
Image-Based Motion Estimation in a Stream

Programming Language

by

Abdulbasier Aziz

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2007

c© Massachusetts Institute of Technology 2007. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

June 29, 2007

Certified by. .
Saman Amarasinghe
Associate Professor

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

Image-Based Motion Estimation in a Stream Programming

Language

by

Abdulbasier Aziz

Submitted to the Department of Electrical Engineering and Computer Science
on June 29, 2007, in partial fulfillment of the

requirements for the degree of
Masters in Electrical Engineering and Computer Science

Abstract

In this thesis, a computer vision application was implemented in the StreamIt lan-
guage. The reference application was an image-based motion estimation algorithm
written in MATLAB. The intent of this thesis is to contribute a case study of StreamIt,
an architecture-independent language designed for stream programming. In particu-
lar, it observes StreamIt’s ability to preserve block structure and to handle otherwise
complicated functionality in an elegant fashion, especially in comparison to the refer-
ence implementation, coded in MATLAB. Furthermore, we observe a runtime of the
StreamIt-coded application 2% faster than that of MATLAB. Lastly, the potentials
of boosted performance with parallelization of subroutines within the program are
discussed.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

I am indebted greatly to those in the StreamIt group who helped guide me throughout

this process. I am especially indebted to Bill Thies, whose patience, knowledge,

and willingness to help went far beyond expectation. I also want to thank Arjuna

Balasuriya whose work motivated this thesis, and Allyn Dimock for helping get the

code through the compiler.

I further want to thank the other members of the StreamIt group, most notably

Michael Gordon and David Zhang. I am especially grateful to my advisor, Saman

Amarasinghe, for his encouragement and pulling through for me especially towards

the end.

Thanks also to Selçuk Bayraktar who helped me get acquainted with LaTeX and

with how not to be such a “huge nerd”.

Most importantly, I thank my Creator, the Almighty, from Whom I came and to

Whom I return.

5

6

Contents

1 Introduction 11

2 Image-Based Motion Estimation 15

2.1 Feature Extraction . 16

2.2 Putative Matching . 19

2.3 RANSAC . 20

3 Background and Related Work 23

3.1 Synchronous Data Flow . 23

3.2 Other Streaming Languages . 24

3.3 MPEG-2 Encoding/Decoding . 25

4 StreamIt Programming Language 27

4.1 Filters . 27

4.2 Pipelines . 29

4.3 Splitjoins . 30

4.4 Feedback Loops . 31

4.5 Messaging . 32

4.6 Execution Model and Compilation . 33

5 Motion Estimation Implementation 35

5.1 Readying the stream . 35

5.2 Feature extraction . 36

5.2.1 Generating Minor Eigenvalues 36

7

5.2.2 Finding the Best Features . 37

5.3 Sharpening and Correlation . 38

5.3.1 2D Fast Fourier Transform . 38

5.3.2 Finding Putative Matches . 41

5.4 RANSAC . 42

5.4.1 Main Feedback Loop . 44

5.4.2 the Fundamental Matrix . 46

5.5 Preliminary Results . 47

6 StreamIt Programmability 49

6.1 StreamIt v. MATLAB . 49

6.2 MATLAB . 49

6.3 Proposed Extensions . 51

7 Conclusions 53

7.1 Future work . 54

A The Stream Graph for the StreamIt Motion Estimation Algorithm 55

8

List of Figures

2-1 A Sample Block Diagram for the Image-Based Motion Estimation . . 17

2-2 The Homography Matrix identifies rotations and translations between

two frames . 18

2-3 A summary of the RANSAC algorithm, adapted from Hartley and

Zimmerman [13] . 21

4-1 RGB Values are converted to NTSC (YIQ) Values 28

4-2 Inverse Fast Fourier Transform in StreamIt 29

4-3 This filter takes a matrix in as a stream of floats, row by row, and out-

puts them column by column, thus transposing the matrix. Courtesy

Bill Thies . 30

4-4 A simple feedbackloop, consisting of a joiner, splitter, forward path,

and feedback path. 31

4-5 The same feedback loop from earlier is now capable of sending messages

between the two filters selectIndices and findInliers. 32

5-1 A high-level block diagram of the Feature Extraction stage 36

5-2 Two consecutive images with their 40 extracted features marked. The

darker boxes are those with higher minor eigenvalues. 38

5-3 StreamIt code for sharpening an image 39

5-4 StreamIt graph for sharpening an image 40

5-5 The sharpened image is formed by subtracting the blurred image from

the original . 41

9

5-6 Of the features marked by blue boxes, only those marked with dots

in the middle are putative matches. The overlapped image indicates

which putatively matched feature in one image matches with which

feature from the other image. 43

5-7 Two overlapped images, with 16 striped arrows showing the putative

matches, and a set of 8 inliers with crosshatched arrows. 44

5-8 We use teleport messaging to indicate when the gates should “open”

and when they should stay “closed”. 45

5-9 Two consecutive images with inliers marked by boxes. Note they match

exactly between both images, and their homography matrix H is also

included. 47

6-1 StreamIt v. MATLAB - StreamIt expresses computation in a more

modular, hierarchical way with pipelines and filters. 52

10

Chapter 1

Introduction

As applications in Machine Vision and Robotics advance in complexity and sophis-

tication, so too do they advance in their need for faster rates of computation. The

convergence of more precise and diverse sensor equipment, the advent of new tech-

niques in image processing and artificial intelligence, and the increasing pervasiveness

of embedded computing has effected a need for faster computation. Despite the ad-

vances in hardware and information processing algorithms, however, there still remain

apt algorithms in the field that are either slow or foregone for alternatives because

they cannot achieve real-time or sufficiently fast performance. Real-time image-based

localization or even 3D reconstruction can have tremendous impact, especially when

considering the increased pervasiveness of computing and image-capturing devices.

Often, it is due to rate-limiting bottlenecks, executed on uni-processor architectures,

which prevent these algorithms from achieving their maximum potential.

A feasible alternative that addresses this problem is to exploit the parallelism

inherent to multi-core processors to free up computation-intensive tasks that act

as a bottleneck within the running program. Furthermore, it is appropriate that

a programmer trying to optimize such programs employ a streaming model for the

sensor information that the robot or computer needs to process. The streaming model

for programming entails that the programmer writes independent processing kernels

and stitches them together by using explicit communication channels.

Although this model has existed for decades, and although many languages employ

11

the notion of a stream as a programming abstraction, many of these languages have

had their shortcomings. Despite their being often theoretically sound and elegant,

they commonly lack a sufficient feature set and are too inflexible to adapt to a variety

of different architectures. Hence, despite a program’s being apt for a streaming model,

programmers opt instead for a more general-purpose language like C or C++ [1].

Compilers as they exist are not “stream-conscious” and hence performance-critical

blocks of code are optimized at the assembly level, and must be adapted for each

architecture that exploits them. This process takes time and introduces new arenas

in which to error. In particular, it is often not feasible for programmers in the field

of robotics to be accustomed to such low-level optimization, and hence sometimes

algorithms are entirely foregone for slower or otherwise compromised methods.

Furthermore, there is a complexity and messiness involved with coding a stream-

ing algorithm in an imperative language. If the underlying algorithm lends itself to

a streaming model, coding a sequential program is often tricky, and coding a paral-

lelized version is heroic. The programmer is compelled to trade off productivity and

programmability because such a language does not handle the underlying model well.

Enter the StreamIt language, developed at the MIT Computer Science and Artifi-

cial Intelligence Laboratory. The language is designed to facilitate the programming

process for large applications appropriate for the streaming model, as well as their

mapping to a wide set of architectures, including multicore architectures and work-

station clusters. The StreamIt language has two goals.

1. Firstly, it must provide high-level abstractions that improve robustness pro-

grammer productivity while streaming.

2. Secondly, it ought to serve as a common language for multicore processors, and

hence to enable a single program to execute in parallel across any number of

available cores.

