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ABSTRACT

Modern out-of-order processors have increased capacity to
exploit instruction level parallelism (ILP) and memory level
parallelism (MLP), e.g., by using wide superscalar pipelines
and vector execution units, as well as deep buffers for in-
flight memory requests. These resources, however, often ex-
hibit poor utilization rates on workloads with large working
sets, e.g., in-memory databases, key-value stores, and graph
analytics, as compilers and hardware struggle to expose ILP
and MLP from the instruction stream automatically.
In this paper, we introduce the IMLP (Instruction and

Memory Level Parallelism) task programming model. IMLP
tasks execute as coroutines that yield execution at annotated
long-latency operations, e.g., memory accesses, divisions,
or unpredictable branches. IMLP tasks are interleaved on a
single thread, and integrate well with thread parallelism and
vectorization. Our DSL embedded in C++, Cimple, allows
exploration of task scheduling and transformations, such as
buffering, vectorization, pipelining, and prefetching.

We demonstrate state-of-the-art performance on core algo-
rithms used in in-memory databases that operate on arrays,
hash tables, trees, and skip lists. Cimple applications reach
2.5× throughput gains over hardware multithreading on a
multi-core, and 6.4× single thread speedup.
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1 INTRODUCTION

Barroso et al. [4] observe that “killer microseconds” prevent
efficient use of modern datacenters. The critical gap between
millisecond and nanosecond latencies lies outside the tra-
ditional roles of software and hardware. Existing software
techniques used to hide millisecond latencies, such as threads
or asynchronous I/O, have too much overhead to successfully
address microsecond latencies and below. On the other hand,
out-of-order hardware is capable of hiding at most tens of
nanoseconds latencies. Yet, average memory access times
now span a much broader range: from ~20 ns for L3 cache
hits, to >200 ns for DRAM accesses on a remote NUMA node
— making hardware techniques inadequate. We believe an
efficient, flexible, and expressive programming model can
fill the critical gap and scale the full memory hierarchy from
tens to hundreds of nanoseconds.

Processors have grown their capacity to exploit instruction
level parallelism (ILP) with wide scalar and vector pipelines,
e.g., cores have 4-way superscalar pipelines, and vector units
can execute 32 arithmetic operations per cycle. Memory
level parallelism (MLP) is also pervasive, with deep buffering
between caches and DRAM that allows 10+ in-flight memory
requests per core. But long distances between independent
operations in existing instruction streams prevent modern
CPUs from fully exploiting this source of performance.
Critical infrastructure applications such as in-memory

databases, key-value stores, and graph analytics, character-
ized by large working sets with multi-level address indi-
rection and pointer traversals, push hardware to its limits:
large multi-level caches and branch predictors fail to keep
processor stalls low. Out-of-order windows of hundreds of in-
structions are also insufficient to hold all instructions needed
in order to maintain a high number of parallel memory re-
quests, which is necessary to hide long latency accesses.

The two main problems are caused by either branch mis-
predictions that make the effective instruction window too
small, or by overflowing the instruction window when there
are too many instructions between memory references. Since
a pending load prevents all following instructions from re-
tiring in-order, if the instruction window resources cannot
hold new instructions, no concurrent loads can be issued. A
vicious cycle forms where low ILP causes low MLP when
long dependence chains and mispredicted branches do not
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generate enough parallel memory requests. In turn, lowMLP
causes low effective ILP whenmispredicted branch outcomes
depend on long latency memory references.

Context switching using high number of hardware threads
to hide DRAM latency was explored in Tera [1]. Today’s com-
mercial CPUs have vestigial simultaneous multithreading
support, e.g., 2-way SMT on Intel CPUs. OS thread context
switching is unusable as it is 50 times more expensive than a
DRAM miss. We therefore go back to 1950s coroutines [49]
for low latency software context switching in order to hide
variable memory latency efficiently.

We introduce a simple Instruction and Memory Level Par-
allelism (IMLP) programming model based on concurrent
tasks executing as coroutines. Coroutines yield execution at
annotated long-latency operations, e.g., memory accesses,
long dependence chains, or unpredictable branches. Our DSL
Cimple (Coroutines for Instruction andMemory Parallel Lan-
guage Extensions) separates program logic from programmer
hints and scheduling optimizations. Cimple allows explo-
ration of task scheduling and techniques such as buffering,
vectorization, pipelining, and prefetching, supported in our
compiler Cimple for C++.
Prior compilers have struggled to uncover many oppor-

tunities for parallel memory requests. Critical long latency
operations are hidden in deeply nested functions, as modu-
larity is favored by current software engineering practices.
Aggressive inlining to expose parallel execution opportuni-
ties would largely increase code cache pressure, which would
interact poorly with out-of-order cores. Compiler-assisted
techniques depend on prefetching [40, 46], e.g., fixed look-
ahead prefetching in a loop nest. Manual techniques for indi-
rect access prefetching have been found effective for the tight
loops of database hash-join operations [10, 32, 45, 55] - a long
sequence of index lookups can be handled in batches (static
scheduling) [10, 45], or refilled dynamically (dynamic sched-
uling) [32, 55]. Since the optimal scheduler style may be data
type and data distribution dependent, Cimple allows gen-
eration of tasks for both styles, additional code-generation
optimizations, as well as better optimized schedulers.

High performance database query engines [15, 34, 45, 48]
use Just-In-Time (JIT) compilation to remove virtual function
call overheads and take advantage of attendant inlining op-
portunities. For example, in Impala, an open source variant
of Google’s F1 [66], query generation uses both dynamically
compiled C++ text and LLVM Instruction Representation
(IR) [13]. Cimple offers much higher performance with lower
complexity than using an LLVM IR builder: Cimple’s Ab-
stract Syntax Tree (AST) builder is close to C++ (and allows
verbatim C++ statements). Most importantly, low level opti-
mizations work on one item at a time, while Cimple kernels
operate on many items in parallel.

Figure 1: Speedup on a single thread and throughput

gains on a full system (24 cores / 48 SMT [25]). Binary

Search, Binary Tree, Skip List, Skip List iterator, and

Hash Table.

We compare Cimple performance against core in-memory
database C++ index implementations: binary search in a
sorted array, a binary tree index lookup, a skip list lookup
and traversal, and unordered hash table index. As shown on
Figure 1, we achieve 2.5× peak throughput on a multi-core
system, and on a single-thread — 6.4× higher performance.

