
A Practical Approach to
Exploiting Coarse-Grained

Pipeline Parallelism in C Programs

William Thies, Vikram Chandrasekhar, Saman Amarasinghe

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

MICRO 40 – December 4, 2007

Legacy Code
• 310 billion lines of legacy code in industry today

– 60-80% of typical IT budget spent re-engineering legacy code
– (Source: Gartner Group)

• Now code must be migrated to multicore machines
– Current best practice: manual translation

Parallelization: Man vs. Compiler

ImplementationFunctionalityPreserve the
Be conservative!do {

attempt parallelism
} until pass regtest

Approach

BADGOODEffectiveness
Fail-safeMakes mistakesAccuracy
1,000,000 lines100 linesWorking Set
1,000,000,000 op / sec1 op / secSpeed

CompilerMan

Can we improve compilers by making them more human?

Humanizing Compilers

Current: An Omnipotent Being New: An Expert Programmer

Richard Stallman

• First step: change our expectations of correctness

Zeus

Humanizing Compilers
• First step: change our expectations of correctness

• Second step: use compilers differently
– Option A: Treat them like a programmer

• Transformations distrusted, subject to test
• Compiler must examine failures and fix them

– Option B: Treat them like a tool
• Make suggestions to programmer
• Assist programmers in understanding high-level structure

• How does this change the problem?
– Can utilize unsound but useful information
– In this talk: utilize dynamic analysis

Dynamic Analysis for Extracting
Coarse-Grained Parallelism from C

• Focus on stream programs
– Audio, video, DSP, networking, and

cryptographic processing kernels
– Regular communication patterns

• Static analysis complex or intractable
– Potential aliasing (pointer arithmetic,

function pointers, etc.)
– Heap manipulation (e.g., Huffman tree)
– Circular buffers (modulo ops)
– Correlated input parameters

• Opportunity for dynamic analysis
– If flow of data is very stable,

can infer it with a small sample
Adder

LPF1 LPF2 LPF3

HPF1 HPF2 HPF3

Speaker

AtoD

FMDemod

Scatter

Gather

Overview of Our Approach

Original
Program

Annotated
ProgramMark

Potential
Actor Boundaries

Run
Dynamic
Analysis

No

1. Stream graph

2. Statement-level
communication
trace
main.c:9 fft.c:5
fft.c:8 fft.c:16

Hand
Parallelized

Program

Auto
Parallelized

Program

Satisfied
with

Parallelism?

Yes
Communicate
data by hand

Communicate
based on trace

test and refine
using multiple
inputs

MPEG-2 Decoder

Stability of MPEG-2

0

250000

500000

750000

1000000

1 10 100

Iteration

U
ni

qu
e

A
dd

re
ss

es

Se
nt

 B
et

w
ee

n
Pa

rt
iti

on
s

1.m2v 6.m2v
2.m2v 7.m2v
3.m2v 8.m2v
4.m2v 9.m2v
5.m2v 10.m2v

10.m2v

1.m2v

MPEG-2

Top 10
YouTube Videos

Stability of MPEG-2
(Within an Execution)

Frame

1.m2v 2.m2v 3.m2v 4.m2v 5.m2v 6.m2v 7.m2v 8.m2v 9.m2v 10.m2v

1.m2v 3 3 3 3 3 3 3 3 3 3
2.m2v 3 3 3 3 3 3 3 3 3 3
3.m2v 5 5 5 5 5 5 5 5 5 5
4.m2v 3 3 3 3 3 3 3 3 3 3
5.m2v 3 3 3 3 3 3 3 3 3 3
6.m2v 3 3 3 3 3 3 3 3 3 3
7.m2v 3 3 3 3 3 3 3 3 3 3
8.m2v 3 3 3 3 3 3 3 3 3 3
9.m2v 3 3 3 3 3 3 3 3 3 3

10.m2v 4 4 4 4 4 4 4 4 4 4

MPEG-2 Testing File
Tr

ai
ni

ng
 F

ile

Stability of MPEG-2
(Across Executions)

Minimum number of training iterations
(frames) needed on each video in order
to correctly decode the other videos.

