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by
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Abstract

The proliferation of dynamic program analysis tools has done much to ease the burden of developing
complex software. However, creating such tools remains a challenge. Dynamic binary instrumentation
frameworks such as DyanamoRIO and Pin provide support for such tools by taking responsibility for
application transparency and machine code manipulation. However, tool writers must still make a tough
choice when writing instrumentation: should they inject custom inline assembly into the application
code, or should they use the framework facilities for inserting callbacks into regular C code? Custom
assembly can be more performant and more flexible, but it forces the tool to take some responsibility for
maintaining application transparency. Callbacks into C, or “clean calls,” allow the tool writer to ignore
the details of maintaining transparency. Generally speaking, a clean call entails switching to a safe stack,
saving all registers, materializing the arguments, and jumping to the callback.

This thesis presents a suite of optimizations for DynamoRIO that improves the performance of “näıve
tools,” or tools which rely primarily on clean calls for instrumentation. Most importantly, we present
a novel partial inlining optimization for instrumentation routines with conditional analysis. For simpler
instrumentation routines, we present a novel call coalescing optimization that batches calls into fewer con-
text switches. In addition to these two novel techniques, we provide a suite of machine code optimizations
designed to leverage the opportunities created by the aforementioned techniques.

With this additional functionality built on DynamoRIO, we have shown improvements of up to 54.8x
for a näıve instruction counting tool as well as a 3.7x performance improvement for a memory alignment
checking tool on average for many of the benchmarks from the SPEC 2006 CPU benchmark suite.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Computer Science and Engineering
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Chapter 1

Introduction

1.1 Research Objectives

Dynamic program analysis tools built with dynamic binary instrumentation (DBI) have proven indispens-

able for developing large native applications. Memory debuggers such as DrMemory[1] and Valgrind[2]

in particular have been instrumental in tracking down uninitialized memory and memory leaks. Race

detectors such as Helgrind[3] and Thread Sanitizer[4] have made programming with shared memory feasi-

ble. Cache simulators and branch prediction simulators such as Cachegrind[5] provide a way to optimize

cache usage in a given program.

These are just the most commonly used types of instrumentation tools. Researchers in academia and

industry are always building new tools, both general-purpose as well as application-specific. For example,

a research group at MIT recently created Jolt[6], a tool for detecting and escaping from infinite loops

with Pin[7]. In industry, Determina extended DynamoRIO to support program shepherding[8], which

detects application security violations.

For the last several years, Pin has been the framework of choice for researchers implementing custom

program analysis tools. Pin’s success in this area is due to Pin’s facilities for abstracting away architectural

details from the instrumentation tool. A Pin tool works by inserting calls to instrumentation routines,

which record information about the program execution. For example, if a Pin tool wishes to analyze

memory usage, it will instrument every memory access to call to a function with information about that

memory access. Each call inserted with Pin generally expands to many instructions to spill registers,

switch stacks, and materialize arguments, so tools that use pervasive instrumentation can be quite slow.

To ameliorate this, Pin is cabable of inlining short routines that have no control flow.

On the other hand, DynamoRIO[9] has a larger and more general interface. Instead of only inserting
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calls to plain C or C++ routines, a tool has the power to insert custom machine code into the application

code. For example, DrMemory uses the flexibility of DynamoRIO to generate memory accesses that will

fault if the application uses uninitialized data. While faulting is expensive, it happens rarely. In the

common case that the check succeeds, a memory access is much faster than a conditional branch. As

a result, DrMemory is on average twice as fast as Valgrind’s Memcheck.[1] Pin does not provide the

flexibility needed to generate and handle this kind of instrumentation.

While the ability to insert custom machine code is powerful and can support efficient tools, generating

that code can be a daunting task for a researcher or a beginner learning the framework. To help ame-

liorate the burden, DynamoRIO also has facilities for inserting “clean calls,” which are similar to Pin’s

instrumentation routines. However, DynamoRIO cannot inline clean calls, and is generally not suited to

pervasive instrumentation using clean calls.

The goal of this thesis is to make it possible to build performant program anlysis tools with Dy-

namoRIO without burdening the tool writer. We want to make tools that are developed using ordinary

clean calls fast enough to be broadly useful. We believe that the slowdowns incurred by clean calls prevent

people from using them, and we would like reduce those slowdowns so that these novel tools see wider

adoption.

Throughout this thesis, we follow the efforts of a tool author attempting to implement three tools:

an instruction counting tool, a memory alignment tool, and a memory access trace tool. To support the

author of these tools, we make the following contributions:

• An inlining optimization for instrumentation routines.

• The first partial inlining optimization for instrumentation routines with conditional analysis.

• The first call coalescing optimization for instrumentation routines.

• A suite of x86 machine code optimizations leveraging the opportunities created by inlining.

Partial inlining is a well-understood compiler optimization that attempts to inline the commonly

executed code without inlining an entire function, which would cause code bloat. In our case, not all tool

code can be inlined into the application code stream. Partial inlining allows us to inline the parts we

can and leave out the rest. As far as we know, this is the first application of this technique to dynamic

binary instrumentation.

For tools built with pervasive clean calls, the main cost is usually the context switching between the

application and DynamoRIO. The idea behind call coalescing is that we should make multiple calls after

one context switch so that we need to make fewer context switches over all.

Finally, we found that applying the above techniques was not enough, and that we needed to build a

12



larger suite of general machine code optimizations to finish cleaning up the inlined code. For example,

in our memory alignment tool, the size used for the alignment check is passed as a parameter, and it is

always the same at each call site. If we inline without folding this constant into the alignment check, we

are clobbering extra registers and issuing extra instructions.

Using the above techniques, we have been able to dramatically improve performance for an instruction

counting tool by 54.8 times and a memory alignment tool by almost 4 times.

1.2 Thesis Overview

In Chapter 2, we discuss the motivation for using a dynamic binary instrumentation framework such as

DynamoRIO, Pin, or Valgrind in the first place. In particular, we outline all the benefits they provide

and the challenges they help overcome. We also take a closer look at the execution model of DynamoRIO

because it has a great impact on the design of analysis tools.

In Chapter 3, we start with a näıve implementation of instruction count and walk through the stages

of optimizations that we apply. As we go through the stages, the instrumentation code is progressively

simplified until it starts to look like the version we would write using custom machine code.

In Chapter 4, we take a look at two more complex tools: a memory alignment checker and a memory

trace tool. These tools have the common property that the instrumentation has an early conditional

check that results either in a fast or a slow path being taken. In the memory alignment tool, no action

needs to be taken if the memory access is aligned. In the memory trace tool, the trace buffer does not

need to be flushed if it is not full. We describe how we go about inlining the fast paths while maintaining

correctness when the slow path is taken.

In Chapter 5, we depart from our example-driven description of the system to step back and look at

the system hierarchy.

In Chapter 6, we present the experimental performance results we achieved on the SPEC2006 CPU

integer benchmarks[10] for all three of the tools examined in this thesis.

In Chapter 7.2, we look back on the contributions of this thesis and suggest possible directions for

future work.
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Chapter 2

Background

2.1 Dynamic Binary Instrumentation Frameworks

In order to understand this thesis, it is important to understand what a dynamic binary instrumentation

(DBI) framework provides to a tool writer.

The primary job of a DBI framework is to interpret a native application as it executes and provide

an abstract representation of the program code that the tool can analyze and instrument. At first, it

would seem easier to simply disassmble the application in question and insert instrumentation code into

it statically. However, for modern applications, this approach simply does not work. First, there are

dynamically loaded libraries that the application may be linked against. Some of these are possible to

identify, such as libc or others. Some, however, may be dynamically loaded via other interfaces such as

dlopen on Linux and LoadLibrary on Windows. These are not possible to predict statically, and a static

instrumentation tool will not be able to observe and instrument these instructions. Hence, a dynamic

binary instrumentation framework is needed to run alongside the application and intercept every instruc-

tion that the application would have executed were it to run natively. Using dynamic instrumentation

instead of static instrumentation, an analysis tool can observe and manipulate all instructions executed

by the application instead of just some.

Furthermore, a dynamic framework maintains control even in the face of such convoluted techniques

as self-modifying code. As techniques such as embedded Just In Time (JIT) compilation become more

prevalent, it becomes more important to be able to observe such dynamically generated code. A DBI

framework is also responsible for providing all of the native operating system interfaces to the application

just as if the application were running natively. This can be a daunting challenge, as the operating system

interface is large, and an application can register many points of entry with the operating system such as
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signal handlers. A good DBI framework, such as DynamoRIO, Pin, or Valgrind, will intercept all of these

requests and ensure that control is maintained and the tool author is able to observe all instructions.

Finally, a DBI framework provides transparency of the framework and the tool to the application.

When trying to analyze a program, it can be frustrating when bugs disappear when run under the analysis

tool. If the tool and the framework are completely transparent, then the application will not be able to

tell that it is running under the tool. Furthermore, the tool will not affect the flow of the application

in any way. For example, DynamoRIO provides a heap that is fully isolated from the application, so

memory allocations by the tool do not disturb allocations by the application. A separate heap also

prevents application bugs from overwriting DynamoRIO’s data structures. After heap data structures,

we also need to worry about the application’s stack, for all of the same reasons. The application may

have buffer overruns on the stack, or it might not even have a stack. Therefore, DynamoRIO maintains a

separate stack. Applications also occasionally use introspection to enumerate all the threads in a process,

query virtual memory protections, or walk the stack, for example. DynamoRIO makes sure that all of

these application introspection techniques work as if they were running natively, so the tool author does

not have to worry about it.