The rest of this paper is organized as follows: In Section 2,
we walk through an end-to-end use case. In Section 3, we
explore peak ILP and MLP capabilities of modern hardware.
We introduce the IMLP programming model and Cimple
compiler and runtime library design in Section 4, with more
details of the Cimple DSL in Section 5, and implementation
details of Cimple transformations in Section 6. We demon-
strate expressiveness by building a template library of core
indexes in Section 7, and performance – in Section 8. Sec-
tion 9 surveys related work and Section 10 concludes.

2 EXAMPLE

We next present an example that highlights how the Cimple
language and runtime system work together to efficiently
expose available memory-level parallelism on current hard-
ware. We use a classic iterative binary search tree lookup,
which executes a while loop to traverse a binary tree in the
direction of key until a match is found. It returns the node
that contains the corresponding key/value pair, or nil.

2.1 Binary Search Tree Lookup in Cimple

Listing 1 presents the Cimple code for the example com-
putation. The code identifies the name of the operation
(BST_find), the result type (node*), and the two argu-
ments (n, the current node as the computation walks down
the tree, and key, the key to lookup in the tree).

In this code, there is one potentially expensive memory
operation, specifically the first access to n->key in the if
condition that checks to see if the key at the current node n
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1 auto c = Coroutine(BST_find);
2 c.Result(node*).
3 Arg(node*, n).
4 Arg(KeyType, key).
5 Body().
6 While(n).Do(
7 Prefetch(n).Yield().
8 If( n->key == key ).
9 Then( Return(n) ).
10 Stmt( n = n->child[n->key < key]; )
11 ).
12 Return(n);

Listing 1: Binary Search Tree Lookup in Cimple.

matches the lookup key. Once the cache line containing this
value has been fetched into the L1 data cache, subsequent ac-
cesses to n->key and n->child are accessed quickly. The
Cimple code issues a prefetch, then yields to other lookup
operations on the same thread.

1 struct Coroutine_BST_Find {
2 node* n;
3 KeyType key;
4 node* _result;
5 int _state = 0;
6 enum {_Finished = 2};
7
8 bool Step() {
9 switch(_state) {
10 case 0:
11 while(n) {
12 prefetch(n);
13 _state = 1;
14 return false;
15 case 1:
16 if(n->key == key) {
17 _result = n;
18 _state = _Finished;
19 return true;
20 }
21 n = n->child[n->key < key];
22 } // while
23 _result = n;
24 _state = _Finished;
25 return true;
26 case _Finished:
27 return true;
28 }}};

Listing 2: Generated Cimple coroutine for BST_find.

Listing 2 presents the coroutine that our Cimple com-
piler (automatically) generates for the code in Listing 1. Each

coroutine is implemented as a C++ struct that stores the
required state of the lookup computation and contains the
generated code that implements the lookup. The computa-
tion state contains the key and current node n as well as au-
tomatically generated internal state variables _result and
_state. Here after the Cimple compiler has decomposed
the lookup computation into individual steps, the computa-
tion can be in one of three states:
Before Node: In this state the lookup is ready to check if the
current node n contains key. However, the required access
to n->key may be expensive. The step therefore issues a
prefetch on n and returns back to the scheduler. To expose
additional memory level parallelism and hide the latency of
the expensive memory lookup, the scheduler will proceed
on to multiplex steps from other lookup computations onto
the scheduler thread.
At Node: Eventually the scheduler schedules the next step
in the computation. In this step, the prefetch has (typically)
completed and n is now resident in the L1 cache. The com-
putation checks to see if it has found the node containing
the key. If so, the lookup is complete, the coroutine stores
the found node in _result, and switches to the Finished
state. Otherwise, the coroutine takes another step left or
right down the search tree, executes the next iteration of the
while loop to issue the prefetch for left or right node, and
then returns back to the scheduler.
Finished: Used only by schedulers that execute a batch of
coroutines that require different number of steps.

2.2 Request Parallelism

Cimple converts available request level parallelism (RLP)
into memory-level parallelism (MLP) by exposing a queue of
incoming requests to index routines, instead of queuing or
batching in the network stack [44]. Our example workload
is inspired by modern Internet servers [2, 8, 60] that process
a high volume of aggregated user requests. Even though
the majority of requests are for key lookups, support for
range queries requires an ordered dictionary, such as a binary
search tree or a skip list. Here each worker thread is given a
stream of independent key lookup requests.
A coroutine scheduler implements a lightweight, single-

threaded queue of in-flight partially completed request com-
putations (e.g., BST lookups). The scheduler multiplexes the
computations onto its thread at the granularity of steps. The
queue stores the state of each partially completed computa-
tion and switches between states to multiplex the multiple
computations. The Cimple implementation breaks each com-
putation into a sequence of steps. Ideally, each step performs
a sequence of local computations, followed by a prefetch or
expensive memory access (e.g., an access that is typically
satisfied out of the DRAM), then a yield.
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Note we never wait for events, since loads are not in-
forming [24]. We simply avoid reading values that might
stall. This is the fundamental difference between Cimple and
heavy-weight event-driven I/O schedulers. We also avoid
non-predictable branches when resuming coroutine stages.

Wemaintain a pipeline of outstanding requests that covers
the maximum memory latency. The scheduler queue has a
fixed number of entries, e.g., ~50 is large enough to saturate
the memory level parallelism available on current hardware
platforms. The scheduler executes one step of all of queued
computations. A queue refill is requested either when all
lookups in a batch complete (static scheduling [10]), or as
soon as any lookup in a batch has completed (dynamic sched-
uling [32]). The scheduler then returns back to check for and
enqueue any newly arrived requests. In this way the sched-
uler continuously fills the queue to maximize the exploited
memory level parallelism.

2.3 Cimple Execution On Modern

Computing Platform

For large binary search trees, the aggregated lookup com-
putation is memory bound. Its performance is therefore de-
termined by the sustained rate at which it can generate the
memory requests required to fetch the nodes stored in, e.g.,
DRAM or other remote memory. Our target class of modern
microprocessors supports nonblocking cache misses, with
up to ten outstanding cache misses in flight per core at any
given time. The goal is therefore to maximize the number of
outstanding cache misses in flight, in this computation by
executing expensive memory accesses from different com-
putations in parallel.

Here is how the example Cimple program works towards
this goal. By breaking the tree traversals into steps, and
using the Cimple coroutine mechanism to quickly switch
between the lookup computation steps, the computation is
designed to continuously generate memory requests (by is-
suing prefetch operations from coroutined lookups). This
execution strategy is designed to generate an instruction
stream that contains sequences of fast, cache-local instruc-
tions (from both the application and the Cimple coroutine
scheduler) interspersed with prefetch operations. While this
approach has instruction overhead (from the Cimple corou-
tine scheduler), the instructions execute quickly to expose
the available MLP in this example.