1.m2v 2.m2v 3.m2v 4.m2v 5.m2v 6.m2v 7.m2v 8.m2v 9.m2v 10.m2v

1.m2v 3 3 3 3 3 3 3 3 3 3
2.m2v 3 3 3 3 3 3 3 3 3 3
3.m2v 5 5 5 5 5 5 5 5 5 5
4.m2v 3 3 3 3 3 3 3 3 3 3
5.m2v 3 3 3 3 3 3 3 3 3 3
6.m2v 3 3 3 3 3 3 3 3 3 3
7.m2v 3 3 3 3 3 3 3 3 3 3
8.m2v 3 3 3 3 3 3 3 3 3 3
9.m2v 3 3 3 3 3 3 3 3 3 3

10.m2v 4 4 4 4 4 4 4 4 4 4

MPEG-2 Testing File
Tr

ai
ni

ng
 F

ile

Stability of MPEG-2
(Across Executions)

Minimum number of training iterations
(frames) needed on each video in order
to correctly decode the other videos.

5 frames of training on one
video is sufficient to correctly
parallelize any other video

1.mp3 2.mp3 3.mp3 4.mp3 5.mp3 6.mp3 7.mp3 8.mp3 9.mp3 10.mp3

1.mp3 1 1 1 1 1 1 1 1 — —
2.mp3 1 1 1 1 1 1 1 1 — —
3.mp3 1 1 1 1 1 1 1 1 — —
4.mp3 1 1 1 1 1 1 1 1 — —
5.mp3 1 1 1 1 1 1 1 1 — —
6.mp3 1 1 1 1 1 1 1 1 — —
7.mp3 1 1 1 1 1 1 1 1 — —
8.mp3 1 1 1 1 1 1 1 1 — —
9.mp3 1 1 1 1 1 1 1 1 17900 —

10.mp3 5 5 5 5 5 5 5 5 5 5

MP3 Testing File

Tr
ai

ni
ng

 F
ile

Stability of MP3
(Across Executions)

Minimum number of training iterations
(frames) needed on each track in order
to correctly decode the other tracks.

1.mp3 2.mp3 3.mp3 4.mp3 5.mp3 6.mp3 7.mp3 8.mp3 9.mp3 10.mp3

1.mp3 1 1 1 1 1 1 1 1 — —
2.mp3 1 1 1 1 1 1 1 1 — —
3.mp3 1 1 1 1 1 1 1 1 — —
4.mp3 1 1 1 1 1 1 1 1 — —
5.mp3 1 1 1 1 1 1 1 1 — —
6.mp3 1 1 1 1 1 1 1 1 — —
7.mp3 1 1 1 1 1 1 1 1 — —
8.mp3 1 1 1 1 1 1 1 1 — —
9.mp3 1 1 1 1 1 1 1 1 17900 —

10.mp3 5 5 5 5 5 5 5 5 5 5

MP3 Testing File

Tr
ai

ni
ng

 F
ile

Stability of MP3
(Across Executions)

Minimum number of training iterations
(frames) needed on each track in order
to correctly decode the other tracks.

1.mp3 2.mp3 3.mp3 4.mp3 5.mp3 6.mp3 7.mp3 8.mp3 9.mp3 10.mp3

1.mp3 1 1 1 1 1 1 1 1 — —
2.mp3 1 1 1 1 1 1 1 1 — —
3.mp3 1 1 1 1 1 1 1 1 — —
4.mp3 1 1 1 1 1 1 1 1 — —
5.mp3 1 1 1 1 1 1 1 1 — —
6.mp3 1 1 1 1 1 1 1 1 — —
7.mp3 1 1 1 1 1 1 1 1 — —
8.mp3 1 1 1 1 1 1 1 1 — —
9.mp3 1 1 1 1 1 1 1 1 17900 —

10.mp3 5 5 5 5 5 5 5 5 5 5

MP3 Testing File

Tr
ai

ni
ng

 F
ile

Stability of MP3
(Across Executions)

Layer 1 frames

Minimum number of training iterations
(frames) needed on each track in order
to correctly decode the other tracks.

1.mp3 2.mp3 3.mp3 4.mp3 5.mp3 6.mp3 7.mp3 8.mp3 9.mp3 10.mp3

1.mp3 1 1 1 1 1 1 1 1 — —
2.mp3 1 1 1 1 1 1 1 1 — —
3.mp3 1 1 1 1 1 1 1 1 — —
4.mp3 1 1 1 1 1 1 1 1 — —
5.mp3 1 1 1 1 1 1 1 1 — —
6.mp3 1 1 1 1 1 1 1 1 — —
7.mp3 1 1 1 1 1 1 1 1 — —
8.mp3 1 1 1 1 1 1 1 1 — —
9.mp3 1 1 1 1 1 1 1 1 17900 —

10.mp3 5 5 5 5 5 5 5 5 5 5

MP3 Testing File

Tr
ai

ni
ng

 F
ile

Stability of MP3
(Across Executions)

CRC Error

Minimum number of training iterations
(frames) needed on each track in order
to correctly decode the other tracks.

