Nodes) + i1
16 for (j in 0..M-2)
17 for (c in 0..3)
18 bx[i][j][c] =
19 (lin[i][j][c] + lin[i][j+1][c]
20 + lin[i][j+2][c])/3
21
22 distributed for (i0 in 0..Nodes)
23 parallel for (i1 in 0..(N-2)/Nodes)
24 int i = q*((N-2)/Nodes) + i1
25 for (j in 0..M-2)
26 for (c in 0..3)
27 by[i][j][c] =
28 (bx[i][j][c] + bx[i+1][j][c]
29 + bx[i+2][j][c])/3
30
31 // We assume that no gather operation on
32 // by[][][] is needed

Fig. 3: Three examples illustrating TIRAMISU scheduling commands (left) and the corresponding generated code (right). (a)
shows scheduling commands for mapping to a multicore architecture; (b) shows scheduling commands for mapping to GPU; (c)
uses commands to map to a distributed CPU machine.

schedules. For example, consider copying a buffer from global
memory to shared memory in a loop nest executing on a

GPU. The size of the area to copy and the iteration domain
of the copy operation itself (which is a simple assignment



in this case) depends on whether the loop is tiled, the tile
size, and whether any other loop transformation has already
been applied. TIRAMISU simplifies this step by automatically
computing the iteration domain and the area of data to copy
from the schedule.

To illustrate more TIRAMISU scheduling commands, let us
take the blur example again from Figure 2 and map it for
execution on a multicore architecture. The necessary scheduling
commands are shown in Figure 3-(a) (left). The tile()
command tiles the computation by. The compute_at()
command computes the tile of bx that needs to be consumed
by by at the loop level j0. This transformation introduces re-
dundant computations (in this case) and is known as overlapped
tiling [28]. The parallelize() command parallelizes the
i0 loop.

Now let us take the same example but map the two
outermost loops of bx and by to GPU. The necessary
scheduling commands are shown in Figure 3-(b) (left). The
tile_gpu() command tiles the computation by then maps
the new loops to GPU block and thread dimensions. The
compute_at() command computes the tile of bx needed
by by at the loop level j0 (this introduces redundant compu-
tations). cache_shared_at() instructs TIRAMISU to store
the results of the bx computation in shared memory. Copying
from global to shared memory will be done at the loop level j0
of by. The subsequent store_in() command specifies the
access functions for bx and by. In this case, it indicates that
these computations are stored in a SOA (struct-of-array) data
layout (to allow for coalesced accesses). The final commands
create data copy operations (host-to-device and device-to-host)
and schedule them.

Suppose we want to run the blur example on a
distributed system with a number of multicore CPU
nodes equal to Nodes. Figure 3-(c) (left) shows the
scheduling commands to use in this case. We assume
that the array in[][][] is initially distributed across
nodes such that node n has the chunk of data represented by
in[n*((N-2)/Nodes)..(n+1)*((N-2)/Nodes),*,*].
In other words, this corresponds to row n*(N-2)/Nodes
through row (n+1)*((N-2)/Nodes). This chunk is stored
in the local array lin[][][].
send() and recv() define communication for the border

regions. Assuming that each node has a chunk of in. The
blur computation for a chunk stored in node n requires the
first two rows of data from the chunk stored in node n+1. These
two rows are referred to as the border region. The send()
will send 2 rows (M × 2× 3 contiguous data elements) from
node is to node is-1 starting from lin(0,0,0), which
corresponds to the first two rows of the chunk on node is. In
response, the recv for node ir will receive 2 rows (M×2×3
contiguous data elements) from node ir+1, which corresponds
to ir receiving the first two rows from node ir+1. The
receive for node ir places these elements starting at the end
of its local chunk by starting at lin(N,0,0). Additionally,
{ASYNC} defines an asynchronous send and {SYNC} defines
a synchronous receive. Finally, we tag the appropriate loops

(the outer loops of bx, by, s, and r), to be distributed (i.e.,
we tag each iteration to run on a different node).

All other scheduling commands in TIRAMISU can be
composed with sends, recvs, and distributed loops, as long
as the composition is semantically correct.

IV. THE TIRAMISU IR

The main goal of TIRAMISU’s multi-layer intermediate
representation is to simplify the implementation of scheduling
commands by applying them in a specific order. This section
illustrates why, and describes the layers of the TIRAMISU IR.

A. Rationale for a Multi-layer IR

In this section we provide examples showing why current
intermediate representations are not adequate for TIRAMISU
and why we need a multi-layer IR.

Most current intermediate representations use memory
to communicate between program statements. This creates
memory-based dependencies in the program, and forces com-
pilers to choose data layout before deciding on optimizations
and mapping to hardware. Optimizing a program for different
hardware architectures usually requires modifying the data
layout and eliminating memory-based dependencies since they
restrict optimizations [31]. Thus, any data layout specified
before scheduling must be undone to allow more freedom for
scheduling, and the code must be adapted to use the data-
layout best-suited for the target hardware. Applying these data-
layout transformations and the elimination of memory-based
dependencies is challenging [23], [45], [30], [17], [33], [32],
[29], [38], [13].

Another example that demonstrates the complexity of code
generation is mapping buffers to shared and local memory on
GPU. The amount of data that needs to be copied to shared
memory and when to perform synchronization both depend
on how the code is optimized (for example, whether the code
has two-level tiling or not). The same applies to deciding the
amount of data to send or receive when generating distributed
code. Therefore, buffer mapping to memory hierarchies, com-
munication management, and synchronization should not occur
before scheduling.