For all of these reasons, it is highly desirable to build dynamic program analysis tools with DBI

frameworks. The goal of this thesis is to make it easier to use DBI frameworks to write analysis tools

that perform well. For this thesis, we chose to start by modifying DynamoRIO, which we describe in the

following section.

2.2 DynamoRIO’s Execution Model

In order to dynamically instrument an application, DynamoRIO performs “process virtualization.” All

application code is translated into the software code cache, just as is done in VMWare’s flagship virtu-

alization product.[11] Essentially, DynamoRIO injects itself between the application and the operating

system, as shown in Figure 2-1, instead of between the operating system and the hardware, as VMWare

does. All control transfers between the application and the operating system are caught and mediated by

DynamoRIO so that it can maintain control. To run an application under DynamoRIO, the application

is launched in such a way that DynamoRIO is loaded and given control during process initialization.

When DynamoRIO takes control, it sets up its own execution context, separate from that of the appli-

cation. DynamoRIO’s context consists of a separate stack, and a thread-local data structure describing

its state. The application context consists of the original application stack along with all of the registers

that DynamoRIO may clobber while executing its own code. Once DynamoRIO has switched to its own

stack, it determines what the next application program counter would have been and begins the process

of interpretation, entering the basic block builder from Figure 2-1.
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Figure 2-1: High-level diagram of DynamoRIO executing an application.

For a previously unencountered target application PC, the builder decodes instructions from the

first instruction until the next control transfer. Before modifying the instructions to run in the code

cache, DynamoRIO presents the instructions to the tool for instrumentation, if a tool is loaded. The

tool then has the opportunity to analyze the basic block and insert its own instructions or clean calls.

Such instructions are marked as “meta,” meaning they are not application instructions and should not

be modified to maintain control. Inserting custom code into the application is the most efficient way to

perform analysis, but most näıve clients will stick to inserting clean calls. Clean calls require a full context

switch across the gray border, and significantly bloat code size, requiring extra memory and polluting

the cache.

After instrumentation, DynamoRIO mangles the terminating control transfer instruction to maintain

control when the basic block exits. Specifically, control flow instructions are mangled so that they jump

into DynamoRIO’s central dispatch mechanism which will figure out what to do next, which is represented

by the arrow leaving the code cache and entering the dispatch block in Figure 2-1.

Once DynamoRIO is done modifying the application instruction stream, the instructions are encoded

into a “fragment” in the code cache. The code cache is the memory space allocated by DynamoRIO for

translated application code. Finally, DynamoRIO switches back to the application context and starts

executing the new fragment.
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When the basic block finishes execution, instead of transferring to the original application target,

it will re-enter the DynamoRIO VM with information about the original target application program

counter. If the target application PC is not in the code cache yet, DynamoRIO will then repeat the

process of translation for the next basic block. After translation, it will return to the application context

and continue execution from the freshly translated fragment.

Bouncing back and forth between DynamoRIO’s central dispatch and the code cache is expensive,

so DynamoRIO attempts to “link” basic blocks together. If the control transfer target is direct, the

two basic blocks can be linked by modifying the terminating control transfer instruction of the previous

fragment to directly target to the beginning of the next fragment. As a result, when a code path executes

more than once, it will not have to leave the code cache to look up the next fragment to execute.

Now that we have presented the motivations and challenges involved with dynamic binary instrumen-

tation, we demonstrate how simple inlining and our suite of optimizations work together to optimize a

näıve instruction counting tool.
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Chapter 3

Inlining

3.1 Instruction Count Tool

The first tool we examine in this thesis is instruction count. The goal of this tool is to compute the

exact number of instructions that would be executed by the application if we were to run it natively.

The simplest way of achieving this goal is to iterate across each instruction and insert a call to a routine

which increments a 64-bit counter before executing the routine. A fragment of the source code for this

tool is shown in Figure 3-1.

Instruction count is a simple example, and it would be fair to suggest that in this case a reasonable tool

author would be able to optimize this to a single instrumentation routine call in each basic block. However,

we believe that for more complicated tools, this is not easy, and inserting many calls to instrumentation

routines around the instructions they pertain to is the simple and expected way to write the tool. For

example, a tool like opcodemix, a sample Pin tool that reports the distribution of x86 instruction opcodes

executed, is implemented the same way. The simple way to implement opcodemix is to instrument each

instruction with a call to a function that takes the instruction opcode as a parameter. The routine then

increments the appropriate counter based on the opcode. We expect that all optimizations applying to

our sample instruction count tool would be just as effective for opcodemix as well as other similar tools.

3.2 Clean Calls

Implemented with the standard clean call infrastructure that DynamoRIO provides, this simple tool

creates large fragments of code that perform poorly. Figure 3-2 shows an x86 64 assembly listing of a

clean call.
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#include "dr_api.h"

#include "dr_calls.h"

/* ... */

static void inc_count(void) {

global_count++;

}

dr_emit_flags_t

event_basic_block(void *drcontext, void *tag, instrlist_t *bb,

bool for_trace, bool translating) {

instr_t *instr;

for (instr = instrlist_first(bb); instr != NULL;

instr = instr_get_next(instr))

drcalls_insert_call(drcontext, bb, instr, (void *)inc_count,

false /* save fpstate */, 0);

/* ... */

}

Figure 3-1: Abbreviated source code sample for our instruction count tool.

mov %rsp -> %gs:0x00 # Switch to dstack

mov %gs:0x20 -> %rsp

mov 0x000002c0(%rsp) -> %rsp

lea 0xfffffd50(%rsp) -> %rsp # Allocate frame

mov %rax -> 0x48(%rsp) # Save GPRs

... save rbx-r14 ...

mov %r15 -> 0x00000088(%rsp)

lahf -> %ah

seto -> %al

mov %rax -> 0x00000090(%rsp) # Save "aflags"

movdqa %xmm0 -> 0x000000b0(%rsp) # Save XMM regs

... save xmm1-xmm14 ...

movdqa %xmm15 -> 0x00000290(%rsp)

call $0x004041c0 %rsp -> %rsp 0xfffffff8(%rsp) # Call inc_count

movdqa 0x000000b0(%rsp) -> %xmm0 # Restore XMM regs

... restore xmm1-xmm14 ...

movdqa 0x00000290(%rsp) -> %xmm15

mov 0x00000090(%rsp) -> %rax # Restore "aflags"

add $0x7f %al -> %al

sahf %ah

mov 0x48(%rsp) -> %rax # Restore GPRs

... restore rbx-r14 ...

mov 0x00000088(%rsp) -> %r15

mov %gs:0x00 -> %rsp # Restore appstack

Figure 3-2: Assembly listing for a single clean call.
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Although all we want to do is increment a counter, we end up doing all of the following work in order

to support as much arbitrary C code as possible:

1. Switch to a clean stack.

2. Save all registers.

3. Save the flags register.

4. Save “volatile” XMM registers.

5. Materialize arguments into parameter registers. Not shown above, since inc count takes no argu-

ments.

6. Call tool routine.

7. Restore “volatile” XMM registers.

8. Restore the flags register.

9. Restore all registers.

10. Switch back to the application stack.

Saving the XMM registers seems excessive for a short snippet of C code, but even if the tool is avoiding

the use of floating point instructions, it is still possible for the compiler to choose to use XMM registers.

More likely, however, is that the tool may call memcpy. In recent versions of glibc, memcpy will make use of

the XMM registers to widen the load and store width, which will clobber the caller-saved XMM registers.

Therefore DynamoRIO must conservatively save this set of registers, even though they are most likely

unused.

For the SPEC bzip2 benchmark, we get terrible performance. Natively, this application runs in 4.5

seconds. With clean calls, the application takes 9 minutes and 20 seconds, giving a 124x slowdown.

Through the rest of the chapter we show how to improve on that.

Our primary target is to avoid doing all this extra work of context switching. Our first technique is

to inline the instrumentation routine into the application code stream.

3.3 Simple Inlining

For inlining routines that have no control flow, the process is simple. The tool provides us with a function

pointer which is the PC of the first instruction in the routine. We start decoding instructions from this

PC until we find the first ret instruction. Assuming the routine has no control flow, this is adequate

for reliably decoding the routine. When we extended our inliner to perform partial inlining we had to

augment our decoding algorithm as described in Section 4.3.
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Inlining is only possible if we are able to analyze the callee and only if the analysis suggests that doing

so would be profitable. The analysis is designed so that if there are any corner cases that the analysis

cannot handle reliably, it can fail, and inlining will fail. For example, if the stack pointer is dynamically

updated in the middle of the function, this inhibits stack usage analysis. Therefore we bail out in such

cases. Assuming our analysis is successful, we only inline if the following criteria apply:

• The callee is a leaf function. Our definition of leaf function is conservative, meaning it must not have

any calls, trapping instructions, indirect branches, or direct branches outside of the function.

• The simplified callee instruction stream is no longer than 20 instructions. This limit is in place to avoid

code bloat. The limit of 20 instructions has not been experimentally tested and was chosen to match

Pin’s behavior.

• The callee does not use XMM registers.

• The callee does not use more than a fixed number of general purpose registers. We have not picked an

appropriate limit yet.

• The callee must have a simple stack frame that uses at most one stack location.

• The callee may only have as many arguments as can be passed in registers on the current platform, or

only one if the native calling convention does not support register parameters.

