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Abstract
In today’s multi-core systems, cache contention due to true and
false sharing can cause unexpected and significant performance
degradation. A detailed understanding of a given multi-threaded
application’s behavior is required to precisely identify such perfor-
mance bottlenecks. Traditionally, however, such diagnostic infor-
mation can only be obtained after lengthy simulation of the mem-
ory hierarchy.

In this paper, we present a novel approach that efficiently ana-
lyzes interactions between threads to determine thread correlation
and detect true and false sharing. It is based on the following key
insight: although the slowdown caused by cache contention de-
pends on factors including the thread-to-core binding and param-
eters of the memory hierarchy, the amount of data sharing is pri-
marily a function of the cache line size and application behavior.
Using memory shadowing and dynamic instrumentation, we im-
plemented a tool that obtains detailed sharing information between
threads without simulating the full complexity of the memory hi-
erarchy. The runtime overhead of our approach — a 5× slowdown
on average relative to native execution — is significantly less than
that of detailed cache simulation. The information collected allows
programmers to identify the degree of cache contention in an appli-
cation, the correlation among its threads, and the sources of signif-
icant false sharing. Using our approach, we were able to improve
the performance of some applications by up to a factor of 12×.
For other contention-intensive applications, we were able to shed
light on the obstacles that prevent their performance from scaling
to many cores.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Optimization, Run-time environments

General Terms Performance

Keywords False Sharing, Cache Contention, Shadow Memory,
Dynamic Instrumentation
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int64 global_sum;
int64 local_sum[MAX_NUM_THREADS];
parallel_sum(int myid, int start, int end) {
for (int i = start, i < end; i++)

local_sum[myid] += buf[i];
lock();
global_sum += local_sum[myid];
unlock();

}

Figure 1. Example code performing a parallel sum of elements in
a buffer.

1. Introduction
One of the major success stories in modern computer architecture
is the development of a memory hierarchy: the use of multiple lev-
els of caches has helped bridge the large performance gap between
processors and memory. A substantial body of work has focused
on measuring and understanding cold, capacity, and conflict cache
misses to better optimize applications for a given memory hierar-
chy. However, in the current multi-core era, additional cache misses
can occur due to true sharing and false sharing in multi-threaded
applications.

Threads: 1 2
Distinct cores Same core Padded

Time (s): 5.52 22.28 33.96 40.02 5.82 2.91

Table 1. Execution times of the parallel sum code from Figure 1
under different thread and core configurations.

Figure 1 shows a code fragment that computes the sum of ele-
ments in a buffer. Each thread adds up the elements in its assigned
portion of the buffer, maintains the result in a private local_sum
entry, and finally updates the global_sum atomically using its
local_sum. Table 1 shows the execution times of this application
on an eight-core (two quad-cores) machine under different config-
urations. When the application uses two threads running on sepa-
rate cores, it is significantly slower than when it uses only a single
thread or two threads on the same core. Furthermore, when the two
threads run on different cores, the application has three possible
execution times depending on how the threads are bound to differ-
ent pairs of cores. These times range from 4× to 7× slower than
the single-thread time. These results are quite surprising because
the application has good parallelism and its threads only need to
communicate at the end of their execution.



In this example, unexpected slowdowns are caused by false
sharing, which occurs because two threads repeatedly update the
same cache line holding their private local_sum entries. If we
add padding between local_sum entries to place them in different
cache lines, the performance of the application with two threads
running on different cores is substantially improved, and the ex-
pected linear speed-up is achieved (final column in Table 1). In
addition, the three distinct execution times when the two threads
run on different cores reflect the varying performance penalty in-
curred by false sharing depending on which two cores compete
for the same cache line: cache line exchanges cost less on cores
with a shared L2 cache than on cores without one. Thus, if thread
contention was unavoidable for some reason, we could still reduce
slowdowns by scheduling threads that frequently access the same
data on cores with lower communication cost.

Even in this contrived example, while the solution is simple,
the real challenge lies in precisely identifying performance bottle-
necks in the application. Usually, this requires an understanding
of a multi-threaded application’s behavior and its interactions with
the underlying hardware. To the best of our knowledge, no existing
tool provides accurate and detailed information to help program-
mers identify and solve performance problems caused by cache
contention in an efficient manner. Previous work generally relies
on full cache simulation with prohibitively high runtime overhead.
For example, CMP$im [15] runs at only 4-10MIPS.

The key contribution of this paper is identifying the minimal in-
formation required for cache contention detection, cache line own-
ership, and realizing that a tool that focuses on that information
can efficiently solve an important class of performance problems
related to cache contention. We propose a novel approach to ob-
tain detailed information about cache contention by tracking the
ownership of each cache line via memory shadowing and dynamic
instrumentation. This basic scheme for efficiently tracking cache
line ownership allows us to bypass the full complexity of the mem-
ory hierarchy, do away with expensive cache simulation, and hence
drastically reduce the cost of obtaining sharing information. Con-
tention detection, thread correlation, and false sharing detection are
three examples built on top of the basic scheme.

1.1 Memory shadowing
Memory shadowing is a powerful technique for tracking proper-
ties of an application’s data. It has been successfully used by many
dynamic program analysis tools that need to maintain meta-data
about every byte of the application’s memory, including tools for
detecting race conditions [13, 23, 29, 30], tracking dynamic in-
formation flow propagation [8, 22, 25], detecting memory usage
errors [28, 31], and many others [5, 19, 20, 40]. General frame-
works like Umbra [38] have been developed to help users build cus-
tomized memory shadowing tools. In this paper, we propose a new
application of memory shadowing. By using shadow memory and
dynamic instrumentation to track ownership of application memory
at the granularity of cache lines, we are able to efficiently deter-
mine an application’s sharing profile. Using appropriate meta-data,
we can collect several types of information about thread interac-
tions, and help programmers to identify and solve cache contention
problems.

1.2 Contributions
This paper’s contributions include:

• We present a novel scheme that, to the best of our knowledge,
is the first scheme that can efficiently account for cache misses
and invalidations caused by cache contention without resorting
to expensive full cache simulation.

• We propose a novel use of shadow memory to track ownership
of cache lines in application memory for cache contention anal-
ysis.

• We introduce a set of analysis tools that can determine the
cache contention in applications, discover thread correlation,
and detect true and false sharing, with an average overhead of
5× slowdown compared to native execution.