TIRAMISU addresses these complexities in code generation
by using a multi-layer IR that fully separates the architecture-
independent algorithm from loop transformations, data layout
and communication. The first layer representation describes
the pure algorithm using producer-consumer relationships
without memory locations. The second layer specifies the order
of computation, along with which processor computes each
value; this layer is suitable for performing a vast number of
optimizations without dealing with concrete memory layouts.
The third layer specifies where to store intermediate data before
they are consumed. The fourth layer adds all the necessary
communication and synchronization operations.

The separation of layers defines a specific order for applying
optimizations and ensures that compiler passes in a given layer
need not to worry about modifying or undoing a decision
made in an earlier layer. For example, the phase that specifies



the order of computations and where they occur can safely
assume that no data-layout transformations are required. This
simple assumption allows TIRAMISU to avoid the need to
rely on a large body of research that focuses on data-layout
transformations to allow scheduling [23], [45], [30], [17], [33],
[32], [29], [38], [13].

B. Background

In this section, we provide an overview of two main concepts
used in the polyhedral model: integer sets and maps. These two
concepts will be used in later sections to define the different
IR layers.

Integer sets represent iteration domains while maps are
used to represent memory accesses and to transform iteration
domains and memory accesses (apply loop nest and memory
access transformations). More details and formal definitions
for these concepts are provided in [47], [2], [36].

An integer set is a set of integer tuples described using affine
constraints. An example of a set of integer tuples is

{(1, 1); (2, 1); (3, 1); (1, 2); (2, 2); (3, 2)}
Instead of listing all the tuples as we do in the previous set, we
can describe the set using affine constraints over loop iterators
and symbolic constants as follows:

{S(i, j) : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 2}
where i and j are the dimensions of the tuples in the set.

A map is a relation between two integer sets. For example
{S1(i, j)→ S2(i+ 2, j + 2) : 1 ≤ i ≤ 3 ∧ 1 ≤ j ≤ 2}

is a map between tuples in the set S1 and tuples in the set S2
(e.g. the tuple S1(i, j) maps to the tuple S2(i+ 2, j + 2) ).

All sets and maps in TIRAMISU are implemented using the
Integer Set Library (ISL) [47]. We also use the ISL library
notation for sets and maps throughout the paper.

C. The Multi-Layer IR

A typical workflow for using TIRAMISU is illustrated in
Figure 4. The user writes the pure algorithm and provides
a set of scheduling commands. The first layer of the IR is
then transformed into lower layers, and finally TIRAMISU
generates LLVM or other appropriate low-level IR. TIRAMISU
uses integer sets to represent each of the four IR layers and
uses maps to represent transformations on the iteration domain
and data layout. The remainder of this section describes the
four layers of the TIRAMISU IR.

1) Layer I (Abstract Algorithm): Layer I of TIRAMISU
specifies the algorithm without specifying when and where
computations occur, how data should be stored in memory, or
communication. Values are communicated via explicit producer-
consumer relationships.

For example, the Layer I representation of the code in
Figure 2 for the computation by is as follows:
{by(i, j, c) : 0 ≤ i < N − 2 ∧ 0 ≤ j < M − 2 ∧ 0 ≤ c < 3} :

(bx(i, j, c) + bx(i+ 1, j, c) + bx(i+ 2, j, c))/3

The first part, {by(i, j, c) : 0 ≤ i < N − 2∧ 0 ≤ j < M − 2∧ 0 ≤
c < 3} , specifies the iteration domain of the computation
by, while the second part is the computed expression. The
iteration domain is the set of tuples by(i, j, c) such that

Layer I: Abstract Algorithm

Portable performance across a range of platforms

Layer II: Computation Management

Layer III: Data Management

Automatic or 
user specified 

schedules

Tiramisu

Backends

High 
Level 
Code

FPGA 
(Xilinx)

Communication (distribution across nodes)

Vectorized
parallel 

X86
GPU  

(Nvidia)

Code generation: Abstract Syntax Tree

...

Layer IV: Communication Management

Developer DSL Compiler

Fig. 4: TIRAMISU overview

0 ≤ i < N − 2 ∧ 0 ≤ j < M − 2 ∧ 0 ≤ c < 3 . Computations in
Layer I are not ordered; declaration order does not affect the
order of execution, which is specified in Layer II.

2) Layer II (Computation Management): Layer II of
TIRAMISU specifies the order of execution of computations
and the processor on which they execute. This layer does not
specify how intermediate values are stored in memory; this sim-
plifies optimization passes since these transformations do not
need to perform complicated data-layout transformations. The
transformation of Layer I into Layer II is done automatically
using scheduling commands.

Figure 3-(b) (right) shows the GPU-optimized version of the
code, produced by the scheduling and data-layout commands
on the left side. The corresponding Layer II representation for
the by computation is shown below:
{by(1, i0(gpuB), j0(gpuB), i1(gpuT ), j1(gpuT ), c) : i0 =

floor(i/32) ∧ j0 = floor(j/32) ∧ i1 = i%32 ∧ j1 = j%32 ∧ 0 ≤ i <

N −2∧0 ≤ j < M −2∧0 ≤ c < 3} : (bx(i0∗32+ i1, j0∗32+ j1, c)+

bx(i0∗32+ i1+1, j0∗32+j1, c)+bx(i0∗32+ i1+2, j0∗32+j1, c))/3

Computations in Layer II are ordered based on their lexico-
graphical order2. The set before the colon in the representation
is an ordered set of computations. The tag gpuB for the
dimension i0 and j0 indicates that each iteration (i0, j0) is
mapped to the GPU block (i0, j0). In Layer II, the total
ordering of these tuples determines execution order.