If the routine meets the above criteria, we can then simplify the clean call process described in Section

3.2 down to the following steps:

1. Switch to a clean stack.

2. Save clobbered registers.

3. Save the flags register if used.

4. Materialize arguments into parameter registers.

5. Emit the simplified inline code stream.

6. Restore the flags register if used.

7. Restore clobbered registers.

8. Switch back to the application stack.

In particular, we skip all XMM saves and most of the register saves, especially on x86 64 which has

more registers than most callees use.

For our instruction count tool, the disassmbled inc count routine is shown in its original form in

Figure 3-3 and after inlining in Figure 3-4. Note how all the stack frame setup and teardown related

instructions from the original routine have been removed in the inlined version, and been replaced with

our own stack management.
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push %rbp %rsp -> %rsp 0xfffffff8(%rsp) # Frame setup

mov %rsp -> %rbp

mov <rel> 0x00000000006189e0 -> %rax # Load global_count

add $0x0000000000000001 %rax -> %rax # Increment

mov %rax -> <rel> 0x00000000006189e0 # Store global_count

leave %rbp %rsp (%rbp) -> %rsp %rbp # Frame teardown

ret %rsp (%rsp) -> %rsp # ret

Figure 3-3: Assembly for the inc count instrumentation routine.

mov %rsp -> %gs:0x00 # Switch to dstack

mov %gs:0x20 -> %rsp

mov 0x000002c0(%rsp) -> %rsp

lea 0xfffffd50(%rsp) -> %rsp # Create frame

mov %rax -> 0x48(%rsp) # Save %rax, only used reg

lahf -> %ah # Save aflags

seto -> %al

mov %rax -> 0x00000090(%rsp)

mov <rel> 0x00000000006189e0 -> %rax # Inlined increment code

add $0x0000000000000001 %rax -> %rax

mov %rax -> <rel> 0x00000000006189e0

mov 0x00000090(%rsp) -> %rax # Restore aflags

add $0x7f %al -> %al

sahf %ah

mov 0x48(%rsp) -> %rax # Restore %rax

mov %gs:0x00 -> %rsp # Back to appstack

mov (%rbx) -> %rax # APPLICATION INSTRUCTION

... Process repeats for each application instruction

Figure 3-4: inc count inlined into an application basic block without further optimization.
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The inlined version of the code is clearly an improvement over the clean call version of the code, and is

5.8x faster than the clean call version, running in 96.3 seconds. Still the cost of switching contexts to the

DynamoRIO stack to save registers dwarfs the cost of the actual code we wish to execute. While there

are opportunities for reducing the work done here, we introduce the novel technique of “call coalescing”

to reduce the number of switches needed.

3.4 Call Coalescing

In order to do coalescing, we need visibility of the entire instrumented basic block. Therefore we choose

to represent calls to instrumentation routines as artifical pseudo-instructions that are expanded after

instrumentation. Before expanding each call, we see if it is possible to group them together within the

basic block. If the call has register arguments, we avoid moving it outside the live range of its register

arguments or past any memory writes. This approach works well for instruction count and other tools

that pass immediate values to instrumentation routines, because we have total freedom as to how they

are scheduled.

Once the calls are scheduled, we expand them to another level of pseudo-ops of stack switches and

register saves and register restores. Before lowering these pseudo-ops, we pass over the instruction stream

to delete consecutive reciprocal operations. Currently we identify three pairs of operations as being

reciprocal: switching to dstack and back, restoring and saving a register, and restoring and saving flags.

Coalescing all calls in a three instruction basic block results in the code in Figure 3-5.

By coalescing calls together we achieve a 2.1x improvement over standard inlining, bringing our

execution time down to 45.6 seconds. However, we still spend an entire four instructions setting up a

stack frame just so that we can save %rax and the flags register. In the next section, we describe how we

can avoid switching stacks altogether.

3.5 Avoiding Stack Switching with TLS

The original reason for switching stacks is that we cannot rely on being able to use the stack used by

the application. There are many reasons why this might be the case. The application might be using

the red zone on Linux x86 64, which is an area past the end of the stack usable by leaf functions. The

application might be close to the guard page which will grow the stack. The application might have

a dangling pointer to the stack and we may want to find that bug. Finally, the application might be

running without a stack and just using %rsp as a general purpose register. In any case, it is important

to assume nothing about the application stack.

Our main use for the stack when inlining code is as temporary scratch space where we can save

24



mov %rsp -> %gs:0x00 # Switch to dstack

mov %gs:0x20 -> %rsp

mov 0x000002c0(%rsp) -> %rsp

lea 0xfffffd50(%rsp) -> %rsp # Setup frame

mov %rax -> 0x48(%rsp) # Save %rax

lahf -> %ah # Save flags

seto -> %al

mov %rax -> 0x00000090(%rsp)

mov <rel> 0x0000000000618c80 -> %rax # Call 1

add $0x0000000000000001 %rax -> %rax

mov %rax -> <rel> 0x0000000000618c80

mov <rel> 0x0000000000618c80 -> %rax # Call 2

add $0x0000000000000001 %rax -> %rax

mov %rax -> <rel> 0x0000000000618c80

mov <rel> 0x0000000000618c80 -> %rax # Call 3

add $0x0000000000000001 %rax -> %rax

mov %rax -> <rel> 0x0000000000618c80

mov 0x00000090(%rsp) -> %rax # Restore flags

add $0x7f %al -> %al

sahf %ah

mov 0x48(%rsp) -> %rax # Restore %rax

mov %gs:0x00 -> %rsp # Restore appstack

... three application instructions

Figure 3-5: Three inlined calls to inc count coalesced together.

registers that are clobbered. For single-threaded applications we can simply use global variables, but this

breaks down quickly if we want to share the code cache between threads. In order to have per-thread

global variables, we need to use “thread local storage,” or TLS. On Windows and Linux the x86 fs and

gs segment registers are used to point to a memory region unique for each thread. On Linux, only one

segment is used, so we claim the other and use it for our own TLS memory region. On Windows, however,

the operating system will not preserve our segment register value across interrupts, so we cannot set our

own. Instead, we steal TLS space from the application by introspecting on the application’s thread

execution block (TEB) and marking our storage as allocated.[12] DynamoRIO uses a small amount of

this space internally, and we cannot afford to allocate too much or we will interfere with the execution of

the application. Therefore we do not enable this optimization by default. Finally, if we wish to perform

partial inlining as described in Chapter 4, we cannot yet transfer from the inline code to the slowpath

without an existing stack frame.

Figure 3-6 shows the instruction count example code from the previous section with the TLS scratch

space optimization turned on. Note that it does not need any stack frame setup, and simply saves registers

and flags into TLS slots.

Using TLS space on this example only gains us about a 1% performance improvement. When we

initially implemented this optimization, we obtained much better results, because we implemented TLS
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mov %rax -> %gs:0x00000088 # Save %rax

lahf -> %ah # Save flags

seto -> %al

mov %rax -> %gs:0x00000090

mov <rel> 0x0000000000619780 -> %rax # Call 1

add $0x0000000000000001 %rax -> %rax

mov %rax -> <rel> 0x0000000000619780

mov <rel> 0x0000000000619780 -> %rax # Call 2

add $0x0000000000000001 %rax -> %rax

mov %rax -> <rel> 0x0000000000619780

mov <rel> 0x0000000000619780 -> %rax # Call 3

add $0x0000000000000001 %rax -> %rax

mov %rax -> <rel> 0x0000000000619780

mov %gs:0x00000090 -> %rax # Restore flags

add $0x7f %al -> %al

sahf %ah

mov %gs:0x00000088 -> %rax # Restore %rax

... three application instructions

Figure 3-6: Three inlined and coalesced calls to inc count that use TLS instead of dstack.

usage before call coalescing. After coalescing, there are fewer stack switches to worry about, so we are

only able to delete 3 frame setup instructions.

To address the next source of inefficiency in our instruction counting tool, we use some classic compiler

optimizations on the inlined code, now that the register spilling has been sufficiently optimized.

3.6 Redundant Load Elimination and Dead Store Elimination

Redundant load elimination (RLE) and dead store elimination (DSE) are classic compiler optimizations

that we found useful for optimizing tools. In our last example, the inlined code is loading global count,

incrementing it, and storing it three separate times. Rather than having three separate loads and stores,

we would like to have one load at the beginning and one store at the end.

The logic for our version of RLE is that if there is a store to and a load from the same memory

operand without any potentially aliasing memory writes between them, we can use the source register

from the store instead of loading the value again. We have to be careful that the register that was written

to the memory location is still live by the time the load occurs, and that it is live for all uses of the load’s

destination register. If that is the case, then we rewrite all uses of the load’s destination register over its

live range to use the store’s source register. Figure 3-7 shows the example code fragment after applying

RLE.