• We were able to identify significant false sharing in 4 out of
18 real benchmark applications, and were able to improve the
performance of 2 applications by up to a factor of 12×.

• We discovered thread communication patterns and thread cor-
relation in real applications via cache contention analysis.

• We showed that two benchmarks benefited from scheduling
threads based on the memory hierarchy and their thread cor-
relation, achieving up to a 2.4× performance improvement.

1.3 Paper Layout
The rest of the paper is organized as follows: Section 2 provides an
overview of inter-thread cache contention and describes our detec-
tion scheme. Section 3 discusses the details of our implementation.
Section 4 presents experimental results from using our approach,
Section 5 discusses related work, and Section 6 concludes the pa-
per.

2. Overview
In multi-core systems, each individual core typically has a private
L1 data cache for its own use. These private caches are the source of
cache contention. When threads running on different cores access
the same data or data within the same cache line, multiple copies
of the cache line are created in the private caches of those cores.
A hardware cache coherency mechanism is required to guarantee
consistency between these copies. If a thread attempts to update
a cache line that has been replicated in other cores’ private caches,
the hardware must invalidate all the other copies before the core can
proceed with the write operation. A cache invalidation is an expen-
sive operation as it causes memory operations to stall and wastes
memory bandwidth. Moreover, cache invalidations can cause cache
misses later when other cores access the same cache line again.
Cache invalidations and misses can occur when cores compete to
access the same data (true sharing) or different data items that hap-
pen to reside in the same cache line (false sharing). If cache inval-
idations and cache misses occur frequently, the performance of the
application can suffer severely. It is therefore important for devel-
opers to be aware of sharing-induced slowdowns in order to scale
their applications.

Traditionally, developers have had to resort to full cache simula-
tion to obtain detailed cache behavior when studying capacity and
conflict misses. Cache behavior can also vary significantly depend-
ing on the configuration of the memory hierarchy. However, we ob-
serve that the true/false sharing is only related to the size of a cache
line and the application’s behavior, and is independent of the other
memory hierarchy parameters. This insight allows us to efficiently
simulate cache contention behavior without running detailed cache
simulations. Our approach dynamically tracks changes in owner-
ship of application memory at the granularity of individual cache
lines. This allows us to identify instructions that are responsible for
the bulk of the cache misses and cache invalidations, threads that
communicate frequently with each other, and interleaved accesses
between different cores that cause cache contention.

2.1 Basic Scheme
We assume that our target application is running on a machine
that has enough computational cores that each thread can run on
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Figure 2. The shadow memory data structure used for our base
contention detection scheme. Application memory is shadowed at
cache line granularity with a bitmap indicating which cores contain
a copy of that data.

its own dedicated core. This way, we can refer to threads and
cores interchangeably, and report the worst-case results caused
by contention. In this section we describe a design that assumes
there are no more than 32 threads/cores simultaneously active in an
application; Section 3 explains how our implementation scales to
more threads.

We further assume that each core has a private L1 cache, and
that data is never evicted from this private cache except through
cache invalidations. This assumption allows us to avoid expensive
cache simulation, ignore capacity and conflict misses, and isolate
the inter-thread communication patterns that are sufficient for de-
tecting cache contention. This assumption may also introduce in-
accuracy due to not faithfully simulating the actual cache behavior,
which will be discussed later in Section 3.5.

As shown in Figure 2, we use an ownership bitmap in shadow
memory to track the distribution of each application memory cache
line’s copies. Each bit in the bitmap represents one core or thread.
If it is set, it means that particular core has a copy of the associated
cache line in its private cache, or that the core owns the cache line.

The bitmaps in the shadow memory are maintained by dynami-
cally inserting instrumentation code for every application memory
reference. When a thread reads a data object, it creates a copy of the
cache line containing that data object in its own cache. We simulate
this by setting the thread’s bit in the cache line’s ownership bitmap,
indicating that the thread owns the cache line. When a thread up-
dates an object, it invalidates all copies of the entire cache line in
other cores’ private caches, and updates the copy in its own cache.
This is simulated by setting the current thread’s bit and simulta-
neously clearing all other bits in the cache line’s bitmap, thereby
indicating the thread’s exclusive ownership of this cache line.

Using this approach, we can simply examine ownership bitmaps
at any time to observe the status of the cache lines. In addition to
tracking cache line ownership, we often want to collect more in-
formation about an application in order to understand thread con-
tention. In particular, we may wish to determine the degree of cache
contention in the application, identify delinquent instructions that
cause most of the cache contention events, determine the commu-
nication patterns and hence the correlation between threads, and
compute the frequency of true/false sharing. In order to obtain such
information, we need to add more instrumentation code and main-
tain additional information in shadow memory.

2.2 Contention Detection
The first step in performance debugging is to check whether an
application does indeed suffer from cache contention. Therefore,
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Figure 3. The shadow memory data structure used for determining
thread correlation. A thread index is used to track which thread last
updated the cache line.

we may wish to determine the frequency of cache contention events
(cache misses or cache invalidations) during program execution.
To do so, we need to detect and count the total number of cache
contention events, which can be easily done using the ownership
bitmap of Figure 2.

A cache miss occurs when a core attempts to read a cache line
that it does not own. In our scheme, this can be discovered by
checking whether the current thread’s bit is set in the corresponding
ownership bitmap in shadow memory on a memory read. A cache
invalidation happens when a core wants to update a cache line that
it does not exclusively own. We can discover this by checking
whether any bit other than the current thread’s bit is set in the
ownership bitmap. By checking the ownership of the target cache
line on every memory reference, we can count the total number of
cache contention events.

In addition, we can also track the behavior of individual memory
access instructions. We associate each instruction with two thread-
private counters that count the number of cache misses and inval-
idations it causes, respectively. By checking these counters after
execution, we can easily identify the delinquent access instructions
that are responsible for most of the cache misses and/or invalida-
tions. Pinpointing such instructions is an important step in trying to
reverse any performance losses due to cache contention.

2.3 Determining Thread Correlation
An effective optimization strategy is to identify groups of threads
that communicate frequently with each other, and reduce the per-
formance penalties of cache contention by scheduling them on
cores with lower communication costs, e.g., cores with shared L2
caches.