Computations in this layer are ordered and assigned to a
particular processor; the order is dictated by time dimensions
and space dimensions. Time dimensions specify the order of

2For example the computation S0(0, 0, 0) is lexicographically before the
computation S0(0, 0, 1) and the computations S0(0, i, 0) are lexicographically
before the computations S0(1, i, 0)



execution relative to other computations while space dimensions
specify on which processor each computation executes. Space
dimensions are distinguished from time dimensions using
tags, which consist of a processor type. Currently, TIRAMISU
supports the following space tags:

cpu the dimension runs on a CPU in a shared memory system
node the dimension maps to nodes in a distributed system
gpuT the dimension maps to a gpu thread dimension.
gpuB the dimension maps to a gpu block dimension.

Tagging a dimension with a processor type indicates that
the dimension will be distributed over processors of that type;
for example, tagging a dimension with cpu will execute each
iteration of that loop dimension on a separate CPU.

Other tags that transform a dimension include:

vec(s) vectorize the dimension (s is the vector length)
unroll unroll the dimension

Computations mapped to the same processor are ordered by
projecting the computation set onto the time dimensions and
comparing their lexicographical order.

3) Layer III (Data Management): Layer III makes the
data layout concrete by specifying where intermediate values
are stored. Any necessary buffer allocations/deallocations
are also constructed in this level. TIRAMISU generates this
layer automatically from Layer II by applying the scheduling
commands for data mapping.

The data management layer specifies memory locations
for storing computed values. It consists of the Layer II
representation along with allocation/deallocation statements,
and a set of access relations, which map a computation from
Layer II to array elements read or written by that computation.
Scalars are treated as single-element arrays. For each buffer,
an allocation statement is created, specifying the type of the
buffer and its size. Similarly, a deallocation statement is also
added.

Possible data mappings in TIRAMISU include mapping
computations to structures-of-arrays, arrays-of-structures, and
contraction of multidimensional arrays into arrays with fewer
dimensions or into scalars. It is also possible to specify more
complicated accesses such as the storage of computations c(i, j)
into the array elements c(i%2, j%2) or into c(j, i).

In the example of Figure 3-(b) (left), setting the data access
using by.store_in(c,i,j) indicates that the result of the
computation by(i, j, c) is stored in the array element by[c, i, j]

. This command generates the following map in Layer III:
{by(1, i0(gpuB), j0(gpuB), i1(gpuT ), j1(gpuT ), c) → by[c, i0 ∗ 32 +

i1, j0∗32+j1] : i0 = floor(i/32)∧j0 = floor(j/32)∧i1 = i%32∧j1 =

j%32 ∧ 0 ≤ i < N − 2 ∧ 0 ≤ j < M − 2 ∧ 0 ≤ c < 3}
Data mapping in TIRAMISU is an affine relation that maps

each computation to a buffer element. TIRAMISU allows any
data-layout mapping expressible as an affine relation.

4) Layer IV (Communication Management): Layer IV adds
synchronization and communication operations to the represen-
tation, mapping them to the time-space domain, and concretizes

when statements for buffer allocation/deallocation occur. This
layer is generated automatically from Layer III by applying user-
specified commands. Any allocation or deallocation operation
added in Layer III is also mapped to the time-space domain
in this layer.

V. COMPILER IMPLEMENTATION

Since the main contribution of this paper is not in introducing
new techniques for code generation, we only provide a high
level overview of how TIRAMISU generates the IR layers and
target code. Throughout the section, we refer the reader to the
appropriate literature for more details.

In the rest of this section we describe how scheduling
commands transform Layers I, II, III and IV. We also describe
how target code is generated from Layer IV.

a) Transforming Layer I into Layer II: Transforming
Layer I into Layer II is done using two types of scheduling
commands: (1) commands for loop nest transformations (such
as tile(), split(), shift(), interchange()); and
(2) commands for mapping loop levels to hardware (including
parallelize(), vectorize(), gpu()).

The first type of scheduling command applies a map that
transforms the iteration domain. For example, when a tiling
command is applied on the by computation in Figure 2, it gets
translated into the following map:
{by(i, j, c)→ by(i0, j0, i1, j1, c) : i0 = floor(i/32) ∧ i1 = i%32∧

j0 = floor(j/32) ∧ j1 = j%32 ∧ 0 ≤ i < N ∧ 0 ≤ j < N}
This map is then applied on the Layer I representation, pro-

ducing the Layer II representation. Composing transformations
is done by composing different maps, since the composition
of two affine maps is an affine map.

The second type of command adds space tags to dimensions
to indicate which loop levels to parallelize, vectorize, map to
GPU blocks, and so on.

b) Transforming Layer II into Layer III: This is done
by augmenting Layer II with access relations. By default,
TIRAMISU uses identity access relations (i.e., access relations
that store a computation C(i,j) into a buffer C[i,j]).
If the store_in() command is used, the access relation
is deduced from that command instead. Buffer allocations
are also added while transforming Layer II into Layer III.
The scheduling command b.allocate_at(C, i) creates
a new statement that allocates the buffer b in the same loop
nest of the computation C but at loop level i.

c) Transforming Layer III into Layer IV: Scheduling
commands for data communication (send and receive), syn-
chronization, and for copying data between global, shared and
local memory are all translated into statements. For example,
the send() and receive() commands are translated into
function calls that will be translated into MPI calls during code
generation.