Dead store elimination (DSE) is similar, in that if there is a store to memory, followed by no potentially

aliasing reads from memory, followed by a store to the same memory location, we can delete the first
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mov %rax -> %gs:0x00000088 # Save %rax

lahf -> %ah # Save flags

seto -> %al

mov %rax -> %gs:0x00000090

mov <rel> 0x0000000000619780 -> %rax # Load 1

add $0x0000000000000001 %rax -> %rax

mov %rax -> <rel> 0x0000000000619780 # Store 1

add $0x0000000000000001 %rax -> %rax # Load 2 is gone

mov %rax -> <rel> 0x0000000000619780 # Store 2

add $0x0000000000000001 %rax -> %rax # Load 3 is gone

mov %rax -> <rel> 0x0000000000619780 # Store 3

mov %gs:0x00000090 -> %rax # Restore flags

add $0x7f %al -> %al

sahf %ah

mov %gs:0x00000088 -> %rax # Restore %rax

... three application instructions

Figure 3-7: Three inlined calls to inc count after applying just RLE.

mov %rax -> %gs:0x00000088 # Save %rax

lahf -> %ah # Save flags

seto -> %al

mov %rax -> %gs:0x00000090

mov <rel> 0x0000000000619780 -> %rax # Load 1

add $0x0000000000000001 %rax -> %rax # Increment 1

add $0x0000000000000001 %rax -> %rax # Increment 2

add $0x0000000000000001 %rax -> %rax # Increment 3

mov %rax -> <rel> 0x0000000000619780 # Store 3

mov %gs:0x00000090 -> %rax # Restore flags

add $0x7f %al -> %al

sahf %ah

mov %gs:0x00000088 -> %rax # Restore %rax

... three application instructions

Figure 3-8: Three inlined calls to inc count after applying RLE and DSE.

store. Because we do not need to rewrite any uses of any registers, this is simpler than RLE. Figure 3-8

shows the application of both RLE and DSE.

After applying both optimizations, we get a satisfactory 2.1x speedup, bringing the bzip2 execution

time much closer to the native execution time at 21.1 seconds. Still, our code is not satisfactory. We are

using the add instruction, which updates the carry, overflow, and other bits in the x86 flags register. We

cannot assume that the application is not using these flag bits, so we must preserve them, requiring an

extra stack slot and some extra flag manipulation instructions. The next section describes how to avoid

this.

27



mov %rax -> %gs:0x00000088 # Save %rax

mov <rel> 0x0000000000619780 -> %rax # Load global_count

lea 0x01(%rax) -> %rax # No flags usage

lea 0x01(%rax) -> %rax # No flags usage

lea 0x01(%rax) -> %rax # No flags usage

mov %rax -> <rel> 0x0000000000619780 # Store global_count

mov %gs:0x00000088 -> %rax

... three application instructions

Figure 3-9: Three inlined calls to inc count after avoiding aflags usage.

3.7 Flags Avoidance

Many x86 arithmetic instructions modify the x86 flags register. This is problematic, because it means

we have to save and restore the bits of the flags register that we touch. This can be done either using the

pushf and popf instructions, or a sequence of lahf, seto, lahf, and add. The popd instruction turns

out to be fairly expensive, because it sets many complex execution flag like the single-stepping trap flag

for debuggers. Also, the lahf sequence avoids stack usage, so it is preferred.

However, we have the opportunity to transform inlined code to avoid flags usage if possible. Instead

of using the add instruction to perform additions and subtractions, we can use the lea instruction. The

lea instruction was intended to be a “load effective address” instruction for dealing with things like the

complex x86 segmented address space model. For its source, we provide an arbitrary x86 memory operand,

for which it computes the effective address and stores the result in a destination register. However, we can

provide a memory operand which is performing simple additions instead of address arithmetic. Because

lea is not designed for arithmetic, it does not modify flags.

We have a pass which can automatically perform this transformation. However, because lea does not

support memory operands as destinations, we have to introduce a temporary register along with a load

and store if the arithmetic operation uses a memory operand as a destination. Our pass attemps to pick

a register which has already been used by the inlined code so that we do not need to introduce any extra

saves and restores.

We show the results of applying this pass to our repeated additions in Figure 3-9. As shown in the

listing, this is a big win, because it eliminates three instructions on both sides of the call site as well as

two memory accesses.

After applying our flags avoidance optimization, we obtain a 1.4x speedup over our previous time.

Still, it is obvious to a human that this is not as efficient as it could be. We do not need three separate

increment instructions. They can be folded together to a single lea that adds 3 to %rax.
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mov %rax -> %gs:0x00000088 # Save %rax

mov <rel> 0x0000000000619780 -> %rax # Load global_count

lea 0x03(%rax) -> %rax # Add 3

mov %rax -> <rel> 0x0000000000619780 # Store global_count

mov %gs:0x00000088 -> %rax # Restore %rax

... three application instructions

Figure 3-10: Three inlined calls to inc count after avoiding aflags usage.

3.8 Folding lea Instructions

Using some of the same register liveness analysis tools we developed to support our RLE and DSE

optimizations, we can do the same register rewriting for lea operations. If one lea defines a register used

in another lea, we can attempt to combine the two memory operands. For simple base and displacement

memory operands, as in the listing shown in the previous section, this is as simple as adding the two

displacements together and substituting in the original base register. We are also able to handle more

complex cases involving two memory operands both of which have a base, displacement, index, and scale.

After we apply our instruction folding optimizations to the example at hand, we get the assembly listing

in Figure 3-10.

Applying our lea folding optimization gives us a 1.5x speedup over our previous best, bringing

our execution time down to 9.8 seconds. The application’s native execution speed is 4.5 seconds on

our hardware, and the unoptimized instrumented execution time was 9 minutes and 20 seconds. After

applying all of our optimizations we are able to improve the instrumented execution time 57 fold, obtaining

only a 2.1x slowdown from native execution.

3.9 Chapter Summary

Using the example of instruction counting, we have shown how our inliner and suite of supporting

optimizations can drastically improve the performance of näıve instrumentation tools. First, we started

by looking at how a basic clean call is implemented and at how it does more work than is necessary.

We moved on to do basic inlining, where we switch stacks, save only the registers and flags necessary to

execute the routine inline, and execute it. Using the suite of optimizations developed during this thesis, we

were able to incrementally improve on the code generated in the first example. For our first optimization,

using pseudo-instructions, we were able to schedule multiple calls together and avoid duplicated work.

Next we avoided the stack switch altogether by using thread local storage, which may not always be

available. Regardless, we then moved on to look at how redundant load elimination and dead store

elimination can make a big difference in cleaning up our inlined code. Finally, we finished by looking at

the low-level machine specific optimizations for avoiding aflags usage and combining multiple arithmetic
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instructions.

In the next chapter, we look at two new examples of a memory alignment checker and a memory trace

tool too demonstrate the major contribution of this thesis: partial inlining.
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Chapter 4

Partial Inlining

In this chapter we explain our partial inlining technique for speeding up analysis routines that have a

common fast path and an uncommon slower path. Many analysis tools are structured in this exact way.

To demonstrate how partial inlining works, we consider two example tools in this chapter: a memory

alignment checker, and a memory trace tool.

4.1 Tools with Fastpaths

The memory alignment checker is a tool that checks if a memory access is aligned to the size of the access

and diagnoses accesses that are unaligned by reporting information about the access. For the alignment

checker, it is fair to assume that for most programs most memory accesses are unaligned, unless there

is an alignment issue in the program. In the case where the access is aligned, the analysis routine does

no work. This represents the fast path through the routine. If an access is unaligned, the tool needs to

make other function calls to either record the access data in memory or write the information out to a

file. This represents the slow path. If many accesses are unaligned, the tool will be slow anyway because

it must do work to diagnose every unaligned access. The source code for the alignment instrumentation

routine is shown in Figure 4-1.

The memory trace tool has a similar property. The goal of the memtrace tool is to make a trace

of all the memory accesses in the program and output it to a file for offline analysis. This includes the

application PC, the effective address, whether the access was a read or a write, and how large it was.

Rather than formatting a string to write to a file after every access, it is faster to fill a buffer with this

information and flush it every time it fills up. If the buffer is not full, the analysis routine does little

work. If the buffer is full, it needs to perform IO, which will require making system calls. The source

code for the memory trace instrumentation routine is shown in Figure 4-2.
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void

check_access(ptr_uint_t ea, app_pc pc, uint size, bool write)

{

/* Check alignment. Assumes size is a power of two. */

if ((ea & (size - 1)) == 0) {

return;

}

dr_fprintf(STDOUT,

"Unaligned %s access to ea "PFX" at pc "PFX" of size %d\n",

(write ? "write" : "read"), ea, pc, size);

}

Figure 4-1: Source for the instrumentation routine from the alignment tool.

typedef struct _memop_t {

ptr_uint_t ea;

ptr_uint_t pc;

uint size;

uint write;

} memop_t;

#define BUFFER_SIZE 1024

static uint pos;

static memop_t buffer[BUFFER_SIZE];

void

buffer_memop(ptr_uint_t ea, ptr_uint_t pc, uint size, bool write)

{

buffer[pos].ea = ea;

buffer[pos].pc = pc;

buffer[pos].size = size;

buffer[pos].write = write;

pos++;

if (pos >= BUFFER_SIZE)

flush_buffer();

}

Figure 4-2: Source fragment for the memtrace tool.

32



We believe that this pattern of having fast, early checks in analysis routines is common. For example,

an undergraduate researcher in our group has been working on a race detector for native applications using

the FastTrack algorithm[13]. In the implementation, there is a notion of epochs defined by synchronization

events. Using shadow memory provided by Umbra[14], the initial version of this tool checked if the

memory in question had been accessed during the last epoch. If so, it has already been checked for

races. It turned out that for most applications memory was reused in the same epoch at least 50% of the

time, creating the fast path/slow path structure that we believe is common. In later versions of the race

detector, the researcher generated custom instrumentation to implement the check inline before jumping

to an out of line clean call. Essentially, the researcher was performing manual partial inlining, which is

what we are attempting to do automatically.

Before we dive into partial inlining, we need to cover how ordinary clean call instrumentation works

with complex argument values, as those are used throughout our examples.

4.2 Clean Calls with Arguments

We have already discussed the major points about how clean calls work in Section 3.2. However, our

previous instruction counting example did not need to pass arguments to the instrumentation routine.