The intent of this thesis is to confirm the ability of the StreamIt language to

achieve these aforementioned ends, and to do so by exposing the advantages it offers

12

over the standard implementation of a vision-based program. In particular, we em-

ploy an image-based motion estimation algorithm, where the streaming items are the

images themselves. The algorithm takes pairs of images and calculates the transfor-

mation between them by generating a homography matrix. Hence, this thesis serves

as a case study to provide insight to the development of a streaming program based

on this particular algorithm. We discuss the performance on a uniprocessor system,

and parallel evaluation is currently in progress.

This thesis is organized as follows. Chapter 2 includes a description of the image-

based motion estimation algorithm. Chapter 3 relates some background information

and related work. Chapter 4 discusses the basics of the StreamIt programming lan-

guage. The next chapter addresses the implementation of the algorithm in StreamIt.

Chapter 6 concerns StreamIt programmability, and Chapter 7 closes with a brief

discussion of our implementation’s performance and future work.

13

14

Chapter 2

Image-Based Motion Estimation

The subject of motion estimation pertains to where one is and where one is going

based on some sensor input. Robotic motion estimation-be it on land, in sea, or up

in the air–could use input from inertial measurement units, pressure sensors, GPS, or

vision among others. Using vision, one has a series of raw images as input, and must

determine one’s own motion based upon these images and the transitions between

them. The images themselves are rich in information, but the efficient analysis of

them requires intelligent algorithms if the robot wishes to act upon this information

in real-time. Once the motion of the agent is estimated, one can use this information

in turn for localization if an initial state is known.

Below is a description of an algorithm used for motion estimation for an au-

tonomous underwater vehicle (AUV). The algorithm, presented by Kalyan and Bal-

asuriya [4], estimates motion based on a series of images, and is particularly useful

in underwater environments where GPS information is not available. Although their

work also exploits internal measurement unit (IMU) and sonar data to obtain a pre-

cise measurement of the ego-motion, this case study focuses solely on the image-based

motion estimation since the focus is not necessarily on the accuracy of location but

rather the speed of computation. The algorithm also has, it should be noted, appli-

cability beyond the underwater environment in that it is a generic vision algorithm.

The main part of the algorithm can be divided into three main sections, detailed

in Figure 2-1. The first is feature extraction, the second is sharpening and feature cor-

15

respondence matching, and the last is the implementation of the RANSAC algorithm.

The first stage isolates those patches of each image that are most trackable, accord-

ing to the renowned Kanade-Lucas-Tomasi (KLT) algorithm for feature detection

[22]. Although Kalyan and Balasuriya employ a Harris corner detection algorithm,

both are quite comparable [10], and the Kalyan and Balasuriya implementation has a

shortcoming that necessitated the implementation of the KLT algorithm here. This

shortcoming is the difficulty with which variable-sized arrays are dealt with, a dif-

ficulty more fully described in Section 5.2.2. The second stage takes patches of a

given size around each feature and suggests a putative matching between the fea-

tures of two frames. The last stage takes a random number of those matched pairs,

calculates the homography matrix between them, and sees whether that matrix is

appropriate considering all the pairs. This RANSAC stage determines an appropri-

ate homography matrix, and then calculates the rotation and translation between

the two successive frames. It should be noted that this algorithm does not account

for a change of camera depth (assumed to be constant), but does take into account

rotation and translation. The end goal is to generate a 3 x 3 fundamental matrix

that characterizes both rotation and translation for every pair of images. Note that

StreamIt nicely maps the conceptual block structure of this algorithm to the actual

program itself.

All three stages provide opportunities for parallelization and optimization, but

this section is expressly concerned with the science behind the algorithm itself.

2.1 Feature Extraction

The first stage concerns the extraction of “interest points” or “features”-patches of

pixels of a given size. According to Tomasi and Kanade [22], a good feature is one

that, by definition, is easily trackable from one frame and the next. There are a host

of fairly comparable algorithms that can detect these features, but the Kanade-Lucas-

Tomasi (KLT) algorithm is a quite appropriate method to employ for our purposes

[10].

16

Putative Matching

RANSAC

Putative Matching

RGB YIQ

Feature Extraction

RGB YIQ

Feature Extraction

RGB YIQ

Feature Extraction

RANSAC

Image 1 Image 2 Image 3

H12 H23 H(n)(n+1)

Figure 2-1: A Sample Block Diagram for the Image-Based Motion Estimation

As a camera moves, the patterns of image intensities change in a complex fashion.

Any sequence of images can be characterized by a function of three variables I(x, y, t),

where the space variables x and y as well as the time variable t are discrete. Images

taken at nearer time instants will be different from each other only slightly, and we

imply this strong correlation by saying there are particular patterns that move in an

image stream. We represent this by indicating a second point along that function

J(x) = I(x,y, t + τ) such that J(x) = I(x− d) + n(x), where d =< ξ, η, 0 >, where

n is noise and d is the displacement vector.

What we try to track between successive frames is not pixels, since pixels change

much due to noise and with respect to their neighboring pictures, but rather windows

of pixels, which preserve texture quite well despite additions of noise.

17

When the displacement vector is very small, we can approximate the intensity

function I by its Taylor Series approximation, and then truncate to the first-order

term:

I(x− d) = I(x)− gd (2.1)

where g is the gradient < dI/dx, dI/dy >

I(x) I(x-d)
Translation + Rotation

Figure 2-2: The Homography Matrix identifies rotations and translations between
two frames

Now we can define a residue error

ε =
∑
W

[I(x)− gd− J(x)]2dx =
∑
W

(h− gd)2dx (2.2)

where h = I − J . To minimize this error, we take the derivative with respect to

18

d and see the equation above equal to 0.

∑
W

(h− gd)gdA = 0 (2.3)

Given that (g · d)g = (g · gT)d, we can say that

∑
W

(g · gT dA)d =
∑
W

hg · dA (2.4)

which can be written as

Gd = e (2.5)

where G =
∑

W (g · gT dA), and e =
∑

W (I − J)gdA

As described by Tomasi and Kanade [22], it is the lesser of the eigenvalues of the

2 x 2 matrix G that we store for a particular pixel.

Once all the minor eigenvalues are determined for the part of the image under

consideration, we order them. The number of best eigenvalues chosen is user-defined,

and must be chosen such that all pixels’ windows are in non-overlapping regions.

Once this feature selection stage is completed, the program should have a list of the

most trackable pixels, including their coordinates and minor eigenvalues.

2.2 Putative Matching

Now that two successive images each have their own list of features, we must see

which features from the first image match with which of the second. The next stage

involves matching these features between both frames that are maximally correlated

with each other. That is, for every feature at (x1, y1) in the first image, the match

with the highest neighborhood cross-correlation in image 2 is selected within a window

centered at some (x2, y2). For each feature in image 2, the best match is similarly

sought in image 1. On occasion, there will be the case in which a feature in one image

is deemed a best neighbor by more than one feature in another image. In this case,

19

we keep only the match with the highest cross-correlation.

Algebraically, if Ik(x, y) and Ik+1(x, y) are the two frames we’re dealing with, and

Xk represents the detected features in Ik, then the correlation measure we concern

ourselves with is represented by the following:

Cm(Xk,k+1) =
1√

σ2
(Xk)σ

2
(Xk+1)

w∑
i=−w

w∑
j=−w

[Ik(x + i, y + j)− Īk][Ik+1(x + i, y + j)− Īk+1]

(2.6)

Here, σ2 is the variance of a window’s intensity and I is the patch’s average intensity.

Each pixel’s intensity is normalized by this value Ī, and in doing so we reduce the

effects of ambient lighting.

2.3 RANSAC

The RANSAC stage is the final and most involved stage of the method, and fur-

thermore introduces randomness to the output. Invoking the RANSAC (Random

Sampling Consensus) stage implies that among the putative matches, there are some

or many that do not in fact match.

The RANSAC algorithm is applied to the putatively matched set in order to

estimate the homography between the frames and the correspondences which are

consistent with that estimate, which we call “inliers”. The RANSAC algorithm itself

has a number of steps.

Each iteration of the RANSAC algorithm goes as follows. First, we generate a

selection of a random 8 set of matches. We compute the homography of these 8

points, where the homography is a matrix H where x’ = Hx, given x is the set of

features in the first frame matched to x’ in the second frame.

x′

y′

z′

 =

h11 h12 h13

h21 h22 h23

h31 h32 h33

x

y

z

 (2.7)

20

Objective: Compute the fundamental matrix between two images.
Algorithm

(i) Feature Extraction: Compute interest points in each image

(ii) Putative Correspondences: Compute a set of interest point matches based on
proximity and similarity of their intensity neighborhood.