We can extend our scheme to determine thread correlation. Two
threads are strongly correlated if they communicate frequently with
each other during the course of program execution. For instance,
two threads may have a producer/consumer relationship and may
need to communicate at fine granularity. To obtain thread correla-
tion information, we allocate an array of counters for each thread
to record its interaction frequency with other threads. We also add
a field in the shadow memory unit to record the last thread that up-
dated a data item, as shown in Figure 3. When a thread accesses a
data item in a cache line, we identify which thread previously up-
dated the cache line and increment the corresponding counter. We
only update a counter when a cache miss or a cache invalidation
occurs, so our correlation statistics only capture thread interactions
that contribute to performance slowdowns. If there are two accesses
to a piece of data and only one of the accesses causes a cache miss
or invalidation, the counter is incremented only once. At the end of
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Figure 4. The shadow memory data structure used for false sharing detection. We track which threads read and wrote to each word in each
cache line.

execution, using these counters, we can report the degree of corre-
lation between threads, enabling the developer to act on the infor-
mation and achieve better performance.

2.4 False Sharing Detection
Because cache lines are often larger than the data objects they
contain, a single cache line often holds multiple data objects. Cache
contention can arise due to true or false sharing of the cache line.

Definitions of false sharing are often imprecise or impractical
for real-time detection [3, 18]. Here, we identify false sharing based
on the following intuition: if a cache miss or cache invalidation
could have been avoided had the target data been moved to another
cache line, we consider the cache miss or invalidation to be caused
by false sharing. More specifically, on a cache miss or invalidation,
if the target location is also accessed by other threads, then it is a
result of true sharing, and is unavoidable. Otherwise, it is result of
false sharing.

In order to detect true/false sharing, we must maintain more
information in the shadow memory for each cache line. As shown
in Figure 4, we record the access history for each word within
a cache line in the shadow memory. Specifically, we maintain a
bitmap for each word within a cache line. Each thread has two
bits in this bitmap to indicate whether it read and/or wrote the
corresponding word. For every memory access, code is inserted
to set the current thread’s read or write bit in the bitmap for the
specific word that was accessed.

During a delinquent access, we can determine if the cache miss
or invalidation was caused by true or false sharing by examining the
shadow memory of the corresponding cache line. On a cache miss,
we can identify which threads updated this word by examining the
bitmap associated with the word: the miss is due to false sharing if
no other thread’s write bit is set. Otherwise, it is due to true sharing.
On a cache invalidation caused by a write, we check whether the
target word was read or written by another thread by examining its
bitmap once again. The invalidation is due to true sharing if some
other thread’s read or write bit is set. Otherwise, it is caused by
false sharing. For a store, we clear all the bitmaps for the entire
cache line in the shadow memory, and only mark the write bit of
the current thread in the target word’s bitmap. This is to capture the
fact that the thread has exclusive ownership of the cache line, and
to detect subsequent false or true sharing.

2.5 Further Extensions
Being architecture-independent, our approach can easily be applied
to collect arbitrary information for a wide class of problems. Be-

yond the features described above, there are many other possible
ways to extend the instrumentation for different purposes. For in-
stance, we could add fields in the shadow memory to record which
cache lines caused most of the cache invalidations, and report these
problematic data locations to the user. It is also possible to add time
stamps in the shadow memory to keep track of access times so that
even more complex temporal relationships can be derived. Adding
a field in shadow memory for storing call-stack context information
is another possible extension to help programmers identify delin-
quent accesses with more context information.

Using a software-based approach lends our tool flexibility. First,
it enables our tool to run on a wide range of commodity hardware.
Second, our tool can change its parameters to analyze contention
behavior over various thread and cache configurations that are
different from the actual machine where the application is run.
Finally, we can target different levels of the memory hierarchy; e.g.,
we can study not only private caches but also caches shared by a
subset of cores by simply assigning the same thread bit to multiple
threads.

3. Implementation
We implemented our detector on top of the shadow memory frame-
work Umbra [38], which is an efficient memory shadowing frame-
work that uses a novel mapping scheme [37] to translate application
memory addresses to shadow memory addresses. Umbra is inte-
grated with DynamoRIO [1, 4] and provides a simple API for client
applications to easily add instrumentation to manipulate shadow
memory without knowing the details of the underlying memory
mapping scheme.

3.1 Base Framework
As described in Section 2, we associate each cache line (64 bytes)
with a shadow memory unit in which a bitmap is used to represent
which cores own the cache line. Using a 32-bit bitmap, we can track
up to 32 threads or cores. We use Umbra’s API to add instrumen-
tation to update the shadow memory for every application mem-
ory reference. We instrument both reads and writes to keep track
of cache line ownership changes in the bitmap. For each memory
read, we set the bit for the current thread in the shadow memory
bitmap corresponding to the cache line using an OR operation. For
each memory write, we use a MOV instruction to set the bit corre-
sponding to the current thread and clear all other bits at the same
time.

Our implementation faced three main challenges. The first chal-
lenge is performance. The simple instrumentation described above



could cause high runtime overhead. Because we must update the
shadow memory on every memory access, a significant amount of
bandwidth may be used by the shadow memory updates which will
cause system bus congestion and stall execution. Moreover, the up-
dates to the shadow memory itself will introduce high cache con-
tention among threads. To avoid such problems, we optimized our
instrumentation by adding checks and updating the shadow mem-
ory only when necessary (we call this approach racy test and set).
In the common case, if multiple threads read but do not write the
same cache line, only each thread’s first read will cause a shadow
memory update. In contrast, blindly writing the shadow memory
(we call this approach set) even when no updates are necessary
would cause different cores to compete on the cache line holding
the shadow memory unit, incurring much higher runtime overhead.
In addition, to minimize cache contention caused by accessing
shadow memory, we ensure shadow memory units are cacheline-
sized (64 bytes) or larger even though the actual meta-data in the
shadow memory might be as small as 32 bits.

The second challenge is handling concurrent accesses to the
bitmap. When multiple threads access the same cache line simulta-
neously, the corresponding instrumented code will simultaneously
update the same bitmap. We could assign a lock to each bitmap and
require any access to the bitmap to first acquire the lock (we call
this approach atomic test and set). This guarantees that the bitmap
check and update operations are atomic, but the runtime overhead
is high. This is because the lock operation, an XCHG instruction in
our implementation, is a very expensive operation that stalls the
system in order to ensure atomic operation. In contrast, if we allow
racy accesses, we may miss a few cache miss or cache invalida-
tion events, but we will still catch most of them, which is sufficient
for our analysis purposes. Our implementation uses racy accesses
without locks (racy test and set).

