
1

Teleport Messaging for
Distributed Stream Programs

William Thies, Michal Karczmarek, Janis Sermulins,
Rodric Rabbah and Saman Amarasinghe

Massachusetts Institute of Technology
PPoPP 2005

http://cag.lcs.mit.edu/streamit

Please note: This presentation was updated in September 2006 to simplify
the timing of upstream messages. The corresponding update of the paper
is available at http://cag.csail.mit.edu/commit/papers/05/thies-ppopp05.pdf

2Streaming Application Domain
• Based on a stream of data

– Radar tracking, microphone arrays,
HDTV editing, cell phone base stations

– Graphics, multimedia, software radio

• Properties of stream programs
– Regular and repeating computation
– Parallel, independent actors

with explicit communication
– Data items have short lifetimes

AtoD

Decode

duplicate

LPF2LPF1 LPF3

HPF2HPF1 HPF3

Transmit

roundrobin

Encode
Amenable to aggressive
compiler optimization

[ASPLOS ’02, PLDI ’03, LCTES’03, LCTES ’05]

3Control Messages
• Occasionally, low-bandwidth control

messages are sent between actors
• Often demands precise timing

– Communications: adjust protocol,
amplification, compression

– Network router: cancel invalid packet
– Adaptive beamformer: track a target
– Respond to user input, runtime errors
– Frequency hopping radio

AtoD

duplicate

LPF2LPF1 LPF3

HPF2HPF1 HPF3

Transmit

roundrobin

How to implement efficiently?
Encode

Decode

What is the right
programming model?

4

• Option 2: Embed message in stream
PRO: - message arrives with data
CON: - complicates filter code

- complicates stream graph
- runtime overhead

Supporting Control Messages
• Option 1: Synchronous method call

PRO: - delivery transparent to user

CON: - timing is unclear

- limits parallelism

5

• Looks like method call, but timed
relative to data in the stream

• PRO:
– simple and precise for user

• adjustable latency
• can send upstream or downstream

– exposes dependences to compiler

void setProtocol(int p) {
reconfig(p);

}

TargetFilter x;
if newProtocol(p) {

x.setProtocol(p) @ 2;
}

Teleport Messaging

6Outline
• StreamIt
• Teleport Messaging
• Case Study
• Related Work and Conclusion

7Outline
• StreamIt
• Teleport Messaging
• Case Study
• Related Work and Conclusion

8Model of Computation
• Synchronous Dataflow [Lee 92]

– Graph of autonomous filters
– Communicate via FIFO channels
– Static I/O rates

• Compiler decides on an order
of execution (schedule)
– Many legal schedules

A/D

Duplicate

LED

Detect

Band Pass

LED

Detect

LED

Detect

LED

Detect

9Example StreamIt Filter

N

float->float filter LowPassFilter (int N, float[N] weights) {
work peek N push 1 pop 1 {

float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
} filter

10Example StreamIt Filter
float->float filter LowPassFilter (int N, float[N] weights) {

work peek N push 1 pop 1 {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}

handler setWeights(float[N] _weights) {
weights = _weights;

}
}

N

filter

11Example StreamIt Filter
float->float filter LowPassFilter (int N, float[N] weights, Frontend f) {

work peek N push 1 pop 1 {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}

if (result == 0) {
f.increaseGain() @ [2:5];

}
push(result);
pop();

}

handler setWeights(float[N] _weights) {
weights = _weights;

}
}

N

filter

12

parallel computation

StreamIt Language Overview
• StreamIt is a novel

language for streaming
– Exposes parallelism and

communication
– Architecture independent
– Modular and composable

• Simple structures composed
to creates complex graphs

– Malleable
• Change program behavior

with small modifications

may be
any StreamIt
language construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter

13Outline
• StreamIt
• Teleport Messaging
• Case Study
• Related Work and Conclusion