2.4 Performance Comparison

We compare the performance of the Cimple binary tree
lookup with the performance of a baseline binary tree lookup
algorithm. The workload is a partitioned tree search in which
each thread is given a stream of lookups to perform. The
Cimple implementation interleaves multiple lookups on each

Figure 2: Throughput improvements for lookup in a

partitioned binary search tree index (1GB per thread).

thread, while the baseline executes the lookups sequentially.
We use a 24 core Intel Haswell machine with 2 hyperthreads
per core (see Section 8.1).

Figure 2 presents the results. The X axis is the number of
cores executing the computation, with each core executing
a single lookup thread. The Y axis presents the number of
lookups in millions of operations per second. On one thread,
the Cimple computation performs 6.4 times as many lookups
per second as the baseline computation. This is true even
though 1) due to coroutine scheduling overhead, the Cimple
computation executes many more instructions than the base-
line computation and 2) in theory, the baseline computation
has as much memory parallelism across all requests as the
Cimple computation (but the baseline MLP is unavailable to
the processor because it is separated within the instruction
stream by the long sequential lookups).
The performance of both computations increases up to

24 cores, with the Cimple implementation performing 3.7
times as many lookups per second as the baseline implemen-
tation (the difference narrows because the memory and co-
herence systems become increasingly loaded as the number
of cores increases). Our machine supports two hyperthreads
per core. Increasing the number of threads from 24 to 48
requires placing two threads on at least some of the cores.
With this placement, the Cimple threads start interfering
and performance decreases. The performance of the baseline
computation increases (slowly) between 24 and 48 threads.
Nevertheless, the best Cimple computation (on 24 threads)
still performs 2.4 times as many operations per second as
the best baseline computation (on 48 threads).

2.5 Three Key Techniques to Improve MLP

and ILP

The example on Listing 1 illustrates the three essential tech-
niques for achieving good performance with Cimple on cur-
rent hardware. The first and most important is to identify
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independent requests and allow parallelism across them by
breaking up execution at Yield statements (line 7). The sec-
ond is to enable longer computation chains between memory
requests via explicit software prefetching Prefetch. The
third is to eliminate unpredictable branches — by replacing
a control dependence (if) with an address generation de-
pendence (line 10). Otherwise branch mispredictions would
also discard unrelated (correct) subsequent coroutines, since
hardware speculative execution is designed to capture the
control flow of only one sequential instruction stream.

3 HARDWARE BACKGROUND

We now examine the hardware mechanisms for handling
cache misses and memory level parallelism in DRAM and
CPUs. The achievable MLP is further limited by the size of
the buffers connecting memory hierarchy layers.

3.1 DRAM Parallelism

The two main MLP limiters are the number of DRAM banks
and the size of pending request queues.
Before a DRAM read or write can occur, a DRAM row

– typically 8–16KB of data – must be destructively loaded
(activated) into an internal buffer for its contents to be ac-
cessed. Consecutive read or write requests to the same row
are limited only by DRAM channel bandwidth, thus sequen-
tial accesses take advantage of spatial locality in row accesses.
In contrast, random accesses must find independent request
streams to hide the high latency of a row cycle of different
banks (DRAM page misses), or worse – the additional latency
of accessing rows of the same bank (DRAM page conflicts).
The typical maximum of simultaneously open banks on a
DDR4 server is 16 banks×2 ranks×(4—6) memory channels.
Thememory controllers trackmore pending requests in large
queues, e.g., 48+ cache lines per memory channel [54].

While DRAM latency has stagnated, higher DRAM band-
width and more memory controllers have kept up with pro-
viding high per-core memory bandwidth. The share of total
bandwidth for cores on current Intel Xeon servers is 4–6
GB/s. Although DDR4 latency is ∼50 ns, additional inter-
connect, cache coherence, and queuing delays add to total
memory latency of 80 ns–200 ns.

3.2 Cache Miss Handling

The primary MLP limit for single threaded execution is the
number of Miss Status Holding Registers (MSHR) [35], which
are the hardware structures that track cache lines with out-
standing cache misses. Modern processors typically have
6–10 L1 cache MSHRs: since a content-associative search
is expensive in area and power, the number of MSHRs is
hard to scale [72]. Intel’s Haswell microarchitecture uses
10 L1 MSHRs (Line Fill Buffers) for handling outstanding

L1 misses [26]. The 16 L2 MSHRs limit overall random and
prefetchable sequential traffic.

For current software with low MLP, the MSHRs are hardly
a bottleneck. Hardware prefetching and speculative instruc-
tions (after branch prediction) are important hardware tech-
niques that put to use the rest of the MSHRs. Hardware
prefetching is effective for sequential access – in that case
a few MSHRs are sufficient to hide the access latency to
the next level in the memory hierarchy. When hardware
prefetches are wrong, or when mispredicted branches never
need the speculatively-loaded cache lines, these techniques
are wasting memory bandwidth and power.

By Little’s law, the achievable bandwidth equals the num-
ber of MSHR entries divided by the average memory latency.
Applications that are stalling on memory requests but do
not saturate the memory bandwidth are typically considered
“latency bound”. More often than not, however, the real bot-
tleneck is in the other term of Little’s law - a very low queue
occupancy due to low application MLP. The effective MLP
of several graph frameworks is estimated in [5].

3.3 Software Prefetching

Using software prefetch instructions allows higher MLP than
regular loads. The instruction reorder buffer, or any resource
held up by non-retired instructions may become the limiting
factor: 192-entry reorder buffer, 168 registers, 72-entry load
and 42-entry store buffers on Haswell [26]. These resources
are plentiful when running inefficiently one memory request
at a time. Dividing the core resources over 10 parallel mem-
ory requests, however, means that each regular load can be
accompanied by at most 19 𝜇ops using at most 16 registers,
7 loads and 4 memory stores.

Prefetch instructions free up the instruction window as
they retire once the physical address mapping is known, e.g.,
either after a TLB hit, or after a page walk on a TLB miss. As
soon as the virtual to physical translation has completed, an
L2 memory reference using the physical address can be initi-
ated. On current Intel microarchitectures the PREFETCHh
family of instructions always prefetch into the L1 cache. Soft-
ware prefetches are primarily limited by the number of L1
MSHR entries. Maintaining a longer queue of in-flight re-
quests (limited by load buffers), however, helps to ensure
that TLB translations of the following prefetches are ready as
soon as an MSHR entry is available. If hardware performance
counters show that dependent loads miss both the L1 cache
and MSHRs then prefetches are too early; if loads hit MSHRs
instead of L1 then prefetches are too late.