The third challenge is scalability of design when more threads
are added. Our current design uses one bit per thread in a 32-bit
bitmap and is limited to 32 threads. One simple method is to recycle
thread bits: e.g., represent thread 0 and thread 32 with the same bit.
Bit recycling can lose precision and miscalculate cache misses or
invalidations, because we cannot determine actual behavior when
two threads represented by the same bit access the same cache
line. Another method is to use a multi-word bitmap to track more
threads. However, this approach incurs higher runtime overhead
for its multi-word checks and updates. More importantly, using
more words cannot scale up to a high number of threads. In real-
world applications, some programs first create a group of threads
to perform one task, destroy them, and then create another group
of threads to perform the next task in sequence. Such programs can
create hundreds of threads over the application lifetime, although
only a few of them are simultaneously active. For such programs
bit recycling works better than a multi-word bitmap scheme. It
is possible to combine the two approaches to achieve both better
precision and better scalability. In the prototype we implemented,
we used bit recycling on a 32-bit bitmap.

3.2 Contention Detection
We extend the basic framework implementation described above
to discover cache contention in an application. We associate two
thread-private counters with each application memory reference in-
struction to count the cache misses and cache invalidations it causes
in each thread, respectively. By doing so, we not only know the total
number of cache misses and invalidations, but can also easily iden-
tify delinquent instructions, i.e., memory access instructions that
cause most of the cache contention events.

For a memory read, we use a TEST instruction 1 to check
whether the current thread has a copy of the referenced cache line
(i.e., whether it owns the cache line). If the thread does indeed have
a copy, no additional work is necessary. Otherwise, we can infer
that there is a cache miss. Therefore, we update the cache miss
counter and set the thread’s bit in the shadow memory bitmap for
that cache line using an OR instruction.

For a memory write, we use a CMP instruction to check if
the only bit set in the bitmap for the cache line belongs to the
current thread, i.e., whether it has exclusive ownership of the cache
line. Again, if this is the case, no additional work is necessary.
Otherwise, the inserted code will increment the cache invalidation
counter and update the bitmap to reflect the thread’s exclusive
ownership with a MOV instruction.

When a cache invalidation occurs, we could determine whether
the data has not been accessed by any other thread yet (a cold miss
indicated by an all-0 bitmap), or whether there is at least one copy
of the cache line in some other core (indicating a likely prior cache
invalidation). However, this would increase the runtime overhead of
our dynamic instrumentation. Because our focus is on inter-thread
sharing contention rather than full cache simulation, each cache
line can at most experience one cold miss in our model. Hence,
we are trading off some accuracy for better performance. Similarly,
for a memory read, the cache miss counter actually includes cache
misses due to both cold misses and cache invalidations. It is pos-
sible to tell the difference between these two forms of misses by
maintaining more information in the shadow memory. We make
the same accuracy versus performance trade-off as before.

We also insert code to record the total number of instructions
executed for each thread. When a thread terminates, we scan the
two counters kept for each memory reference instruction to obtain
the total number of cache misses and invalidations, and compare
that against the total number of instructions executed by the thread
to understand the extent of its cache contention. In addition, we
can determine the delinquent instructions that contributed most to
cache misses and cache invalidations for that thread. Where debug
information is present, these instructions can be easily mapped
back to the application’s source code.

3.3 Determining Thread Correlation
To compute thread correlation, we allocate an array Ti of counters
for each thread i. Counter Ti[j] of the array corresponds to thread
j. The first entry in the array is reserved for counting first-time
accesses.

We also add a field in our shadow memory for each cache line
that stores the index of Ti corresponding to the thread that per-
formed the latest update to that cache line. On a cache miss or cache
invalidation, we obtain the latest thread index from the shadow
memory, and update the corresponding counter accordingly.

The stored counters can indicate a producer-consumer relation-
ship. It is possible to separate cache misses from cache invalida-
tions when updating these counters, so that producers can be distin-
guished from consumers. However, for our purposes, details about
these relationships are not important, so we simply use one counter.

Because the memory is shadowed at the granularity of a cache
line, our thread correlation actually reflects architectural-level cor-
relation, which may or may not be equivalent to semantic corre-
lation within the application. For example, if one thread updates
one part of a cache line while another thread reads a different part
of that cache line, our correlation counter is updated. This correla-
tion is caused by false sharing, but it also affects performance, so
reporting it is necessary.

1 The TEST instruction performs an AND operation, updates the condition
flags accordingly, and then discards the result.



In essence, our counters hold the frequency of a thread’s in-
teraction with every other thread. At the end of the application’s
execution, this correlation information is output to the user who
may then use the information to understand the interaction among
threads and schedule groups of correlated threads accordingly for
better performance.

3.4 False Sharing Detection
In order to detect false sharing, we extend our shadow memory to
record which threads have read and written to each word in a cache
line.

Ideally, we should use 132 bytes of shadow memory for each
64-byte cache line to track 32 threads: 4 shadow bytes for recording
cache line ownership, and 16 pairs of 4-byte bitmaps to track which
of the 32 threads has read or written to each word in the cache
line. However, Umbra does not currently support such a mapping
scheme. Because we perform our experiments on an 8-core system,
our prototype uses a compacted shadow memory data structure to
track 8 threads using the configuration described below.

For each 64-byte cache line of the application, we maintain a
data structure of the same size in the shadow memory, which is di-
vided into 16 four-byte entries corresponding to the 16 application
words in the cache line. The first byte of the first entry is used as
the bitmap for tracking the ownership of the entire cache line as be-
fore. The last two bytes of each entry are used as the read and write
bitmaps to track access history for 8 threads for the associated word
in the cache line. The second byte of each entry is not used. We use
bit recycling to handle applications that need to create more than 8
threads.