1.mp3 2.mp3 3.mp3 4.mp3 5.mp3 6.mp3 7.mp3 8.mp3 9.mp3 10.mp3

1.mp3 1 1 1 1 1 1 1 1 — —
2.mp3 1 1 1 1 1 1 1 1 — —
3.mp3 1 1 1 1 1 1 1 1 — —
4.mp3 1 1 1 1 1 1 1 1 — —
5.mp3 1 1 1 1 1 1 1 1 — —
6.mp3 1 1 1 1 1 1 1 1 — —
7.mp3 1 1 1 1 1 1 1 1 — —
8.mp3 1 1 1 1 1 1 1 1 — —
9.mp3 1 1 1 1 1 1 1 1 17900 —

10.mp3 5 5 5 5 5 5 5 5 5 5

MP3 Testing File

Tr
ai

ni
ng

 F
ile

Stability of MP3
(Across Executions)

Minimum number of training iterations
(frames) needed on each track in order
to correctly decode the other tracks.

Outline
• Analysis Tool

• Case Studies

Outline
• Analysis Tool

• Case Studies

Annotating Pipeline Parallelism
• Programmer indicates potential actor

boundaries in a long-running loop

• Serves as a fundamental API for pipeline parallelism
– Comparable to OpenMP for data parallelism
– Comparable to Threads for task parallelism

Legacy C Code Record Who Produces /
Consumes each Location

MP3 Decoding

Huffman () {
…
}

Dequantize() {
…
}

Antialias() {
…
}

Hybrid() {
…
}

Polyphase() {
…
}

out_fifo() {
…
}

while (!end_bs(&bs)) {
BEGIN_PIPELINED_LOOP();
for (ch=0; ch<stereo; ch++) {

III_hufman_decode(is[ch], &III_side_info, ch, gr,
part2_start, &fr_ps);

PIPELINE();
III_dequantize_sample(is[ch], ro[ch], III_scalefac,

&(III_side_info.ch[ch].gr[gr]), ch, &fr_ps);
}
…
PIPELINE();
for (ch=0; ch<stereo; ch++) {

…
III_antialias(re, hybridIn, /* Antialias butterflies */

&(III_side_info.ch[ch].gr[gr]), &fr_ps);

for (sb=0; sb<SBLIMIT; sb++) { /* Hybrid synthesis */
PIPELINE();
III_hybrid(hybridIn[sb], hybridOut[sb], sb, ch,

&(III_side_info.ch[ch].gr[gr]), &fr_ps);
PIPELINE();

}
/* Frequency inversion for polyphase */
for (ss=0;ss<18;ss++)

for (sb=0; sb<SBLIMIT; sb++)
if ((ss%2) && (sb%2))

hybridOut[sb][ss] = -hybridOut[sb][ss];
for (ss=0;ss<18;ss++) { /* Polyphase synthesis */

for (sb=0; sb<SBLIMIT; sb++)
polyPhaseIn[sb] = hybridOut[sb][ss];

clip += SubBandSynthesis (polyPhaseIn, ch,
&((*pcm_sample)[ch][ss][0]));

} }
PIPELINE();
/* Output PCM sample points for one granule */
out_fifo(*pcm_sample, 18, &fr_ps, done, musicout,

&sample_frames);
END_PIPELINED_LOOP();

}
...

}

Build Block Diagram

Mem
Huffman()

Antialias()

Polyphase()

out_fifo()

Dynamic Analysis

Implemented Using Valgrind

Dequantize()

Hybrid()

Dequantize()Dequantize()

Hybrid()

Huffman()

Antialias()

Polyphase()

out_fifo()

Exploiting the Parallelism

Stateless stage
(data parallel)

Antialias()

Polyphase()Stateful stage
(sequential)

Hybrid()

Huffman()

Antialias()

Polyphase()

out_fifo()

Exploiting the Parallelism

Reorder()Dequantize()

Antialias()

for (i=0; i<N; i++) {
…
PIPELINE();
Dequantize();
PIPELINE();
….

}

Polyphase()

Stateless stage
(data parallel)

Stateful stage
(sequential)

DequantizeN()Dequantize1()

Hybrid()

Huffman()

Antialias()

Polyphase()

out_fifo()

Exploiting the Parallelism

Antialias()

for (i=0; i<N; i++) {
…
PIPELINE(N);
Dequantize();
PIPELINE();
….