3.4 Branch Misprediction Handling

Highly mispredicted branches are detrimental to speculative
execution, especially when a burst of branch mispredictions
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results in a short effective instruction window. Mispredicted
branches that depend on long latency loads also incur a
high speculation penalty. Instruction profilingwith hardware
performance counters can be used to precisely pinpoint such
critical branches. The most portable solution for avoiding
branch misprediction is to use data or address dependence
instead of control dependence. While no further execution of
dependent instructions is possible, independent work items
can still be serviced.

Most instruction set architectures (ISAs) also support con-
ditional move instructions (cmov on x86) (or csel on ARM),
as simple cases of instruction predication. Automatic predi-
cation is also available in simple cases on IBM Power7 [67]
where unpredictable branches that jump over a single inte-
ger or memory instructions are converted to a predicated
conditional selection. The ternary select operator in C (?:) is
often lowered to conditional move instructions, however, use
of assembly routines is unfortunately required to ensure that
mispredictable branch instructions are not emitted instead
of the desired conditional move instructions.

4 DESIGN OVERVIEW

The Cimple compiler and runtime library are used via an
embedded DSL similar to Halide [57], which separates the
basic logic from scheduling hints to guide transformations.
Similarly we build an Abstract Syntax Tree (AST) directly
from succinct C++ code. Unlike Halide’s expression pipelines,
which have no control flow, Cimple treats expressions as
opaque AST blocks and exposes conventional control flow
primitives to enable our transformations. Section 5 describes
our Cimple syntax in more detail.
Coroutines are simply routines that can be interleaved

with other coroutines. Programmers annotate long-latency
operations, e.g., memory accesses or unpredictable branches.
A Yield statement marks the suspension points where an-
other coroutine should run. Dynamic coroutines are emitted
as routines that can be resumed at the suspension points,
with an automatically generated struct tracking all live
variables.

Listing 1 presents a traditional Binary Search Tree writ-
ten in Cimple. A coroutine without any Yield statements is
simply a routine, e.g., a plain C++ routine can be emitted
to handle small-sized data structures, or if Yield directives
are disabled. The bottleneck in Listing 1 is the expensive
pointer dereference on line 8. Yet, prefetching is futile unless
we context switch to another coroutine. Listing 2 presents a
portable [16] unoptimized coroutine for a dynamic coroutine
scheduler (Section 6.1.2).

4.1 Target Language Encapsulation

Cimple emits coroutines that can be included directly in the
translation unit of the original routines. Our primary DSL
target language is C++. All types and expressions are opaque;
statements include opaque raw strings in the syntax of the
target language, e.g., native C++.

4.2 Cimple Programming Model

A coroutine yields execution to peer coroutines only at Yield
suspension points.

Expensivememory operations should be taggedwithLoad
and Store statements (which may yield according to a sched-
uling policy), or with an explicit Prefetch directive (see
Section 5.7). Loads and stores that hit caches can simply use
opaque native expressions.
If/Switch or While/DoWhile statements should be

used primarily to encapsulate mispredicted branches. Most
other control-flow statements can use native selection and
iteration statements.

A coroutine is invoked using a coroutine scheduler. Regu-
lar routines are called from coroutines as usual in statements
and expressions. Coroutines are called from inside a corou-
tine with a Call.

4.3 Scheduling Hints

Scheduling hints guide transformations and can be added as
annotations to the corresponding memory access or control
statements. The example in Listing 1 showed how a single
source file handles four largely orthogonal concerns. First,
the program structure is described in Cimple, e.g., While.
Second, optional inline scheduling directives are specified,
e.g., Yield. Third, scheduler configuration can be selected
via AST node handles in C++, e.g., auto c. Finally, all tar-
get types and expressions are used unmodified, e.g., list*.

4.4 Parallel Execution Model

To maintain a simple programming model, and to enable
efficient scheduling (Section 5.8), Cimple coroutines are in-
terleaved only on the creating thread. IMLP composes well
with thread and task parallelism [7, 52]. Instead of running
to completion just a single task, a fork-join scheduler can
execute multiple coroutines concurrently. The embedded
DSL approach allows easy integration with loop and task
parallelism extensions, e.g., #pragma extensions integrated
with OpenMP [52] or Cilk [7, 42].

5 CIMPLE SYNTAX AND SEMANTICS

An original C++ program is easily mapped to the conven-
tional control flow primitives in Cimple. Table 1 summarizes
our statement syntax and highlights in bold the unconven-
tional directives.
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Statement Section

Return, Yield Section 5.1
Arg, SharedArg, Result, Variable Section 5.2
If, Switch, Break Section 5.5
While, DoWhile, Continue Section 5.6
Load, Store, Assign, Prefetch Section 5.7
Call Section 5.8

Table 1: Cimple Statements.

5.1 Coroutine Return

A coroutine may suspend and resume its execution at speci-
fied Yield suspension points, typically waiting on address
generation, data, or branch resolution. Programmers must
ensure that coroutines are reentrant.
Return stores a coroutine’s result, but does not return to

the caller. It instead may resume the next runnable coroutine.
Result defines the coroutine result type, or void.

5.2 Variable Declarations

The accessible variables at all coroutine suspension points
form its context. A target routine’s internal variables need
to be declared only when their use-def chains cross a yield
suspension point. A Variable can be declared at any point
in a block and is presumed to be live until the block end.
Arguments to a coroutine and its Result are Variables even
when internal uses do not cross suspension points. Shared
arguments among coroutines using the same scheduler can
be marked SharedArg to reduce register pressure.

References in C++ allow variables to be accessed directly
inside opaque expressions, e.g.:

Arg(int , n ).Variable( int , x , {n ∗2})
For C Variable accesses must use a macro: Var(a). We
do not analyze variable uses in opaque expressions, but judi-
cious block placements can minimize a variable’s scope.

5.3 Block Statement

A block statement encapsulates a group of statements and
declarations. Convenience macros wrap the verbose Pascal-
like Begin and EndAST nodes, e.g., we always open a block
for the Then/Else cases in If, Do in While, and Body for
the function body block.

5.4 Opaque Statements and Expressions

Types and expressions used in Cimple statements are strings
passed to the target compiler. Opaque statements are created
from string literals, though convenient preprocessor macros
or C++11 raw strings allow clean multi-line strings and un-
modified codewrapping in a.cimple.cpp source file, e.g.:

<< R""( // Murmur3::fmix32
h ^= h >> 16; h *= 0x85ebca6b;
h ^= h >> 13; h *= 0xc2b2ae35;
h ^= h >> 16;

)""

5.5 Selection Statements

If and Switch selection statements can be used for more
effective if-conversion to avoid mispredicted branches. For
conventional 2-way branch and case selection, If and Switch
statements give more control over branch-free if-conversion.
Well-predicted branches do not need to be exposed, and

can simply use native if/switch in opaque statements.
Opaque conditional expressions (?:) and standard if-conversion,
which converts branches into conditionalmoves, are effective
when only data content is impacted. Traditional predicated
execution and conditional moves are less effective when ad-
dress dependencies need to be hidden, especially for store
addresses. Predicated execution also inefficiently duplicates
both sides of a branch.

