
Extending the Capabilities of Tiramisu
by

Malek Ben Romdhane
B.S., Massachusetts Institute of Technology (2017)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 25, 2018

Certified by. .
Saman P. Amarasinghe

Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

Extending the Capabilities of Tiramisu

by

Malek Ben Romdhane

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2018, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Computer Science and Engineering

Abstract
High performance computing requires not only writing highly efficient code, but also
targeting multiple architectures (e.g. CPU, GPU, MPI). However, not only does
bundling algorithm and optimization often obfuscate the code, but different archi-
tectures require different optimizations and programming tools. Tiramisu [3], an
optimization framework, tries to solve this issue by separating algorithm, optimiza-
tions, and architecture details, and by targeting multiple architectures in a unified
syntax.

In this work, we highlight the implementation of a Julia interpreter that compiles
a subset of the language to Tiramisu. We show that by adding simple Tiramisu
optimization commands to Julia code, we can achieve up to 14× speedup.

We also present an implementation of a CUDA backend for Tiramisu in order to
target GPUs. We showcase a flexible Tiramisu CUDA API, as well as how common
GPU usage patterns can be expressed in Tiramisu. We demonstrate that Tiramisu
matches or outperforms the performance of the Halide GPU backend.

Thesis Supervisor: Saman P. Amarasinghe
Title: Professor

3

4

Acknowledgments

First and foremost, I would like to thank my supervisor, Saman Amarasinghe, for

granting me the opportunity to work on amazing projects. I would also like to thank

him for all the guidance he provided, and for making sure that the quality of my work

is as good as it can be.

I would also like to thank Riyadh Baghdadi, who regardless of how busy he is, is

always willing to lend a helping hand. I could not have finished my work, nor written

my thesis, without his help and guidance.

I would like to thank the entire COMMIT group, a truly pleasant and helpful

group who made my year in the lab very enjoyable.

Lastly, I would especially like to thank my family, whose support was essential in

helping me through both my undergraduate studies and master’s studies.

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 11

1.1 Background . 11

1.2 Contributions . 12

2 Tiramisu 15

2.1 Tiramisu Overview . 16

2.2 The Four-Layer IR . 18

2.2.1 The Polyhedral Model . 18

2.2.2 High Level Scheduling Commands 21

2.3 An Example Tiramisu Program . 24

2.4 Advantages of Tiramisu . 26

3 Julia to Tiramisu 27

3.1 Overview . 27

3.2 Related Work . 28

3.3 Metaprogramming in Julia . 28

3.3.1 Surface Syntax AST . 30

3.3.2 Lowered Form . 30

3.4 Design Choices . 31

3.4.1 ParallelAccelerator . 31

3.4.2 Scope of the Julia to Tiramisu Transpiler 31

3.5 The Transpilation Pipeline . 32

3.5.1 The Pretag Pass . 32

7

3.5.2 The Recovery Pass . 32

3.5.3 The Dead Code Elimination Pass 33

3.5.4 The Code Generation Pass . 33

3.6 Evaluation . 36

4 Tiramisu to CUDA 39

4.1 Related Work . 39

4.2 Introduction to CUDA . 40

4.2.1 The CUDA-enabled GPU Architecture 40

4.2.2 The CUDA API . 42

4.3 Scheduling for GPUs in Tiramisu . 43

4.3.1 CUDA Computations in Tiramisu 43

Tiramisu CUDA Example . 45

4.3.2 Common Shared Memory Patterns in Tiramisu 47

Tiramisu Shared Memory 1D Filter Example 53

4.4 CUDA Generation Architecture . 54

4.5 Evaluation . 58

5 Conclusion 63

A Shared Memory Pattern Performance Experiment 65

8

List of Figures

2-1 Tiramisu overview . 17

2-2 Tiramisu tiled box blur code . 25

3-1 The Julia to Tiramisu pipeline . 29

3-2 Execution time of benchmarks through the Julia and Tiramisu pipeline,

normalized for Tiramisu . 37

4-1 Tiramisu code representing code that performs addition and subtrac-

tion of two matrices on GPU . 46

4-2 Thread utilization diagram for both possible GPU implementations of

the blur filter . 48

4-3 An example of Tiramisu introducing if guards when fusing for loops

of different sizes . 50

4-4 Simplified Tiramisu code representing the implementation of the 1D

filter on GPU . 53

4-5 ISL AST and resulting CUDA AST pseudocode showcasing the bound-

ary condition extraction . 56

4-6 End to end execution time of GPU benchmarks for Halide and Tiramisu,

normalized for Tiramisu . 59

4-7 Data copy execution time of GPU benchmarks for Halide and Tiramisu,

normalized for Tiramisu . 60

4-8 Kernel execution time of GPU benchmarks for Halide and Tiramisu,

normalized for Tiramisu . 60

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

Chapter 1

Introduction

1.1 Background

Over the last few years, available computational power has risen significantly, not only

due to increasingly powerful CPUs, but also thanks to the proliferation of distributed

computation clusters, and specialized hardware like GPUs and FPGAs. This has

opened the door for many computationally expensive applications, that either have

to deal with large amounts of data, or a very large search space. Examples of such

applications include machine learning, and especially neural networks[22], scientific

computation and simulation[14], and image processing[15].

Thus it is important, even necessary, to write high performance code that targets

and makes use of all the available computation power. This means not only targeting

peak performance possible by each harware piece within the system, but being able

to use all computation hardware available in hetergenous systems (i.e. containing

multiple types of processors). For example, this means being able to leverage the full

power of a computing cluster by distributing the computation on all CPU and GPU

cores in every node in the cluster.

There is an inherent difficulty with writing optimal code; mixing algorithm and

optimizations obfuscates code. One reason for this is that the intuitive implementa-

tion of an algorithm might not be optimized for the hardware it is supposed to be

run on. For example, when targetting CPUs, the intuitive implementation might not

11

be cache optimal, resulting in significant slowdown. Another issue is that targetting

multiple types of hardware often means using a different set of tools, and even a

mixture of different programming languages, complicating the process of writing and

maintaining the code, on top of the necessity to have communication and coordina-

tion between the different cores concurrently running the code in the heterogeneous

system.

Tiramisu is an optimization framework that aims to solve these problems by

offering a unified way to target multiple architectures that separates algorithm from

optimization and architecture details. It can be used as an optimization framework

and as a backend for compilers.

Using Tiramisu as a backend for compilers is not trivial. Tiramisu uses a pro-

ducer consumer pattern to represent algorithms, and relies on the polyhedral model[7]

to specify iteration spaces. This comes in contrast with the imperative pattern of

many programming languages, which relies on loop nests and instructions to specify

an algorithm. Thus, using Tiramisu as a backend for a compiler of an imperative

style language requires a transformation between the patterns that conserves correct-

ness and allows for optimizations. In chapter 3, we show how such transformation

could be implemented. We chose Julia, an imperative style high performance high

level language, with a focus on numerical analysis.

In order to achieve peak performance, Tiramisu needs to target multiple archi-

tectures. Adding support for a new architecture means not only having the ability to

use the architecture, but also providing an API that is expressive and consistent with

the rest of Tiramisu. In chapter 4, we detail the implementation of a CUDA target

for Tiramisu, designed to satisfy these goals. This implementation allows Tiramisu

users to achieve significant speedups for highly parallelizable algorithms.

1.2 Contributions

We implemented Julia to Tiramisu conversion by extracting program execution and

data mapping information from the abstract syntax trees the Julia compiler exposes to

12

the user. We relied in our implementation on a fork of ParallelAccelerator, a Julia op-

timization framework[1]. Additionally, we exposed Tiramisu optimization primitives

in Julia code using Julia macros. Through this implementation, we demonstrated the

use of Tiramisu as a backend optimization framework for a DSL compiler. We also

demonstrated that optimization through Tiramisu can achieve speedups of up to

14×.

Additionally, we implemented of a GPU backend for Tiramisu specifically target-

ing CUDA, a general purpose programming framework for NVidia GPUs. We exposed

a CUDA API for Tiramisu that is coherent with the rest of Tiramisu’s API, all

while being very expressive. We demonstrated the implementation of common GPU

programs in Tiramisu, including shared memory usage paradigms. We demonstrated

that this GPU implementation generates efficient code with performance matching or

outperforming Halide generated code, another popular optimization framework[15].

13

THIS PAGE INTENTIONALLY LEFT BLANK

14

Chapter 2

Tiramisu

Tiramisu is an optimization framework designed to solve four big challenges:

∙ Targeting multiple architectures at the same time with the same syntax. This

means being able to generate optimized programs that leverage the full power

of the available hardware from CPU to GPU to FPGAs to distributed systems

all at once. This not only means support for multiple architectures, but also

tools to achieve correct communication and coordination between them.

∙ Removing data dependence. Since the memory representation of data is often

intertwined with how the data is used in a program, any decisions to change

the memory layout results in huge changes to the code. For example, this can

happen if a programmer wishes to add support for a new architecture that

requires a different layout, or if the programmer decides to change the size or

number of dimensions of a buffer, or transform a large buffer into a smaller

circular buffer.

∙ Generating optimized, efficient code. Nowadays optimization frameworks do

a great deal of optimization to the code using complex automated techniques,

relying on cost models, heuristics, and machine learning. These techniques,

however good they are, are still limited because it is sometimes difficult for the

frameworks to reason about the correctness of the optimization at a global level,

which is required in order to find the most optimal mapping for all hardware

15

used. Thus, it is sometimes only possible to generate extremely optimized

code by hand, with the user being able to reason about the correctness of the

optimizations.

∙ Keeping a reasonable legible representation of optimized code. Oftentimes op-

timizations affect the representation of the written code, which becomes riddled

with architecture specific idioms, obfuscating the meaning of the original algo-

rithm and making the implementation less portable. A better solution would

be to allow the algorithm to be expressed in a simple unified way, all while

having a representation flexible enough to allow the expression of optimizations

seperately from algorithm specification.

In order to solve these problems, Tiramisu relies on a representation of the code

based on the polyhedral model, and introduces a novel four-layer IR that separates

algorithm from data mapping, optimization transformation, and architecture target-

ing.

2.1 Tiramisu Overview

Tiramisu is an optimization framework that uses a high-level architecture indepen-

dent representation of an algorithm and a set of scheduling commands and data

mappings, and generates optimized code accordingly. Tiramisu code can be written

by hand, or targeted by a DSL compiler. The user can specify architecture indepen-

dent scheduling commands and data mappings, as well as target architecture specific

features like multi-core parallelism, vectorization, distributed computing, GPUs, and

FPGAs in a unified syntax.

Tiramisu by design focuses on expressing parallel algorithms. In particular, it

is designed to optimize algorithms that use dense arrays and that rely on loop nests.

Such algorithms are very common in dense linear algebra and tensor algebra, stencil

computations, image processing, and neural networks.