We check whether there is a cache miss or invalidation using the
ownership bitmap as described before. In addition, we set the bit
corresponding to the word that was accessed by the current thread
using an OR operation. We again use a test and set scheme to avoid
unnecessary memory updates for better performance. On a cache
miss, we check whether the word being accessed has write bits set
by other threads. If not, a false sharing instance is reported. On a
cache invalidation, we check whether any other thread had accessed
the word by checking its bitmap. If there were no previous accesses,
false sharing is reported. For a store, we clear the whole shadow
memory unit for the cache line and set the cache line bitmap and the
word bitmap with the write bit for the current thread. This approach
limits multi-word updates to only cache invalidation events.

Our use of word granularity in false sharing detection may cause
inaccuracy as some applications may have false sharing at the level
of individual bytes. It is possible to implement byte granularity in
our scheme, but we chose to use words instead, for two reasons.
First, a byte granularity implementation incurs higher overhead.

Second, while the compiler often arranges for two unrelated
data fields to lie in the same cache line unbeknownst to the pro-
grammer, and such fields can be difficult for the programmer to
identify, two fields that occupy the same word are rarer and usually
easier to locate: e.g., an array of characters or several consecutive
sub-word struct fields. The compiler often generates padding to ex-
pand unrelated adjacent sub-word fields to have word alignment.
Thus, we choose to use word granularity.

3.5 Accuracy Discussion
There are several potential sources of inaccuracy in our design and
implementations. One source of inaccuracy is our assumption that
data is only evicted from a core’s private cache through invalida-
tions. This may cause our profiling results to differ from the actual
behavior of the application when executing on a particular hard-
ware configuration, i.e., a particular private cache size and replace-
ment scheme. However, our approach separates application behav-
ior from the actual hardware configuration, which provides users

with an insightful view of application behavior independent of any
particular hardware features or configurations except the cache line
size. We believe that this is more important than accurately report-
ing behavior on a particular execution instance, which may change
when the application runs in a different environment.

In fact, the accuracy of cache contention analysis is difficult to
evaluate. It depends on many factors, especially the interleaved or-
der of memory accesses by different threads, which may change
from run to run. Although full cache simulation can simulate de-
tailed cache behavior, the input, i.e., the memory access trace, does
not always reflect actual execution; thus, the simulation results are
often artificial. For example, Cachegrind, a cache simulation tool
built on Valgrind [21], serializes multithreaded execution, resulting
in a memory reference sequence that would almost never happen
in actual execution on a multi-core system. Even full cache sim-
ulation can report accurate results for one particular execution in-
stance only and may not accurately reflect application behavior in
other runs with different interleavings.

Other sources of inaccuracy, including the number of threads
exceeding the number of bits in our bitmap, using word rather than
byte granularity in false sharing detection, and not being able to
separate cold misses from cache misses due to cache contention,
have been discussed above.

4. Experimental Results
We conducted a series of experiments to evaluate our approach.

4.1 Experimental Setup
Our tool is implemented on top of Umbra for Linux. We used ap-
plications from two parallel, shared-memory benchmark suites for
our experiments: the SPLASH2 [36] and Phoenix [27] suites. Three
benchmarks from SPLASH2, namely volrend, water-spatial,
and cholesky, were not included in our experiments because they
complete in very short times (< 0.5 seconds). All benchmarks were
compiled as 64-bit executables using gcc 4.3.2 with the -O2 opti-
mization flag. The hardware platform we used has two quad-core
Intel Xeon processors with 3.16GHz clock rate and 8GB total RAM
running 64-bit Debian GNU/Linux 5.0. Each core has its own pri-
vate 32KB L1 data cache, whose cache line size is 64 bytes. The
four cores in each quad-core die are arranged into two groups of
two cores each that share a 6MB L2 cache. Thus, the fastest a given
core can acquire a copy of a missing cache line is from the other
core that shares its L2 cache, followed by one of the other cores
on the same die. Fetching a cache line from the other die is even
slower, followed by the case when a cache line must be loaded from
memory.

4.2 Performance Evaluation
We first evaluate the performance of our base framework that tracks
cache line ownership implemented using different instrumentation
schemes: set only, test and set, and atomic test and set, which we
discussed in Section 3. Table 2 shows the performance of the two
benchmark suites with these different instrumentation schemes. It
is clear that test and set has much lower runtime overhead. The
reasons have been discussed in Section 3.1. The atomic test and set
is much slower than the simple set scheme, primarily because of
the high cost of the XCHG instruction.

We next compare the performance of our three contention detec-
tors. Figure 5 presents the results. It shows that contention detection
and thread correlation have similar performance overhead. This is
easily understood: they both check for changes in shadow mem-
ory bitmaps, and update any counters accordingly (see Section 3).
Thread correlation is slightly slower than contention detection be-
cause it also needs to record the thread that last updated the cache
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Figure 5. Performance evaluation of contention detection, thread correlation, and false sharing detection. Performance is normalized to
8-thread native execution time. Arithmetic average is used.

Benchmarks Set Racy Atomic
test & set test & set

SPLASH2 31.83× 2.68× 50.82×
Phoenix 50.64× 3.61× 95.88×

Table 2. Performance of our base framework with different instru-
mentation schemes for tracking 8 threads, normalized to native exe-
cution (i.e., without any instrumentation) and averaged across each
benchmark suite.

line for each memory access. False sharing detection is the slow-
est. This is due mainly to the more complex instrumentation code
needed to update the access positions within each cache line. On
average, our tool causes a 3× to 5× slowdown when compared to
native execution.

Benchmark Misses Invalidation
barnes 0.15% 0.10%
fmm 20.52% 1.36%

ocean (c) 0.15% 0.13%
ocean (nc) 0.92% 0.55%
radiosity 10.94% 16.89%
raytrace 16.78% 22.06%
water-nsq 1.78% 2.54%

fft 0.00% 0.00%
lu (c) 0.23% 0.01%
lu (nc) 0.11% 0.02%
radix 0.00% 0.00%

histogram 0.00% 3.04%
kmeans 0.00% 0.00%

linear_reg 54.65% 69.91%
matrix_mul 0.13% 0.04%

pca 0.10% 0.67%
string_match 0.00% 2.82%
word_count 0.93% 0.17%

Table 3. Relative error between using racy versus atomic opera-
tions for counter updates.