A Switch must also be used instead of a switch when
a case has a suspension point, see Section 6.1.2.

5.6 Iteration Statements

While and DoWhile iteration statements are exposed to
Cimple when there are internal suspension points to enable
optimizations. Conventional Continue and Break respec-
tively skip the rest of the body of an iteration statement, or
terminate the body of the innermost iteration or Switch
statement.

5.7 Informed Memory Operations

Load and Store statements mark expensive memory op-
erations that may be processed optimally with one or more
internal suspension points. Prefetch explicitly requires
that one or more independent prefetches are issued before
yielding. Assign can mark explicitly other assignments
that are expected to be operating on cached data.

5.8 Coroutine Calls

A tail-recursive Call statement resumes execution to the
initial state of a coroutine. Regular function calls can be used
in all expressions, and are inlined or called as routines as
usual. A Return calling a void coroutine is also allowed, as
in C++, for explicit tail-recursion.

6 DSL COMPILER AND RUNTIME

LIBRARY

The DSL allows exploration of multiple coroutine code gen-
eration variants and combinations of data layout, code struc-
ture, and runtime schedulers. We use two main code gener-
ation strategies for handling a stage (the code sequence be-
tween two Yield statements, or function entry/exit): static
where a stage becomes a for loop body, and dynamic where
a stage forms a switch case body. The Yield directive
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marking the boundary of a coroutine stage can select the
schedule explicitly.
We first discuss the context of a single coroutine, and

storage formats for tracking active and pending coroutines.
Then we discuss how these are used in runtime schedulers
that create, execute, and retire coroutines.

6.1 Coroutine Context

A coroutine’s closure includes all private arguments and vari-
ables of a coroutine. Shared arguments between instances
are stored only once per scheduler and reduce register pres-
sure. Additional variables are optionally stored in the context
depending on the code generation choices: a Finite State Ma-
chine state is used for dynamic scheduling on Yield; a
result value (of user-defined type) holds the final result; a
condition – when If yields before making decisions on hard
to resolve branches; an address (or index) – when Load or
Store yields before using a hard to resolve address.
struct BST::find__Context_AoS {
node* n; // Arg
KeyType key; // Arg
int _state; // for dynamic Yield
node* _result; // for Return
bool _cond; // for If
void* _addr; // for Load/Store

Vectorization-friendly Context Layout. The primary distinc-
tive design choice of Cimple is that we need to run multiple
coroutines in parallel, e.g., typically tens. For homogeneous
coroutines we choose between Struct-of-Array (SoA), Array-
of-Struct (AoS), and Array-of-Struct-of-Array (AoSoA) lay-
outs. Variable accesses are insulated from these changes via
convenient C++ references.

6.1.1 Static Fused Coroutine. Homogeneous coroutines that
are at the same stage of execution can be explicitly unrolled,
or simply emitted as a loop. The target compiler has full
visibility inside any inlined functions to decide how to spill
registers, unroll, unroll-and-jam, or vectorize. An example
of SIMD vectorization of a hash function (Listing 7 in Sec-
tion 7.3) is shown on Listing 3. The hash finalization function
called on line 5 has a long dependence chain (shown inlined
earlier in Section 5.4). C++ references to variables stored in
SoA layout, shown on lines 3–4 and 9–10, allow the opaque
statements to access all Variables as usual.

Exposing loop vectorization across strands offers an oppor-
tunity for performance gains. Since we commonly interleave
multiple instances of the same coroutine, we can fuse repli-
cas of the basic blocks of the same stage working on different
contexts, or stitch different stages of the same coroutine, or
even different coroutines. These are similar to unroll-and-
jam, software pipelining, or function stitching [19]. Stage

1 bool SuperStep() {
2 for(int _i = 0; _i < _Width ; _i++) {
3 KeyType& k = _soa_k[_i];
4 HashType& hash = _soa_hash[_i];
5 hash = Murmur3::fmix(k);
6 hash &= mask;
7 }
8 for(int _i = 0; _i < _Width ; _i++) {
9 KeyType& k = _soa_k[_i];
10 HashType& hash = _soa_hash[_i];
11 prefetch(&ht[hash]);
12 }

Listing 3: Stages of a Static Coroutine for Listing 7.

fusion benefits from exposing more vectorization opportuni-
ties, reducing scheduling overhead, and/or improving ILP.

Basic block vectorization, e.g., SLP [38], can be improved
by better Variable layout when contexts are stored in array
of struct (AoS) format.

6.1.2 Dynamic Coroutine. Coroutines may be resumed mul-
tiple times unlike one-shot continuations. Typical data struc-
ture traversals may require coroutines to be suspended and
resumed between one and tens of times.

Listing 2 presents the basic structure of a switch based
coroutine that uses “Duff’s device” [16] state machine track-
ing. This method takes advantage of the loose syntax of
switch statements in ANSI C. Surprisingly to some, case
labels can be interleaved with other control flow, e.g., while
loops or if statements. Only enclosed switch statements
can not have a suspension point. Mechanical addition of case
labels within the existing control flow is appealing for auto-
matic code generation: we can decorate the original control
flow graph with jump labels at coroutine suspension points
and add a top level switch statement.

This standard C syntax allows good portability across com-
pilers. However, the reliance on switch statements and
labels precludes several optimization opportunities. Alterna-
tives include relying on computed goto (a gcc extension),
indirect jumps in assembly, or method function pointers as
a standard-compliant implementation for C++. The first two
are less portable, while the latter results in code duplication
when resuming in the middle of a loop.

Short-lived coroutines suffer from branch mispredictions
on stage selection. Using a switch statement today leaves
to compiler optimizations, preferably profile guided, to de-
cide between using a jump table, a branch tree, or a se-
quence of branches sorted by frequency. Unlike threaded
interpreters, which benefit from correlated pairs of byte-
codes, [17, 61], the potential correlation benefits from thread-
ing coroutines come from burstiness across requests. An addi-
tional optimization outside of the traditional single coroutine
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optimization space is to group across coroutines branches
with the same outcome, e.g., executing the same stage.