16

Layer I: Abstract Algorithm

Portable performance across a range of platforms

Layer II: Computation Management

Layer III: Data Management

Automatic or
user specified

schedules

Automatic or
user specified
data mapping Tiramisu

Backends

High 
Level
Code

FPGA
(Xilinx)

Communication (distribution across nodes)

Vectorized
parallel

X86
GPU  

(Nvidia)

Code generation: Abstract Syntax Tree

...

Layer IV: Communication Management

Developer DSL Compiler
(Halide, Julia)

Figure 2-1: Tiramisu overview

17

2.2 The Four-Layer IR

In order to achieve the desired level of separation between algorithm, scheduling, and

data mapping, Tiramisu programs are specified over 4 layers:

I. The Abstract Algorithm layer, this is where the algorithm is specified as a set

of computations. Computation here roughly translates to a single instruction,

as well as the iteration space this instruction exists in. This does not include

any scheduling information (e.g. the order of execution of computations, loop

fusion, loop tiling). Additionally, dependences are given as producer consumer

relationships, avoiding memory-based dependences.

II. The Computation Management layer, this is where the computations are sched-

uled and optimized. This layer specifies the order of execution of the compu-

tations, any optimizations that could be applied to the computation’s iteration

space (e.g. tiling), as well as targetting the computation towards a specific archi-

tecture (e.g. GPU, distributed). This layer is still data layout oblivious, which

simplifies a lot of the optimizations, and allows data layout changes to happen

without having to rewrite all the optimizations.

III. The Data Management layer, this is where the data layout is specified. This

includes buffers, mapping computations to memory, as well as the possibility to

manually specify buffer allocations and frees.

IV. The Communication Management layer, this is where synchronization and com-

munication operations are specified (within, and between different architec-

tures). This is also where manual buffer allocations and frees are scheduled.

2.2.1 The Polyhedral Model

In order to achieve this level of separation, Tiramisu relies on the polyhedral model,

a mathematical framework that can be used to represent loop iteration spaces, as

well as apply many transformations, which can be used to optimize programs, and

18

to specify data mappings. There are two important structures within the polyhedral

model; sets, and transformation maps.

A set within the polyhedral model consists of integer tuples of the same dimen-

sionality (called lattice points). It is described by specifying the dimensionality of

the tuple, parametrizing each dimension within the tuple, and imposing conditions

on those parameters using quasi-affine expressions. Quasi-affine expressions are ex-

pressions on integer literals and integer variables that include addition, subtraction,

comparison operators, and conjunction [∧, and] and disjunction [∨, or] operators.

They also include multiplication as long as one of the operands is an integer literal,

and division and the modulo operator as long as the second operand is an integer

literal. Quasi-affine expressions can also be used to implement other common mathe-

matical operators like the floor, ceiling, and absolute value functions. These sets are

very valuable tools that can be used to represent iteration spaces for computations;

for example the following polyhedral set

{(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝑁 ∧ 𝑖 < 𝑗 < 𝑁}

can be used to represent the following loop nest

1 for (int i = 0; i < N; i++)

2 for (int j = i + 1; j < N; j++)

3 computation;

In Tiramisu, like this example, each dimension within the tuple is used to rep-

resent a loop level in a loop nest.

Transformations maps are mappings that use quasi-affine expressions to specify

relations between polyhedral sets. They can be used to perform code transformations,

to specify data mappings, and to order computations. An example of an optimization

is loop skewing; consider the following nested for loops:

1 for (int i = 1; i < N; i++)

2 for (int j = 1; j < M; j++)

3 a[i][j] = a[i - 1][j] + a[i][j - 1];

19

The inner for loop cannot be parallelized, as a[i][j] depends on a[i][j - 1],

which is produced in the same inner loop. However, by applying the following trans-

formation map

{(𝑖, 𝑗)→ (𝑖 + 𝑗, 𝑗)}

the code becomes

1 for (int i = 2; i < N + M - 2; i++)

2 for (int j = max(i - N, 0) + 1; j < min(M, i) - max(i - N, 0); j++)

3 a[i - j][j] = a[i - j - 1][j] + a[i - j][j - 1];

a[i - j][j] now depends on a[i - j - 1][j], which is produced in the previous 𝑖

iteration, and a[i - j][j - 1], i.e. a[(i - 1) - (j - 1)][j - 1], which is also

produced in the previous 𝑖 iteration. Thus the inner loop can now be parallelized. In

fact, this example was generated automatically using Tiramisu, using the original

computation, and a skewing directive.

Another use for transformation maps is data mappings. Say we want to compute

the 200th Fibonacci number, using a computation whose iteration space is

{(𝑖) : 2 ≤ 𝑖 < 200}

and whose expression is

fib(𝑖)← fib(𝑖− 1) + fib(𝑖− 2)

The easiest data mapping to ensure correctness is to create a 200 element buffer,

initialize the first two values to 0 and 1, and stpre each fib(𝑖) as the 𝑖th element in

the buffer. Assuming the buffer’s name is f, this is easily done using the following

trivial map from computation to buffer (called access map)

{fib(𝑖)→ f[𝑖]}

20

However, if we only care about the 200th Fibonacci number, there is no need to store

all 200 values; we only care about the last two. In Tiramisu, there is no need to

modify the computation, it suffices to change the data mapping. We reduce our buffer

to a circular buffer containing two elements, and we use the following access map to

ensure correctness

{fib(𝑖)→ f[𝑖 mod 2]}

What makes this concept powerful is that transformation maps naturally compose.

This powerful mathematical framework is what allows for the four layer separation,

and optimization composability that Tiramisu provides. Transformation maps are

used throughout Tiramisu, including in the backend to order the execution of com-

putations.

2.2.2 High Level Scheduling Commands

There are two types of computations, scheduled and unscheduled. A scheduled com-

putation results in a C-style instruction in the code generated by Tiramisu (e.g.

a buffer write). Unscheduled computations on the other hand do not result in an

instruction. They rather function as wrappers, either around an expression (i.e. the

computation is inlined), or around a buffer. Computations that are wrappers around

buffers are just used for their access function, and not have an associated expression to

compute. Other than inlining, layer II does not deal with unscheduled computations,

and only deals with scheduled computations.

The most important command at layer II is the after command (and its derivative

before and between commands). This specifies how computations are executed. For

example say there are computations a and b specified by the iteration spaces

{a(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑁}

and

{b(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀}

21

The command b.after(a, root) results in the following program structure

1 for (int i = 0; i < N; i++)

2 for (int j = 0; j < N; j++)

3 a(i, j);

4 for (int i = 0; i < N; i++)

5 for (int j = 0; j < M; j++)

6 b(i, j);

The command b.after(a, i) results in the following program structure

1 for (int i = 0; i < N; i++) {

2 for (int j = 0; j < N; j++)

3 a(i, j);

4 for (int j = 0; j < M; j++)

5 b(i, j);

6 }

It even takes care of differing loop bounds. That means that the command b.after(a, j)

results in the following program structure

1 for (int i = 0; i < N; i++) {

2 for (int j = 0; j < min(N, M); j++) {

3 a(i, j);

4 b(i, j);

5 }

6 for (int j = min(N, M); j < N; j++)

7 a(i, j);

8 for (int j = min(N, M); j < M; j++)

9 b(i, j);

10 }

If 𝑁 > 𝑀 , then the loop at line 5 will run, and if 𝑀 > 𝑁 , then the loop at line 7

will run.

22

The other layer II commands can be split into transformation commands, tagging

commands, or a combination. Transformation commands change the iteration space

using transformation maps. They include

∙ interchange(i, j), which changes the order of the loop nests. An example is

{(𝑖, 𝑗)→ (𝑗, 𝑖)}

∙ split(i, s, i0, i1), which tiles a loop in one dimension using an integer tile

size 𝑠 into two variables 𝑖0 and 𝑖1. An example is

{(𝑖)→ (𝑖0, 𝑖1) : 𝑖 = 𝑖0 × 𝑠 + 𝑖1 ∧ 0 ≤ 𝑖1 < 𝑠}

∙ tile(i, j, s1, s2, i0, j0, i1, j1), which tiles a loop in two adjacent

dimensions using an integer tile size 𝑠1 × 𝑠2 into variables 𝑖0, 𝑗0, 𝑖1, and 𝑗1. It’s

equivalent to applying split(i, s0, i0, i1), split(j, s1, j0, j1), and

interchange(i1, j0).

Tagging commands specify how a loop dimension should be executed. They include

∙ tag_parallel(i), which says dimension 𝑖 should be parallelized.

∙ tag_distributed(i), which says dimension 𝑖 should be distributed.

∙ tag_gpu(i0, i1, i2, j0, j1, j2), tag_gpu(i0, j0, i1, j1), and tag_gpu(i0, i1),

which says these dimensions should be executed on the GPU. These commands

will be explained in more detail in the GPU chapter.

Some commands combine both transformation and tagging. They include

∙ vectorize(i, s), which applies split(i, s, i0, i1) and tags the inner loop

to be vectorized.

∙ unroll(i, s), which applies split(i, s, i0, i1) and tags the inner loop to

be unrolled.

23

In layer III, the user declares buffers and specifies data mappings. The set_access

command is used to specify data mappings. In the Fibonacci number example spec-

ified in 2.2.1, the data mapping instruction would be

fib.set_access ({fib(𝑖)→ f[𝑖 mod 2]})

In layer IV, the user specifies communication directives. These include data copies,

synchronization, and architecture dependent buffer allocations. These directives are

specified as computations, and are scheduled using layer II commands.

2.3 An Example Tiramisu Program

Let us consider the example of a box blur, applied first in the 𝑗 dimension, and then

in the 𝑖 dimension. This means applying

blur_j(𝑖, 𝑗) = 1
3

1∑︁
𝑘=−1

in(𝑖, 𝑗 + 𝑘)

then

blur(𝑖, 𝑗) = 1
3

1∑︁
𝑘=−1

blur_j(𝑖 + 𝑘, 𝑗)

There is large data reuse within these computations, in the first computation among

columns, and in the second computation among rows. This means that cache will

influence performance. Assuming a row major buffer, the second computation will

not be cache efficient if the image to be blurred is large. This is because the accesses

will have large strides, and by the time the computation reached the end of a row, all

data from the beginning of a row will be purged from the cache. One solution to that

would be to tile this computation into smaller blocks that fit within the cache, to

maximize reuse. The Tiramisu specification for this implementation is highlighted

in figure 2-2, showing the split between the layers.