(iii) RANSAC robust estimation: Repeat for N samples, where N is determined
adaptively.

(a) Select a random sample of 8 correspondences and compute the fundamental
matrix F.

(b) Calculate the distance d⊥ for each putative correspondence

(c) Compute the number of inliers consistent with F by the number of corre-
spondences for which d⊥ < t pixels

Choose the F with the largest number of inliers. In the case of ties, choose the
solution that has the lowest standard deviation of inliers.

Figure 2-3: A summary of the RANSAC algorithm, adapted from Hartley and Zim-
merman [13]

Computing a normalized homography matrix (or “fundamental matrix”, a term

used interchangeably) requires 8 points according to the algorithm described in Hart-

ley and Zisserman, and it itself requires the normalization of the matches, an SVD

calculation, and a denormalization to find the matrix H.

Then, the matrix is applied to the first set of points x, and the distance between

the second set of points in the putative matches and the generated x’ is determined.

Whatever distances lie below the user-defined threshold, t, are deemed inliers. What-

ever differences lie above t are discarded, and after several iterations, the number of

which is calculated according to the procedure detailed on Hartley and Zisserman[13,

p.105]], the best inliers are kept.

This procedure yields an acceptable set of inliers and respective homography,

and at this point the RANSAC stage is complete. For a given pair of images, the

homography is discovered and that information is printed or stored.

21

22

Chapter 3

Background and Related Work

Many computer vision and robotics applications come under the domain of stream

programming, where a flow of data is processed in a similar way for a potentially

infinite amount of time. The background work that pertains to this thesis lies in the

areas of stream programming in general and the domain of computer vision and image

processing particularly. The previous section discussed the very particular vision

algorithm implemented in the StreamIt programming language, but here we turn to

the other work of relevance to this thesis that has been done in the two aforementioned

fields. In particular, we discuss Synchronous Data Flow, other streaming languages,

and the work of Matt Drake who implemented an MPEG-2 Encoder in StreamIt.

3.1 Synchronous Data Flow

Synchronous Data Flow (SDF) graphs are often used for Digital Signal Processing

applications in embedded systems design or other robotics applications. The SDF

model has been employed in the Ptolemy program, the COSSAP system in Aachen,

Germany, and for programming the Warp at Carnegie Mellon University [17].

Each node of an SDF graph represents a functional module or block that consumes

a fixed number of inputs and produces a fixed number of outputs, both of which are

known a priori. The arcs between nodes connote the communication paths between

these modules. An SDF system is designed assuming some source with an infinite

23

amount of data that enters the system, and an output at a destination that pushes

an unlimited amount of data out. With each invocation of a module, a fixed number

of input samples are consumed, and a fixed number of samples are produced. FIFO

buffers handle all the data between modules. This SDF model permits communication

between modules and also parallelization among non-dependent modules.

With regards to streaming programs, the SDF model offers four particular advan-

tages:

(a) Parallelism: non-dependent modules can execute simultaneously on different cores

of a multi-core processing architecture.

(b) Memory consumption: at compilation time, a measure of each FIFO buffer can

be computed and minimized by choosing a schedule that accomplishes this

(c) Execution Time Analysis:due to static scheduling, one can do a worst-case exe-

cution time analysis, which is important for real-time applications. One can also

compute latency with this analysis1.

(d) Determinism: unlike shared-memory multi-threaded programs, programs written

with SDF are deterministic and deadlock-free.

As we discuss in the next section, all three aspects of the SDF model are exploited

in the StreamIt language and enable it to accelerate the execution of a vision algorithm

like the one described. The addition of dynamic rates for the execution of certain

modules does slightly complicate matters, but StreamIt scheduling is still beneficial

for many reasons detailed later. [20]

3.2 Other Streaming Languages

StreamIt is just one of many streaming languages developed. The streaming abstrac-

tion has been an integral part of many programming languages, including data flow,

1Such an analysis is not yet included in StreamIt

24

CSP, synchronous and functional languages; see Stephens [32] for a [13] review. Syn-

chronous languages which target embedded applications include Lustre [12], Esterel

[5], Signal [11], Lucid [3], Stampede [18], and Lucid Synchrone [7]. Other languages of

recent interest are Brook [6], Spidle [8], Cg [16], StreamC/KernelC [14], and Parallel

Haskell [2]. The principle differences between StreamIt and these languages are

(a) StreamIt adopts the Synchronous Dataflow [15] model of computation (with

added support for dynamic rates), which narrows the application class but enables

aggressive optimizations such as linear state space analysis,

(b) StreamIt’s support for a “peek” construct that inspects an item without consum-

ing it from the channel,

(c) the single-input, single-output hierarchical structure that StreamIt imposes on

the stream graph, and

(d) a “teleport messaging” feature for out-of-band communication [21].

3.3 MPEG-2 Encoding/Decoding

Another program of comparable size implemented in StreamIt is the MPEG-2 encoder

and decoder designed by Matt Drake [9]. This thesis attested to StreamIt’s ability to

improve programmability and to offer portable, clean, and malleable code that also

improves performance. Drake observes a dramatic reduction in the number of lines of

code when converting a reference C-based MPEG-2 decoder, from 6,835 lines to 3,165.

He also posits that StreamIt captures the modularity of the underlying algorithm

better than the reference implementation. Although many of Drake’s observations

with respect to StreamIt hold for his case, translating from MATLAB had a different

set of challenges that we describe further in Chapter 6.

25

26

Chapter 4

StreamIt Programming Language

StreamIt is an architecture-independent programming language intended for stream-

ing applications. The language adopts the cyclo-static flow model of data, which is

a generalization of synchronous data flow. StreamIt 2.1 also supports dynamic com-

munications rates, which play an important role in this thesis. The programs written

in this language can be modeled as graphs where each node represents some block

of computation and the edges represent a FIFO-ordered communication of data over

tapes. One goal of the language is to facilitate the developer’s mapping of block-level

functionality to relatively autonomous or stand-alone blocks of code.

Since the compiler assumes responsibility for determining layout and task schedul-

ing, the implementation can become portable across a diversity of architectures. This

way, the developer can concern himself with an efficient implementation without hav-

ing to worry about the specific mappings to hardware and low-level optimizations.

4.1 Filters

The most basic unit of functionality in StreamIt is the filter. The basic task of the

filter is to remove data items off the input tape that it is reading, process those

data items, and output some relevant information back onto the tape. Although

each filter has only one input channel and one output channel, it may also receive

information from the outside world through portals and control message sending,

27

which is described later in section 4.5.

Although each filter can be initialized with a block of code prior to its first execu-

tion, the work function implements its steady-state functionality and performs, as its

name suggests, the real work. So long as there is sufficient data on the input channel,

the work function fires. It “pops”, or removes a certain number of data items upon

every invocation, processes the information as it is coded to do, then “pushes”, or

adds a number of data items back onto its output channel. If the programmer wishes

to view data further upstream on the input channel, he can “peek” a certain number

of data items up without having to remove those items from the channel. All the

rates for this pushing, popping, and peeking are explicitly stated in the beginning

so that the compiler can later optimize the scheduling so as to allow the fastest flow

of data down the stream. A sample filter looks like the example below, where the

input channel presents the filter with RGB color values that it converts to NTSC

color values:

float->float rgb2ntsc(){

work pop 3 push 3 peek 3{

push(peek(0) * 0.299 + peek(1) * 0.587 + peek(2) * 0.114);

push(peek(0) * 0.596 - peek(1) * 0.275 - peek(2) * 0.321);

push(peek(0) * 0.212 - peek(1) * 0.523 + peek(2) * 0.311);

pop();pop();pop();

}

}

Figure 4-1: RGB Values are converted to NTSC (YIQ) Values

Note that each filter must also have its input and output channel types declared as

well, which are both floats in the example above. The filter, and StreamIt in general,

can also operate on other data types including ints, booleans, complex numbers,

structs of all types, and arrays of all types. Either the input or the output can be of

a void type.