6.2 Coroutine Schedulers

Wediscuss the salient parameters of coroutine runtime sched-
uler flavors, and their storage and execution constraints. We
target under 100 active coroutines (Width) with under 100B
state each to stay L1-cache resident. Below is a typical use
of a simple coroutine scheduler (for Listing 6):

1 template<int Width = 48>
2 void SkipListIterator_Worker(size_t* answers,
3 node** iter, size_t len) {
4 using Next = CoroutineState_SkipList_next_limit;
5 SimplestScheduler<Width, Next>(len,
6 [&](Next* cs, size_t i) {
7 *cs = Next(&answers[i], IterateLimit,
8 iter[i]);
9 });
10 }

Static Batch Scheduler. Tasks are prepared in batches sim-
ilar to manual group prefetching [10, 45]. Storage is either
static AoS, or in SoA format to support vectorization. Scal-
ing to larger batches is less effective if tasks have variable
completion time, e.g., on a binary search tree. Idle slots in
the scheduler queue result in low effective MLP.

Dynamic Refill Scheduler. Tasks are added one by one, and
refilled as soon as a task completes, similar to the manual ap-
proach in AMAC [32]. Storage is in static or dynamic-width
AoS. Further optimizations are needed to reduce branch mis-
predictions to improve effective MLP.

Hybrid Vectorized Dynamic Scheduler. Hybrid across stages,
where the first stages of a computation can use a static sched-
uler, but following stages use a dynamic scheduler while
accessing the SoA layout.

6.2.1 Common Scheduler Interface. Runtime or user-provided
schedulers implement common APIs for initialization, in-
voking coroutines, and draining results. A homogeneous
scheduler runs identical coroutines with the same shared
arguments. New tasks can either be pulled via a scheduler
callback or pushed when available. A pull task with long
latency operations or branch mispredictions, may become
itself a bottleneck. Routines with non-void results can be
drained either in-order or out-of-order. Interfaces are pro-
vided to drain either all previous tasks or until a particular
task produces its result.
In the appendices of our extended paper [30], we show

the simplest scheduler and a typical scheduler use, simple
enqueue/dequeue initiated by an outside driver, and more
flexible callback functors to push/pull tasks.

7 APPLICATIONS

We study Cimple’s expressiveness and performance on core
database data structures and algorithms. Simple near-textbook
implementations in Cimple ensure correctness, while sched-
uling directives are used to fine-tune performance. We com-
pare Cimple C++, against naïve native C++ and optimized
baselines from recent research.
We start with a classic binary search, which is often the

most efficient solution for a read-only dictionary. For a mu-
table index, in addition to the binary search tree we have
shown in Section 2, here we show a skip list. Since both
of these data structures support efficient range queries in
addition to lookup, these are the default indices of VoltDB
and RocksDB respectively. Finally, we show a hash table as
used for database join queries.

7.1 Array Binary Search

1 Arg(ResultIndex*, result).
2 Arg(KeyType, k).
3 Arg(Index, l).
4 Arg(Index, r).
5 Body().
6 While( l != r ).Do(
7 Stmts(R""( {
8 int mid = (l+r)/2;
9 bool less = (a[mid] < k);
10 l = less ? (mid+1) : l;
11 r = less ? r : mid;
12 } )"").
13 Prefetch(&a[(l+r)/2]).Yield()
14 ).
15 Stmt( *result = l; );

Listing 4: Cimple binary search.

Listing 4 shows our Cimple implementation. Currentclang
compilers use a conditional move for the ternary operators
on lines 10–11. However, it is not possible to guarantee that
compilers will not revert to using a branch, especially when
compiling without Profile Guided Optimization. For finer
control, programmers use provided helper functions or write
inline assembly with raw statements.

Perversely, a naïve baseline performs better with a mispre-
dicted branch as observed in [29], since speculative execu-
tion is correct 50% of the time. When speculative loads have
no address dependencies, hardware aggressively prefetches
useless cache lines, as we show in Section 8.3.
The Cimple version works on multiple independent bi-

nary searches over the same array. All of our prefetches or
memory loads are useful.
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7.2 Skip List

Figure 3: SkipList traversal, data layout, and coroutine

state machine

1 VariableInit(SkipListNode*, n, {}).
2 VariableInit(uint8, ht, {pred->height}).
3 While(true).Do(
4 While(ht > 0).Do( // down
5 Stmt( n = pred->skip[ht - 1]; ).
6 Prefetch(n).Yield().
7 If(!less(k, n->key)).Then(Break()).
8 Stmt( --ht; )
9 ).
10 If (ht == 0).Then( Return( nullptr )).
11 Stmt( --ht; ).
12 While (greater(k, n->key)).Do(
13 Stmt( pred = n; n = n->skip[ht]; ).
14 Prefetch(n).Yield().
15 ).
16 If(!less(k, n->key)).Then(
17 Return( n )));

Listing 5: Cimple Skip List lookup.

1 While( limit-- ).Do(
2 Prefetch(n).Yield().
3 Stmt( n = n->skip[0]; )
4 ).
5 Prefetch(n).Yield().
6 Return( n->key );

Listing 6: Cimple Skip List Iteration.

Lookup. Our skip list baseline is Facebook’s folly tem-
plate library implementation of ConcurrentSkipList [22].
Figure 3 shows the skip list data structure layout, and the
state machine generated for the code in Listing 5; we also
illustrate how a lookup follows down and then right. Note
that in the down direction (line 5) an array of pointers is ex-
plored, therefore speculative execution in the baseline is not
blocked by address dependencies; the right direction (line
13) cannot be speculated.

Range Query. Range queries are the main reason ordered
dictionaries are used as default indices. Skip list iteration
requires constant, but still inefficient, pointer chasing (List-
ing 6). Request level parallelism in range queries is handled
similarly to lookup by interleaving multiple independent
queries for both finding the first node and for iterating and
aggregating over successive nodes.

7.3 Hash tables

1 Result(KeyValue*).
2 Arg(KeyType, k).
3 Variable(HashType, hash).
4 Body().
5 Stmt ( hash = Murmur3::fmix(k); ).
6 Stmt ( hash &= this->size_1; ).Yield().
7 Prefetch( &ht[hash] ).Yield()
8 << R""(
9 while (ht[hash].key != k &&
10 ht[hash].key != 0) {
11 hash++;
12 if (hash == size) hash = 0;
13 } )"" <<
14 Return( &ht[hash] );

Listing 7: Cimple Hash Table lookup (linear probing).

We compare the performance of an open-address hash
table for the special case of database hash-join. An ephemeral
hash table optimized for hash-join [3] only needs to support
bulk insertion followed by a phase of lookups. The identity
hash function can not be used in real workloads, both for
performance due to non-uniform skew, and for security due
to Denial-of-Service complexity attacks [14].