24

Layer I:
{in(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀}, unscheduled
{blur_j(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝑁 ∧ 1 ≤ 𝑗 < 𝑀 − 1} :

(in(𝑖, 𝑗 − 1) + in(𝑖, 𝑗) + in(𝑖, 𝑗 + 1))/3
{blur(𝑖, 𝑗) : 1 ≤ 𝑖 < 𝑁 − 1 ∧ 1 ≤ 𝑗 < 𝑀 − 1} :

(blur_j(𝑖− 1, 𝑗) + blur_j(𝑖, 𝑗) + blur_j(𝑖 + 1, 𝑗))/3

Layer II:
blur.tile(𝑖, 𝑗, 16, 16, 𝑖0, 𝑗0, 𝑖1, 𝑗1)
blur.after(blur_j, root)

Layer III:
buffer_in : 𝑁 ×𝑀 , input
buffer_blur_j : 𝑁 ×𝑀 , temporary
buffer_blur : 𝑁 ×𝑀 , output
in.set_access (in(𝑖, 𝑗)→ buffer_in[𝑖, 𝑗]))
blur_j.set_access (blur_j(𝑖, 𝑗)→ buffer_blur_j[𝑖, 𝑗])
blur.set_access (blur(𝑖, 𝑗)→ buffer_blur[𝑖, 𝑗])

Original Tiramisu Box Blur Code

Listing 2.1: Pseudocode of Generated Code
1 allocate buffer_blur_j[N][M];
2 for (int i = 0; i < N; i++)
3 for (int j = 1; j < M - 1; j++)
4 buffer_blur_j[i][j] = (
5 buffer_in[i][j-1] + buffer_in[i][j] + buffer_in[i][j+1])/3;
6 for (int i0 = 0; i0 < floor((N - 1)/16); i0++)
7 for (int j0 = 0; j0 < floor((M - 1)/16); j0++)
8 for (int i1 = 1 - min(i0 * 16, 1);
9 i1 < min(N - 1 - i0 * 16, 16) + min(i0 * 16, 1);

10 i1++)
11 for (int j1 = 1 - min(j0 * 16, 1);
12 j1 < min(M - 1 - j0 * 16, 16) + min(j0 * 16, 1);
13 j1++)
14 buffer_blur[i0 * 16 + i1][j0 * 16 + j1] = (
15 buffer_blur_j[i0 * 16 + i1 - 1][j0 * 16 + j1] +
16 buffer_blur_j[i0 * 16 + i1][j0 * 16 + j1] +
17 buffer_blur_j[i0 * 16 + i1 + 1][j0 * 16 + j1])/3;
18 free(buffer_blur_j);

Figure 2-2: Tiramisu tiled box blur code
In this example, we create a temporary buffer to store the result of blur_j. This
means it will automatically be allocated, and then freed.

25

2.4 Advantages of Tiramisu

One of the big advantages of Tiramisu is that it uses the polyhedral model. This

makes the transformations that can be done to loops easily composable, simplifies the

implementation of many optimizations, and allows for checks on the correctness of

optimization. This makes Tiramisu a great choice for an optimization framework.

To elaborate, Tiramisu offers the following advantages:

∙ Optimizations expect a certain input format to work on. Traditionally, when

composing optimizations, you need to rewrite the resulting optimization by

hand, which can get very difficult if using multiple optimizations. By expressing

loops as quasi-affine expressions, and optimizations as quasi-affine relations, it

becomes easy to compose them, and the product of the composition does not

need to be rewritten.

∙ By using the polyhedral model and quasi-affine transformations,Tiramisu al-

lows the user to apply optimizations that are traditionally hard to apply in an

interval based model of the iteration domain. Loop skewing is an example of

such transformations.

∙ The ability to check the correctness of optimizations. For example, consider the

case of loop fusion. Two loops cannot be fused if one loop produces results that

are consumed by the other, and the fusion results in the consumption of a value

before it is produced. The polyhedral model allows to easily check the validity

of these transformations.

In the next chapter, we show how we can use these advantages in order to optimize

the performance of Julia, a high level DSL with a focus of numerical analysis.

26

Chapter 3

Julia to Tiramisu

Julia is a dynamic general-purpose programming language designed with a focus on

numerical computation and performance in mind. This makes Julia a great candi-

date to optimize using Tiramisu. It also results in a few differences between Julia

and more traditional numerical computation languages (e.g. MATLAB, python) that

allows it to run faster and approach C performance[9]. Unlike standard implemen-

tations of other traditional numerical computation languages, Julia is not executed

through an interpreter. It rather uses JIT compilation to create and run native code

using LLVM. Additionally, even though it is a dynamically typed language, type

information is more visible to the users than other dynamic languages. To generate

well-optimized native code, all type information should be either deduced or explicitly

annotated.

Both of these facts simplify the integration of Tiramisu as an optimization back-

end; type information is necessary to generate Tiramisu code, and the generation

can be done by modifying the JIT compilation to run through Tiramisu.

3.1 Overview

The Julia to Tiramisu transpiler (source-to-source compiler) relies on Julia’s metapro-

gramming features, which are highlighted in section 3.3. It is based off the Paral-

lelAccelerator package, and is focused on numerical analysis applications. Section 3.4

27

explains these choices in more detail. It goes through a multi-stage pipeline that takes

in a Julia function and returns a wrapper around an equivalent compiled Tiramisu

function, as is explained in section 3.5. Additionally, figure 3-1 shows an overview

of the pipeline. Using Tiramisu to optimize Julia code can result in significant

speedups, as is shown in section 3.6.

3.2 Related Work

Polly is an LLVM optimization framework that relies on the polyhedral model[12].

Julia uses Polly for optimization when during the LLVM compilation stage. However,

because it is at the LLVM level, a lot of information necessary to perform optimiza-

tions well is not available. For example, control flow structures are expressed using

low level building blocks, which makes them difficult to recover and optimize. Ad-

ditionally, the linearization of buffer accesses makes it difficult to recover memory

access patterns. On top of that, Polly performs polyhedral optimization automati-

cally, which might not always result in the best performance.

The Julia to Tiramisu transpiler is not the first example of use of a polyhe-

dral framework for the optimization of a DSL. Tiramisu is already used to optimize

Halide[15][3], a DSL for highly optimized image processing. PENCIL[2] is another

polyhedral optimization framework designed to be targeted by DSLs, which was used

to optimize both the VOBLA[8] linear algebra DSL, and the SpearDE[5] signal pro-

cessing DSL. However, PENCIL uses Pluto[10], an automatic polyhedral optimization

algorithm.

3.3 Metaprogramming in Julia

In order to transpile Julia code to Tiramisu, it’s necessary to be able to manipulate

it. The Julia language has a large emphasis on metaprogramming. In fact, Julia

exposes different levels of the compilation pipeline to the user in order to enable

highly flexible metaprogramming. Of these, two are used in the transformation of

28

Surface Syntax AST

Lowered Form

Pretag Pass

Dead Code Elimination Pass

Code Generation Pass

Tiramisu Code

Shared Library

Julia Wrapper

ParallelAccelerator
Simplification

ParallelAccelerator
Simplification

Recovery Pass

ParallelAccelerator
Simplification

High Level Control Flow;
Incomplete Type Information

Tag Control Flow Structures

Complete Type Information;
Deconstructed Control Flow

Recover High Level Control Flow

Remove Unused Variables and Code

Transpile to Tiramisu

Compilation

Dynamic Loading

Figure 3-1: The Julia to Tiramisu pipeline

29

Julia code to Tiramisu code; the surface syntax AST and the lowered form.

3.3.1 Surface Syntax AST

The surface syntax AST is produced by the Julia parser, and thus is a direct repre-

sentation of the written code without any modifications. This is the main target for

meta-programming in Julia, through the use of macros. Macros are Julia functions

that are executed before compiling Julia code. They target a specific section of the

Julia code. They take in a surface syntax AST, process it, and return a replacement

surface syntax AST.

3.3.2 Lowered Form

The lowered form is an AST resulting from an intermediate step in the compilation

process. It has fewer types of nodes than the surface syntax AST. In the lowered form,

all the macros are expanded. Additionally, all control flow structures are converted

into branch instructions (i.e. conditional and unconditional gotos), thus flattening

all such structures. A completely type annotated AST (including deduced types)

only exists in lowered form, thus making it necessary to use in order to generate the

Tiramisu equivalent.

Relevant types of nodes in this AST include:

∙ Expr: This is the most generic node type. It could be a function call, a value as-

signment, a conditional branch, or a return statement, a meta node (a compiler

comment node), among other things.

∙ GotoNode: This is an unconditional branch instruction.

∙ LabelNode: This is a branch target.

∙ Slot: This represents a local variable or argument in the code.

∙ SSAValue: This represents a static single assignment variable that is inserted

by the compiler.

30

Using this reduced form has a big drawback. Since all control structures are lost

and replaced with branches, it is difficult to recover the loop structure. Thus, to

generate Tiramisu, it is necessary to use both forms of the AST.

3.4 Design Choices

3.4.1 ParallelAccelerator

Because the lowered form of the code is destined for code generation through LLVM,

there is a lot of superfluous information that makes it hard to decode and turn into

Tiramisu code. One example is linkage information about function calls (includ-

ing arithmetic operations on primitive types, buffer accesses) that makes it hard to

determine what function is being called.

ParallelAccelerator[1] is a Julia package developed by Intel that also aims to accel-

erate Julia code. It analyzes both types of the Julia AST, tries to detect opportuni-

ties to accelerate the code (parallelization, vectorization, etc...), generates optimized

C code, compiles it, and loads it back into Julia to replace the original function.

It performs simplifications of the superfluous information in the AST. Additionally,

it is designed to optimize only specified function in the code, thus enabling users

to mix optimized code with unoptimized/unoptimizable code. For that reason, and

in the spirit of code reuse, the Julia to Tiramisu transpiler is based on a fork of

ParallelAccelerator.

3.4.2 Scope of the Julia to Tiramisu Transpiler

Tiramisu, by virtue of its focus on loop nests is a great tool for tensor algebra,

which strongly aligns with Julia’s focus on numerical analysis. More specifically, the

subset covered by the Julia to Tiramisu transpiler focuses mainly on for loops, simple

arithmetic operations (addition, subtraction, multiplication, division), and buffer and

scalar reads and writes. This is not limiting because the transpiler can target the

specific part of the code that needs to be optimized, and the rest of the code can go

31

through the regular Julia pipeline.

Additionally, it extends Julia by exposing macros that target Tiramisu scheduling

commands that are usually useful in numerical analysis, like the after command for

fusing loops, and the loop parallelization command.

3.5 The Transpilation Pipeline

ParallelAccelerator (and the Tiramisu transpiler) works through passes. Each pass

has a specific role, and a pass type which specified the type of AST that it takes;

macro for the surface syntax AST, and typed for the typed lowered form. This

sections lists the passes implemented by the Tiramisu transpiler.

3.5.1 The Pretag Pass

The pretag pass is a macro pass. Because the lowered form replaces all of the

control flow structures with branches and labels, it can be difficult to recover the

original control flow structure. For that reason, a pretag macro pass is added to label

all control flow structures, and add the data as meta nodes in the AST. Since these

nodes are not generated by Julia, they do not get modified or destroyed as the AST

is lowered, except to keep it in sync with the rest of the AST; for example, if a certain

variable is referenced in a for loop, and that variable is transformed to a Slot in the

lowered AST, references to that variable in the annotation introduced by the pretag

pass are updated to reference the Slot node in the lowered form.

After the pretag pass, the AST goes through other ParallelAccelerator passes for

AST simplification.