Helper functions may also be invoked within a work function or the init function,

and can serve as an auxiliary block of computation. Structured much like a C++

or Java function, the helper function contains a name, list of parameters, return

28

type, and body. In the feature extraction stage, we use a recursive quick-sort helper

function to order the eigenvalues computed in the previous step. Naturally, the helper

functions are limited to the filters in which they are defined.

4.2 Pipelines

The task of putting the pieces together, i.e. arranging the filters and how they

communicate with each other, is encapsulated in the structuring of a pipeline. A

pipeline, like a filter, has an input and output type. The filters must be arranged

in linear fashion with the output type of a preceding filter agreeing with the input

type of the filter that follows it. Filters are added with the add keyword, followed

by the name of the filter and instances of the variables passed in to that filter. Note

that since the filters are made at compile time, these variables must remain constant

throughout the duration of the program.

float->float pipeline IFFT1D(int size, int zeropad){

add pipeline IFFTKernel (size+zeropad){

add Conjugate();

add pipeline FFTKernel2(size+zeropad){

add pipeline FFTReorder(size+zeropad){

for (int i = 1; i< (n/2); i *= 2)

add FFTReorderSimple(n/i);

}

for (int j=2; j<=size+zeropad; j*=2)

add CombineDFT(j);

}

add Conjugate();

add DivideByN(N);

}

add pipeline unZeroPad(size*2, zeropad*2){

split roundrobin(size, zeropad);

add Identity<float>;

add float->void filter {work pop 1{pop();}}

join roundrobin(1, 0);

}

}

IFFT1D
IFFTKernel

Conjugate

unZeroPad

Conjugate

DivideByN

FFTKernel

FFTReorder

FFTReorderSimple

CombineDFT

join

Identity

split

Anon_Filter

Figure 4-2: Inverse Fast Fourier Transform in StreamIt

29

4.3 Splitjoins

While filters and pipelines can be arranged serially within a program, any block

arrangement that occurs in parallel is provided through the splitjoin statement.

The splitjoin statement takes in one input and distributes it to a series of parallel

streams, then recollects the output of those streams to be passed into the splitjoin’s

output stream.

float->float splitjoin

Transpose (int M, int N) {

split roundrobin(1);

for (int i = 0; i<N; i++){

add Identity<float>;

}

join roundrobin(M);

}

N

M

N

M

Transpose

join

Identity1 IdentityNIdentity2 IdentityN-1

split

Figure 4-3: This filter takes a matrix in as a stream of floats, row by row, and
outputs them column by column, thus transposing the matrix. Courtesy Bill Thies

There are a couple ways that the splitjoin gathers information from its input

tape. If the splitjoin wishes to take one data item on its input channel and distribute

that same datum to many child streams in parallel, it invokes a split duplicate

command. If instead it wishes to distribute successive data on the input channel to

the different child streams encompassed within it, it does the following. If one wished

to take, say, the first 3 data items and push them into the first stream, and take the

fourth data item and push it onto another stream, one would invoke the statement

30

split roundrobin(3,1). Once the child streams are done processing, there is a join

roundrobin() statement that acts much like the split roundrobin() statement,

except that it performs the inverse operation, gathering data and pushing them onto

the splitjoin’s output tape.

4.4 Feedback Loops

Any iterative loop that requires the invocation of the same filter multiple times re-

quires some form of feedback. The StreamIt feedbackloop accommodates iterative

processes like the RANSAC loop that cannot be expressed within a filter but rather

contain filters within. The forward path of the loop is defined with the statement

body, and the feedback path is defined with the statement loop.

RANSACadd featureListPair->featureListPair

feedbackloop RANSAC {

join roundrobin(1,1);

body pipeline {

add selectIndices();

add makeFundMatrix();

add findInliers();

}

loop FLPID_backloop;

split duplicate;

}

makeFundMatrix

selectIndices

findInliers

Identity

join

split

Figure 4-4: A simple feedbackloop, consisting of a joiner, splitter, forward path,
and feedback path.

Feedback loops also have a specialized push-like statement, enqueue. Each en-

queue statement pushes a single value on to the input to the joiner from the feedback

31

path. There must be enough values enqueued to prevent deadlock of the loop com-

ponents; enqueued values delay data from the feedback path.

4.5 Messaging

Although stream programming is well-suited to accommodate the normal flow of data,

there exists a need often to communicate out-of-band signals or information from one

filter to another outside of this regular flow. An example is a radio application where

the listening frequency might change on occasion.

RANSAC

portal<selectIndices> feedbackOrInput;

add featureListPair->featureListPair

feedbackloop RANSAC {

join roundrobin(1,1);

body pipeline {

add selectIndices()

to feedbackOrInput;

add makeFundMatrix();

add findInliers(feedbackOrInput);

}

loop FLPID_backloop;

split duplicate;

}

makeFundMatrix

selectIndices

findInliers

Identity

join

split

<PT1>

Figure 4-5: The same feedback loop from earlier is now capable of sending messages
between the two filters selectIndices and findInliers.

Only filters (no pipelines) can receive messages, and they receive them through

portals. Portals are a particular type of variable, defined within each pipeline, and

associated with each message receiver type. They are defined with the portal

<receiverType> statement. If one declares a portal as a local variable, and then

32

passes that as a parameter to a child stream which adds a filter to the portal, the

filter is also added to the portal in the original container. When a filter is created, it

may be added to a portal by adding the keyword to and the portal variable to the

end of the declaration.

4.6 Execution Model and Compilation

As mentioned before, each filter “fires” when it has a sufficient amount of data on

its input tape. StreamIt has two states of execution for each filter: the initialization

state, and the steady state. The steady state is achieved after the initialization state

has primed the tapes so that peeking filters can execute their work functions once.

A steady state is one that does not change the buffering in the channels. That is, at

any iteration within the steady state, the amount of data on each channel should be

invariant.

The StreamIt compiler takes care of deriving schedules for both initialization and

steady states and also translates the StreamIt syntax. The output is a program in

Java code, and this Java code can be run against a Java library or can be compiled

into C code and linked with a runtime library. Because of the mapping of the code

to the stream graph, the compiler can combine sequential filters, split filters apart, or

even duplicate filters to run in parallel so as to optimize the runtime of the original

program.

The Java library is especially convenient for debugging and testing, not to mention

when invoking those functions of the compiler that have newly been added and might

have bugs.

The StreamIt compiler defers low-level optimizations such as register allocation,

code generation, and instruction scheduling to the existing compilers, and leaves the

higher-level optimizations to itself. This approach allows for great deal of portability

across architectures, in the sense that the compiled StreamIt code can run on so many

machines [19].

33

34

Chapter 5

Motion Estimation Implementation

This chapter addresses the implementation of the motion estimation algorithm dis-

cussed in Chapter 2. The motion estimation algorithm, intended to find the homogra-

phy matrix between two successive image frames, was originally coded by Kalyan and

Balasuriya in MATLAB. In addition to translating the MATLAB code to StreamIt,

we had to write some of the library functions that were invoked in MATLAB, like

convolution and singular value decomposition. The full stream graph can be found

in Appendix A.

5.1 Readying the stream

In practice, the program would begin with an input channel whose buffer is filled

with integer values corresponding to the red, green, and blue values of each pixel

in the image. We simply begin with an invocation of the StreamIt pre-defined add

FileReader <int> statement to read values in from a binary (bin) file. The binary

file, derived from a portable pixel map (ppm) file, simply contains a series of values

for a 320 x 240 (width x height) image, and hence 320 x 240 x 3 values total for each

image. Since the Kalyan code deals only with gray-scale images (the luminance of

color images), we convert the RGB values to the YIQ color scheme, which contains

one channel for luminance (Y), and two for chrominance (I and Q). Upon conversion,

the pixels are then loaded into 2-D arrays of size 320 x 240, and pushed onto the

35

input channel.

The user predefines the number of features to be extracted, the size of each feature

window, and image height and width.