Listing 7 shows our classic linear probing hash table, sim-
ilar to the implementation suggested in Menon et al. [45] —
linear probing at 50% load factor, and Murmur3’s finalization
as a hash, masked to the table size. Menon et al. report 1.2×
gains from LLVM SIMD vectorization and group prefetch-
ing [10], on a well-engineered hash table for state-of-the-art
TPC-H performance.

A requested static schedule for all three stages (delineated
by Yield on lines 6 and 7 of Listing 7) generates three
independent static stages (shown in [30]). Using the SoA
layout enables compiler loop vectorization to use AVX2 or
AVX512 to calculate multiple hash functions simultaneously.

Variants. Menon et al. [45] analyze the inefficient baseline
used in AMAC [32], i.e., identity hash, chaining at 400% load
factor, and using a linked list for handling duplicates.

For a chained hash table, which traverses a linked list, we
can also produce a hybrid schedule. The first two steps use
a static schedule (with SoA storage), while the third stage
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can use a dynamic scheduler to handle a variable number of
cache lines traversed.

8 EVALUATION

We report and analyze our performance gains using Cim-
ple used as a template library generator. Our peak system
throughput increases from 1.3× on HashTable to 2.5× on
SkipList iteration; Cimple speedups of the time to complete
a batch of queries on a single thread range from 1.2× on
HashTable to 6.4× on BinaryTree (Figure 1).

8.1 Configuration

System Configuration. We used a dual socket Haswell sys-
tem [25] with 24 cores at 2.9GHz clock frequency, or 3.3GHz
for a single core. Each socket has 4 memory channels popu-
lated with dual rank, 16-bank DDR4-2133 memory [62]. The
DRAM memory level parallelism on each socket therefore
allows 128 open banks for random access. The test applica-
tions were compiled with gcc 4.8 and executed on Linux 4.4
using huge pages.

Cimple Configuration. We implemented the Cimple DSL in
a combination of 2,500 lines of C++14 and 300 lines of C pre-
processor macros. Cimple to C++ code was built with Apple
clang 9.0. The template library of runtime schedulers adds
less than 500 lines of C++11 code. Cimple suspend/resume of
the minimum coroutine step (on SLi — 21 extra instructions)
adds 4ns. We use 48 entry scheduler width — optimal for all
DRAM-resident benchmarks.

8.2 Performance Gains

Binary Search (BS). Themultithreaded version has all threads
searching from the same shared array of 1 billion 64-bit keys.
Branch-free execution is important for good performance
as discussed in Section 2.5. When a branch is used on lines
10 and 11 of Listing 4, we see only a 3× performance gain.
While CMOV in the baseline leads to a 0.7× slowdown, Cim-
ple+CMOV reaches 4.5× over the best baseline.

Binary Tree lookup (BT). Each thread works on a private
tree to avoid synchronization, as used in the context of par-
titioned single-threaded data stores, such as VoltDB or Re-
dis. We use 1GB indexes scaled by the number of threads,
i.e., 48GB for the full system. We achieve 2.4× higher peak
throughput and 6.4× speedup for a single thread of execu-
tion. Our ability to boost a single thread performance much
higher above average, will support handling of skewed or
bursty workloads, which can otherwise cause significant
degradation for partitioned stores [70].

SkipList lookup (SL). Concurrent SkipLists are much eas-
ier to scale and implement [22] compared to a binary tree,

therefore practical applications use multiple threads looking
up items in a shared SkipList.
All items are found after a phase of insertions with no

deletions or other sources of memory fragmentation. We
achieve 2.7× single thread speedup and 1.8× multithreaded
throughput. Note that for SkipList lookup the “down” di-
rection follows an array of pointers, therefore the baseline
benefits from speculative execution prefetching nodes.

SkipList Iterator (SLi). We evaluated range queries on the
same shared skip list index as above. For 1,000 node limit
iterations, similar to long range queries in [2, 69] our total
throughput gain is 2.5× and single thread speedup is 4.1×.

Hash Table lookup (HT). We evaluate hash table join per-
formance on a table with 64-bit integer keys and values. We
use a 16 GB hash table shared among all threads for an ef-
fective load factor of 48%. We replicate similar single thread
speedups [45] of 1.2× when either no results or all results
are materialized. Since there are few instructions needed
to compare and store integer keys and values, hardware
is already very effective at keeping a high number of out-
standing requests. However, both the hash table load factor
and the percentage of successful lookups impact branch pre-
dictability, and thus ILP and MLP for the baseline. For 50%
materialized results, our speedup is 1.3×. When using 48
threads with 100% hits, we get a 1.3× higher throughput of
650 M operations/s.
We also compared to other traditional but inefficient on

modern cores variants, e.g., if division by a prime number
is used [10] the corresponding Cimple variant is 2× faster.
When there are serializing instructions between lookups our
speedup is 4×.

8.3 Performance Analysis

We analyze hardware performance counters to understand
where our transformations increase effective ILP and MLP.

8.3.1 ILP Improvements. Table 2 shows our improvements
in ILP and IPC by increasing the useful work per cycle and
reducing the total number of cycles. The ILP metric measures
the average µinstructions executed when not stalled (max 4).
Cimple may have either higher or lower instruction count:
e.g., a pointer dereference in SLi is a single instruction, while
with a dynamic scheduler that instruction is replaced by con-
text switches with attendant register spills and restores. For
a static scheduler, vector instructions reduce additional in-
structions inHT. The remaining stall cycles show that there
is sufficient headroom for more expensive computations per
load.
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Benchmark MLP ILP IPC

B C B C B C
BS 7.5 8.5 1.6 2.3 0.13 1.10
BT 1.2 4.3 1.6 2.3 0.10 0.70
SL 2 5 1.8 2.4 0.07 0.60
SLi 1 5 1.3 2.0 0.01 0.22
HT 4.9 6.4 1.9 2.4 0.37 0.40

Table 2: Memory Level Parallelism (MLP), Instruction

Level Parallelism (ILP), and Instructions Per Cycle

(IPC). Baseline (B) vs Cimple (C).

8.3.2 MLP Improvements. Improving MLP lowers the stall
penalty per miss, since up to 10 outstanding L1 cache misses
per core can be overlapped.

In Table 2 we show that measured MLP improved by 1.3–
6× with Cimple. Measured as the average outstanding L2
misses, this metric includes speculative and prefetch requests.
Therefore the baseline MLP may be inflated due to specu-
lative execution which does not always translate to perfor-
mance. Cimple avoids most wasteful prefetching and specu-
lation, therefore end-to-end performance gains may be larger
than MLP gains.