3.5.2 The Recovery Pass

The recovery pass is a typed pass. The point of the recovery pass is to recover the

original structure of the code. In other words, it transforms the AST from branches

and labels back to higher level control flow structures like for loops, all while keeping

32

the type information provided in the lowered form.

The recovery pass relies mainly on the tags created in the pretag pass. However,

control flow structures also generate a lot of instructions in the lowered form that

represent their low level executions. For example, in for loops, this includes initial-

ization, loop bound tests, and branches. Thus a simple pattern recognition algorithm

is used to remove all of the superfluous low level instructions. Since each control flow

structure can introduce multiple instructions in several chunks, it is the algorithmic

equivalent to matching several substrings in a specific order.

Afterwards, the AST goes through the other ParallelAccelerator typed passes that

simplify code even further.

3.5.3 The Dead Code Elimination Pass

The dead code elimination pass is a typed pass. It has the simple role of removing

unused variables and all expression relating to unused variables. Even though this

can be done at the Tiramisu level, doing it at this level speeds up the compilation

time. This is because there is no need to generate Tiramisu code that handles this

code, and because the cost of generation, compilation, and optimization is superior

to removing unused variables at this level.

3.5.4 The Code Generation Pass

The code generation pass is a typed pass, and is the last pass. It has the role of

generating Tiramisu code, compiling it, and loading it into Julia.

Initially, each node in the AST is parsed exactly once. This is similar to how a C

compiler would parse the code. This is possible because there is no forward depen-

decies in the AST. This pass functions recursively (i.e. it uses the same procedure to

analyze nodes and their children etc. . .). It checks the type of the node, and performs

different actions based on the type:

∙ If the node is an Expr node, it analyzes its expression.

33

– If it is a function call, the transpiler first checks if function call is supported.

This includes function calls that are generated in the recovery pass (control

flow delimiters such as :for_loop_start and :for_loop_end). In that

case, for loops get their variables parsed, and these variables are added to

a loop variable stack that keeps track of the current location of the code in

the loop structure, alongside with the loop variable conditions. Currently

supported function calls also include addition, subtraction, multiplication,

division, as well as buffer reads and writes, which are all simplified by

pre-existing ParallelAccelerator code. The arguments of the function call

are then recursively parsed. If the result is the equivalent of a Tiramisu

computation, it creates a computation object, based on the expression

in the code, and on the deduced location of the instruction in the loop

structure.

– If it is an assignment, the pass analyzes the left hand side of the assignment.

If it is a scalar, then the node is a scalar assignment. In that case, a

computation object is created, based on the right hand side expression

and the loop structure context. If it is a buffer, then it must be a buffer

allocation, as buffer write accesses are done through function calls. In that

case, a buffer object is created based on the size specified in the right hand

side allocation expression.

– If it is a meta node, then it is a scheduling command generated in the

pretag pass. Tiramisu scheduling commands are passed as meta nodes

(e.g. :begin_parallel, :end_parallel, :begin_fuse, :end_fuse, with

a corresponding fusion and parallelization level). All the necessary in-

formation about scheduling (from the meta tags, and the order in which

instructions are written) is stored in a temporary ScheduleState object

that keeps track of all the necessary scheduling information and generates

the necessary scheduling commands when the Tiramisu code is eventually

generated.

34

– If it is a return node, then the buffer referred to in the node is tagged to

be returned.

∙ If it’s a variable use, then it must be a scalar access either of a loop variable,

or a user or compiler defined scalar. The pass asserts that the variable has

already been defined, and produces an object representing the variable. It

creates different objects for loop variables and other scalars. The reason for

this separation is that Tiramisu treats them differently.

∙ If it’s a primitive value, the pass simply parses that value.

The pass then generates the Tiramisu code based on the analysis. Because

producer/consumer relations are not clear in an imperative style language, it relies

on unscheduled computations to ease the translation. Unscheduled computations are

computations that do not have an expression, and are not generated in the actual

code, but have a defined buffer access relation. They simply function as buffer read

access wrappers.

The pass initially generates unscheduled computations that represent the size of

the input buffers, as Tiramisu expects that information to either be hard coded

or passed in explicitly, similarly to how C code would be written. It then creates

unscheduled computations that represent buffer accesses. Afterwards, it generates

the actual scheduled computations, and the buffer objects. It then creates all the

buffer mappings from the generated computations (both scheduled and unscheduled)

to the created buffers. Finally, it generates all the scheduling commands.

In order to load the object into Julia, the pass compiles the generated tiramisu

code into an object file, makes a shared library file out of it, and dynamically links

it. It then replaces the original function with a wrapper that:

∙ Adds a size buffer for every buffer function argument. Each size buffer contains

the dimensions of the corresponding argument buffer.

∙ Allocates the output buffer if it is originally allocated inside the function, as

Tiramisu needs the output buffer to be passed in.

35

∙ Calls the loaded function that has been generated by Tiramisu.

∙ Returns the output buffer if it is returned in the original function.

3.6 Evaluation

Julia v0.5 was used to perform the evaluation. In order to evaluate each benchmark,

the same function code was used in both the regular Julia pipeline and the Tiramisu

pipeline, and using available optimization tags. The loop fusion tag was only used

for the Tiramisu pipeline, as no equivalent exists for Julia.

In order to accurately compare the execution time, the body of the function was

timed for the Julia pipeline, and the execution of the external Tiramisu function

was timed for the Tiramisu pipeline. Additionally, a macro was applied to the Julia

pipeline function in order to remove out of bound access checks.

The benchmarks used are

∙ bicg, which stands for biconjugate gradient. It attempts to solve a system of

linear equations of the form 𝐴𝑥 = 𝑏, where 𝐴 is a matrix, and 𝑥 and 𝑏 are

vectors.

∙ doitgen, which performs the Multiresolution analysis kernel (MADNESS). It

performs multiple scalar products and assignments.

∙ mttkrp[19], which stands for Matricized tensor times Khatri-Rao product. It

consists of a multiplication of an order-3 tensor and two matrices, resulting in

a matrix.

∙ covariance, which performs the covariance computation of a square matrix.

∙ gesummv, which performs a scalar, vector and matrix multiplication.

Every benchmark other than mttkrp is included in the PolyBench benchmark suite[17],

and follows the same implementation.

36

bic
g

do
itg

en
mttk

rp

cov
ari

an
ce

ges
um

mv
0

5

10

15

N
or

m
al

iz
ed

Ex
ec

ut
io

n
T

im
e Julia Tiramisu

Figure 3-2: Execution time of benchmarks through the Julia and Tiramisu pipeline,
normalized for Tiramisu

As is evident from figure 3-2, the execution time of the Tiramisu pipeline is either

comparable to or faster than the execution time of the Julia pipeline, reaching up to

a 14× speedup for bicg. The faster execution time is mainly due to the loop fusion

tag and loop interchanges, which only exist in Tiramisu.

37

THIS PAGE INTENTIONALLY LEFT BLANK

38

Chapter 4

Tiramisu to CUDA

In addition to implementing the Julia to Tiramisu transpiler, work on Tiramisu in-

volved expanding the capabilities of the framework itself, by implementing a CUDA[16]

backend. CUDA is an API developed by NVidia to allow for general purpose comput-

ing on GPUs (Graphics Processing Units). This chapter goes over a general introduc-

tion to CUDA, the CUDA interface exposed to Tiramisu users, the implementation

details of the Tiramisu CUDA backend, and the backend’s evaluation results.

4.1 Related Work

There are multiple optimization framework that target GPUs. The PENCIL[2] poly-

hedral optimization framework is designed to target hardware accelerator like GPUs,

and is built upon an OpenCL backend. Other examples of polyhedral optimization

framework that target GPUs include GPU extensions to the Polyhedral Compiler Col-

lection (PoCC)[4], as well as an automatic polyhedral C-to-CUDA GPU optimization

framework[6].

There also exists non-polyhedral high level approaches to GPU-based optimiza-

tion. Halide[15] is a DSL for image processing that exposes multiple scheduling com-

mands ans targets GPUs using both the CUDA API[16] and OpenCL[21]. NOVA[11]

and Lift[20] are functional data-parallel languages that can produce high performance

GPU code generation. However, they do not expose scheduling commands, and per-

39

form scheduling automatically.

4.2 Introduction to CUDA

4.2.1 The CUDA-enabled GPU Architecture

A GPU is a hardware accelerator originally designed for applications with graphical

focus, such as user interfaces, image and video manipulation, and 3D applications.

This usually means manipulating a large number of points in a graphical context,

and such computations are highly parallelizable. As such, GPUs are designed to be

able to process many computations at the same time. For example, an NVidia Tesla

V100 can run up to 5120 threads of execution in parallel.

These threads of execution however do not each run independently. They are

executed within the context of warps, which are thread groupings. At a given moment,

all threads within a warp are executing the same instruction (on potentially different

data). In case some threads within a warp are not supposed to be executing an

instruction, then they remain idle until other threads in that warp finish executing

that instruction. This is called thread divergence. An example of thread divergence

is highlighted in listing 4.1.

Listing 4.1: Pseudocode representing thread divergence
1 x = rand(); // generates a number between 0 and 1
2 if (x < 0.5)
3 heads = heads + 1;
4 else
5 tails = tails + 1;

Assume threads within the same warp get values of x on different sides of 0.5. In
that case, the threads executing line 3 will perform their computation, and the other
threads will have to idly wait. Afterwards, threads executing line 5 will perform their
computation, with the other threads waiting.

In CUDA-enabled GPUs, threads do not use the same memory that CPU cores

on the same computer use. They rather use GPU specific memory. Since the CPU is

referred to as the host and the GPU is referred to as the device, their memories are

40

referred to respectively as host and device memory. In fact, there are many types of

device memory spaces:

∙ Global memory is the largest memory space available. It is visible to all

threads within a device. It is also visible to CPUs, if they wish to copy data

between main memory and device memory. It is the slowest of all memories to

access, but if multiple threads access consecutive global memory locations at

the same time, their accesses are coalesced, resulting in higher bandwidth.

∙ Shared memory is a memory space that is allocated per block, which is a

grouping of threads specified by the user. It is usually significantly faster than

global memory. However, it is only accessible by the device, and more specifi-

cally only within the block in which it is declared. Thus, threads are responsible

for populating shared memory. It is useful when there is a high level of data

reuse across a block of threads, in order to avoid going through the slower global

memory. For example, if a certain section of global memory is used by a block

of threads, each thread in the block could load a part of that section into shared

memory, and all the threads can access the data from the faster shared mem-

ory. Such use of shared memory is very common, and can result in significant

speedups.

∙ Constant memory is a memory space that is provided by the host before the

computation is performed on the device. As the name suggests, it cannot be

modified by the device. It is smaller in size than global and shared memory.

However, it is faster than both global and shared memory if many threads access

the same location at the same time. An example use case would be performing

a convolution using a relatively small convolution kernel.

∙ Registers are the fastest memory space available. They are only accessible

to one thread of execution at a time, and function similarly to CPU registers.