Our alignment checker and memory trace tool do.

Arguments to instrumentation calls in DynamoRIO are specified as x86 instruction operands evaluated

in the application context. We support calling functions with as many arguments as can be passed in

registers using the native platform calling convention. However, we can only materialize arguments after

we have saved the register used to hold the argument, or we will clobber it. This creates a chicken and

egg problem, because the argument may, for example, reference the stack pointer, which is different once

we switch to DynamoRIO’s execution context. Because we cannot materialize arguments before the stack

switch or register spills, there is no safe point in the inlined code to simply evaluate the argument operand

as it is. Instead we have interpret it and materialize it from the saved application context.

For immediate values, there is no complication. We simply use a mov instruction to materialize the

value in the argument register.

For register operands, if they are not clobbered by the routine, they will not have been saved to the

stack. Therefore, the application value is still live, so we perform a simple register-to-register copy. If the

value is used in the inline code, we make sure to generate a register spill before argument materialization,

so we load it back from our scratch space.

Another issue is that as we materialize arguments into registers, we may clobber registers that we

wish to use in later arguments. For example, on Linux x86 64, the first argument is materialized into
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%rdi, but the second argument may read %rdi. Our solution is to only materialize arguments that end

up being used by the body inline. By following this rule, we can only write registers that are saved in

the context switch, and we can rematerialize the application value of %rdi from our scratch space.

Finally, if the register is %rsp, we have a special case. The application stack pointer is always saved

in the TLS scratch space instead of the stack, so we must restore it from there, as shown later in Figure

4-3.

For memory operands, we support two operations: we can either load the application value from the

memory addressed by the operand using a mov instruction, or we can load the effective address of the

memory operand with a lea instruction, giving us a pointer to the application value.

X86 memory operands complicate matters because they may use two registers for the base and index.

Similar to the register operand case, we need to need to materialize the registers used by the operand

before we can materialize the argument. We cannot use the original registers of the operand, because

they may now contain materialized arguments. Therefore, we load the base into the register we are using

to hold the argument. We know the argument register will be dead after the load or address computation,

so this is safe. We then modify the base register of the memory operand to be the argument register. If

the index has been clobbered, then we need a second dead register. We hard code the choice of %rax for

holding the index register because there are no calling conventions that DynamoRIO supports that use

%rax as a register parameter, and it is often already saved because it must be used to save flags. If it is

not already saved, it will be marked for saving later when we re-analyze the code sequence with argument

materialization.

For a complete example, if we instrument the load instruction movq 0x44(%rsp, %rdi, 4) -> %rax

with an unoptimized clean call, we emit the code in Figure 4-3.

As in our instruction count example, using clean calls is clearly not the most efficient way to implement

this. However, our new routine code has control flow, so before we can do any inlining, we need to find

a reliable way to decode it.

4.3 Decoding with Control Flow

When a tool inserts a clean call, all it provides is a list of machine operand arguments and a function

pointer to call. Given a function pointer, it is challenging to reliably decode the function itself and

determine where it ends.

The näıve approach described in Section 3.3 of scanning forward from the function entry to the first

ret instruction breaks down quickly if we want to handle control flow. Partial inlining requires this,

so our decoding algorithm has to handle control flow past the first ret instruction. Even our simple
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mov %rsp -> %gs:0x00 # Switch to dstack

mov %gs:0x20 -> %rsp

mov 0x000002c0(%rsp) -> %rsp

lea 0xfffffd50(%rsp) -> %rsp

mov %rax -> 0x48(%rsp) # Save GPRs

... save other GPRs

mov %rdi -> 0x10(%rsp) # Save rdi at offset 0x10

... save other GPRs and flags

... save all XMM regs

# Argument materialization:

mov %gs:0x00 -> %rdi # Load app rsp into rdi

mov 0x10(%rsp) -> %rax # Load app rdi into rax

lea 0x44(%rdi,%rax,4) -> %rdi # Load effective address into rdi

mov $0x00000000006187c0 -> %rsi # App PC of instruction

mov $0x00000008 -> %edx # Size of access

mov $0x00000000 -> %ecx # Not a write

call $0x00404670 %rsp -> %rsp 0xfffffff8(%rsp) # Call routine

... clean call restore code

Figure 4-3: Materializing 0x44(%rsp, %rdi, 4) into rdi.

check access instrumentation routine jumps past the first ret, as shown in Figure 4-4.

Our decoding algorithm simply remembers the furthest forward branch target, and decodes up until

at least that address. Once we have passed that address, we continue decoding until we reach a ret, a

backwards branch, or a probable tail call. Our heuristic for identifying tail calls is to check if the target

address is not between the entry address and the entry plus 4096. Our choice of cutoff is arbitrary and

has not been tuned, but it is unlikely that a single instrumentation routine will be larger than 4096 bytes.

After decoding, we rewrite all the branches to use labels inserted in the instruction list instead of raw

PC values. This allows us to follow a branch to a later point in the stream during optimization.

With the instruction list in hand, we proceed to partial inlining.

4.4 Inlining the Fast Path

Once we have the full routine instruction stream, we scan from the entry point to the first control flow

instruction. In the assembly listing of Figure 4-4, it is the first jz instruction at point +13 bytes. If it is

a conditional branch, as it is in the example, we scan forward from both branch targets: the fall-through

target and the branch taken target. If the first control flow instruction we hit on either path is a ret

instruction, we say that path is a “fast path.” If both paths are fast, we abort our partial inlining analysis

and inline both as normal. If neither path is fast, we also abort partial inlining, and most likely will fail

to inline the routine at all.

If one path is fast and the other is not, we designate the other path the “slow path.” We then delete all
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TAG 0x0000000000404670

+0 mov %edx -> %r8d # Copy size to r8

+3 mov %rdi -> %r10

+6 lea 0xffffffff(%r8) -> %eax # (size - 1)

+10 test %rax %rdi # ea & (size - 1)

+13 jz $0x00000000004046b0 # First branch for if

+15 mov <rel> 0x0000000000618764 -> %edi

+21 test %cl %cl

+23 mov $0x004133e6 -> %edx

+28 mov $0x004133eb -> %eax

+33 cmovnz %rax %rdx -> %rdx

+37 cmp %edi $0xffffffff

+40 jz $0x00000000004046b8 # Branch past ret

+42 mov %r8d -> %r9d # Merge point

+45 mov %r10 -> %rcx

+48 mov %rsi -> %r8

+51 xor %eax %eax -> %eax

+53 mov $0x00413470 -> %esi

+58 jmp $0x00000000004039e8 # Tail call to dr_fprintf.

+63 nop

+64 ret %rsp (%rsp) -> %rsp # First branch target

+66 data16 nop 0x00(%rax,%rax,1)

+72 mov <rel> 0x0000000000618770 -> %rax # Target of second branch

+79 mov 0x70(%rax) -> %edi

+82 jmp $0x000000000040469a # Backwards jump to +42

END 0x0000000000404670

Figure 4-4: Assembly for the check access instrumentation routine from our alignment checker.
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mov %edx -> %r8d # Entry block

mov %rdi -> %r10

lea 0xffffffff(%r8) -> %eax

test %rax %rdi

jz $0x00000000004046b0 # Inlined check

call <label> # Slowpath transition

jmp <label> # Jump to ret past fastpath code

# Fastpath code,

# none in this example

ret %rsp (%rsp) -> %rsp # Return

Figure 4-5: Assembly for the check access instrumentation routine from our alignment checker.

instructions that do not flow directly from the entry to the conditional branch and then to the fast path.

In place of the slow path, we insert a synthetic call instruction which we will expand later as described

in Section 4.5, and a jump to the ret instruction on the fast path. The result of this transformation on

the check access code is shown in Figure 4-5.

This code fragment is much more amenable to inlining, but it is not complete. We still need to

generate code to handle the slow path case out of line.

4.5 Slowpath Transition

To enter the slow path, we abandon the inline execution and restart the routine from its entry point

with fresh arguments. The alternative we considered was to attempt a side entry into the routine at the

original slow path target PC, but this approach would require carefully recreating the stack frame state

to match what it would have been if the routine had been executed out of line. Rather than create such

an analysis, we chose to simply execute the entry block again. Unfortunately, if there are side effects

in the entry block, executing them twice may break the tool. For this section, we restrict ourselves to

working on routines without side effects in the entry block and address this problem later in Section 4.6.

Before we can call the tool routine entry point, we need to set up the stack as though we had just

finished the clean call entry sequence. By the time we reach the slow path, the entry block leading up to

the check will have already clobbered many application registers, so we cannot blindly save all registers.

Instead, we save all application registers that were not saved before the inlined code. This means emitting

extra saves and restores for general purpose registers, the flags register, and all of the XMM registers.

We do not emit all of the save and restore code inline, because it would pollute the instruction cache

with many uncommonly executed instructions. On Linux x86 64, a single clean call expands to at least 75

instructions and 542 bytes. Therefore, we emit the slow path transition code in a code cache maintained

on the side. When we reach the slow path, we jump into this code fragment, and it handles the rest of

the transition before returning. Because we have already switched stacks, this is easily implemented with
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the call and ret instructions.

Even though we materialize the arguments to the function before the inlined code, it is likely that they

will be clobbered in the inlined code. Instead of trying to preserve the original values, we rematerialize

them in the slow path. While it is possible to share the register spilling code, the arguments to the

routine are usually different at every call site. Therefore we rematerialize the arguments before we jump

into the shared slow path transition code. It is possible to detect if the original materialized arguments

are still live and do not need to be rematerialized, but we have not yet implemented this optimization

because the slow path is unlikely to be executed in the first place.