In BinarySearch the baseline has high measured MLP due
to speculation and prefetching, however, most of it is not
contributing to effective MLP. For BinaryTree the addresses
of the children cannot be predicted, therefore the baseline
has lowMLP. For SkipList lookup the down direction is an ar-
ray of pointers therefore speculative execution may prefetch
correctly needed values, thus while the measured MLP is 2,
the effective MLP is 1.5. SkipList iteration is following point-
ers and therefore has MLP of 1. For HashTable at low load
and 100% hit rate, speculative execution is always correct,
thus the baseline has high effective MLP.
There is also sufficient headroom in memory bandwidth

and queue depth for sequential input and output streams,
e.g., for copying larger payload values.

9 RELATEDWORK

We survey related work in hardware multithreading, corou-
tines and tasks, and software optimizations.

9.1 Hardware Multithreading

Hardware context switching was explored in supercomput-
ers of the lineage of Denelcor HEP [68] and Tera MTA [1],
e.g., Tera MTA supported 128 instruction streams that were
sufficient to hide the latency of 70 cycles of DRAM latency
without using caches. Yet locality is present in real workloads,
and caches should be used to capture different tiers of fre-
quently used data. Larrabee [63] threading and vectorization
model allowed SIMD rebundling to maintain task efficiency.
Current GPUs offer large number of hardware threads, yet
relying solely on thread-level parallelism is insufficient [74],

and taking advantage of ILP and MLP is critical for GPU
assembly-optimized libraries [37, 47].
Out-of-order CPUs can track the concurrent execution

of tens of co-running coroutines per core, but provide no
efficient notification of operation completion. Informing
loads [24] were proposed as a change to the memory ab-
straction to allow hardware to set a flag on a cache miss
and trap to a software cache-miss handler, similar to a TLB-
miss handler. Proposals for hardware support for overlap-
ping instructions from different phases of execution with
compiler transformations have shown modest performance
gains [53, 58, 65, 71, 73].

9.2 Coroutines and Tasks

Coroutines have been a low-level assembly technique since
the 1950s, originally used in limited-memory stackless envi-
ronments [49, 50]. Lowering continuation overhead has been
approached by specialized allocation [23] and partial [56] or
one-shot [9] continuations.
The C++20 standard is also slated to support coroutines

with the keywordsco_yield,co_await, andco_return.
The original proposals [20, 51] motivate the goal to make
asynchronous I/O maintainable. The runtime support for
completion tracking is acceptable at millisecond scale for
handling network and disk, but is too heavy weight for tol-
erating tens to hundreds of nanoseconds memory delays tar-
geted by IMLP tasks. The concise syntax and automatic state
capture are attractive and the underlying mechanisms in
LLVM and Clang can be used to add Cimple as non-standard
C++ extensions to delight library writers. Library users can
use the generated libraries with mainstream compilers.
Cilk [7, 18] introduced an easy programming model for

fork-join task parallelism, divide-and-conquer recursive task
creation and work-stealing scheduler. More recently the Cilk-
Plus [42] extensions to C/C++ were added to icc and gcc.
C++20 proposals for task_block [21] incorporate task
parallelism like Cilk, albeit using a less succinct syntax.

Our rough guide to these overlapping programming mod-
els would be to use C++20 tasks for compute bottlenecks,
C++20 coroutines for I/O, and Cimple coroutines for memory
bottlenecks.

9.3 Software Optimizations

Software prefetching by requesting data at a fixed distance
ahead of the current execution is complex even for simple
loop nests and reference streams without indirection [46];
and more recently surveyed in [40]. Augmented data struc-
tures help deeper pointer chasing [12, 33].

Optimized-index data-structures for in-memory databases [11,
28, 36, 39, 41, 43, 59, 64] try to reduce the depth of indirect

12



Cimple PACT ’18, November 1–4, 2018, Limassol, Cyprus

memory references and use high fan-out and extra contigu-
ous accesses while performing one-at-a-time requests. Tech-
niques that uncover spatial or temporal locality by reorder-
ing billions of memory requests [6, 31] are not applicable to
index queries which often touch only a few rows.

Group prefetching (static scheduling) and prefetchingwith
software pipelining techniqueswere introduced in [10]where
a group of hash table lookups are processed as a vector; simi-
larly used for an unordered key value store [44]. AMAC [32]
is an extension to group prefetching to immediately refill
completed tasks (dynamic scheduling) in order to handle bet-
ter variable work or variable access time per-item on skewed
inputs. In a well-engineered baseline in the state-of-the-art
database engine Peloton [45], however, AMAC was deemed
ineffective and only group prefetching on hash tables was
beneficial and maintainable.
Using C++20 coroutines for easier programmability of

AMAC-style dynamic scheduling was evaluated in concur-
rent work in SAP HANA [55], and more recently by [27].
While easier to use andmore maintainable thanmanual inter-
leavingmethods [10, 32], C++20 coroutine backends preclude
static or hybrid scheduling. Dependence on I/O-oriented
compiler coroutine implementations adds high overhead
compared to manual AMAC [32]; C++20 coroutines [27, 55]
are even outperformed by static scheduling [10] in some
cases in which dynamic scheduling with AMAC is other-
wise better than static scheduling. Using a black-box com-
piler is also not practical for JIT query engines used in mod-
ern databases for these critical inner loops. For less criti-
cal code-paths implemented in C++, their promising results
are a step in the right direction. We expect to be able to
offer a similar C++ front-end, once coroutines are mature
in Clang, with additional Cimple AST annotations as C++
[[attributes]]. Cimple’s back-end seamlessly enables static
and hybrid scheduling, with efficient dynamic scheduling
coroutines optimized for caches and out-of-order processors.

10 CONCLUSION

Cimple is fast, maintainable, and portable. We offer an op-
timization methodology for experts, and a tool usable by
end-users today.

We introduced the IMLP programming model and method-
ology for uncovering ILP andMLP in pointer-rich and branch-
heavy data structures and algorithms. Our Cimple DSL and
its AST transformations for C/C++ in Cimple allow quick
exploration of high performance execution schedules. Cim-
ple coroutine annotations mark hotspots with deep pointer
dereferences or long dependence chains. Cimple achieves up
to 6.4× speedup.

Our compiler-independent DSL allows low-level program-
mers to generate high-performance libraries that can be used

by enterprise developers using standard tool-chains. We be-
lieve ours and others’ promising early results are the first
steps towards efficient future Coroutines for Instruction and
Memory Parallel Language Extensions to C++.
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