However, their total number is significantly higher that in CPUs. For example,

on the NVidia V100, the total memory available for GPUs is 20480KB, for up

41

to 4KB per thread, with all threads running. When running a computation,

the device allocates a portion of the registers to each thread, as instructed by

the running program. They are usually used to store thread-local variables.

4.2.2 The CUDA API

The CUDA API is what allows users to interact with GPUs to perform general pur-

pose computations. It consists of tools to program the device, and tools for the host

to interact with the device, such as launching computations, and copying data be-

tween the host and device. It provides a low level instruction set for CUDA enabled

GPUs, called PTX, and compilers from C, C++, and Fortran style CUDA code that

compiles to PTX.

In order for these programs to be run on CUDA devices, they need to be provided

in kernels. Kernels are specialized functions that incorporate in their design the

parallelized nature of GPU computation. When declaring a kernel, code is simply

provided for a single thread of execution, and relies on a user defined structure to

identify threads. Threads are grouped into blocks. Threads, and blocks, can be

organized into a 1, 2, or 3 dimensional structure. This is because some problems lend

themselves towards higher dimensions (e.g. matrix addition is a two dimensional

problem). Each thread has a set of unique identifiers for each dimension within its

block, and each block has another set of unique identifiers within the set of all blocks,

which is called a grid. These identifier sets allow a thread to determine its role in the

computation. Thus if a kernel is one dimensional, then each thread has a thread 𝑥 id

within a block, and a block 𝑥 id within the grid. If it’s two dimensional, it also has a

thread 𝑦 id and a block 𝑦 id. If it’s three dimensional, it also has a thread 𝑧 id and

a block 𝑧 id.

In order to launch a kernel, the user needs to pass all the arguments the kernel

needs, as well as the number of threads per each block dimension, and the number of

blocks along side each dimension of the grid. Users need to be careful when choosing

the size of a block, as a single warp can only execute threads within the same block

simultaneously. Thus, if the block size is not a multiple of the warp size, some threads

42

within the warp will be idle, resulting in under utilization of the GPU. Users cannot

also include all of the threads in a single block, as the number of threads per block is

limited.

Within a kernel, the CUDA API offers multiple instructions in addition to regu-

lar programming primitives. These include declaring shared memory buffers, which

results in one buffer allocation per block. That buffer is then accessible by all threads

within that block. If a block has more threads than the warp size, it needs more

than one warp to execute its threads. These warps can go out of sync and do not

necessarily execute the same instruction simultaneously. This can result in errors if

different threads access the same memory location, which is the main use case for

shared memory. For that reason, the CUDA API also offers a synchronization barrier

instruction, which is only passed when all threads in a single block reach it. Addi-

tionally, because the CUDA compiler can introduce optimizations that can modify

the memory access order, synchronization might be necessary even within warps, as

it also acts as memory barrier that insures that all writes are reflected in memory.

Omitting it might result in race conditions.

Outside of kernel, the CUDA API enables the user to allocate global and con-

stant memory, transfer data between device and host, and control a host of other

parameters.

4.3 Scheduling for GPUs in Tiramisu

4.3.1 CUDA Computations in Tiramisu

There is a direct correlation between threads and blocks on one hand, and tiled,

parallelized for loops on the other. Consider for example a single for loop with a unit

step. Tiling it means creating two nested for loops, with the outer one iterating over

each tile, and the inner one going through the iterations within the tile. This makes

it easy to map to GPU, with a 1 dimensional grid, blocks the size of the tile, and

the same number of blocks as there are tiles. Figure 4-5 highlights such an example.

43

The same thing happens when tiling two loops into rectangular tiles, which results in

4 loops, with the outer two iterating over the tiles (blocks), and the inner two going

through the iterations within each tile (threads).

Thus, to map a Tiramisu computation to GPU, it suffices to tag 2, 4, or 6

consecutive dimensions in a computation as GPU dimensions. The outer most tagged

loop gets replaced with a kernel call. The spans of the first half of the tagged loops

are used to determine the number of blocks, and the spans of the second half are

used to determine the size of the blocks. Any loops surrounding the tagged loops are

executed on the host, and any loops contained within the tagged loops are executed

as for loops on the device. If there are multiple computations within a loop nest,

once the first computation is tagged to be executed on GPU, all of the computations

will be executed within the same kernel. This means that entire loops, not single

computations, are transformed to kernels.

When trying to tile a loop, its loop span might not be a multiple of its tile size.

Thus, it is necessary to introduce a check at the inner loop level to make sure that

no excess iterations are performed at the last iteration of the outer loop. Tiramisu

introduces these checks automatically, and if the tiled loop is mapped to GPU, these

checks are generated as if guards within the kernel.

The user does not need to specify any arguments that need to be passed to the

kernel, as Tiramisu detects that information on its own based on variable and buffer

access patterns.

In order to create GPU buffers, it suffices to tag buffer object as global, shared,

constant, or register. Constant buffers are automatically allocated and do not need

to be freed. Global buffers are automatically allocated and freed, but can also be

managed manually. Shared memory is allocated manually, as it needs to be declared

within the kernel. It also does not need to be freed. Registers are special buffers

containing only one element (effectively a scalar). They are also allocated manually

since they need to be declared within the kernel. They do not need to be freed.

Tiramisu also exposes expressions that allow the user to perform block synchro-

nization, as well as copy data from host to constant memory, or between host and

44

global memory.

More specifically, Tiramisu uses the following expressions and scheduling com-

mands to map algorithms to GPU:

∙ computation.tag_gpu(𝑖0, 𝑖1), computation.tag_gpu(𝑖0, 𝑗0, 𝑖1, 𝑗1), and

computation.tag_gpu(𝑖0, 𝑗0, 𝑘0, 𝑖1, 𝑗1, 𝑘1). This layer II scheduling command

maps the specified computation to be executed on GPU, mapping the given 2,

4, or 6 consecutive dimensions to block identifiers and thread identifiers.

∙ synchronize(). A layer IV computation with this expression results in a syn-

chronization barrier at the level where the computation is scheduled.

∙ memcpy(buffer_src, buffer_dest). A layer IV computation with this expres-

sion performs a memory copy between device and host from buffer_src to

buffer_dest at the level where the computation is scheduled.

Tiramisu CUDA Example

Figure 4-1 shows an example of a Tiramisu GPU computation. This simple exam-

ple takes two matrices, 𝐴, and 𝐵, copies them to device, computes their sum and

difference, and copies the result back to host.

45

Layer I:
{A(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀}, unscheduled
{B(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀}, unscheduled
{sum(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀} : A(𝑖, 𝑗) + B(𝑖, 𝑗)
{diff(𝑖, 𝑗) : 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑗 < 𝑀} : A(𝑖, 𝑗)− B(𝑖, 𝑗)

Layer II:
sum.tile(𝑖, 𝑗, 32, 32, 𝑖0, 𝑗0, 𝑖1, 𝑗1)
diff.tile(𝑖, 𝑗, 32, 32, 𝑖0, 𝑗0, 𝑖1, 𝑗1)
sum.tag_gpu(𝑖0, 𝑗0, 𝑖1, 𝑗1)
diff.after(sum, 𝑗1)

Layer III:
buffer_A_host : 𝑁 ×𝑀 , input, host
buffer_A_gpu : 𝑁 ×𝑀 , temporary, device global
buffer_B_host : 𝑁 ×𝑀 , input, host
buffer_B_gpu : 𝑁 ×𝑀 , temporary, device global
buffer_sum_host : 𝑁 ×𝑀 , output, host
buffer_sum_gpu : 𝑁 ×𝑀 , temporary, device global
buffer_diff_host : 𝑁 ×𝑀 , output, host
buffer_diff_gpu : 𝑁 ×𝑀 , temporary, device global
A.set_access (A(𝑖, 𝑗)→ buffer_A_gpu[𝑖, 𝑗])
B.set_access (B(𝑖, 𝑗)→ buffer_A_gpu[𝑖, 𝑗])
sum.set_access (sum(𝑖, 𝑗)→ buffer_A_gpu[𝑖, 𝑗])
diff.set_access (diff(𝑖, 𝑗)→ buffer_A_gpu[𝑖, 𝑗])

Layer IV:
{copy_A(0)} : memcpy(buffer_A_host, buffer_A_gpu)
{copy_B(0)} : memcpy(buffer_B_host, buffer_B_gpu)
{copy_sum(0)} : memcpy(buffer_sum_gpu, buffer_sum_host)
{copy_diff(0)} : memcpy(buffer_diff_gpu, buffer_diff_host)
copy_B.after(copy_A, root)
sum.after(copy_B, root)
copy_sum.after(diff, root)
copy_diff.after(copy_sum, root)

Figure 4-1: Tiramisu code representing code that performs addition and subtraction
of two matrices on GPU

46

4.3.2 Common Shared Memory Patterns in Tiramisu

When running an algorithm on GPU that produces a buffer, it is common to have each

thread in the kernel produce a specific value within the buffer in order to maximize

parallelism. In case the kernel requires data reuse, it is also common to have the same

threads load the needed data into shared memory before performing the computation.

That way, data is only accessed once from global memory within a block, but can be

used by any thread of that block using the faster shared memory.

However, in many cases, the size of the output can be smaller than the size of

the input. Consider a simple filter that blurs an image in the 𝑗-direction using the

following expression

out(𝑖, 𝑗) = 1
3

2∑︁
𝑘=0

in(𝑖, 𝑗 + 𝑘)

When trying to map this computation to GPU, there is a mismatch between the

number of threads within a block needed to perform the loading to shared memory and

the number of threads needed to perform the computation. There are two solutions

to this problem, as highlighted in figure 4-2:

1. Have some threads perform an additional load to shared memory, during which

the remaining threads in the block do not perform any computation, as they

wait for the loading to finish. If the blocks chosen are of size 𝐴×𝐵, this means a

thread utilization of 2
𝐵

during the second loading period, and a 100% utilization

otherwise.

2. Have all the threads perform a single shared memory load, and only the threads

that have all the needed information in shared memory perform the actual

computation. If the blocks chosen are of size 𝐴 × 𝐵, this means a thread

utilization of 𝐵−2
𝐵

during the computation, and a 100% utilization otherwise.

We thus have two factors at play, utilization, and number of memory accesses. The

first solution has worse utilization, and less global memory accesses, and the second

solution has better utilization, but more global memory accesses. The effect of having

more global memory accesses is mitigated by the fact that these memory accesses are

47

Execution
Of Kernel

B threads active

2 threads active B - 2 threads active

B threads active

Copying to Shared Memory

Copying to Shared Memory

Filter Computation

B threads active

Copying to Shared Memory

Filter Computation

Solution 1 Solution 2

Active threads

Idle threads

Figure 4-2: Thread utilization diagram for both possible GPU implementations of
the blur filter

48

coalesced. When compared experimentally using the NVidia profiler nvprof on an

NVidia K80 card using a matrix of size 6000×7500 and blocks of size 32×32, the first

solution averages 5.1150ms over 60 trials, and the second solution averages 4.9134ms

over 60 trials. 32 × 32 is a very common choice for block size. Thus both of these

solutions are close in performance, with (in this case) the second solution being faster.