5.2 Feature extraction

The pipeline that contains the code corresponding to feature extraction is called

feature, and contains within it a filter and another pipeline in series. This pipeline

takes as input 3 matrices of size 320 x 240, and outputs both the image and a set of

features whose size is user-defined.

chooseEigs

float[320][240]->imageAndFeatures

pipeline feature(…)

{

add generateMinorEigs(…);

add chooseEigs(…);

}

float[320][240]->imageAndFeatures pipeline chooseEigs(…)

{

portal<reMakeIAndF>bestFeatures;

add splitjoin{

split roundrobin(3,1);

add floatArrayIdentity();

add float[320][240]->float[320][240] pipeline {

add sortEigs(…);

add findBest(…, bestFeatures);

}

join roundrobin(3,1);

}

add reMakeIAndF() to bestFeatures;

}

generateMinorEigs

join

Find Best
Eigenvalues

Sort Minor
Eigenvalues

Identity

split

Join Image With
Features

<PT1>

Eigenvalue matrix

Eigenvalue matrixImage

Image and Best Features

feature

Figure 5-1: A high-level block diagram of the Feature Extraction stage

5.2.1 Generating Minor Eigenvalues

The filter generateMinorEigs takes the Y, I, and Q matrices from the input channel,

and outputs those same matrices in addition to a matrix of equal size that contains

all the minor eigenvalues. For each pixel, it computes the sum of the gradient values

of the pixels within a square window outside that pixel. The size of this window can

reasonably take a value between 3 and 19 or so. The gradient values computed are

36

the gradient in the x direction squared (gxx), the gradient in the y direction squared

(gyy), and the gradient in the x-y direction (gxy). Once these values are summed

across every pixel as per Equation 2.4, those gradient sums are arranged in a 2 x 2

matrix whose minor eigenvalue is calculated and stored.

Executed as described, this would take on the order of 320 x 240 x w x w calcu-

lations, where w is the length of the window size. In order not to waste needlessly

calculation time, we store the gradient values for the width of the image, w rows deep,

and recalculate new image gradient sums by deleting the old values, and by replacing

them with the new values.

5.2.2 Finding the Best Features

The next pipeline, taking the matrix of minor eigenvalues as the input, finds the

highest valued minor eigenvalues in the matrix that are in non-overlapping windows.

That is, the highest-valued pixels not within the windows of the higher-valued pixels

before it are chosen. The number of features chosen is user-defined, and we found that

40 features or so are sufficient considering the processing needed in the correlation

and RANSAC stages, though naturally this number varies based on the quality of

the images.

This differs from the MATLAB code slightly. The Kalyan code uses a slightly dif-

ferent but comparable Harris Corner detection method to generate the minor eigen-

values, but once this matrix is generated, it simply chooses the values that lie beyond

a certain threshold. While MATLAB can handle array sizes that change dynamically

throughout the program, StreamIt must have its array sizes static, since space for

these arrays are allocated at compile time. To tackle this problem, we assume a “vir-

tual array”, where an upper bound is set for an array size, but the array can virtually

shrink so long as we keep a marker for the tail data item.

Once the matrix of minor eigenvalues is pushed to the next filter, they are ordered

with a quick-sort and the top features in non-overlapping regions are selected. Those

features, stored in a struct, are sent through a portal to a filter further downstream.

37

(a) Image 1 (b) Image 2

Figure 5-2: Two consecutive images with their 40 extracted features marked. The
darker boxes are those with higher minor eigenvalues.

5.3 Sharpening and Correlation

The next major stage of the implementation involves the correlation of one image’s

feature set with another’s. Before we do this, however, we essentially sharpen each

image by subtracting a blurred form of the image from the image itself. We can

blur an image by convolving the normal image with a blurring filter, more efficiently

implemented with a 2-D Fast Fourier Transform (FFT).

5.3.1 2D Fast Fourier Transform

Before we perform the FFT on an image, we interleave its values with zeroes because

the FFT filters work on complex numbers. We used the building block of an existing

1-D FFT StreamIt filter, which takes in on the input channel a series of floating

point numbers (with alternate values equal to zero, and two parameters indicating

the number of non-zero data items (size), and a zero-padding number that, when

added to size, equals the next highest power of two. This 1-D FFT is computed with

the Radix-2 algorithm, and hence works only on powers of two). The 2-D FFT runs a

1-D FFT on the rows of the image (where zeropadding also occurs), transposes those

values, runs another 1-D FFT on the result, and finally transposes one more time to

generate the final 2-D FFT output.

38

add splitjoin{

split duplicate;

add IAFID();

add splitjoin{

split duplicate;

add Identity<float>;

add float->float pipeline {

add splitjoin{

split roundrobin(1,0);

add FFT2(…);

add pushAverager(…);

join roundrobin(2);

};

add float->float filter multFFTs

{

float a, b, c, d;

work pop 4 push 2

{

a = pop(); b = pop();

c = pop(); d = pop();

push(a*c - b*d);

push(a*d + b*c);

}

};

add IFFT2(…);

add takeInnerMatrix(…);

}

join roundrobin;

};

add float->float filter

{ work push 1 peek 2 pop 2

{

float temp = peek(0)-peek(1);

push(temp);

pop();

pop();

}

};

join roundrobin;

};

Figure 5-3: StreamIt code for sharpening an image

39

Identity

FFT2

IFFT2

Take Inner Matrix

Push 3 x 3
Blurring Matrix

join

join

Multiply FFTs

Identity

join

Subtract Blurred
from Original

split

split

split

Figure 5-4: StreamIt graph for sharpening an image

40

(a) Original Image (b) Blurred Image

(c) Sharpened Image

Figure 5-5: The sharpened image is formed by subtracting the blurred image from
the original

Once the 2-D FFTs of both the image and the blurring matrix are taken, we

multiply one by the other, and we then take the 2-D IFFT (inverse FFT). Then, we

take the inner part of the image with a size equal to the original (convolution adds

the height and width of the blurring image to the original image). Now, we subtract

the blurred image from the unblurred image, and the result is converted back into

matrix form to be used by the correlation stage.

5.3.2 Finding Putative Matches

Once the image has been sharpened, and the feature sets of two successive images

are ready, one can proceed to determine which features correlate best with which. As

described by Equation 2.6, we do the following for each feature in the both images.

We multiply every pixel in its window by every pixel in the window of another image’s

feature, and divide by the square root of the product of the standard deviations of

each window. Each feature does this for every other feature in the other image. What

41

results is one value for each of these iterations, such that if each image has, say, 50

features, all these values could be stored in a 50 x 50 matrix.

Having computed those values, we see which features “liked” each other most.

That is, we find, for each feature r, which feature s from the other image it ranked

highest. If s also ranked r as most highly correlated with it, then the two are a match

that is kept. If s did not rank r as such, then s is a lone feature that is unmatched

and discarded. All matched pairs are sent to the next stage.

Since the image has been contorted through this process, in the sharpening step,

we effectively save the image with a splitjoin duplicate before sharpening begins,

and then after the join, we combine the old image with the new feature set, and

discard the old image.

5.4 RANSAC

Given the putative matches from the correlation stage, the RANSAC stage finds

matches that would generate a suitable homography matrix. The basic algorithm

picks eight matches randomly, synthesizes a homography matrix (interchangeably

referred to as a fundamental matrix) based on those eight matches, then finds how

many of the putatively-matched features in one image are close to the other’s after

applying that matrix. If the sum of distances between the projected features in the

second image and the actual features of the second image is small, RANSAC finishes,

and we keep the most recent homography matrix.

One challenge RANSAC presents is its randomness. Because the outcome for each

iteration of RANSAC is somewhat arbitrary, there are a random (though bounded)

number of iterations it could run. This randomness necessitates the invocation of

StreamIt’s dynamic rates for filters.

Before we begin the main loop of the RANSAC stage, we normalize all the feature

points by subtracting their mean and dividing by their standard deviation. This

makes the matrix multiplication to come more manageable.

42

(a) Image 1 (b) Image 2

(c) Overlapped Images with Matches shown

Figure 5-6: Of the features marked by blue boxes, only those marked with dots in
the middle are putative matches. The overlapped image indicates which putatively
matched feature in one image matches with which feature from the other image.

43

Putative Matching

RANSAC Inlier Pair

Figure 5-7: Two overlapped images, with 16 striped arrows showing the putative
matches, and a set of 8 inliers with crosshatched arrows.