A. Code Generation

Generating code from the set of computations in Layer IV
amounts to generating nested loops that visit each computation



in the set, once and only once, while following the lexico-
graphical ordering between the computations [5], [27], [38].
TIRAMISU relies on an implementation of the Cloog [5] code
generation algorithm provided by the ISL library [47]. The
TIRAMISU code generator takes Layer IV IR and generates
an abstract syntax tree (AST). The AST is then traversed to
generate lower level code for specific hardware architectures
(depending on the target backend).

The multicore CPU code generator generates LLVM IR from
the AST. In order to generate LLVM IR, we use Halide as
a library: we first generate the Halide IR then we lower the
Halide IR to LLVM IR using Halide. We do not use Halide
to perform any high level code optimization. All the code
optimizations are performed by TIRAMISU before generating
the Halide IR. The Halide compiler then lowers the Halide IR
loops into LLVM IR.

The GPU code generator generates LLVM IR for the host
code and CUDA for the kernel code. Data copy commands
and information about where to store buffers (shared, constant,
or global memory) are all provided in Layer IV. TIRAMISU
translates these into the equivalent CUDA data copy calls
and buffer allocations in the generated code. Computation
dimensions tagged with GPU thread or GPU block tags are
translated into the appropriate GPU thread and block IDs in
the lowered code. The TIRAMISU code generator can generate
coalesced array accesses and can use shared and constant
memories. It can also avoid thread divergence by separating
full tiles (loop nests with a size that is multiple of the tile size)
from partial tiles (the remaining part of a loop).

The code generator for distributed memory systems utilizes
MPI. During code generation, all the function calls for data
copying are translated to the equivalent MPI function calls.
The generated code is postprocessed and each distributed loop
is converted into a conditional based on the MPI rank of the
executing process. For example:

for(q in 1..N-1) {...} // distribute on q

becomes:
q = get_rank(); if (q≥1 and q<N-1) {...}

B. Support for Non-Affine Iteration Spaces

TIRAMISU represents non-affine array accesses, non-affine
loop bounds, and non-affine conditionals in a way similar to
Benabderrahmane et al. [6]. For example, a conditional is
transformed into a predicate and attached to the computation.
The list of accesses of the computation is the union of
the accesses of the computation in the two branches of
the conditional; this is an over-approximation. During code
generation, a preprocessing step inserts the conditional back
into the generated code. The efficiency of these techniques
was demonstrated by Benabderrahmane et al. [6] and was
confirmed in the PENCIL compiler [4]. Our experiences in
general, as well as the experiments in this paper, show that
these approximations do not hamper performance.

Tiramisu Reference

N
or

m
al

iz
ed

 T
im

e

1

2

3

4

5

6

Conv

VGG

Sgem
m

HPCG

Baryon

Fig. 5: Normalized Execution Times for Deep Learning, Linear
and Tensor Algebra Benchmarks.

VI. EVALUATION

We evaluate TIRAMISU on two sets of benchmarks. The first
is a set of deep learning and linear algebra benchmarks. The
second is a set of image processing benchmarks.

We performed the evaluation on a cluster of 16 nodes. Each
node is a dual-socket machine with two 24-core Intel Xeon E5-
2680v3 CPUs, 128 GB RAM, Ubuntu 14.04, and an Infiniband
interconnect. We use the MVAPICH2 2.0 [25] implementation
of MPI for the distributed tests. The multicore experiments
(CPU) are performed on one of these nodes. GPU experiments
are performed on an NVIDIA Tesla K40 with 12 GB of RAM.
Each experiment is repeated 30× and the median time is
reported.

A. Deep Learning and Linear Algebra Benchmarks

We evaluated TIRAMISU by implementing a set of deep
learning and linear algebra benchmarks, including Conv (a
direct implementation of a neural network convolution layer),
VGG (a block of a VGG neural network), and sgemm (matrix
multiplication used to implement convolutions), HPCG (a
benchmark for multigrid preconditioned conjugate gradient,
CG)3, and Baryon (a dense tensor contraction code for
constructing Baryon Building Blocks [16]). For all of these
benchmarks, we compare the TIRAMISU implementation with
Intel MKL, except for HPCG and Baryon, where we compare
TIRAMISU with reference implementations. Figure 5 shows a
comparison between the performance of CPU code generated
by Tiramisu and reference code. For sgemm and HPCG we
use matrices of size 1060 × 1060 and vectors of size 1060
while for Conv and VGG we use 512× 512 as the data input
size, 16 as the number of input/output features and a batch
size of 32. For Baryon, we use the same tensor sizes as in
the reference code.

For sgemm, TIRAMISU matches the performance of Intel
MKL. sgemm is interesting in particular because the Intel
MKL implementation of this kernel is well-known for its hand-
optimized performance. We used a large set of optimizations
to match Intel MKL. These optimizations include two-level

3http://www.hpcg-benchmark.org/

http://www.hpcg-benchmark.org/


blocking of the three-dimensional sgemm loop, vectorization,
unrolling, array packing, register blocking, and separation of
full and partial tiles (which is crucial to enable vectorization,
unrolling, and reducing control overhead). We also used auto-
tuning to find the best tile size and unrolling factor for the
machine on which we run our experiments.

For the Conv kernel, TIRAMISU outperforms the Intel MKL
implementation because the TIRAMISU-generated code uses a
fixed size for the convolution filter. We generate specialized
versions for common convolution filter sizes (3 × 3, 5 × 5,
7× 7, 9× 9 and 11× 11). This allows the TIRAMISU compiler
to apply optimizations that Intel MKL does not perform;
for example this allows TIRAMISU to unroll the innermost
(convolution filter) loops since their size is known at compile
time. In VGG, TIRAMISU fuses the two convolution loops of
the VGG block, which improves data locality. In addition, we
generate code with fixed sizes for convolution filters (as we
did in Conv). This provides 2.3× speedup over Intel MKL.
The TIRAMISU speedup over the Baryon reference code is
achieved through vectorization, but this vectorization is not
trivial since it requires the application of array expansion and
then the use of scatter/gather operations, which are both not
implemented in the reference Baryon code.