The code for the expriment is listed in appendix A.

This section will detail how to implement the second solution in Tiramisu, as

it is the tricky one to implement. There are four computations necessary to the

implementation:

1. Computation dec for declaring/allocating the shared buffer.

2. Computation copy for copying the input from global memory to shared memory.

3. Computation sync for adding a synchronization barrier to assure that shared

memory is not used by any thread until populated.

4. Computation out for performing the computation.

In order to explain this implementation, it is easier to analyze the one dimensional

case as extending it to two dimensions is trivial, i.e.

out(𝑗) = 1
3

2∑︁
𝑘=0

in(𝑗 + 𝑘) (4.1)

The key idea behind this implementation is that if Tiramisu is trying to fuse two

loops of different sizes, it will add the necessary if guards to insure correctness. Figure

4-3 highlights an example of this feature. Thus, what we should strive for in each

part of the implementation is to have each part have an outer loop (corresponding to

the block x id) iterating over the same interval of size corresponding to the number

of blocks, and the inner loop (corresponding to the thread x id) iterating of different

intervals, with the largest of which being as large as the block size.

Let the size of the output of the filter be 𝑁 , and the block size be 𝐵. Assuming

computation out if created to represent equation 4.1, it needs to be tiled in order to

49

Layer I:
{a(𝑖, 𝑗) : 0 ≤ 𝑖 < 16 ∧ 0 ≤ 𝑗 < 16 ∧ 16𝑖 + 𝑗 < 250}
{b(𝑖, 𝑗) : 0 ≤ 𝑖 < 16 ∧ 0 ≤ 𝑗 < 16}
{c(𝑖, 𝑗) : 0 ≤ 𝑖 < 16 ∧ 0 ≤ 𝑗 < 11 ∧ 11𝑖 + 𝑗 < 170}

Layer II:
b.after(a, 𝑗)
c.after(b, 𝑗)

Tiramisu code

Listing 4.2: Generated Structure
1 for (int i = 0; i < 16; i++) {
2 for (int j = 0; j < 16; j++) {
3 if (i * 16 + j < 250)
4 a(i, j);
5 b(i, j);
6 if (j < 11 && i * 11 + j < 170)
7 c(i, j);
8 }
9 }

Figure 4-3: An example of Tiramisu introducing if guards when fusing for loops of
different sizes

map it to GPU. Each block should compute 𝐵−2 output values, thus the computation

is tiled using a tile size of 𝐵 − 2. This results in ⌈ 𝑁
𝐵−2⌉ outer loop iterations, i.e.

blocks. The buffer mapping is trivial in this case, as buffer mappings in Tiramisu

are oblivious to tiling, so it suffices to map the original computation.

The computation copy that copies from global memory to shared memory needs

to have the same number of blocks as the out computation, and have a block size

(i.e. a tile size) that is 𝐵. More precisely, for each block of the out computation,

there needs to be two extra inner loop iterations (threads). Thus, the total number

of iterations of the copy computation before tiling is

𝑁 + 2× (number of blocks of output)

50

which when plugging in the formula for the number of blocks becomes

𝑁 + 2×
⌈︂

𝑁

𝐵 − 2

⌉︂

Then, when this computation is tiled with a tile size of 𝐵, we end up with the same

number of blocks as out, but with two extra threads per block, which is the desired

effect.

However, the buffer mapping relies on the original index of the computation before

tiling. And since we introduce two extra iterations per block, this means that some

of these iterations on the edge of the block will be loading the same value from the

input, and we wish to correct for that. Thus when trying to read the input, we need

to discard any iteration that would be repeated in order to find the exact value we

are trying to find from the index. This is done by subtracting two from the index for

each block, i.e. when given an index 𝑖, the formula for the corrected index is

𝑖− 2× (number of previous blocks)

which when plugging in the block size 𝐵 becomes

𝑖− 2×
⌊︂

𝑖

𝐵

⌋︂

Figuring out where the information should be stored shared memory is a simpler

expression; it suffices to find where the thread is located within the block, i.e. find

the thread index within the block. Since the block size is 𝐵, the index to store the

information in shared memory is 𝑖 mod 𝐵.

Thus, to summarize how to implement the copy computation:

∙ It needs to iterate over an interval of size 𝑁 + 2×
⌈︁

𝑁
𝐵−2

⌉︁
.

∙ It needs to be tiled with a tile size of 𝐵.

∙ Iteration 𝑖 needs to load data from in
(︁
𝑖− 2×

⌊︁
𝑖
𝐵

⌋︁)︁
.

∙ Iteration 𝑖 needs to store data in the shared buffer sdata at sdata [𝑖 mod 𝐵].

51

If a computation needs to load more than 2 extra values, it suffices to replace every

occurence of 2 in the formulae above with the new number of values.

The last computations to implement are the synchronization computation and the

shared buffer declaration. The synchronization computation needs to be executed in

every block by every thread in the block, or otherwise the execution of the kernel

might hang and result in a deadlock. Thus we need to make sure that the span of

the original iteration space of the sync computation before tiling is a multiple of 𝐵.

Thus it needs to have
⌈︁

𝑁
𝐵−2

⌉︁
× 𝐵 iterations. Synchronization computations do not

have buffer accesses. The shared buffer declaration computation dec is implemented

in the exact same way.

A big advantage of this technique is that it is expressed in the original loop indices,

instead of the indices after tiling. Having a smaller number of indices significantly

simplifies the code necessary to express a program. Another advantage of this tech-

nique is that Tiramisu can leverage the composability of the polyhedral model to

vastly simplify the generated code. All of these complicated and computationally

expensive expressions would vanish to be expressed in terms of simpler expression

that rely on the block and thread indices.

Additionally, this technique can be implemented in any dimension, and even com-

posed across dimensions, as it allows the user to pick the execution model of any

computation across any dimension:

∙ Executed in every thread of every block like dec and sync.

∙ Executed in every thread of every block, except maybe the last block (global

boundary condition) like copy.

∙ Executed by a fixed group of thread of every block, except maybe the last block

which might have even fewer threads running (global boundary condition) like

out.

52

Tiramisu Shared Memory 1D Filter Example

Figure 4-4 highlights how the 1 dimensional filter example described above would be

implemented in Tiramisu. For brevity and clarity, global and host buffer declaration,

and their related access functions were omitted. Data copies were also omitted. Figure

4-1 contains usage examples of the omitted detail.

Layer I:
{in(𝑖, 𝑘) : 0 ≤ 𝑖 < 𝑁 ∧ 0 ≤ 𝑘 < 3}, unscheduled
{out(𝑖) : 0 ≤ 𝑖 < 𝑁} : (in(𝑖, 0) + in(𝑖, 1) + in(𝑖, 2))/3

Layer II:
out.tile(𝑖, 𝐵 − 2, 𝑖0, 𝑖1)

Layer III:
sdata : 𝐵, temporary, shared
in.set_access (in(𝑖, 𝑘)→ sdata [𝑖 mod (𝐵 − 2) + 𝑘])

Layer IV:
{in_global(𝑖) : 0 ≤ 𝑖 < 𝐵}, unscheduled{︁
dec(𝑖) : 0 ≤ 𝑖 <

⌈︁
𝑁

𝐵−2

⌉︁
×𝐵

}︁
: declare(buffer_sdata){︁

copy(𝑖) : 0 ≤ 𝑖 < 𝑁 + 2×
⌈︁

𝑁
𝐵−2

⌉︁}︁
: in_global

(︁
𝑖− 2×

⌊︁
𝑖
𝐵

⌋︁)︁{︁
sync(𝑖) : 0 ≤ 𝑖 <

⌈︁
𝑁

𝐵−2

⌉︁
×𝐵

}︁
: synchronize()

copy.set_access (copy(𝑖)→ sdata [𝑖 mod 𝐵])
dec.tile(𝑖, 𝐵, 𝑖0, 𝑖1)
copy.tile(𝑖, 𝐵, 𝑖0, 𝑖1)
sync.tile(𝑖, 𝐵, 𝑖0, 𝑖1)
dec.tag_gpu(𝑖0, 𝑖1)
copy.after(dec, 𝑖1)
sync.after(copy, 𝑖1)
out.after(sync, 𝑖1)

Figure 4-4: Simplified Tiramisu code representing the implementation of the 1D
filter on GPU
Irrelevant detail has been omitted.

53

4.4 CUDA Generation Architecture

There are two steps involved in the compilation of CUDA target code in Tiramisu;

the generation of an AST (hereafter called the CUDA AST) that represents the kernel,

and the compilation of the AST and integration of the kernel call into the rest of the

CPU code generated by Tiramisu.

Tiramisu relies on the ISL library[23] to compute, among other things, the con-

trol flow structure of the final program. For that, ISL provides an AST that consists

mainly of for loops, if/else conditions, function calls (which in Tiramisu represent

where a specific computation’s instruction is to be included), along side all the nec-

essary expressions to be able to specify the AST (e.g. references to loop variables,

quasi-affine arithmetic operations). It does not contain all of the information nec-

essary to produce the code, as the final expressions of each computation as well as

certain loop tags, including the GPU tags, are stored elsewhere. Listing 4.2 is an

example of an ISL AST.

In order to transform the ISL AST into CUDA AST, a generator object is created.

The generator object has a mutable state, and is in charge of visiting the ISL AST

nodes (as well as the expressions of every computation) and generating the CUDA

AST and information about how to integrate the CPU code with the GPU code. It

keeps track of declared scalars and buffers, current loop variables, whether or not the

generator is in a kernel or not, and if so, what loop variables map to what block/thread

indices, among other things.

It is initially fed the ISL AST of the whole Tiramisu code, for which the trans-

formation is rather straightforward, except in the case of a for loop, or a computation

instruction, or a scalar access. In the case of a for loop, it constructs the for loop

with an empty body, and adds the iterator to the set of declared scalars as well as the

loop iterator stack along side the minimum and the maximum bounds of the iterator.

The bounds are important in case the iterator turns out to be a GPU thread/block

index, as the bound information is necessary to specify the block/grid size.

The generator then analyzes and transforms the body of the loop. This will reveal

54

if the loop represents a kernel’s thread or block index, because this information is only

known at the computation instruction level within the loop’s body. The generator

checks if the loop iterator has been tagged as a GPU index while analyzing the body.

If it has, and there are more iterators that have been tagged as GPU iterators, then

the for loop is replaced with its body in the CUDA AST. If it is the last GPU iterator,

then a kernel object is created that contains the body of the for loop, and the for

loop is replaced by a kernel call in the CUDA AST. If the for loop’s iterator is not

tagged as GPU, then that for loop is simply placed in the CUDA AST as is.