14Providing a Common Timeframe
• Control messages need precise

timing with respect to data stream

• However, there is no global
clock in distributed systems
– Filters execute independently,

whenever input is available

• Idea: define message timing
with respect to data dependences
– Must be robust to multiple datarates
– Must be robust to splitting, joining

15Stream Dependence Function (SDEP)

• Describes data dependences between filters

B

A

16Stream Dependence Function (SDEP)

• Describes data dependences between filters

B

A

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

17Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1
0

SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

18Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1

00
SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

19Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1

00
SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

× 1

20Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1

00
SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

× 2

21Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1

00
SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

× 2

× 1

22Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

× 2

× 1

23Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

× 3

× 1

24Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

× 3

× 2

25Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

32
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

× 3

× 2

26Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

32
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

× 3

× 2

n*3
2

=

27Calculating SDEP: General Case

A

SDEPA B(n): minimum number of times
that A must execute to make it possible
for B to execute n times

SDEPA C(n) =
max [SDEPA Bi(SDEPBi C(n))]B1

C

Bm i ∈ [1,m]

SDEP is compositional

28Teleport Messaging using SDEP
• SDEP provides precise

semantics for message timing
If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

X

R

S

29Teleport Messaging using SDEP
• SDEP provides precise

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

30Teleport Messaging using SDEP
• SDEP provides precise

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 1
If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

31Teleport Messaging using SDEP
• SDEP provides precise

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 2
If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

32Teleport Messaging using SDEP
• SDEP provides precise

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3
If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

33Teleport Messaging using SDEP
• SDEP provides precise

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3

× 1

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

34Teleport Messaging using SDEP
• SDEP provides precise

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3

× 2

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

35Teleport Messaging using SDEP
• SDEP provides precise

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3

× 2

× 1

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

36Teleport Messaging using SDEP
• SDEP provides precise

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3

× 3

× 1

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

37Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

38Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

39Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

40Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0

41Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

42Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4

43Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4

44Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 2

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4

45Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 3

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4

46Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 4

× 3

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4

47Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 4

× 4

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4

48Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 4

× 4

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4

49Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× 4

× 4

× 4

50Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]

51Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× ?

× ?

× 7

??

?

Receiver r;
r.decimate() @ [3:3]

52Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× ?

× ?

× 6

??

Receiver r;
r.decimate() @ [3:3]

?

53Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

×10

× 8

× 6

Receiver r;
r.decimate() @ [3:3]

54Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

×10

× 7

× 6

Receiver r;
r.decimate() @ [3:3]

55Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× 9

× 7

× 6

Receiver r;
r.decimate() @ [3:3]

56Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× 9

× 6

× 6

Receiver r;
r.decimate() @ [3:3]

57Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× 8

× 6

× 6

Receiver r;
r.decimate() @ [3:3]

58Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× 7

× 6

× 6

Receiver r;
r.decimate() @ [3:3]

59Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× 7

× 6

× 6

Receiver r;
r.decimate() @ [3:3]

R receives message after iteration 7

60Constraints Imposed on Schedule

No constraintMust not buffer
too little data

Message travels
downstream

Must not buffer
too much dataIllegalMessage travels

upstream

latency ≥ 0latency < 0

61Finding a Schedule
• Non-overlapping messages:

greedy scheduling algorithm

• Overlapping messages:
future work
– Overlapping constraints

can be feasible in isolation,
but infeasible in combination

62Outline
• StreamIt
• Teleport Messaging
• Case Study
• Related Work and Conclusion

63Frequency Hopping Radio
• Transmitter and receiver

switch between set of
known frequencies

• Transmitter indicates
timing and target of
hop using freq. pulse

• Receiver detects
pulse downstream,
adjusts RFtoIF
with exact timing:
– Switch at same time as transmitter
– Switch at FFT frame boundary

64Frequency Hopping Radio:
Manual Feedback

• Introduce feedback loop
with dummy items to
indicate presence or
absence of message

• To add latency, enqueue
1536 initial items on loop

• Extra changes needed
along path of message
– Interleave messages, data
– Route messages to loop
– Adjust I/O rates