B. Image Processing Benchmarks

We used the following image processing benchmarks in
our evaluation: edgeDetector, a ring blur followed by
Roberts edge detection [41]; cvtColor, which converts an
RGB image to grayscale; conv2D, a simple 2D convolution;
warpAffine, which does affine warping on an image;
gaussian, which performs a gaussian blur; nb, a synthetic
pipeline composed of 4 stages that computes a negative and
a brightened image from the same input image; and ticket
#2373, a code snippet from a bug filed against Halide. This
code simply has a loop that assigns a value to an array
but the iteration space is not rectangular (it tests if x >=
r where x and r are loop iterators). The inferred bounds
in this code are over-approximated, causing the generated
code to fail due to an assertion during execution. Four of
these benchmarks have non-affine array accesses and non-
affine conditionals for clamping (to handle boundary cases):
edgeDetector, conv2D, warpAffine and gaussian.
We used a 2112× 3520 RGB input image for the experiments.

We compare TIRAMISU with two other compilers:
Halide [39], an industrial-quality DSL for image processing that
has a scheduling language, and PENCIL [3], a state-of-the-art
fully automatic polyhedral compiler.

Figure 6 compares the normalized execution time of code
generated by TIRAMISU to other state-of-the-art frameworks on
three architectures: single-node multicore, GPU and distributed
(16 nodes). For the single-node multicore and GPU we
compare TIRAMISU to Halide and PENCIL. For the distributed
architecture, we compare to distributed Halide [15].

a) Single-node multicore: In four of the benchmarks, the
performance of the code generated by TIRAMISU matches
the performance of Halide. We use the same schedule for

both implementations; these schedules were hand-written by
Halide experts. The results for edgeDetector, conv2D,
warpAffine and gaussian, which have non-affine array
accesses and conditionals, show that TIRAMISU handles such
access patterns efficiently.

Two of the other benchmarks, edgeDetector and
ticket #2373, cannot be implemented in Halide. The
following code snippet shows edgeDetector:

/* Ring Blur Filter */
R(i,j) =(Img(i-1,j-1) + Img(i-1,j) + Img(i-1,j+1)+

Img(i,j-1) + Img(i,j+1) +
Img(i+1,j-1) + Img(i+1,j) + Img(i+1,j+1))/8

/* Roberts Edge Detection Filter */
Img(i,j) = abs(R(i,j) - R(i+1,j-1)) +

abs(R(i+1,j)- R(i,j-1))

edgeDetector creates a cyclic dependence graph with a
cycle length ≥ 1 ( R is written in the first statement and read
in the second while Img is written in the second and read
in the first), but Halide can only express programs with an
acyclic dependence graph, with some exceptions; this restriction
is imposed by the Halide language and compiler to avoid
the need to prove the legality of some optimizations (since
proving the legality of certain optimizations is difficult in the
Halide interval-based representation). TIRAMISU does not have
this restriction since it checks transformation legality using
dependence analysis [18].

In ticket #2373, which exhibits a triangular iteration
domain, Halide’s bounds inference over-approximates the
computed bounds, which leads the generated code to fail in
execution. This over-approximation in Halide is due to the
use of intervals to represent iteration domains, which prevents
Halide from performing precise bounds inference for non-
rectangular iteration spaces. TIRAMISU can handle this case
naturally since it relies on the polyhedral model where sets can
include any affine constraint in addition to loop bounds. These
examples show that the model exposed by TIRAMISU naturally
supports more complicated code patterns than an advanced,
mature DSL compiler.

For nb, the code generated from TIRAMISU achieves 3.77×
speedup over the Halide-generated code. This is primarily due
to loop fusion. In this code, TIRAMISU enhances data locality
by fusing loops into one loop; this is not possible in Halide,
which cannot fuse loops if they update the same buffer. Halide
makes this conservative assumption because otherwise it cannot
prove the fusion is legal. This is not the case for TIRAMISU,
which uses dependence analysis to prove correctness.

The slowdown of the PENCIL compiler in gaussian is due
to a suboptimal decision made by PENCIL. The gaussian
kernel is composed of two successive loop nests (each of them
contains three loop levels). PENCIL decides to interchange
the two innermost loop levels in order to enable the fusion
of the two successive loop nests. This decision minimizes
the distance between producer and consumer statements (first
and second loop nests), but it also reduces spatial locality
because it leads to non-contiguous memory accesses. The right
decision in this case is a trade-off. Such a trade-off is not
captured by the Pluto automatic scheduling algorithm used



Architectures Frameworks Benchmarks
edge

Detector cvtColor Conv2D warp
Affine gaussian nb ticket

#2373

Single-node 
multicore

Tiramisu 1 1 1 1 1 1 1
Halide - 1 1 1 1 3.77 -

PENCIL 2.43 2.39 11.82 10.2 5.82 1 1

GPU
Tiramisu 1.05 1 1 1 1 1 1
Halide - 1 1.3 1 1.3 1.7 -

PENCIL 1 1 1.33 1 1.2 1.02 1

Distributed
(16 Nodes)