The ISL AST also contains computation instructions. A computation instruction

represents where a computation will be placed in the generated call and is what

gets transformed into a buffer write, a function call, or some other instruction like

an allocation or a synchronization barrier. Additionally, computations contain all

the GPU tagging information. Thus, the first thing that the generator does when

encountering a computation instruction is to check if it is GPU tagged. If it is, then

the generator changes all the tagged iterators to accesses to GPU block or thread

indices, and stores that information so that any future mention of the iterators is

transformed to GPU index accesses. It also extracts any boundary conditions created

by ISL, including those generated by the tiling, and replaces them with if guards. An

example of the boundary condition extraction is shown in figure 4-5.

The generator then creates the actual instructions associated with computation

by

1. generating all the constants associated with the computation, and necessary to

perform the computation.

2. generating the actual instruction. If the computation does not generate a buffer

or scalar write, then the instruction represented by the computation (e.g. buffer

declaration/allocation, buffer free, memory copy, or synchronization barrier in-

struction) is simply created as is. Otherwise, it generates the write from the

expression and information about the structure provided by ISL. Using ISL is

important to insure correctness in case a loop variable is modified through a

55

Listing 4.3: Provided ISL AST
1 for (int i = 0; i < floor(N / 16); i++)
2 for (int j = 0; j < min(16, N - 16 * i); j++)
3 a(i, j)

Listing 4.4: Generated CUDA AST structure
1 // Generated kernel
2 // __global__ here means it’s a kernel
3 __global__ void kernel()
4 {
5 if (threadIdx.x < N - 16 * blockIdx.x)
6 a(blockIdx.x, threadIdx.x);
7 }
8 // Replacement call
9 // kernel<<<a, b>>> says there are a blocks with b threads each

10 kernel<<<N/16, 16>>>();

Figure 4-5: ISL AST and resulting CUDA AST pseudocode showcasing the boundary
condition extraction
The original loop has a span of 𝑁 , and is tiled with a tile size of 16 and mapped to
GPU.

transformation. For example, if a loop variable is tiled into two loop variables,

then any mention of it should be replaced by its expression in terms of the

resulting variables. This is also the part where accesses are used to translate a

computation to buffer/scalar write, and to replace any computation access with

a buffer access.

3. wrapping the generated assignment in a conditional block using the user defined

predicate, if one is provided. The user defined predicate is an additional con-

dition that the user can provide to restrict when to execute the computation,

other than the schedule provided to ISL.

Additionally, any buffer or scalar created in a computation within a kernel is

tagged as kernel local. This means that it shouldn’t be passed into the kernel from

the host. A non local scalar access could represent a thread or block index, in which

case the access is transformed into a GPU index access. Any other buffer or scalar

56

that is accessed within a kernel must have been defined outside the kernel. It is thus

kept track of, to be passed in through the generated kernel call. Buffer accesses only

happen within the scope of a computation. Scalar accesses on the other hand can

occur anywhere in the ISL AST, so these checks are also implemented when a scalar

is created (i.e. an iterator) or accessed in the ISL AST.

As a result of all of these steps, a CUDA AST is created that represents all of

the code, including the CPU. However, since the CPU code is implemented using a

different IR (the Halide IR), a new AST is created that contains:

1. constant memory buffer declarations, and methods to be able to access these

constant buffers.

2. kernel definitions for all generated kernels.

3. host wrapper functions that contain the kernel calls, and that specify the grid

and block dimensions.

This CUDA AST is then used to generate CUDA C code and write it to a file

on disk in preparation for compilation. The CUDA C generation relies on a visitor

pattern. Every type of node within the AST has one or more print methods associ-

ated with them. In the general case, executing a print method returns the textual

representation of a node in CUDA C. There are some other types of specialized print

methods. The body printing method for example takes care of adding C braces and

semi-colons for correctness, as well as beautifying the code by adding indentation to

make the generated code easier to debug. The declaration print method on buffers

and scalars specifies that the buffer or scalar is being printed in the context of a

declaration, in order to add declaration specific information, like the data type or

memory location of the created object. This visitor pattern is implemented using

dynamic dispatch (i.e. virtual methods).

On the host side, the Halide IR generator is able to create instructions that perform

the allocation and freeing of global memory, as well as copying data between the host

and the device (for global and constant memory). These instructions call hand-written

57

precompiled wrappers around the CUDA Runtime API. Additionally, whenever the

Halide IR generator encounters a for loop that was found to specify a kernel call by

the CUDA AST generator, the for loop is not analyzed, but rather replaced with a

call to the kernel call wrapper.

Finally, at the compilation phase, three object files are created in case the Tiramisu

code targets the CUDA API. One is the usual CPU code generated by the Halide

backend from the Halide IR. The other two are compiled by NVCC from the gener-

ated CUDA C file mentioned above. One contains the CPU wrapper code, and the

other one contains the GPU kernel code and constant memory buffer symbols. When

using the generated Tiramisu function, it suffices to pass in these object files.

4.5 Evaluation

In order to evaluate the performance of the GPU backend, multiple benchmarks were

implemented in both Tiramisu and Halide, which is another optimization framework.

The performance comparison includes an end to end evaluation (i.e. from data on

host to result on host), as well as a comparison of the data copy time and the kernel

execution time. The benchmarks were run on a p3.2xlarge AWS instance, which

contains an NVidia Tesla V100 GPU.

Since Halide automates a lot of its decision, Halide benchmarks were written in

order to trigger the usage of shared memory when useful for a fair comparison. This

was verified by looking at the generated code. Halide however does not currently

support constant memory.

The benchmarks used are

∙ cvtColor, which converts an RGB image to grayscale.

∙ convolution, which applies a 5 × 5 convolution filter on an image. This tests

usage of both shared and constant memory.

∙ warpAffine, which warps an image according to an affine map.

58

cvt
Colo

r

con
vol

uti
on

warp
Affine

hea
t2D

gau
ssi

an

rgb
yu

v4
20

fus
ion

1

1.1

1.2

1.3

1.4

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e Halide Tiramisu

Figure 4-6: End to end execution time of GPU benchmarks for Halide and Tiramisu,
normalized for Tiramisu

∙ heat2D, which computes one iteration of Heat2D. Heat2D models heat transfer

on a (2-dimensional) matrix. This tests usage of shared memory.

∙ convolution, which applies a guassian filter in the x, then in the y direction.

This tests usage of both shared and constant memory.

∙ rgbyuv420, which converts an image from the RGB color space, to the YUV

color space.

∙ fusion, which tests loop fusion (and thus the ability to perform two separate

computation within the same kernel).

The benchmarks used a 32× 32 block size. All benchmarks used a 2112× 3520 pixel

image as an input, except heat2D, which uses a 10000× 10000 matrix.

A look at figure 4-6 shows that end-to-end performance is comparable for both

Halide and Tiramisu, except for warpAffine. Figure 4-7 highlights that is due to data

copy time. This is because the input buffer only uses one channel, and in Halide, the

whole buffer is copied based on buffer metadata, whereas in Tiramisu, buffers are

59

cvt
Colo

r

con
vol

uti
on

warp
Affine

hea
t2D

gau
ssi

an

rgb
yu

v4
20

fus
ion

1

1.1

1.2

1.3

1.4

1.5

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e Halide Tiramisu

Figure 4-7: Data copy execution time of GPU benchmarks for Halide and Tiramisu,
normalized for Tiramisu

cvt
Colo

r

con
vol

uti
on

warp
Affine

hea
t2D

gau
ssi

an

rgb
yu

v4
20

fus
ion

1

1.5

2

N
or

m
al

iz
ed

ex
ec

ut
io

n
tim

e Halide Tiramisu

Figure 4-8: Kernel execution time of GPU benchmarks for Halide and Tiramisu,
normalized for Tiramisu

60

copied based on the size the user specifies. This figure also shows that data copies

dominate end to end performance, as is expected.

Figure 4-8 shows that kernel performance is mostly comparable, except in the case

of convolution, gaussian, and fusion. Convolution and gaussian run faster Tiramisu

because of the use of constant memory, which is not yet supported in Halide. Fusion

runs faster in Tiramisu because it merges multiple separate computations into one

kernel. Additionally, those computations feature data reuse, which is optimized so

that there is a unique access to the data from global memory.

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

Chapter 5

Conclusion

We have implemented a Julia to Tiramisu transpiler, a programming language with

a focus on numerical analysis, in order to optimize its performance. This showcased

not only the viability of Tiramisu as an optimization backend for DSL compilers, but

also that using it leads to clear performance increases. We also implemented a CUDA

backend for Tiramisu in order to expand the range of architectures it can target,

which is important to achieve peak computational performance in a heterogenous

computation system. We showcased that it achieves comparable performance to the

Halide platform, a popular optimization platform developed by Google.

Moving forward, a rewrite of the Julia to Tiramisu transpiler using the Cassette[18]

package would increase its robustness and maintainability. Since the transpiler relies

on pattern matching of a low level IR, any major change in the way the Julia tran-

spiler lowers its AST would break the transpiler. The Cassette.jl package, currently

in development, aims to provide a consistent robust API to influence the compilation

process of Julia, which would be a natural target for a Julia to Tiramisu transpiler.

As for the CUDA backend, improvements can be made both on the level of support

of CUDA features, as well as the Tiramisu CUDA API. Examples of CUDA features

that could be supported include texture memory, asynchronous execution of memory

copies and kernels using CUDA events, as well as more fine-grained synchronization

techniques (e.g. warp level memory barriers). Additionally, extensions to Tiramisu

would ease the implementation of many GPU kernels. Parametric tiling for example,

63

i.e. tiling by a tile size unknown at compile time, would allow the user to query

device information dynamically in order to pick the most optimal tile size. An easier

way to express for loops for which the iterator decreases logarithmically would ease

the implementation of reductions. Additionally, Tiramisu can provide abstractions

for common GPU usage patterns to make its API easier to use. An example of such

usage pattern is the shared memory pattern discussed above.