5.4.1 Main Feedback Loop

The RANSAC feedback loop must iterate until a suitable set of matches fit with

a given homography matrix, i.e. a set of “inliers” must match. Because the exact

number of iterations is unknown, we need to “gate off” any incoming data while the

loop is running, and also prevent any data from being placed on the output channel.

To do this, we simply place “gate” filters before and after the main RANSAC loop,

and these filters push and pop one or zero elements based upon a message indicating

RANSAC’s completion. If RANSAC is still going, the input gate pops zero items and

the output gate pushes zero items. If RANSAC has come to completion, the input

gate pops one item and the output gate pushes one item.

Between these gates, however, is where RANSAC (outlined in Figure 2.3 on page

44

featureListPair->featureListPair pipeline ransac(){

portal<selectIndices> feedbackOrInput;

portal<gateOfEntry> pop1orNone;

portal<gateOfExit> push1orNone;

add normalizeFeaturePts();

add gateOfEntry() to pop1orNone;

add featureListPair->featureListPair feedbackloop{

join roundrobin(1,1);

body pipeline {

add selectIndices() to feedbackOrInput;

add makeFundMatrix();

add findInliers(feedbackOrInput,

pop1orNone, push1orNone);

}

loop FLPID_backloop;

split duplicate;

}

add gateOfExit() to push1orNone;

}

RANSAC

makeFundMatrix

selectIndices

Identity

join

split

gateOfExit

gateOfEntry

findInliers

<pop1orNone>

<push1orNone>

<feedbackOr
-Input>

Normalize
Feature Points

Figure 5-8: We use teleport messaging to indicate when the gates should “open” and
when they should stay “closed”.

21) is implemented. First, a random eight pairs of features of those putatively

matched are chosen. Then, based on those eight pairs of features, we generate a

fundamental matrix using singular value decomposition, in a process more detailed

below. Lastly, we look to find, from among all the matched feature pairs, not just

those randomly-chosen eight, but how well the matrix fits. That is, we apply the

matrix to our first feature set, find where they project to on the second image, and

find the distance between the projections and the second set of features. If enough of

these pairs have a small enough distance between them, the matrix is chosen as the

homography for that pair of images. All these operations occur in the body section

of this feedback loop.

The join of the feedback loop takes the output of the process above on one hand,

and the input from the entry gate. While closed, the entry gate continues to push the

same datum it has been pushing, and the output of the body loop is used again at

the start of the body loop, while the entry gate’s outputted data item is discarded.

45

The above process represents an interesting means of implementing a while or do

while loop that contains filters in StreamIt.

5.4.2 the Fundamental Matrix

Ideally, the fundamental matrix F, when multiplied by the first set of features in the

first image should project them to the second set of features in the second image.

Because the putative matches are not guaranteed to be matches of the same fea-

tures, though, this fundamental matrix cannot be perfect. We use the eight features

randomly selected in the filter prior to this one to generate the matrix as follows.

First, we normalize the eight points by subtracting their mean and dividing by

their standard deviation. Then, we arrange their values in an 8 x 9 matrix to be eval-

uated by singular value decomposition. Once the 8 x 9 matrix has been decomposed

into U , its left singular vectors, Σ, its singular value matrix, and V , its right singular

vectors. Only the vector in V corresponding to the smallest singular value is kept,

and it is reshaped into a 3 x 3 matrix, which then continues to another singular value

decomposition. An output of this decomposition is a fundamental matrix.

We then multiply the first image’s set of features by this matrix, and see where

they project on the second image relative to the existing second image set of features.

We evaluate a first order approximation of the geometric error (Sampson Distance)

of the fit of the fundamental matrix with respect to the set of matched points as

RANSAC needs. We assume here that no calculations of the fundamental matrix

result in a singular value decomposition degeneracy. A threshold of .001 for each

match’s distance determines whether or not a feature pair is deemed an “inlier”. The

RANSAC loop continues to run until the following equations hold:

N =
log(1− 0.99)

log(1− f)
(5.1)

N > trialcount (5.2)

where 0.99 is the confidence there are no outliers, f is the fraction of samples

putative matches that were inliers, and trialcount is the number of trials RANSAC

46

has looped through.

Once RANSAC exits, there is a homographic matrix between the two images that

can be stored or used immediately to find the rotation and translation between them.

[][] []0.00012 0.00005 -0.03495

-0.00006 -0.00002 0.01694

-0.02219 -0.00933 6.65328

x1

y1

z1

x2

y2

z2

=
H · x1 = x2

(a) Image 1 (b) Image 2
(a) Images with Inliers marked 0.00012 0.00005 −0.03495

−0.00006 −0.00002 0.01694
−0.02219 −0.00933 6.65328

 x1

y1

z1

 =

 x2

y2

z2

(b) Hx1 = x2

Figure 5-9: Two consecutive images with inliers marked by boxes. Note they match
exactly between both images, and their homography matrix H is also included.

5.5 Preliminary Results

Results from preliminary runtime evaluations of StreamIt are encouraging. On a

dual-processor Intel Xeon 2.20 GHz with 2 GB of RAM, our implementation ran

1.27x faster than the MATLAB reference implementation. On a different platform, a

3.6 GHz Pentium 4 with 3 GB of RAM, our implementation ran 1.45x faster. These

speeds were attained after static-rate filters were fused, and after we unrolled loops by

a factor of 2. This is quite impressive despite the lengthy quick-sort we used that the

reference implementation did not, and an Fast Fourier Transform based on a radix-2

algorithm that is not as efficient as MATLAB’s implementation of it. Although our

implementation is running 2% faster than the reference implementation, this is sure

47

to speed up more as one exploits more parallelism and maps the program to 4 or even

16-processor machines.

48

Chapter 6

StreamIt Programmability

6.1 StreamIt v. MATLAB

StreamIt is designed partly to obviate the low-level buffer management developers

in streaming programming need to deal with. Although the previously designed

MPEG-2 Encoder [9] in StreamIt was based on an existing C implementation, our

Motion Estimation algorithm is based upon an existing MATLAB implementation.

The MPEG-2 Encoder C implementation contained buffer management details that

Drake was able to trim when converting to StreamIt. Resultantly, his code was

shorter and preserved the block structure of the underlying algorithm quite well.

In our case, we start with MATLAB code that has distinct advantages which do not

lend themselves well to the stream programming model. Although StreamIt enhances

performance, there are programming challenges presented by MATLAB code that this

section discusses in detail. We also include proposed extensions to StreamIt that could

enable some more productive and efficient coding from the developer’s standpoint.

6.2 MATLAB

MATLAB lends itself well to applications in robotics and computer vision, and as

its name (derived from MATrix LABoratory) suggests, cleanly manipulates vectors

and matrices with a toolbox and libraries that support a vast array of operations and

49

algorithms. There are two main advantages that the MATLAB implementation had

over our implementation of Motion Estimation. The first pertains to dynamic typing,

and the second deals with array manipulation.

MATLAB dynamically types its variables. Much like in Python, Ruby, ColdFu-

sion, or other “duck typing”1 languages, MATLAB does not require the user to type

all its variables, and this stands in stark contrast to StreamIt where, as in C++,

variables, filters, and pipelines are all typed. Although this does not present by any

means an unreasonable amount of work for the programmer translating from MAT-

LAB to StreamIt, it does present a challenge especially when declaring arrays whose

sizes vary throughout the program. This is not to imply that a language is worse

off with type information. To the contrary, the type information does ease the task

of a programmer trying to understand what the program is actually doing. There is

then a trade-off here between program design and program readability, and although

MATLAB may be stronger in the former case, StreamIt is stronger in the latter.

Array manipulation more generally is perhaps the prime advantage MATLAB

has over StreamIt when it comes to programmability. MATLAB’s convenient array

referencing provides for a quick-and-easy manipulation of arrays or parts of arrays.

One can reference a sub-array or sub-matrix with one line of code in MATLAB, but

in StreamIt such a reference requires a cumbersome for loop or nested for loops.