Tiramisu 1 1 1 1 1 1 1
Dist-Halide - 1.31 3.25 2.54 1.57 1.45 -

Fig. 6: A heatmap comparing the normalized execution times of code generated by TIRAMISU with other frameworks (lower
is better). Comparison is performed on three architectures: single-node multicore, GPU, distributed (16 nodes). ”-” indicates
unsupported benchmarks.

within PENCIL. For the other kernels, both TIRAMISU and
Halide apply vectorization and unrolling on the innermost loops,
while PENCIL does not since the multicore code generator
of PENCIL does not implement these two optimizations.
For warpAffine, both TIRAMISU and Halide have a high
speedup over PENCIL because the unique loop nest in this
benchmark has 25 statements, and vectorizing the innermost
loop transforms all of these statements to their vector equivalent
while unrolling increases register reuse and instruction level
parallelism on the 24 cores of the test machine.

b) GPU: For the GPU backend, the reported times are
the total execution times (data copy and kernel execution).
Code generated by TIRAMISU for conv2D and gaussian is
faster than that of Halide because code generated by TIRAMISU
uses constant memory to store the weights array, while the
current version of Halide does not use constant memory for
its PTX backend. The only difference between the schedule
of TIRAMISU and Halide in these benchmarks is the use of
tag_gpu_constant() in TIRAMISU. Data copy times, for
all the filters, are the same for TIRAMISU and Halide. For nb,
the code generated by TIRAMISU achieves 1.7× speedup over
that generated by Halide because TIRAMISU is able to apply
loop fusion, which Halide cannot apply.

Compared to PENCIL, the speedup in conv2D and
gaussian is due to the fact that PENCIL generates unnec-
essarily complicated control flow within the CUDA kernel,
which leads to thread divergence.

c) Distributed: We assume the data are already dis-
tributed across the nodes by rows. Of these benchmarks,
nb, cvtColor and ticket #2373 do not require any
communication; the other four require communication due
to overlapping boundary regions in the distributed data.

Figure 6 compares the execution time of distributed
TIRAMISU and distributed Halide. TIRAMISU is faster than
distributed Halide in each case. It achieves up to 3.25× speedup
for conv2D. For the kernels involving communication, code
generated by distributed Halide has two problems compared to

edgeDetect
Conv2D
cvtColor
gaussian
nb
warpAffine
#2373

Sp
ee

du
p 

(O
ve

r 2
 N

od
es

)

1

2

3

4

5

6

7

8

9

10

number of nodes
2 4 8 16

Fig. 7: Speedup of code generated by distributed TIRAMISU
for 2, 4, 8, and 16 nodes. The baseline is the execution time
on 2 nodes.

TIRAMISU: distributed Halide overestimates the amount of data
it needs to send, and unnecessarily packs together contiguous
data into a separate buffer before sending.

Distributed Halide overestimates the amount of data it needs
to send because the benchmarks have array accesses that cannot
be analyzed statically (the array accesses are clamped4 to handle
boundary cases), therefore distributed Halide cannot compute
the exact amount of data to send. To avoid this problem,
TIRAMISU uses explicit communication using the send()
and receive() scheduling commands. The use of these two
commands is the only difference between the TIRAMISU and
distributed Halide. These commands allow the user to specify
exactly the amount of data to send and also allow the compiler
to avoid unnecessary packing.

Figure 7 shows the speedup of the kernels with distributed
TIRAMISU when running on 2, 4, 8, and 16 nodes. This graph
shows that distributed code generated from TIRAMISU scales
well as the number of nodes increases (strong scaling).

4clamp(i, 0, N) returns 0 if i < 0, N if i > N , i otherwise.



VII. CONCLUSION

This paper introduces TIRAMISU, a polyhedral compiler
framework that features a scheduling language with commands
for targeting multicore CPUs, GPUs, and distributed systems.
A four-layer intermediate representation that separates the
algorithm, when and where computations occur, the data layout
and the communication is used to implement the compiler. We
evaluate TIRAMISU by targeting a variety of backends and
demonstrate that it generates code matching or outperforming
state-of-the-art frameworks and hand-tuned code.

ACKNOWLEDGEMENTS

This work was supported by the ADA Research Center, a
JUMP Center co-sponsored by SRC and DARPA.

REFERENCES

[1] Saman P. Amarasinghe and Monica S. Lam. Communication optimization
and code generation for distributed memory machines. SIGPLAN Not.,
28(6):126–138, June 1993.

[2] Riyadh Baghdadi, U. Beaugnon, A. Cohen, T. Grosser, M. Kruse,
C. Reddy, S. Verdoolaege, J. Absar, S. v. Haastregt, A. Kravets,
A. Lokhmotov, A. Betts, J. Ketema, A. F. Donaldson, R. David, and
E. Hajiyev. Pencil: a platform-neutral compute intermediate language
for accelerator programming. In under review, 2015.

[3] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser,
Michael Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alas-
tair F. Donaldson, Jeroen Ketema, Javed Absar, Sven van Haastregt,
Alexey Kravets, Anton Lokhmotov, Robert David, and Elnar Hajiyev.
Pencil: A platform-neutral compute intermediate language for accelerator
programming. In Proceedings of the 2015 International Conference
on Parallel Architecture and Compilation (PACT), PACT ’15, pages
138–149, Washington, DC, USA, 2015. IEEE Computer Society.

[4] Riyadh Baghdadi, Albert Cohen, Tobias Grosser, Sven Verdoolaege,
Anton Lokhmotov, Javed Absar, Sven van Haastregt, Alexey Kravets,
and Alastair F. Donaldson. PENCIL language specification. Research
Rep. RR-8706, INRIA, 2015.