4.3 Accuracy of Racy Updates
Racy shadow memory checks and updates have much better perfor-
mance than using atomic test and set in the instrumentation scheme
on the shadow memory. However, races could result in loss of ac-
curacy. Table 3 shows the relative errors (in percentages) of the
miss and invalidation counts obtained using racy test and set versus
atomic test and set instrumentation. We found that there are negli-
gible differences between the two results for most benchmarks. For
four of the 18 benchmarks, the error exceeded 10%. In our analy-
sis, it is the relative magnitude rather than the absolute counts that
matters. As such, we regard the trade-off between performance and
accuracy of the final counts a worthwhile one to make.

Apart from the obvious reason that racy updates can cause
inaccuracies, there is another possible cause for the differences:
the slowdown may change how threads interleave their accesses,
usually causing more interleaved accesses due to fewer references
in each interval. An example is linear reg: the atomic update causes
higher runtime overhead, so more interleaved references happen,
and more cache misses and invalidations occur and are detected.
We believe this is the cause for the 50% variant of linear reg in
Table 3, not errors due to racy updates.

4.4 Benchmark Analysis
In this section, we describe some interesting benchmark results,
and the insights they yielded. The way we analyzed the results also
reflects how we believe a developer would use our tool to discover
and fix inter-thread sharing contention problems.

4.4.1 Contention Detection
Contention detection can help programmers identify whether their
multi-threaded programs suffer from cache contention due to data
sharing, and pinpoint the most problematic instructions if there are
any. The contention rate is the total number of cache misses and
cache invalidations divided by the total number of instructions ex-
ecuted by all threads. Table 4 lists the speedups of our benchmarks
due to parallelization using eight threads as well as their contention
rates. Benchmarks with higher contention rates usually benefit lit-
tle from parallelization. In other words, they are not scalable. The
converse, however, is not true: a benchmark showing little speedup,
as the number of threads and cores are scaled, does not necessar-
ily have a high contention rate. There are many possible causes



of limited scalability in an application, including an unbalanced
workload, expensive communication, or excessive synchronization.
The rest of this paper focuses on those benchmarks that have high
contention rates (i.e., a contention rate of more than 10−3). These
are the benchmarks ocean (nc), fft, histogram, radix, and
linear_regression.

Benchmark 8-Thread Contention
Speedup rate

barnes 6.59 1.61× 10−4

fmm 6.42 8.36× 10−5

ocean (c) 4.26 6.12× 10−4

ocean (nc) 2.85 1.82× 10−3

radiosity 5.30 2.87× 10−4

raytrace 7.27 6.72× 10−5

water-nsq 5.87 2.34× 10−5

fft 2.07 2.28× 10−3

lu (c) 3.00 2.63× 10−4

lu (nc) 3.39 2.27× 10−4

radix 5.69 2.18× 10−3

histogram 3.18 4.26× 10−3

kmeans 3.96 1.09× 10−5

linear_regression 0.56 3.68× 10−2

matrix_multiply 1.02 6.85× 10−5

string_match 5.01 2.60× 10−4

word_count 7.24 1.32× 10−4

Table 4. The correlation between parallelization speedup and con-
tention rate. The speedup is the native running time of a single
thread divided by the total number of application instructions ex-
ecuted.

For the benchmarks with high contention rates, we examined the
instructions causing the contention. There are four common reasons
for their behavior:

1. Initialization. Some of the problematic instructions are found
in initialization functions, especially in the first thread of
the benchmark, which usually reads data from input files
and causes cold misses. Because cold misses are treated as
contention-causing misses for performance reasons in our im-
plementation (Section 3.2), such instructions are identified as
delinquent accesses. For example, there are three instructions
in histogram that are responsible for more than 99% of the
cache misses, and all of them are from an initialization function
that reads data.

2. Global data update. In some benchmarks, such as radiosity,
threads update global data from time to time, which is often a
source of cache contention.

3. False sharing. The linear_regression benchmark contains
good examples of false sharing that resulted in many cache
invalidations. It has 8 instructions that together are responsible
for more than 99% of the total cache misses and invalidations.
They all access data that resides in the same cache line from
multiple threads. This will be discussed later in detail.

4. Communication. In some benchmarks, threads communicate
with each other after each phase. fft is a typical benchmark
that performs a lot of communication, thereby causing a high
amount of contention.

4.4.2 Determining Thread Correlation
We next present results for our thread correlation algorithm. As
expected, different benchmarks showed different communication

Benchmark No Worst Best
binding case case

ocean (nc) 1.95s 1.99s 0.79s
linear_regression 2.31s 3.08s 1.66s

Table 5. Performance impact of scheduling different threads on
different cores for two of our benchmarks. All times are in sec-
onds. ‘No binding’ lets the operating system decide the scheduling.
The other two columns show the extremes of performance when
scheduling on different cores. ocean’s ‘No binding’ time averaged
1.95s but varied significantly.

patterns. The most common pattern we see is that all other threads
have strong correlation with thread 0, the master thread. Bench-
marks likes barnes, radiosity, lu, and water-nsquared have
such patterns. In these benchmarks, the master thread will first ini-
tialize the data and then each thread works on its own tasks.

Some benchmark threads simply read data in parallel, and have
little communication with each other. Most of the benchmarks from
Phoenix fit this pattern. This is not surprising, since this set of
benchmarks was designed to evaluate the performance of map-
reduce, and so the benchmarks are mostly embarrassingly parallel.

We also tested the performance impact of scheduling different
threads on different cores. In our platform, we have two quad cores
on two different dies. Communication between two cores from dif-
ferent dies is much more expensive than communication between
two cores on the same die. Based on the observed correlations, we
cluster threads into two groups using two different methods. One
method minimizes communication between the two groups while
the other maximizes the communication. We considered the perfor-
mance difference between these two methods on benchmarks with
high contention rates based on thread correlations. histogram’s
correlation array shows that all threads interact most with the first
entry, which indicates most misses are cold misess for first-time ac-
cesses. So it was not very interesting. fft and radix have almost
identical correlation values among threads, revealing no optimiza-
tion opportunities. ocean (nc) and linear_regression, on the
other hand, showed interesting correlation patterns. ocean (nc)
has a paired communication pattern: every two threads commu-
nicate significantly with each other but very little with the other
threads. linear_regression, in contrast, forms a chain of com-
munication. Each thread talks very frequently with its neighbors.
As shown in Table 5, scheduling threads on different cores has a
profound impact on the execution time for these two benchmarks.
For ocean (nc), we observe a significant performance difference.
The ‘worst case’, i.e., when threads were clustered to maximize
communication, runs 2.4× slower than the ‘best case’ where com-
munication is minimized. The ‘normal case’, in which we left it to
the operating system to decide the scheduling, is closer to the worst
case. We see a smaller improvement in linear_regression, be-
cause it does not have a regular pattern that perfectly matches the
core configuration as was the case in ocean (nc).