Furthermore, matrix multiplication, transposition or inversion can be performed in

one fell swoop, whereas in StreamIt, such operations could require the invocation

of filters and splitjoins, where the filters need push and pop rates defined, and the

splitjoins may require the input data to be of a particular form upon entry. But such

shortcomings could be solved in StreamIt by simple syntactic transformations and a

bigger StreamIt library.

The real challenge that StreamIt 2.1 poses, when it comes to programmability, is

variable-sized arrays. In MATLAB, arrays of one size can be expanded or trimmed

to another size without employing any new variable declarations. The current im-

1Duck typing is a principle of dynamic typing in which an object’s interface and attributes
determine valid semantics, rather than having the language enforce rules regarding inheritance or
require type casting

50

plementation of StreamIt allocates memory at compile time, and hence necessitates

a fixing of array sizes and does not allow for such expansions or reductions of the

size. Although the SDF abstraction necessitates such a constraint, it still presents a

challenge for converting from MATLAB. Take, for instance, the case where function

parameters are of variable size in MATLAB. Often, the most natural expression for

a MATLAB function is as a StreamIt filter. However, if that filter takes a variable

number of data on the input channel, the programmer must reassess how that func-

tion ought to fit into the stream graph-either as a pipeline, within a filter, or as a

helper function of a filter.

The common solution for the variable/fixed-sized array problem we found with

the Motion Estimation implementation was to simply set an upper bound for the

size of the array, and to declare the array with that upper bound. We had to keep

another variable as a reference to the index of its tail element, but we were able to

tackle this problem with this method. In the future, it would be straightforward to

extend StreamIt to support dynamic memory allocation within a filter. Dynamically-

allocated data could also be passed between filters by using a dynamic communication

rate.

StreamIt’s strength in programmability most notably manifests itself in the preser-

vation of block structure. In MATLAB, data is stored in global buffers, and so the

code hides the actual movement of data. It is easier to reason about independent

modules rather than the function-based computation of traditional languages like

MATLAB, and so StreamIt does make it easier to comprehend this block structure.

Figure 6-1 demonstrates how StreamIt exposes the underlying structure, in this case

more intuitively than MATLAB does.

6.3 Proposed Extensions

When programming in StreamIt, a common difficulty the programmer experiences

pertains to the constraint whereby each channel can only carry one type of data. In

our case, we were pushing images from one filter to another, but would also have

51

featureListPair->featureListPair

pipeline makeFundMatrix()

{

add normalizeIndices(s);

add splitjoin{

split duplicate;

add FLPID();

add pipeline{

add makeConstraintMatrix(s);

add svd1(s,9);//(s, 9);

add reshapeVCol(s);

add TransposeM(3,3);

add svd2();//(3,3);

add newF();

}

join roundrobin(1,1);

}

…
add denormalizeF();

}

function F = fundmatrix(varargin)

…
[x1, T1] = normalise2dpts(x1);

[x2, T2] = normalise2dpts(x2);

% Make the constraint matrix

A = [x2(1,:)’.*x1(1,:)’ x2(1,:)’.*x1(2,:)’ x2(1,:)’ ...

x2(2,:)’.*x1(1,:)’ x2(2,:)’.*x1(2,:)’ x2(2,:)’ ...

x1(1,:)’ x1(2,:)’ ones(npts,1)];

[U,D,V] = svd(A);

% Extract fundamental matrix from the column of V

% corresponding to smallest singular value.

F = reshape(V(:,9),3,3);

F = F’;
[U,D,V] = svd(F);

F = U*diag([D(1,1) D(2,2) 0])*V’;

% Denormalise

F = T2’*F*T1;

Figure 6-1: StreamIt v. MATLAB - StreamIt expresses computation in a more mod-
ular, hierarchical way with pipelines and filters.

metadata, like lists of features, which we would wish to send downstream to other

filters. There were two options with respect to how to send that information. On the

one hand, we could form a new data structure that we could push onto the output

channel that would include both the image and the metadata. On the other hand, we

could use teleport messaging to deliver that metadata to the intended receiver. Given

that the former case was generally easier to program, we found ourselves pushing out

data structures with a lot of metadata from filter to filter. Often, we need a filter to

manipulate only some of the metadata and not all elements of these complex data

structures, but end up pushing the entire data structure onto a pipeline that doesn’t

need all that information. Although this isn’t problematic in terms of performance,

when debugging with the Java library, pushing and popping large data structures

can cause the program to take much longer to execute. A proposed extension for

StreamIt is then to accommodate such a feature, where buffers between filters can

take union data types. If the expected data at the input are all of one data type,

the work function can proceed as normal. If the expected data at the input are of

different types, then a switch statement at the beginning of the work statement could

determine which it is, and then deal with it as expected.

52

Chapter 7

Conclusions

The fields of robotics and machine vision depend highly upon the speedy implemen-

tation of algorithms in those fields. Multicore processor architectures offer a unique

opportunity to translate existing programs designed for uniprocessor systems into pro-

grams that can exploit the added resources these extra cores have to offer. StreamIt

is a programming language that is well-poised to tackle the challenge of bridging the

gap between new hardware capabilities and cutting-edge applications. This thesis

offered a case study of the StreamIt programming language and its application to a

Machine Vision algorithm. In particular, it discussed the implementation of an image-

based motion estimation algorithm, and the process by which an existing MATLAB

implementation was translated into the StreamIt language.

The Motion Estimation algorithm was written, unlike the MPEG-2 codec, with

more lines of code than the reference implementation. However, MATLAB did invoke

many library functions (svd, convolution, matrix multiplications, etc.) that we coded

from scratch. Hence, as more benchmarks are added to the StreamIt library, the

programmer will not need write nearly as much. Furthermore, the StreamIt code

expressed the underlying block structure far better than the cluttered MATLAB

code, and although data typing can become cumbersome for a programmer relative

to the duck typing of MATLAB, a programmer reading the StreamIt code has a firmer

understanding when becoming acquainted with the code. This presents a tradeoff that

depends largely upon whose position one is in: the writer’s, or the reader’s.

53

Towards the end of confirming these findings, we implemented this motion esti-

mation algorithm which used the vast majority of StreamIt’s capabilities: feedback

loops, messaging, and dynamic rates. The performance of this implementation, on a

single processor architecture, was comparable to that of MATLAB.

7.1 Future work

The existing Motion Estimation algorithm has great potential for faster performance.

Executed on a uniprocessor architecture, the algorithm took an amount of time com-

parable to the MATLAB execution on a similar machine. Taking advantage of more

parallelism, one could improve the performance tremendously. Luckily, the algorithm

operates on independent pairs of consecutive images and hence can find homographies

for these pairs of images in parallel, with the number of parallel branches depending

upon the available number of processors. Beyond this, filters like the 2-D FFT can

also be parallelized as well (we take 1-D FFTs of rows and columns, and these can

be taken independently of one another). Beyond this, there exists the RANSAC loop

which, if stalling, can be channeled to several processors.

Ultimately, the benefits of motion estimation can be leveraged for more involved

applications. Mosaicing several images in realtime, realtime simultaneous localiza-

tion and mapping (SLAM), and other robotics applications could make great use of

StreamIt’s power.