[5] Cédric Bastoul. Code generation in the polyhedral model is easier than
you think. In PACT–13 IEEE International Conference on Parallel
Architecture and Compilation Techniques, pages 7–16, Juan-les-Pins,
France, September 2004. Classement CORE : A, nombre de papiers
acceptés : 23, soumis : 122, student award.

[6] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen,
and Cédric Bastoul. The polyhedral model is more widely applicable
than you think. In Proceedings of the 19th Joint European Conference on
Theory and Practice of Software, International Conference on Compiler
Construction, CC’10/ETAPS’10. Springer-Verlag, 2010.

[7] U. Bondhugula. Compiling affine loop nests for distributed-memory
parallel architectures. In 2013 SC - International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), pages
1–12, Nov 2013.

[8] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan.
A practical automatic polyhedral parallelizer and locality optimizer. In
PLDI, pages 101–113, 2008.

[9] Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee,
Anand R. Atreya, and Kunle Olukotun. A domain-specific approach to
heterogeneous parallelism. In PPoPP, pages 35–46, 2011.

[10] Chun Chen, Jacqueline Chame, and Mary Hall. Chill: A framework for
composing high-level loop transformations. Technical Report 08-897, U.
of Southern California, 2008.

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q.
Yan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind
Krishnamurthy. TVM: end-to-end optimization stack for deep learning.
CoRR, abs/1802.04799, 2018.

[12] Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana
Susnea. Nova: A functional language for data parallelism. In Proceedings
of ACM SIGPLAN International Workshop on Libraries, Languages, and
Compilers for Array Programming, ARRAY’14, pages 8:8–8:13, New
York, NY, USA, 2014. ACM.

[13] Alain Darte and Guillaume Huard. New complexity results on array
contraction and related problems. J. VLSI Signal Process. Syst., 40(1):35–
55, May 2005.

[14] Emanuele Del Sozzo, Riyadh Baghdadi, Saman Amarasinghe, and
Marco Domenico Santambrogio. A unified backend for targeting fpgas
from dsls. In 2018 IEEE 29th International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pages 1–8, July
2018.

[15] Tyler Denniston, Shoaib Kamil, and Saman Amarasinghe. Distributed
halide. In Proceedings of the 21st ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, page 5. ACM, 2016.

[16] William Detmold and Kostas Orginos. Nuclear correlation functions in
lattice qcd. Physical Review D, 87(11):114512, 2013.



[17] P. Feautrier. Array expansion. In Proceedings of the 2nd international
conference on Supercomputing, pages 429–441, St. Malo, France, 1988.
ACM.

[18] Paul Feautrier. Dataflow analysis of array and scalar references.
International Journal of Parallel Programming, 20(1):23–53, February
1991.

[19] Sylvain Girbal, Nicolas Vasilache, Cédric Bastoul, Albert Cohen, David
Parello, Marc Sigler, and Olivier Temam. Semi-automatic composition
of loop transformations for deep parallelism and memory hierarchies.
International Journal of Parallel Programming, 34(3):261–317, 2006.

[20] Kazushige Goto and Robert A. van de Geijn. Anatomy of high-
performance matrix multiplication. ACM Trans. Math. Softw., 34(3):12:1–
12:25, May 2008.

[21] Tobias Grosser, Albert Cohen, Justin Holewinski, P. Sadayappan, and
Sven Verdoolaege. Hybrid hexagonal/classical tiling for gpus. In
Proceedings of Annual IEEE/ACM International Symposium on Code
Generation and Optimization, CGO ’14, pages 66:66–66:75, New York,
NY, USA, 2014. ACM.

[22] Tobias Grosser, Armin Groslinger, and Christian Lengauer. Polly
- performing polyhedral optimizations on a low-level intermediate
representation. Parallel Processing Letters, 22(4), 2012.

[23] M. Gupta. On privatization of variables for data-parallel execution. In
Parallel Processing Symposium, 1997. Proceedings., 11th International,
pages 533–541. IEEE, 1997.

[24] Mary Hall, Jacqueline Chame, Chun Chen, Jaewook Shin, Gabe Rudy, and
Malik Murtaza Khan. Loop Transformation Recipes for Code Generation
and Auto-Tuning, pages 50–64. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[25] Wei Huang, Gopalakrishnan Santhanaraman, H-W Jin, Qi Gao, and
Dhabaleswar K Panda. Design of high performance mvapich2: Mpi2
over infiniband. In Cluster Computing and the Grid, 2006. CCGRID 06.
Sixth IEEE International Symposium on, volume 1, pages 43–48. IEEE,
2006.

[26] Intel, Inc. Intel math kernel library. https://software.intel.com/en-us/mkl,
April 2018.

[27] F. Irigoin and R. Triolet. Supernode partitioning. In Symp. on Principles
of Programming Languages (POPL’88), pages 319–328, San Diego, CA,
January 1988.

[28] Sriram Krishnamoorthy, Muthu Baskaran, Uday Bondhugula, J. Ra-
manujam, Atanas Rountev, and P Sadayappan. Effective automatic
parallelization of stencil computations. SIGPLAN Not., 42(6):235–244,
June 2007.

[29] Vincent Lefebvre and Paul Feautrier. Automatic storage management
for parallel programs. Parallel Computing, 24:649–671, 1998.

[30] Zhiyuan Li. Array privatization for parallel execution of loops. In
Proceedings of the 6th international conference on Supercomputing,
pages 313–322, Washington, D. C., United States, 1992. ACM.

[31] D Maydan, S Amarsinghe, and M Lam. Data dependence and data-
flow analysis of arrays. In International Workshop on Languages and
Compilers for Parallel Computing, pages 434–448. Springer, 1992.