One major consideration in our design is that DynamoRIO has a function called dr get mcontext

that allows the tool to inspect all application registers saved at the base of the stack. Even if this function

is called from the slow path of a partially inlined routine, we want it to behave correctly. This means

the stack has to be set up in exactly the same way it would have if we had executed a clean call, which

means spilling all application registers into the right stack slots.

4.6 Deferring Side Effects

As discussed previously, there is a problem with re-executing the entry block of the instrumentation

routine. If there are any side effects in the entry block, they will occur twice. For example, if we wish to

count every memory access in the entry block, as we might want to do with our alignment checker, we

would end up counting it twice when we have an unaligned access. We solve this problem by deferring

such side effects until after the fast path check.

To identify instructions with side effects, we test each instruction in the entry block to see if it writes

to non-stack memory. A non-stack write is any instruction writing to absolute addresses, to PC relative

addresses, or to addresses relative to any register other than the stack pointer.

Next, we attempt to defer the side effects until after the conditional branch. The conditional branch

may depend on memory reads which depend on memory writes that we want to defer, so we may not be

able to defer all side effects, in which case we fail to perform partial inlining. Our algorithm starts at the

conditional branch and goes backwards towards the entry point while deferring all instructions that can

be moved safely past the branch. An instruction can be moved past the branch if:

1. Its result is unused by the conditional branch, meaning our analysis starting from the branch

considers it dead.

2. It does not use any registers clobbered by the branch or its dependent instructions, which are the

instructions that could not be deferred.
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BEFORE DEFER:

mov <rel> 0x000000007221b7a0 -> %r8d # Cannot defer

lea <rel> 0x000000007221b7c0 -> %r9

mov %r8d -> %eax # Cannot defer

add $0x00000001 %r8d -> %r8d # Cannot defer

lea (%rax,%rax,2) -> %rax

cmp %r8d $0x000003ff # Cannot defer

lea 0x00(,%rax,8) -> %r10

mov %rdi -> (%r9,%rax,8) # Write

mov %rsi -> 0x08(%r10,%r9,1) # Write

lea <rel> 0x000000007221b7d0 -> %rsi

mov %edx -> (%rsi,%rax,8) # Write

mov %ecx -> 0x04(%r10,%rsi,1) # Write

mov %r8d -> <rel> 0x000000007221b7a0 # Write

jbe $0x0000000041341560 # Cond branch

ret %rsp (%rsp) -> %rsp

AFTER DEFER:

mov <rel> 0x000000007221b7a0 -> %r8d

mov %r8d -> %eax

add $0x00000001 %r8d -> %r8d

cmp %r8d $0x000003ff

jbe $0x0000000041341560 # Cond branch

lea <rel> 0x000000007221b7c0 -> %r9

lea (%rax,%rax,2) -> %rax

lea 0x00(,%rax,8) -> %r10

mov %rdi -> (%r9,%rax,8) # Write

mov %rsi -> 0x08(%r10,%r9,1) # Write

lea <rel> 0x000000007221b7d0 -> %rsi

mov %edx -> (%rsi,%rax,8) # Write

mov %ecx -> 0x04(%r10,%rsi,1) # Write

mov %r8d -> <rel> 0x000000007221b7a0 # Write

ret %rsp (%rsp) -> %rsp

Figure 4-6: Memory trace buffer filling routine before and after deferring side effects.

Figure 4-6 shows the instruction stream of our memory trace tool routine before and after deferring

side effects.

If we are unable to defer side effects until after the branch, we abandon partial inlining and leave the

instruction stream unmodified.

4.7 Optimization Opportunities

Putting together all of the techniques discussed so far, we are able to successfully perform partial inlining,

but there is still work to be done. Figure 4-7 shows what the assembly would look like if we stopped

here with our partial inlining techniques. As shown in the listing, there are many opportunities for

improvement. For example, we materialize the size argument into %edx, which is then copied to %r8d.
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%r8d is decremented and used in the test instruction. Ideally, we can propagate the copy, propagate

the constant through the decrement, and propagate the resulting value into the test instruction. We

also have dead code clobbering registers, such as the left over copy from %rdi to %r10 in the fast path.

Furthermore, the benefits of cleaning up this code is that it will use fewer registers, which will save a

load and store for ever register avoided. In the next sections, we demonstrate how our optimizations

iteratively improve the code.

4.8 Dead Code Elimination

The basis for most of our transformations is register liveness analysis. This is a standard dataflow analysis,

starting at the end of the instruction stream, and stepping backwards, maintaining a set of live and dead

registers based on which registers instructions read from. We also model the liveness of various bits of the

x86 flags register, so we can know if a cmp or add instruction is needed by a branch or addc instruction.

With our register liveness analysis, we can use that information to delete dead instructions. Dead

instructions arise often when performing partial inlining, because code that may have used a register

previously may now be deleted, rendering the instruction dead. We have to apply the usual precautions

of not deleting instructions which have purposes besides using the result, such as control flow instructions,

memory writes, and labels.

An example of an instruction deleted by our dead code elimination pass is in Figure 4-7 after the

fastpath label with the “Dead” comment next to it.

4.9 Copy Propagation

Again, from liveness information, we can detect when it is profitable to eliminate unnecessary copies. If

the source register is dead and the destination of a copy is live, we can simply replace all uses of the

destination register over its live range with the source register, so long as the source is not clobbered

before all uses of the destination register.

These copies are often introduced by the compiler when the slow path needs access to a value before

it is modified. Since we delete the slow path, the original value is unused, and the copy is an extra step

we do not need.

There is an example of such a copy in Figure 4-7 in the inline code sequence next to the “Extra copy”

comment. The result of propagating the copy is shown in Figure 4-8.

40



mov %rsp -> %gs:0x00

mov %gs:0x20 -> %rsp

mov 0x000002c0(%rsp) -> %rsp

lea 0xfffffd50(%rsp) -> %rsp

mov %rax -> 0x48(%rsp)

mov %rdx -> 0x38(%rsp)

mov %rdi -> 0x10(%rsp)

mov %r8 -> 0x50(%rsp)

mov %r10 -> 0x60(%rsp)

lahf -> %ah

seto -> %al

mov %rax -> 0x00000090(%rsp)

mov %gs:0x00 -> %rdi # Argument materialization

mov 0x10(%rsp) -> %rax

lea 0x44(%rdi,%rax,4) -> %rdi

mov $0x00000008 -> %edx # Constant

mov %edx -> %r8d # Extra copy

lea 0xffffffff(%r8) -> %eax # Decrement

test %rax %rdi

jz fastpath

# Slowpath start

mov %rcx -> 0x40(%rsp) # Extra register saves

mov %rsi -> 0x18(%rsp)

mov %gs:0x00 -> %rdi # Argument rematerialization

mov 0x10(%rsp) -> %rax

lea 0x44(%rdi,%rax,4) -> %rdi

mov $0x00000000006187c0 -> %rsi

mov $0x00000008 -> %edx

mov $0x00000000 -> %ecx

call $0x0000000075d18040 %rsp -> %rsp 0xfffffff8(%rsp)

mov 0x40(%rsp) -> %rcx # Extra register restores

mov 0x18(%rsp) -> %rsi

jmp mergepoint

fastpath:

mov %rdi -> %r10 # Dead

mergepoint:

mov 0x00000090(%rsp) -> %rax

add $0x7f %al -> %al

sahf %ah

mov 0x48(%rsp) -> %rax

mov 0x38(%rsp) -> %rdx

mov 0x10(%rsp) -> %rdi

mov 0x50(%rsp) -> %r8

mov 0x60(%rsp) -> %r10

mov %gs:0x00 -> %rsp

mov 0x44(%rsp,%rdi,4) -> %rax # Application instruction

Figure 4-7: Partially inlined check access routine without optimizations.
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mov %gs:0x00 -> %rdi # Argument materialization

mov 0x10(%rsp) -> %rax

lea 0x44(%rdi,%rax,4) -> %rdi

mov $0x00000008 -> %edx # Constant

lea 0xffffffff(%rdx) -> %eax # Decrement

test %rax %rdi # Test

jz fastpath

Figure 4-8: Example with copy removed.

mov %gs:0x00 -> %rdi # Argument materialization

mov 0x10(%rsp) -> %rax

lea 0x44(%rdi,%rax,4) -> %rdi

test %rdi $0x00000007 # Test with an immediate

jz fastpath

Figure 4-9: Check from check access after constants and lea instructions have been folded.

4.10 Constant Folding

Perhaps the most classic optimization that compilers perform is constant folding. We fold constants at the

machine code level by searching for instructions that materialize immediate values into registers. When

we find such a materialization, we check if we can rewrite the uses of the register to use an immediate

instead. We also have logic for folding an immediate into an x86 memory operand displacement.

In Figure 4-8, we can combine the mov $0x08, %edx instruction with the lea 0xffffffff(%r8),

%edx instruction into lea 0x7, %edx, which is effectively another immediate value materialization. Our

lea folding optimization described in Section 3.8 is able to fold the displacement-only lea into the test

instruction. The result is shown in Figure 4-9.

Although we have only deleted a few register-to-register arithmetic operations in the inline code, we

have completely eliminated the use of the %edx register and avoided an extra register spill.