54

Appendix A

The Stream Graph for the

StreamIt Motion Estimation

Algorithm

55

mosaic_10

fileRead_560

AnonFilter_a8_549

feature_565

chooseEigs_567

AnonFilter_a33_568

AnonFilter_a32_570

AnonFilter_a1_574

AnonFilter_a0_576

AnonFilter_a5_579

IAFIDandDynBoundary_580 AnonFilter_a4_583

ransac_585

AnonFilter_a21_588

AnonFilter_a20_589

makeFundMatrix_591

AnonFilter_a12_593

AnonFilter_a11_595

TransposeM_551

newF_603

AnonFilter_a18_604

TransposeM_553

FLPID_backloop_613

makeFundMatrixExit_617

AnonFilter_a15_619

AnonFilter_a14_621

TransposeM_555

newF_630

AnonFilter_a18_631

TransposeM_557

fileWrite_559

WEIGHTED_ROUND_ROBIN(0,0)

FileReader_561
push=1
pop=0

peek =0

FileReader_562
push=1
pop=0

peek =0

WEIGHTED_ROUND_ROBIN(230400,230400)

RGB2YIQ_563
push=3
pop=3

peek =3

makeMatrices_564
push=3

pop=230400
peek =230400

generateMinorEigs_566
push=4
pop=3

peek =3

WEIGHTED_ROUND_ROBIN(3,1)

floatArrayID_569
push=1
pop=1

peek =1

sortEigs_571
push=1
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(3,1)

reMakeIAndF_573
push=1
pop=4

peek =4

findBest_572
push=1
pop=1

peek =1

DUPLICATE(1,1)

IAFID_575
push=1
pop=1

peek =1

correlation_577
push=2
pop=1

peek =2

WEIGHTED_ROUND_ROBIN(1,2)

AnonFilter_a2_578
push=2
pop=3

peek =4

DUPLICATE(1,1)

IAFID_581
push=1
pop=1

peek =1

makeFeatureListPairs_584
push=1
pop=2

peek =2

WEIGHTED_ROUND_ROBIN(2,2)

AnonFilter_a6_640
push=2
pop=4

peek =4

AnonFilter_a7_582
push=1
pop=1

peek =1

normalizeFeaturePts_586
push=1
pop=1

peek =1

gateOfEntry_587
push=1
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(1,1)

selectIndices_590
push=1
pop=2

peek =2

DUPLICATE(1,1)

FLPID_614
push=1
pop=1

peek =1

gateOfExit_616
push=1
pop=1

peek =1

normalizeIndices_592
push=1
pop=1

peek =1

DUPLICATE(1,1)

FLPID_594
push=1
pop=1

peek =1

makeConstraintMatrix_596
push=72
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(1,1)

AnonFilter_a13_610
push=1
pop=2

peek =2

svd1_597
push=162
pop=72

peek =72

extractVColCorrespondingToSmallSingVal_598
push=9

pop=162
peek =162

WEIGHTED_ROUND_ROBIN(1,1,1)

Identity_599
push=1
pop=1

peek =1

Identity_600
push=1
pop=1

peek =1

Identity_601
push=1
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(3,3,3)

svd2_602
push=21
pop=9

peek =9

WEIGHTED_ROUND_ROBIN(12,9)

AnonFilter_a17_605
push=9
pop=12

peek =12

WEIGHTED_ROUND_ROBIN(1,1,1)

WEIGHTED_ROUND_ROBIN(9,9)

AnonFilter_a19_609
push=1
pop=18

peek =18

Identity_606
push=1
pop=1

peek =1

Identity_607
push=1
pop=1

peek =1

Identity_608
push=1
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(3,3,3)

denormalizeF_611
push=1
pop=1

peek =1

findInliers_612
push=1
pop=1

peek =1

AnonFilter_a22_615
push=1
pop=1

peek =1
initPush=1
initPop=0

initPeek =0

normalizeInliers_618
push=1
pop=1

peek =1

DUPLICATE(1,1)

FLPID_620
push=1
pop=1

peek =1

sendNumberOfInliers_622
push=1
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(1,1)

AnonFilter_a16_637
push=1
pop=2

peek =2

makeConstraintMatrixExit_623
push=1
pop=1

peek =1

svd3_624
push=1
pop=1

peek =1

extractVColCorrespondingToSmallSingValExit_625
push=9
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(1,1,1)

Identity_626
push=1
pop=1

peek =1

Identity_627
push=1
pop=1

peek =1

Identity_628
push=1
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(3,3,3)

svd2_629
push=21
pop=9

peek =9

WEIGHTED_ROUND_ROBIN(12,9)

AnonFilter_a17_632
push=9
pop=12

peek =12

WEIGHTED_ROUND_ROBIN(1,1,1)

WEIGHTED_ROUND_ROBIN(9,9)

AnonFilter_a19_636
push=1
pop=18

peek =18

Identity_633
push=1
pop=1

peek =1

Identity_634
push=1
pop=1

peek =1

Identity_635
push=1
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(3,3,3)

denormalizeFExit_638
push=1
pop=1

peek =1

AnonFilter_a3_639
push=2
pop=1

peek =1

plotFeatures_641
push=1
pop=1

peek =1

backToJustMatrices_642
push=3
pop=1

peek =1

unmakeMatrices_643
push=230400

pop=3
peek =3

YIQ2RGB_644
push=3
pop=3

peek =3

WEIGHTED_ROUND_ROBIN(230400,230400)

FileWriter_645
push=0
pop=1

peek =1

FileWriter_646
push=0
pop=1

peek =1

WEIGHTED_ROUND_ROBIN(0,0)

56

Bibliography

[1] International Conference on Compiler Construction, Grenoble, France, April

2002.

[2] Shail Aditya, Arvind, Lennart Augustsson, Jan-Willem Maessen, and Rishiyur S.

Nikhil. Semantics of pH: A Parallel Dialect of Haskell. In Paul Hudak, editor,

Proc. Haskell Workshop, La Jolla, CA USA, pages 35–49, June 1995.

[3] E. Ashcroft and W. Wadge. Lucid. a non procedural language with iteration. C.

ACM, 20(7), 1977.

[4] Kalyan B., Balasuriya A., Kondo H., Mak T., and Ura T. motion estimation

and mapping by autonomous underwater vehicles in sea environments. Proc. of

IEEE Oceans, 05(1), 2005.

[5] Gerard Berry and Georges Gonthier. The esterel synchronous programming lan-

guage: Design, semantics, implementation. Science of Computer Programming,

19(2):87–152, 1992.

[6] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Mike, and H. Pat. Brook for gpus:

Stream computing on graphics hardware, 2004.

[7] P. Caspi and M. Pouzet. Lucid Synchrone distribution.

[8] C. Consel, H. Hamdi, L. Rveillre, L. Singaravelu, H. Yu, and C. Pu. Spidle: A

dsl approach to specifying streaming applications, 2002.

[9] Matthew Drake. Stream programming for image and video compression. M.eng.

thesis, Massachusetts Institute of Technology, Cambridge, MA, May 2006.

57

[10] Dirk Farin and Peter H.N. de With. Evaluation of a feature-based global-motion

estimation system.

[11] T. Gautier, P. L. Guernic, and L. Besnard. Signal: A declarative language for

synchronous programming of real-time systems. Springer Verlag LNCS, 274,

1987.

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-

flow programming language LUSTRE. Proceedings of the IEEE, 79(9):1305–1320,

September 1991.

[13] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, ISBN: 0521623049, 2000.

[14] Ujval J. Kapasi, Scott Rixner, William J. Dally, Brucek Khailany, Jung Ho Ahn,

Peter Mattson, and John D. Owens. Programmable stream processors. IEEE

Computer, pages 54–62.

[15] E. Lee and D. Messershmitt. Static Scheduling of Synchronous Data Flow Pro-

grams for Digital Signal Processing. IEEE Trans, 1987.

[16] W. Mark, S. Glanville, and K. Akeley. Cg: A system for programming graphics

hardware in a c-like language, 2003.

[17] P. Murthy and E. Lee. Multidimensional synchronous dataflow. IEEE Transac-

tions on Signal Processing, 50(7):2064+, July 2002.

[18] Umakishore Ramachandran, Rishiyur S. Nikhil, James M. Rehg, Yavor An-

gelov, Arnab Paul, Sameer Adhikari, Kenneth M. Mackenzie, Nissim Harel, and

Kathleen Knobe. Stampede: A cluster programming middleware for interactive

stream-oriented applications. IEEE Transactions on Parallel and Distributed

Systems, 14(11):1140–1154, 2003.

[19] Janis Sermulins. Cache optimizations for stream programs. M.eng. thesis, Mas-

sachusetts Institute of Technology, Cambridge, MA, May 2005.

58

[20] Dirk Stichling and Bernd Kleinjohann. CV-SDF - a model for real-time com-

puter vision applications. In WACV 2002: IEEE Workshop on Applications of

Computer Vision, Orlando, FL, USA, December 2002.

[21] William Thies, Michal Karczmarek, Janis Sermulins, Rodric Rabbah, and Saman

Amarasinghe. Teleport messaging for distributed stream programs.

[22] Carlo Tomasi and Takeo Kanade. Detection and tracking of point features.

Technical Report CMU-CS-91-132, Carnegie Mellon University, April 1991.

59