4.4.3 False Sharing Detection
Because software, including our benchmarks, is usually performance-
tuned before release, many applications have already inserted
padding on their own to avoid false sharing. It is therefore difficult
to find a mature program with significant performance problems.
However, we did find several benchmarks with large amounts of
false sharing. Table 6 shows the false sharing rate of the bench-
marks that suffer from high contention rates. The false sharing rate
is defined as the total number of false sharing misses divided by the
total number of instructions executed. Our results show that these
benchmarks also experience high rates of false sharing. The misses



Benchmark Contention False sharing
rate rate

ocean (nc) 1.82× 10−3 1.57× 10−3

fft 2.28× 10−3 7.50× 10−4

radix 2.18× 10−3 1.16× 10−3

histogram 4.26× 10−3 4.26× 10−3

linear_regression 4.33× 10−2 4.33× 10−2

Table 6. False sharing rates of benchmarks with high contention
rates. The false sharing rate is the number of false sharing instances
divided by the total number of application instructions executed.
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Figure 6. Speedup with and without false sharing. To eliminate
false sharing we added padding to the data structures identified by
our tool.

in histogram are mostly cold cache misses, which are identified as
false sharing in our algorithm. It is possible to differentiate the cold
misses from the real false sharing, but this requires extra instru-
mentation and shadow data fields. Note that the contention rate for
linear_regression is different from the value in Table 4. This is
because false sharing detection causes more runtime overhead than
contention detection, and leads to more interleaved accesses on the
same cache line by different threads, and thus higher contention
rates.

By studying the source code of linear_regression, we
found that it allocates an array, passes one entry to each thread,
and each thread then updates the entry simultaneously. This is a
common programming practice that causes false sharing. Because
several entries share a cache line, a large amount of false shar-
ing happens when multiple threads update neighboring entries.
By adding pads into the data structure, we achieved a significant
improvement (12× for 8 cores) for this benchmark, as shown in
Figure 6.

We also find that the benchmark radix from SPLASH2 [36]
has a significant amount of false sharing. radix is a benchmark
that implements a parallel radix sort that sorts an array one digit at
a time. In every round, it copies entries from the array into another
array of the same size ordered by that round’s digit. Multiple
threads fill in the array, causing false sharing. However, this is
behavior that we cannot change without drastically changing the
algorithm. We tried to add padding between the data but the runtime
actually increased because of lost cache locality. In fact, radix has
a relatively good speed up, as shown in Table 4. This is because
it sorts over 50 million integers, using two 400MB chunks of
memory. Its working set is much larger than the available amount
of caches in all eight cores. So there is a good chance that the data
may already be evicted before invalidations or misses can happen.

ocean (nc) also exhibited significant false sharing as well and
has algorithmic issues. In ocean (nc), different threads update
different columns of a 2D array. Because the array is stored in

row-major order, a lot of false sharing occurs during this updating
process. Our data shows that almost every instruction that accesses
the array experiences false sharing. Due to the large size of the
array, padding does not work well. However, as we showed in the
previous section, we can still improve the overall performance by
judiciously scheduling the threads so as to reduce communication
cost. fft, in contrast, has an all-to-all communication pattern, so
the majority of contention is actually caused by true sharing, and it
has no easy way to optimize it due to its communication pattern.

An artifact of our implementation is that false sharing detection
can precisely track up to 8 threads, while contention detection can
track upto 32 threads. There are two benchmarks pca and kmeans
that use more than 8 threads. They create 8 threads in every phases
or iteration. In total, pca and kmeans used 16 and 1,317 threads
respectively. Table 4.4.3 lists the data obtained from contention de-
tection and false sharing detection. False sharing detection reported
less cache misses and invalidations because fewer number of bits
were used in thread tracking. How to precisely and efficiently track
a large number of threads (hundreds or thousands) simultaneously
is still an unresolved issue.

Benchmarks Contention detection False sharing detection
# misses # inv # misses # inv

kmeans 3.23× 106 1.53× 106 4.25× 105 4.25× 105

pca 5.63× 106 4.37× 106 1.16× 106 1.16× 106

Table 7. The number of cache misses and invalidations observed
during contention detection and false sharing detection for bench-
marks that created more than 8 threads.

Our experiments showed that the novel analysis made possi-
ble by our tool can help programmers discover intense thread con-
tention, determine thread correlation, and detect false sharing. This
helps programmers better understand their applications and make
better choices, for example, in the implementation of the data struc-
tures, or the scheduling decisions, so as to improve performance.

5. Related Work
We discuss related work in the areas of false sharing detection and
thread correlation.

5.1 False Sharing
False sharing can be difficult to define precisely [3, 18, 35]. For in-
stance, false sharing can be defined as the additional cache misses
incurred by a program running with a given cache line size com-
pared to the same program running with one-word cache lines. This
may seem like a good definition because using one-word cache
lines minimizes the amount of data transferred between processors.
However, since programs cannot exploit spatial locality with word-
sized cache lines, the number of coherence operations needed be-
tween processors may still increase. Thus, this definition can result
in a negative amount of false sharing if the loss in spatial locality
eclipses any savings due to reduced false sharing. In this paper, we
chose an intuitive definition of false sharing that can be practically
used for dynamic detection.

Before the proliferation of multi-core systems, false sharing
emerged as a significant performance problem for distributed
shared memory (DSM) systems. However, because cache co-
herency protocols in DSM systems operate at the granularity of
individual memory pages, DSM false sharing is much more likely
to occur than cache line false sharing in multi-core machines. Many
approaches developed to dynamically control DSM false shar-
ing [7, 11] used relaxed memory consistency models and version
vectors with smaller granularity than memory pages.