4.11 Chapter Summary

As shown in this chapter, partial inlining can be quite profitable for conditional analysis routines such as

those present in our alignment checker and memory trace examples. Partial inlining is fairly tricky, and

requires special attention to decoding in the face of control flow, identifying the fast path, transitioning

to the slow path, and avoiding repeated side effects.

However, just these techniques are not enough to make partial inlining truly profitable. As shown in

Figure 4-7, the inserted code can be quite large. In order to further optimize the inlined code, we needed

to develop a suite of more traditional compiler optimizations to take advantage of the opportunities that
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inlining creates. In particular, we found that dead code elimination, copy propagation, constant folding,

and lea folding were particularly effective.

The final result of these combined optimizations on the alignment checker is shown in Figure 4-10.

The techniques presented in this chapter are promising, but unlike the previous chapter, we have not been

able to approach native performance in our example. Even after applying all of our optimizations, we

still have 20 instructions executed on the fast path for every memory access in the program. Clever tools

that instrument all memory accesses such as DrMemory have many techniques that we should automate

as future work.

In the Chapter 6, we look at the actual performance achieved with these optimizations on the SPEC

2006 CPU benchmarks.
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mov %rsp -> %gs:0x00 # Stack switch

mov %gs:0x20 -> %rsp

mov 0x000002c0(%rsp) -> %rsp

lea 0xfffffd50(%rsp) -> %rsp

mov %rax -> 0x48(%rsp) # Only two register saves needed

mov %rdi -> 0x10(%rsp)

lahf -> %ah # Flags save

seto -> %al

mov %rax -> 0x00000090(%rsp)

mov %gs:0x00 -> %rdi # Arguments and entry check

mov 0x10(%rsp) -> %rax

lea 0x44(%rdi,%rax,4) -> %rdi

test %rdi $0x0000000000000007

jz done

# Slowpath start, this code is not executed commonly

mov %rcx -> 0x40(%rsp) # Extra register saves

mov %rdx -> 0x38(%rsp)

mov %rsi -> 0x18(%rsp)

mov %r8 -> 0x50(%rsp)

mov %gs:0x00 -> %rdi

mov 0x10(%rsp) -> %rax

lea 0x44(%rdi,%rax,4) -> %rdi

mov $0x00000000006187c0 -> %rsi

mov $0x00000008 -> %edx

mov $0x00000000 -> %ecx

call $0x0000000077b0c040 %rsp -> %rsp 0xfffffff8(%rsp)

mov 0x40(%rsp) -> %rcx

mov 0x38(%rsp) -> %rdx

mov 0x18(%rsp) -> %rsi

mov 0x50(%rsp) -> %r8

jmp done

# Slowpath end.

done:

mov 0x00000090(%rsp) -> %rax # Flags restore

add $0x7f %al -> %al

sahf %ah

mov 0x48(%rsp) -> %rax # Register restore

mov 0x10(%rsp) -> %rdi

mov %gs:0x00 -> %rsp # Swich to appstack

mov 0x44(%rsp,%rdi,4) -> %rax # Application instruction

Figure 4-10: Alignment tool routine after partial inlining and optimization.

.
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Chapter 5

System Overview

After walking through the examples from the previous chapters, we now describe the system in its final

form, in order to look at how the components fit together.

5.1 Call Site Insertion

To use our system, the tool author makes calls to insert calls as they would a normal clean call. At

this point, we have the following information: a function pointer to call, the number of arguments, and

the arguments for this particular call site. We expect that in a given tool there will a small number of

routines which are called many times. Therefore, we take the function pointer and number of arguments,

which are the only things we can reasonably assume will be constant, and analyze the routine. Analysis

includes decoding the routine, analyzing stack usage, and optimizing it, and is covered later in Section

5.2. After we get the analysis results, we save them, along with the rest of the information for inserting

this call, into a pseudo-instruction representing the entire call. We use the pseudo-instruction approach

to make call coalescing easier, which is described later. At this point, we return back to the tool, where

it performs further analysis and instrumentation.

5.2 Callee Analysis

For every routine that we wish to call, we need perform analysis to decide if it can be inlined or partially

inlined. First, we need to decode the routine. In the absence of debug info or any symbols at all, we

need to use our own heuristics to try to find the extent of the function. Our algorithm is to decode one

instruction at a time and remember the furthest forward branch, conditional or unconditional, within the

next 4096 bytes of instructions. If it falls outside that range, we consider it a tail call. After passing the
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furthest forward branch, we continue decoding until the next return, backwards branch, or tail call.

Once we have decoded the routine, we analyze its usage of the stack. In particular, we want to find

and remove frame setup code that will not be inlined. In general, we try to match frame setup and

tear-down instructions together in order to remove them. For functions with multiple exit points, we

need to find a matching tear-down instruction on each exit path for each setup instruction. Furthermore,

we need to consider high-level instructions, like leave and enter, that implement multiple steps of frame

setup or tear-down.

5.3 Partial Inlining

Next we consider the routine for partial inlining. As described in Section 4.4, we check if the first control

transfer instruction after the entry point is a conditional branch. If so, we scan forward from both the

fallthrough instruction and the branch taken target, looking for a ret instruction. If one path has a ret

and the other does not, it becomes the fast path and we apply our partial inlining transformation. First,

we delete all instructions except those in the entry block and the fast path block. Next, we insert a

synthetic call in the slow path block that we expand later. We cannot expand it at the moment, because

we are doing call site independent analysis and do not have access to the function arguments, which

would need to be rematerialized.

Because the slow path will eventually re-enter the routine from the beginning, we need to defer all

side-effects from the entry block into the fast path block, as described in Section 4.6. An instruction has

side-effects if it has any non-stack memory write. We are careful not to move any instruction in such a

way that its input registers are clobbered, and defer non-side effect instructions to preserve this property.

5.4 Optimization

Next we run our suite of machine code optimizations to try to clean up the code. Optimization at

this stage is particularly important if we have applied partial inlining, because we may have deleted

uses of values in the entry block in the slow path. It also reduces the number of registers used and

deletes instructions, meaning we are more likely to meet our criteria for inlining. We apply the following

optimizations in order:

1. Dead code elimination

2. Copy propagation

3. Dead register reuse

4. Constant folding
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5. Flags avoidance

6. lea folding

7. Redundant load elimination

8. Dead store elimination

9. Dead code elimination

10. Remove jumps to next instruction

This sequence was tested to work well on the example tools we optimized.

All of these optimizations have been discussed in previous chapters, except for removing jumps to

following instructions. This situation occurs in partial inlining cases where the fast path has no instruc-

tions, as in the alignment example. The slow path ends with a jump to the restore code after the fast

path, but if the fast path is empty, the jump is not needed.

5.5 Inlining Criteria

At this point, we have simplified the routine instruction list as much as possible, and it is time to make

our decision about whether we can inline at all. To decide, we use the following criteria:

• The callee is a leaf function. A non-leaf function requires saving all registers.

• The simplified callee instruction stream is no more than 20 instructions. This avoids code bloat from

overly aggressive inlining. This limit was chosen to match roughly the point at which the overhead of

a clean call no longer dominates the cost of a call, so using a full clean call has little penalty.

• The callee does not use XMM registers. This avoids XMM saves.

• The callee does not use more than a fixed number of general purpose registers. We have not picked an

appropriate limit yet.

• The callee must have a simple stack frame that uses at most one stack location.

• The callee may only have as many arguments as can be passed in registers on the current platform, or

only one if the native calling convention does not support register parameters.

If any of these criteria are not satisfied, we throw away our simplified instruction list and mark the

routine as not suitable for inlining. The summary of all of this analysis is stored in a cache, so on future

calls to the same routine we will know immediately if the routine can be inlined or not.
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5.6 Basic Block Optimization

After all of the instrumentation calls have been inserted by the tool, the tool is required to call our

system one last time before returning the list of instructions back to DynamoRIO. At this point, we

apply optimizations to the entire basic block, which is how we were able to vastly improve performance

on our instruction count example.

At this point, all calls in the instruction stream are a single pseudo-instruction, so they are easy to

move around. Our current simple scheduling heuristic moves calls together, so long as they have only

immediate integer arguments. If they read application register or memory values, we do not want to

move the instrumentation outside of the live range of that register.

Once calls have been scheduled together, we expand them one layer. First, the application state saving

operations are inserted, which are represented with pseudo-instructions. Next, the simplified routine code

is inserted, which is described further in Section 5.7. Last, the restore code is inserted, again represented

as pseudo-instructions.

Because the save and restore operations are high-level pseudo-instructions, they are easy to identify

and match with other instructions with reciprocal operations. For example, if we switch to the application

stack and then back to DynamoRIO’s stack, those two operations cancel each other out and we can delete

them both. If we restore and then save flags, those are reciprocal and can be deleted. Similarly, we can

avoid restoring and then saving a register. When this is done, if the calls were scheduled together, there

should be one save sequence followed by multiple inlined calls followed by one restore sequence.

Last, we run one more optimization sequence over the inlined code. As shown in the instruction count

example, RLE and DSE were very effective for identifying extra loads and stores to the global count

value. Folding lea instructions is also beneficial in that example.

5.7 Call Site Expansion

As discussed in Section 5.6, each call is expanded after being scheduled. At this point, we have the sim-

plified routine code from the shared routine analysis cache. However, we need to materialize arguments,

which are different at each call site.