64

Appendix A

Shared Memory Pattern

Performance Experiment

Listing A.1: CUDA code for the shared memory experiment
1 #include <iostream>
2
3 template <int blockSize>
4 __global__ void case_1(
5 float * input, float * output, int N, int M)
6 {
7 const int tx = threadIdx.x;
8 const int ty = threadIdx.y;
9 const int bx = blockIdx.x;

10 const int by = blockIdx.y;
11 const int tidx = tx + bx * blockSize;
12 const int tidy = ty + by * blockSize;
13 const bool predicate = tidy < N && tidx < M;
14 __shared__ float sdata[blockSize][blockSize + 2];
15 if (predicate)
16 {
17 sdata[ty][tx] = input[tidy * (M + 2) + tidx];
18 if (tx < 2)
19 {
20 // Necessary if the data is not aligned
21 // with the block size
22 int added = min(M - blockSize * bx, blockSize);
23 sdata[ty][tx + added] =
24 input[tidy * (M + 2) + tidx + added];
25 }
26 }
27 __syncthreads();
28 if (predicate)
29 {
30 output[tidy * M + tidx] = sdata[ty][tx]

65

31 + sdata[ty][tx + 1] + sdata[ty][tx + 2];
32 }
33 }
34
35 template <int blockSize>
36 __global__ void case_2(
37 float * input, float * output, int N, int M)
38 {
39 const int tx = threadIdx.x;
40 const int ty = threadIdx.y;
41 const int bx = blockIdx.x;
42 const int by = blockIdx.y;
43 const int blockSizeRestricted = (blockSize - 2);
44 const int tidx = tx + bx * blockSizeRestricted;
45 const int tidy = ty + by * blockSize;
46 __shared__ float sdata[blockSize][blockSize];
47 if (tidy < N && tidx < M + 2)
48 {
49 sdata[ty][tx] = input[tidy * (M + 2) + tidx];
50 }
51 __syncthreads();
52 if (tx < blockSizeRestricted && tidy < N && tidx < M)
53 {
54 output[tidy * M + tidx] = sdata[ty][tx]
55 + sdata[ty][tx + 1] + sdata[ty][tx + 2];
56 }
57 }
58
59 void correct(float * input, float * output, int N, int M)
60 {
61 for (int i = 0; i < N; i ++)
62 for (int j = 0; j < M; j ++)
63 {
64 float sum = 0;
65 for (int k = 0; k < 3; k++)
66 {
67 sum += input[i * (M + 2) + j + k];
68 }
69 output[i * M + j] = sum;
70 }
71 }
72
73 float * generate(int N, int M)
74 {
75 float * result = new float[N * M];
76 for (int i = 0; i < N; i ++)
77 for (int j = 0; j < M; j ++)
78 {
79 result[i * M + j] = (i + j - i * j) / 20.;
80 }
81 return result;
82 }
83
84 bool compare(float * ref, float * out, int N, int M)
85 {

66

86 for (int i = 0; i < N; i ++)
87 for (int j = 0; j < M; j ++)
88 {
89 if (out[i * M + j] != ref[i * M + j])
90 {
91 std::cout <<
92 "Error at (" << i << ", " << j << "): "
93 << out[i * M + j] << " != "
94 << ref[i * M + j] << std::endl;
95 return false;
96 }
97 }
98 return true;
99 }

100
101 void gpuAssert(cudaError_t code, int line)
102 {
103 if (code != cudaSuccess)
104 {
105 std::cerr <<
106 "GPU error: " << cudaGetErrorString(code) <<
107 " at line " << line << std::endl;
108 exit(code);
109 }
110 else
111 {
112 std::cerr << "GPU command at line " << line <<
113 " successful." << std::endl;
114 }
115 }
116
117 #define verifyErrors() gpuAssert(cudaPeekAtLastError(), \
118 __LINE__)
119
120 #define iceil(a, b) ((a) + (b) - 1) / (b)
121
122 int main()
123 {
124 int N = 6000, M = 7500;
125 float * input = generate(N, M + 2);
126 float * output = new float[N * M];
127 float * output1 = new float[N * M];
128 float * output2 = new float[N * M];
129 correct(input, output, N, M);
130 float * inputgpu, * output1gpu, * output2gpu ;
131 cudaMalloc(&inputgpu, N * (M + 2) * sizeof(float));
132 cudaMalloc(&output1gpu, N * M * sizeof(float));
133 cudaMalloc(&output2gpu, N * M * sizeof(float));
134 cudaMemcpy(inputgpu, input, N * (M + 2) * sizeof(float),
135 cudaMemcpyHostToDevice);
136
137 const int blockSize = 32;
138
139 for (int i = 0; i < 60; i++)
140 {

67

141 dim3 grid(iceil(M, blockSize), iceil(N, blockSize));
142 dim3 blocks(blockSize, blockSize);
143 case_1<blockSize><<<grid, blocks>>>(
144 inputgpu, output1gpu, N, M);
145 }
146 verifyErrors();
147
148 for (int i = 0; i < 60; i++)
149 {
150 dim3 grid(iceil(M, blockSize - 2), iceil(N, blockSize));
151 dim3 blocks(blockSize, blockSize);
152 case_2<blockSize><<<grid, blocks>>>(
153 inputgpu, output2gpu, N, M);
154 }
155 verifyErrors();
156
157 cudaMemcpy(output1, output1gpu, N * M * sizeof(float),
158 cudaMemcpyDeviceToHost);
159 cudaMemcpy(output2, output2gpu, N * M * sizeof(float),
160 cudaMemcpyDeviceToHost);
161
162 cudaFree(inputgpu);
163 cudaFree(output1gpu);
164 cudaFree(output2gpu);
165
166 std::cout << "case 1 test: " <<
167 compare(output, output1, N, M) << std::endl;
168 std::cout << "case 2 test: " <<
169 compare(output, output2, N, M) << std::endl;
170
171 return 0;
172 }

68

Bibliography

[1] Todd A Anderson, Hai Liu, Lindsey Kuper, Ehsan Totoni, Jan Vitek, and Ta-
tiana Shpeisman. Parallelizing julia with a non-invasive dsl. In LIPIcs-Leibniz
International Proceedings in Informatics, volume 74. Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

[2] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael
Kruse, Chandan Reddy, Sven Verdoolaege, Adam Betts, Alastair F Donaldson,
Jeroen Ketema, et al. Pencil: A platform-neutral compute intermediate language
for accelerator programming. In Parallel Architecture and Compilation (PACT),
2015 International Conference on, pages 138–149. IEEE, 2015.

[3] Riyadh Baghdadi, Jessica Ray, Malek Ben Romdhane, Emanuele Del Sozzo,
Patricia Suriana, Shoaib Kamil, and Saman Amarasinghe. Tiramisu: A code
optimization framework for high performance systems, 2018.

[4] Soufiane Baghdadi, Armin Größlinger, and Albert Cohen. Putting Automatic
Polyhedral Compilation for GPGPU to Work. In Proceedings of the 15th Work-
shop on Compilers for Parallel Computers (CPC’10), Vienna, Austria, July 2010.

[5] Michel Barreteau and Claudia Cantini. Signal processing: Radar. In Smart
Multicore Embedded Systems, pages 125–138. Springer, 2014.

[6] Muthu Manikandan Baskaran, J. Ramanujam, and P. Sadayappan. Automatic
c-to-cuda code generation for affine programs. In Rajiv Gupta, editor, Compiler
Construction, pages 244–263, Berlin, Heidelberg, 2010. Springer Berlin Heidel-
berg.

[7] Cedric Bastoul. Code generation in the polyhedral model is easier than you think.
In Proceedings of the 13th International Conference on Parallel Architectures and
Compilation Techniques, PACT ’04, pages 7–16, Washington, DC, USA, 2004.
IEEE Computer Society.

[8] Ulysse Beaugnon, Alexey Kravets, Sven Van Haastregt, Riyadh Baghdadi, David
Tweed, Javed Absar, and Anton Lokhmotov. Vobla: A vehicle for optimized
basic linear algebra. In ACM SIGPLAN Notices, volume 49, pages 115–124.
ACM, 2014.

[9] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia: A
fresh approach to numerical computing. SIAM Review, 59(1):65–98, 2017.

69

[10] Uday Bondhugula, A Hartono, J Ramanujam, and P Sadayappan. Pluto: A prac-
tical and fully automatic polyhedral program optimization system. In Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language Design and
Implementation (PLDI 08), Tucson, AZ (June 2008). Citeseer, 2008.

[11] Alexander Collins, Dominik Grewe, Vinod Grover, Sean Lee, and Adriana Sus-
nea. Nova: A functional language for data parallelism. In Proceedings of ACM
SIGPLAN International Workshop on Libraries, Languages, and Compilers for
Array Programming, page 8. ACM, 2014.

[12] Tobias Grosser, Hongbin Zheng, Raghesh Aloor, Andreas Simbürger, Armin
Größlinger, and Louis-Noël Pouchet. Polly-polyhedral optimization in llvm.

[13] David B Kirk and W Hwu Wen-Mei. Programming massively parallel processors:
a hands-on approach. Morgan kaufmann, 2016.

[14] David Luebke. Cuda: Scalable parallel programming for high-performance scien-
tific computing. In Biomedical Imaging: From Nano to Macro, 2008. ISBI 2008.
5th IEEE International Symposium on, pages 836–838. IEEE, 2008.

[15] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley,
and Kayvon Fatahalian. Automatically scheduling halide image processing
pipelines. ACM Transactions on Graphics (TOG), 35(4):83, 2016.

[16] CUDA Nvidia. Nvidia cuda c programming guide. Nvidia Corporation, 120(18):8,
2011.

[17] Louis-Noël Pouchet. Polybench: The polyhedral benchmark suite. URL:
http://www.cs.ucla.edu/pouchet/software/polybench, 2012.

[18] Jarrett Revels. Cassette.jl. https://github.com/jrevels/Cassette.jl, 2018.

[19] Shaden Smith, Niranjay Ravindran, Nicholas D Sidiropoulos, and George
Karypis. Splatt: Efficient and parallel sparse tensor-matrix multiplication. In
Parallel and Distributed Processing Symposium (IPDPS), 2015 IEEE Interna-
tional, pages 61–70. IEEE, 2015.

[20] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. Lift: A functional
data-parallel ir for high-performance gpu code generation. In Proceedings of the
2017 International Symposium on Code Generation and Optimization, CGO ’17,
pages 74–85, Piscataway, NJ, USA, 2017. IEEE Press.

[21] John E Stone, David Gohara, and Guochun Shi. Opencl: A parallel program-
ming standard for heterogeneous computing systems. Computing in science &
engineering, 12(3):66–73, 2010.

[22] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the speed of
neural networks on cpus. In Deep Learning and Unsupervised Feature Learning
Workshop, NIPS 2011, 2011.

70

https://github.com/jrevels/Cassette.jl

[23] Sven Verdoolaege. isl: An integer set library for the polyhedral model. In Inter-
national Congress on Mathematical Software, pages 299–302. Springer, 2010.

71

	Introduction
	Background
	Contributions

	Tiramisu
	Tiramisu Overview
	The Four-Layer IR
	The Polyhedral Model
	High Level Scheduling Commands

	An Example Tiramisu Program
	Advantages of Tiramisu

	Julia to Tiramisu
	Overview
	Related Work
	Metaprogramming in Julia
	Surface Syntax AST
	Lowered Form

	Design Choices
	ParallelAccelerator
	Scope of the Julia to Tiramisu Transpiler

	The Transpilation Pipeline
	The Pretag Pass
	The Recovery Pass
	The Dead Code Elimination Pass
	The Code Generation Pass

	Evaluation

	Tiramisu to CUDA
	Related Work
	Introduction to CUDA
	The CUDA-enabled GPU Architecture
	The CUDA API

	Scheduling for GPUs in Tiramisu
	CUDA Computations in Tiramisu
	Tiramisu CUDA Example

	Common Shared Memory Patterns in Tiramisu
	Tiramisu Shared Memory 1D Filter Example

	CUDA Generation Architecture
	Evaluation

	Conclusion
	Shared Memory Pattern Performance Experiment