Intel’s Performance Tuning Utility (PTU) [14] provides hints
that can be used by developers to identify false sharing: for each
cache line, it collects the thread ID and offset of sampled accesses.
Also, the Precise Event Based Sampling (PEBS) support on Intel
processors can provide reports of coherency events and identify ad-
dresses of the corresponding memory accesses. However, because
both of these approaches are sampling-based, they only aggregate
memory access statistics without recording the order of interleaved
memory accesses. Thus, these approaches cannot distinguish be-
tween false and true sharing and can greatly overstate the incidence
of false sharing. Hardware approaches [9] for reducing false shar-
ing include protocols that perform invalidations on a word basis
or postpone invalidations at the sender/receiver or both. However,
such approaches rely on special hardware support.

Compiler optimizations for reducing both DSM and cache line
false sharing have also been proposed in the past. Static analysis
can be used to approximate program memory-access patterns and
apply data layout transformations to improve memory locality [16].
Other proposed approaches reorganize control structures (e.g., loop
distribution) along with shared data to reduce false sharing [17, 24].
These approaches rely on the regularity of code and data layout to
approximate the memory reference behavior of programs, which
greatly limits their usage and accuracy.

Memory managers such as Hoard [2] try to prevent false shar-
ing caused by concurrent requests by ensuring that data allocated
for separate threads does not lie on the same cache line. Unfortu-
nately, these allocators have no control over inter-thread contention
inadvertently caused by developers in real-world applications be-
cause of poor data layout or thread scheduling. Diagnostic tools
are invariably required to help developers reduce false sharing and
thread contention.

A full architecture simulation for detecting false sharing is em-
ployed by CacheIn [34]. The runtime overhead for the full simu-
lation is not mentioned but we can reasonably expect it to be very
high. Furthermore, the false sharing detection algorithm works by
creating a serial trace of all memory references and comparing the
address of shared writes to subsequent shared reads. This approach
is not efficient in terms of the sheer amount of data generated during
program execution and the likely post-processing overhead. Fur-
thermore, the machine model of this simulation only uses the la-
tencies of a few instructions. Traditional full simulations [15] can
be used to obtain detailed information about cache behavior, but
at the cost of orders of magnitude of slowdown. Our method is an
order of magnitude faster.

Pluto [12] tries to detect cache false sharing via dynamic binary
instrumentation. However, it simply aggregates information about
the number of threads that access a given cache block (and the
corresponding access offsets), without retaining any information
about the timing of these accesses. While Pluto uses heuristics
about thread offsets (just like PEBS) to account for true sharing,
it cannot accurately differentiate between true or false sharing, and
its results can be very inaccurate. It cannot accurately provide the
cache invalidation or false sharing statistics for each instruction.
Furthermore, Pluto’s reported performance overhead can be as high
as two orders of magnitude on target applications.

5.2 Thread Correlation
Most thread libraries allow programmers to specify thread relation-
ships, execution priorities, and scheduling policies. For instance,
programmers can statically bind threads to specific processors on
most operating systems. Some frameworks allow programmers to
declare groups of related threads (e.g., via RTIDs [26]) so that
thread schedulers can run these related threads accordingly to avoid
performance penalties due to thread communication.

Real-world applications are often developed in different phases,
utilize modules from many libraries, and are coded by many pro-
grammers. Therefore, it may not be easy for application develop-
ers to specify the scheduling of threads or their processor bind-
ings. In the absence of programmer directives, many frameworks
track the cache behavior of threads at runtime to make schedul-
ing decisions that improve performance. For instance, cache-aware
schedulers can dynamically identify threads that reference shared
data [6, 10, 32, 33] so that they can be scheduled accordingly
or migrated to specific processors. Such optimizations can reduce
overhead due to poor thread scheduling, but they often use hard-
ware sampling of cache misses or other hardware facilities, which
makes their approaches inaccurate and platform specific. As a re-
sult, these approaches often cannot help developers identify the
exact threads and instructions in an application that communi-
cate excessively with each other. With such diagnostic informa-
tion, developers would be able to take more aggressive, application-
specific steps to overcome thread correlation penalties. To the best
of our knowledge, no existing dynamic instrumentation tool pro-
vides thread correlation analysis for diagnosis without incurring
prohibitive performance overheads.

6. Conclusion
Merely porting an application to use multiple threads is insuffi-
cient to guarantee good performance on today’s multi-core systems.
In this paper, we focused on reducing unexpected performance
degradation in multi-threaded applications that can arise from inter-
thread cache contention and sub-optimal placement of correlated
threads across multiple cores. In particular, we outlined a novel ap-
proach for identifying delinquent accesses, measuring thread cor-
relation, and detecting true/false sharing. Our tool is based on the
insight that the rate of true/false sharing in an application primarily
depends on application behavior and cache line size, and can be ac-
curately determined without considering the full complexity of the
actual memory hierarchy. We outlined a novel use of shadow mem-
ory and dynamic instrumentation that tracks ownership of cache
lines in application memory to detect true/false sharing. Our ap-
proach is more accurate than static analysis or the use of hardware
counters, because we use the exact sequence of memory references
in an executing application to detect both true and false sharing,
and to differentiate between them. We show that our approach in-
curs an average of 3× to 5× slowdown relative to native execution,
and thus is much more efficient than cache simulations.

We used our tool to analyze 18 shared memory benchmarks. We
showed how the information obtained by our tool can be used to
significantly improve application performance. We first performed
contention detection to identify benchmarks that suffer from con-
tention issues. We then examined thread correlation to derive the
communication patterns of problematic applications. In one in-
stance, namely ocean, we attained a 2.4× performance improve-
ment by optimally scheduling the threads of the application. Next,
we illustrated that applications with high contention rates consis-
tently exhibit high degrees of false sharing. For one benchmark,
namely linear_regression, we removed false sharing by means
of padding and turned slowdowns originally experienced by the ap-
plication into near-linear speedups: we turned a 2× slowdown into
a 6× speedup relative to native execution on 8 cores. For other
applications, the information that our tool provided was used to ex-
plain why no performance improvement was possible without dras-
tic restructuring of the underlying algorithms.

In the future, we would like to explore how we can further
speed up our approach through the use of sampling. If this turns
out to be feasible, it may be possible to extend our tool into a run-
time framework that interacts directly with the thread scheduler,
allowing for tuning of multi-threaded applications as they execute



through their various program phases, and dynamic load-balancing
of the system. Alternatively, we could integrate our tool with micro-
simulations [39] to obtain even greater detail about the applica-
tion’s and/or the platform’s behavior.
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