}

Polyphase()Stateful stage
(sequential)

Parallel Runtime Environment
• Pipeline parallelism requires buffering between stages

• Two ways to implement buffering:
1. Modify original program to add buffers
2. Wrap original code in virtual execution environment

• We fork each actor into an independent process,
and communicate the recorded variables via pipes

Parallel Runtime Environment
• Pipeline parallelism requires buffering between stages

• Two ways to implement buffering:
1. Modify original program to add buffers
2. Wrap original code in virtual execution environment

• We fork each actor into an independent process,
and communicate the recorded variables via pipes

MemDequantize()

Antialias()

MemMem

Parallel Runtime Environment
• Pipeline parallelism requires buffering between stages

• Two ways to implement buffering:
1. Modify original program to add buffers
2. Wrap original code in virtual execution environment

• We fork each actor into an independent process,
and communicate the recorded variables via pipes

MemDequantize()

Antialias()

MemMem
pipe

Parallel Runtime Environment
• Pipeline parallelism requires buffering between stages

• Two ways to implement buffering:
1. Modify original program to add buffers
2. Wrap original code in virtual execution environment

• We fork each actor into an independent process,
and communicate the recorded variables via pipes

– Robust in the presence of aliasing
– Suitable to shared or distributed memory
– Efficient (7% communication overhead on MP3)

Programmer
assistance
needed for:
- malloc’d data
- nested loops
- reduction vars

MemDequantize()

Antialias()

MemMem
pipe

Outline
• Analysis Tool

• Case Studies

Extracted Stream Graphs

10,000MediaBenchMPEG-2 video decoderMPEG-2

36,000SPECCPU
2006

Calibrating HMMs for
biosequence analysis

456.hmmer

5,000SPECINT 2000bzip2 compression and
decompression

256.bzip2

11,000SPECINT 2000Grammatical parser of
English language

197.parser

5,000Fraunhofer IISMP3 audio decoderMP3

37,000MIT Lincoln
Laboratory

Ground Moving Target
Indicator

GMTI

Lines of CodeSourceDescriptionBenchmark

Ground Moving Target Indicator (GMTI)
Extracted with tool: From GMTI specification:

Ground Moving Target Indicator (GMTI)
Extracted with tool: From GMTI specification:

Audio and Video Codecs

MP3 Decoder MPEG-2 Decoder

SPEC Benchmarks

197.parser

256.bzip2 (compression)256.bzip2 (decompression)

456.hmmer

Interactive Parallelization Process
• Analysis tool exposed serializing dependences

– As annotated back-edges in stream graph (main.c:9 fft.c:5)

• How to deal with serializing dependences?
1. Rewrite code to eliminate dependence, or
2. Instruct the tool to ignore the dependence

• Lesson learned:
Many memory dependences can be safely ignored!
– Allow malloc (or free) to be called in any order (GMTI, hmmer)
– Allow rand() to be called in any order (hmmer)
– Ignore dependences on uninitialized memory (parser)
– Ignore ordering of demand-driven buffer expansion (hmmer)

Results

0

1

2

3

4

GMTI

MP3
MPEG-2

19
7.p

ars
er

25
6.b

zip
2

45
6.h

mmer
GEOMEAN

Sp
ee

du
p:

4
co

re
s

vs
. 1

 c
or

e

On two AMD 270 dual-core processors

Results

0

1

2

3

4

GMTI

MP3
MPEG-2

19
7.p

ars
er

25
6.b

zip
2

45
6.h

mmer
GEOMEAN

Sp
ee

du
p:

4
co

re
s

vs
. 1

 c
or

e
Profiled for 10 iterations of training data
Ran for complete length of testing data
Only observed unsoundness: MP3

How to Improve Soundness?
• Revert to sequential version upon seeing new code

(fixes MP3)

• Hardware support
– Mondriaan memory protection (Witchel et. al)
– Versioned memory (used by Bridges et al.)

• Would provide safe communication, but unsafe parallelism

• Rigorous testing with maximal code coverage

• Programmer review

Related Work
• Revisiting the Sequential Programming Model for Multi-Core

(Bridges et al., yesterday)
– Same pipeline-parallel decompositions of parser, bzip2
– Like commutative annotation, we tell tool to ignore dependences

• But since we target distributed memory, annotation
represents privatization rather than reordering

• Dynamic analysis for understanding, parallelization
– Rul et. al (2006) – programmer manages communication
– Redux (2003) – fine-grained dependence visualization
– Karkowski and Corporaal (1997) – focus on data parallelism

• Inspector/executor for DOACROSS parallelism
– Rauchwerger (1998) – survey

Conclusions
• Dynamic analysis can be useful for parallelization

– Our tool is simple, transparent, and one of the first to
extract coarse-grained pipeline parallelism from C programs

– Primary application: program understanding
– Secondary application: automatic parallelization

• Future work in improving soundness, automation