• To respect FFT frames,
change RFtoIF granularity

65Frequency Hopping Radio:
Teleport Messaging

• Use message latency of 6
• Modify only RFtoIF, detector
• FFT frame boundaries

automatically respected:
SDEPRFIF det(n) = 512*n
Teleport
messaging
improves
programmability

66Preliminary Results

67Outline
• StreamIt
• Teleport Messaging
• Case Study
• Related Work and Conclusion

68Related Work
• Heterogeneous systems modeling

– Ptolemy project (Lee et al.); scheduling (Bhattacharyya, …)
– Boolean dataflow: parameterized data rates
– Teleport messaging allows complete static scheduling

• Program slicing
– Many researchers; see Tip’95 for survey
– Like SDEP, find set of dependent operations
– SDEP is more specialized; can calculate exactly

• Streaming languages
– Brook, Cg, StreamC/KernelC, Spidle, Occam, Sisal,

Parallel Haskell, Lustre, Esterel, Lucid Synchrone
– Our goal: adding restricted dynamism to static language

69Conclusion

Static
Powerful optimizations

Dynamic
Expressive behavior

Language Features

Control messages

Teleport messaging

Static-rate streaming
(Synchronous dataflow)

StreamIt Language

• Teleport messaging provides precise and flexible
event handling while allowing static optimizations
– Data dependences (SDEP) is natural timing mechanism
– Messaging exposes true communication to compiler

70

Extra Slides

71Calculating SDEP in Practice
• Direct SDEP formulation:

SDEPA C(n) =
max [max(0,),max(0,)*ob1 – k

ua

n*oc – k
ub1

max(0,),max(0,)*ob2 – k

ua

n*oc – k
ub2

max(0,)]max(0,)*ob3 – k

ua

n*oc – k
ub3

Direct calculation could grow unwieldy

72Calculating SDEP in Practice

SDEPA C(n)

n

init steady0 steady1 steady2

SDEP(n) =
0 n ∈ init
lookup_table[n] n ∈ steady0
k*SA + SDEP(n – k*SC) n ∈ steadyk

Build small SDEP table statically, use for all n

SA

SC

73Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [k1, k2]
• on the nth execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(n+k1) · m · SDEPR S(n+k2)

74Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [k1, k2]
• on the nth execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(n+k1) · m · SDEPR S(n+k2)

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]

75Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the nth execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(n+k1) · m · SDEPR S(n+k2)

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]

76Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the 4th execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(n+k1) · m · SDEPR S(n+k2)

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]

77Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the 4th execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(4+3) · m · SDEPR S(4+3)

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]

78Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the 4th execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(4+3) · m · SDEPR S(4+3)
m = SDEPR S(7)

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]

79Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the 4th execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(4+3) · m · SDEPR S(4+3)
m = SDEPR S(7)
m = 7

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]

80Constraints Imposed on Schedule
• If S sends on iteration n, then

R receives on iteration n+3
– Thus, if S is on iteration n, then

R must not execute past n+3
– Otherwise, R could miss message

pop 1
X

push 1

pop 1
S

R
push 1

Receiver r;
r.decimate() @ [3:3]

Messages constrain the schedule
• If latency is -1 instead of 3, then

no schedule satisfies constraint
Some latencies are infeasible

81Implementation
• Teleport messaging implemented in

cluster backend of StreamIt compiler
– SDEP calculated at compile-time, stored in table

• Message delivery uses “credit system”
– Sender sends two types of packets to receiver:

1. Credit: “execute n times before checking again.”
2. Message: “deliver this message at iteration m.”

– Frequency of credits depends on SDEP, latency range
– Credits expose parallelism, reduce communication

82Evaluation
• Evaluation platform:

– Cluster of 16 Pentium III’s (750 Mhz)
– Fully-switched 100 Mb network

• StreamIt cluster backend
– Compile to set of parallel threads, expressed in C
– Threads communicate via TCP/IP
– Partitioning algorithm creates load-balanced threads