[32] Dror E. Maydan, Saman P. Amarasinghe, and Monica S. Lam. Array-data
flow analysis and its use in array privatization. In Proceedings of the
20th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages - POPL ’93, pages 2–15, Charleston, South Carolina, United
States, 1993.

[33] Samuel Midkiff. Automatic Parallelization: An Overview of Fundamental
Compiler Techniques. Morgan & Claypool Publishers, February 2012.

[34] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage:
Automatic optimization for image processing pipelines. SIGARCH
Comput. Archit. News, 43(1):429–443, March 2015.

[35] Nvidia. cuBLAS Library User Guide, 2012.
[36] Feautrier Paul and Lengauer Christian. The polyhedron model. In David

Padua, editor, Encyclopedia of Parallel Computing, pages 1581, 1592.
Springer, 2011.

[37] Louis-Noël Pouchet, Uday Bondhugula, Cédric Bastoul, Albert Co-
hen, J. Ramanujam, P. Sadayappan, and Nicolas Vasilache. Loop
transformations: Convexity, pruning and optimization. In 38th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages
(POPL’11), pages 549–562, Austin, TX, January 2011. ACM Press.

[38] F. Quilleré and S. Rajopadhye. Optimizing memory usage in the
polyhedral model. ACM Trans. on Programming Languages and Systems,
22(5):773–815, September 2000.

[39] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy,
Saman Amarasinghe, and Frédo Durand. Decoupling algorithms from
schedules for easy optimization of image processing pipelines. ACM
Trans. Graph., 31(4):32:1–32:12, July 2012.

[40] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman P. Amarasinghe. Halide: a language and
compiler for optimizing parallelism, locality, and recomputation in image
processing pipelines. In PLDI, pages 519–530, 2013.

[41] Lawrence G. Roberts. Machine perception of three-dimensional solids.
PhD thesis, Massachusetts Institute of Technology. Dept. of Electrical
Engineering, 1963.

[42] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: A
functional data-parallel ir for high-performance gpu code generation. In
Proceedings of the 2017 International Symposium on Code Generation
and Optimization, CGO ’17, pages 74–85, Piscataway, NJ, USA, 2017.
IEEE Press.

[43] William Thies, Frédéric Vivien, Jeffrey Sheldon, and Saman Amarasinghe.
A unified framework for schedule and storage optimization. In Proc. of
the 2001 PLDI Conf., 2001.

[44] Konrad Trifunovic, Albert Cohen, David Edelsohn, Feng Li, Tobias
Grosser, Harsha Jagasia, Razya Ladelsky, Sebastian Pop, Jan Sjodin,
and Ramakrishna Upadrasta. GRAPHITE two years after: First lessons
learned from Real-World polyhedral compilation, January 2010.

[45] Peng Tu and David Padua. Automatic array privatization. In Utpal
Banerjee, David Gelernter, Alex Nicolau, and David Padua, editors,
Languages and Compilers for Parallel Computing, volume 768 of Lecture
Notes in Computer Science, pages 500–521. Springer Berlin / Heidelberg,
1994.

[46] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya
Goyal, Zach DeVito, William S. Moses, Sven Verdoolaege, Andrew
Adams, and Albert Cohen. Tensor comprehensions: Framework-agnostic
high-performance machine learning abstractions. CoRR, abs/1802.04730,
2018.

[47] Sven Verdoolaege. isl: An integer set library for the polyhedral model.
In ICMS, volume 6327, pages 299–302, 2010.

[48] Sander Vocke, Henk Corporaal, Roel Jordans, Rosilde Corvino, and Rick
Nas. Extending halide to improve software development for imaging
dsps. ACM Trans. Archit. Code Optim., 14(3):21:1–21:25, August 2017.

[49] Michael E Wolf and Monica S Lam. A loop transformation theory and
an algorithm to maximize parallelism. IEEE transactions on parallel
and distributed systems, 2(4):452–471, 1991.

[50] Qing Yi, Keith Seymour, Haihang You, Richard Vuduc, and Dan
Quinlan. POET: Parameterized Optimizations for Empirical Tuning.
In Proc. Wkshp. Performance Optimization of High-level Languages
and Libraries (POHLL), at IEEE Int’l. Par. Distrib. Processing Symp.
(IPDPS), pages 1–8, Long Beach, CA, USA, March 2007.

[51] Tomofumi Yuki, Gautam Gupta, DaeGon Kim, Tanveer Pathan, and
Sanjay Rajopadhye. Alphaz: A system for design space exploration in
the polyhedral model. In International Workshop on Languages and
Compilers for Parallel Computing, pages 17–31. Springer, 2012.

[52] Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian
Shun, and Saman Amarasinghe. Graphit: A high-performance graph dsl.

Proc. ACM Program. Lang., 2(OOPSLA):121:1–121:30, October 2018.

https://software.intel.com/en-us/mkl

	Introduction
	Related Work
	The Tiramisu Embedded DSL
	Scope of Tiramisu
	Specifying the Algorithm
	Scheduling Commands

	The Tiramisu IR
	Rationale for a Multi-layer IR
	Background
	The Multi-Layer IR
	Layer I (Abstract Algorithm)
	Layer II (Computation Management)
	Layer III (Data Management)
	Layer IV (Communication Management)


	Compiler Implementation
	Code Generation
	Support for Non-Affine Iteration Spaces

	Evaluation
	Deep Learning and Linear Algebra Benchmarks
	Image Processing Benchmarks

	Conclusion
	References