Materializing immediate values is trivial, but anything that reads an application register value is fairly

complicated. Our rule is that if we saved an application register, we should reload it, because we might

have clobbered it during argument materialization or flags saving. We have to special case the stack

pointer, because we save it in a TLS slot.
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For memory operand arguments, we have to be extremely careful. We cannot use a single load

instruction to re-materialize the argument, and we have limited available registers. We solve this by

realizing that there are at least two available registers on all platforms: the destination register itself,

and %rax, which is never used as a parameter register on any platform. We restore the base register into

the argument register and the index register into %rax, and rewrite the memory operand to use these two

registers. If either or both of the original application registers are unclobbered, we leave them untouched.

Oftentimes there are a few immediate values as arguments, which can be folded further. The alignment

checker is a good example of this, because it passes the access size parameter which is combined with the

address to perform the check. By folding constants and lea instructions one more time, we are able to

fold that immediate value into the test instruction in Figure 4-9.

Finally, after our optimization step, we perform our register usage analysis to emit save and restore

code around the code we want to inline. We save this analysis until after argument materialization and

optimization in order to spill as few registers as possible.
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Chapter 6

Performance

To measure the performance of our instrumentation optimizations, we ran the SPEC2006 CPU integer

benchmark suite under our example instrumentation tools. In particular, we focused on an instruction

counting tool, a memory alignment checker, and a memory trace tool. Each tool exercises different

aspects of our optimizations. Instruction count, for example, is a very simple tool which is amenable to

inlining and coalescing. The alignment tool has a simple check before diagnosing an unaligned access,

and is amenable to partial inlining. The memory trace tool checks if the buffer is full before inserting,

and is also amenable to partial inlining.

Due to the large slowdowns we wish to measure in unoptimized tools, we only ran the benchmarks

on the test input size instead of the reference input size. However, this makes some benchmarks run in

under one second, so we removed any benchmark that completed in less than two seconds natively. This

removed the xalancbmk, libquantum, omnetpp, and gcc benchmarks. We were unable to run the perl

benchmark natively at all, so we removed it as well.

The measurements were taken on a single machine from a set of machines donated by Intel to the MIT

Computer Science and AI Lab (CSAIL). The machine uses a 12-core Intel Xeon X5650 CPU running at

2.67 GHz. The machine has 48 GB of RAM, and 12 MB of cache per core. We disabled hyperthreading

to avoid the effects of sharing caches between threads on the same physical core. All benchmarks were

performed on CSAIL’s version of Debian, which uses 64-bit Linux 2.6.32. We used the system compiler,

which is Debian GCC 4.3.4.

51



inscount_opt0_bb

inscount_opt3

inscount_opt3_tls

inscount_manual

  20x

  40x

  60x

  80x

  100x

  120x

  140x

astar bzip2 gobmk h264ref hmmer mcf

T
im

es
 S

lo
w

d
o
w

n
 f

ro
m

 N
at

iv
e

SPEC 2006 Benchmark

inscount_opt0

Figure 6-1: Instruction count performance at various optimization levels.

6.1 Instruction Count

Figure 6-1 shows our performance across benchmarks from the suite for instruction count at various levels

of optimization. In order to see the performance at higher optimization levels, we have redrawn the graph

in Figure 6-2 without the inscount opt0 and inscount opt0 bb data. The optimization level refers to

how aggressive our inlining optimizations are and does not indicate the optimization level with which

the tool was compiled. An optimization level of zero means that all calls to instrumentation routines are

treated as standard clean calls, requiring a full context switch.

The first configuration, inscount opt0, is a version of instruction count that inserts a clean call at

every instruction to increment a 64-bit counter. This configuration represents the most näıve tool writer

possible, who is not sensitive to performance, and simply wants to write a tool.

The second configuration, inscount opt0 bb, represents a more reasonable tool writer, who counts

the number of instructions in a basic block, and passes them as an immediate integer parameter to a

clean call which increments the counter by that amount. This configuration is also run at optimization

level zero, so all calls are unoptimized and fully expanded. This configuration is representative of a tool

writer who does not wish to generate custom assembly, but is taking steps to not leave easy performance

gains on the table.

The third configuration, inscount opt3, is the same as the first configuration with all optimizations

enabled. Our chart shows a dramatic improvement, but we are still performing an extra stack switch to

do a very small amount of work. The following configuration, inscount opt3 tls, is again the same,
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Figure 6-2: Instruction count performance of the optimized configurations for easier comparison.

except instead of switching stacks, thread-local scratch space is used, as discussed in Section 3.5.

The final configuration, inscount manual, is the same tool written using custom machine code instru-

mentation. This is what we would expect a clever, performance-conscious tool author to write. As shown

in Figure 6-2, inscount opt3 tls is quite comparable to inscount manual, meaning that for this tool,

we almost reach the performance of custom instrumentation. On average, the automatically optimized

instruction count tool is achieving 2.0 times slowdown from native, while the manual instrumentation

achieves on average 1.9 times slowdown.

Finally, we show the speedup that optimization produces over the näıve tool in Figure 6-3. On average,

inscount opt3 tls is 47.6 times faster than inscount opt0 and 7.8 times faster than inscount opt0 bb.

6.2 Alignment

Our alignment tool benchmarks are mainly showcasing the performance improvements from using partial

inlining. The instrumentation routine starts by checking that the access is aligned, and if it is not, it issues

a diagnostic. Issuing a diagnostic is a complicated operation, and for the SPEC benchmarks, happens

infrequently. Therefore, we inline the common case, which does no more work than an alignment check

and updating a counter of all memory accesses, and leave the diagnostic code out of line. As shown in

Figure 6-4, on average we have a 43.8x slowdown before applying partial inlining, and a 11.9x slowdown

after turning on our optimizations. This means we are achieving on average a 3.7x speedup with our

partial inlining optimizations. Speedup is broken down by benchmark in Figure 6-5.
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Figure 6-3: Speedup over inscount opt0 and inscount opt0 bb after enabling all optimizations.
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Figure 6-4: Memory alignment tool slowdown from native execution.
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Figure 6-5: Memory alignment tool speedup when optimizations are enabled.

6.3 Memory Trace

The memory trace tool fills a buffer with information about all the memory accesses in a program.

Specifically, it tracks the effective address of the access, the program counter of the instruction, the size

of the access, and whether the access was a read or a write. All information is written to the last free

element of the buffer, and a check is performed to determine if the buffer is full. The buffer is 1024

elements in size, meaning the buffer needs to be processed very infrequently, making this a suitable case

for partial inlining. In Figure 6-6, we show the slowdowns from native execution speed with and without

optimizations. In Figure 6-7, we show the speedup achieved with turning on optimizations. On average,

the tool has a 53x slowdown without optimizations, and a 27.4x slowdown with optimizations. This

represents a 1.9x speedup when turning on optimizations.

55



  60x

  70x

  80x

astar bzip2 gobmk h264ref hmmer mcf

T
im

es
 S

lo
w

d
o
w

n
 f

ro
m

 N
at

iv
e

SPEC 2006 Benchmark

memtrace_opt0

memtrace_opt3

  10x

  20x

  30x

  40x

  50x

Figure 6-6: Memory trace tool slowdown from native execution.
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Figure 6-7: Memory trace tool speedup when optimizations are enabled.
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Chapter 7

Conclusion

7.1 Future Work

While our techniques achieve great success with our instruction count example, our parital inlining

example performance falls short of our ambitions. In order to improve this, we need to consider a few

things.

First, we should look into register re-allocation. Pin uses a linear scan register allocator to steal scratch

registers from the application which it can use in the inline code to avoid extra register spills. If we used

this approach, we could eliminate most of the cost of a context switch. Performing register reallocation

would be a large task requiring integration with the core of DynamoRIO in order to accurately handle

signal translation.

We should also consider providing general-purpose building blocks for common tasks instead of asking

tool authors to use plain C. For example, we are currently considering integrating some of the memory ac-

cess collection routines from DrMemory into a DynamoRIO extension. With this support, tools would be

able to efficiently instrument all memory accesses without worrying about whether their instrumentation

meets our inlining criteria.

Another building block we could provide is general purpose buffer filling similar to what was done in

PiPa.[15] With a general purpose buffering facility, tool authors do not need to worry about whether their

calls were inlined, and can be confident that DynamoRIO has inserted the most efficient instrumentation

possible.

Another improvement we could make is to allow the tool to expose the check to us explicitly. The idea

is to have the tool give us two function pointers for conditional analysis: the first returns a truth value
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indicating whether the second should be called, and the second performs analysis when the first returns

true. Pin uses this approach. It requires the tool author to realize that this API exists in order to take

advantage of it, but it provides more control over the inlining process. We could provide a mechanism

for requesting that a routine be inlined regardless of criteria and raise an error on failure, allowing the

tool to know what routines were inlined.

7.2 Contributions

Using the optimizations presented in this thesis, tool authors are able to quickly build performant dynamic

instrumentation tools without having to generate custom machine code.

First, we have created an optimization which performs automatic inlining of short instrumentation

routines. Our inlining optimization can achieve as much as 50 times speedup as shown by our instruction

count benchmarks.

Second, we have built a novel framework for performing partial inlining which handles cases where

simple inlining fails due to the complexity of handling uncommon cases. Partial inlining allows us to

maintain the same callback interface, while accelerating the common case of conditional analysis by

almost four fold.

Finally, we present a suite of standard compiler optimizations operating on instrumented code. With

these optimizations, we are able to ameliorate the register pressure created by inlining and avoid unnec-

essary spills. Without our suite of optimizations, we would not be able to successfully inline many of our

example tools.

Once these facilities have been contributed back to DynamoRIO, we hope to see more tool authors

choose DynamoRIO for its ease of use in building fast dynamic instrumentation tools.
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