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2Streaming Application Domain
• Based on a stream of data

– Radar tracking, microphone arrays,
HDTV editing, cell phone base stations

– Graphics, multimedia, software radio

• Properties of stream programs
– Regular and repeating computation
– Parallel, independent actors 

with explicit communication
– Data items have short lifetimes

AtoD

Decode

duplicate

LPF2LPF1 LPF3

HPF2HPF1 HPF3

Transmit

roundrobin

Encode
Amenable to aggressive 
compiler optimization

[ASPLOS ’02, PLDI ’03, LCTES’03, LCTES ’05]



3Control Messages
• Occasionally, low-bandwidth control 

messages are sent between actors
• Often demands precise timing

– Communications:  adjust protocol,
amplification, compression

– Network router: cancel invalid packet
– Adaptive beamformer:  track a target
– Respond to user input, runtime errors
– Frequency hopping radio

AtoD

duplicate

LPF2LPF1 LPF3

HPF2HPF1 HPF3

Transmit

roundrobin

How to implement efficiently?
Encode

Decode

What is the right 
programming model?
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• Option 2:  Embed message in stream
PRO: - message arrives with data
CON: - complicates filter code

- complicates stream graph
- runtime overhead

Supporting Control Messages
• Option 1:  Synchronous method call

PRO: - delivery transparent to user

CON: - timing is unclear

- limits parallelism
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• Looks like method call, but timed 
relative to data in the stream

• PRO:
– simple and precise for user

• adjustable latency
• can send upstream or downstream

– exposes dependences to compiler

void setProtocol(int p) {
reconfig(p);

}

TargetFilter x;
if newProtocol(p) {

x.setProtocol(p) @ 2;
}

Teleport Messaging



6Outline
• StreamIt
• Teleport Messaging
• Case Study
• Related Work and Conclusion
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8Model of Computation
• Synchronous Dataflow [Lee 92]

– Graph of autonomous filters
– Communicate via FIFO channels
– Static I/O rates

• Compiler decides on an order
of execution (schedule)
– Many legal schedules

A/D

Duplicate

LED

Detect

Band Pass

LED

Detect

LED

Detect

LED

Detect



9Example StreamIt Filter

N

float->float filter LowPassFilter (int N, float[N] weights) {
work peek N push 1 pop 1 {

float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}
} filter



10Example StreamIt Filter
float->float filter LowPassFilter (int N, float[N] weights) {

work peek N push 1 pop 1 {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}
push(result);
pop();

}

handler setWeights(float[N] _weights) {
weights = _weights;

}
}

N

filter



11Example StreamIt Filter
float->float filter LowPassFilter (int N, float[N] weights, Frontend f ) {

work peek N push 1 pop 1 {
float result = 0;
for (int i=0; i<weights.length; i++) {

result += weights[i] * peek(i);
}

if (result == 0) { 
f.increaseGain() @ [2:5]; 

}
push(result);
pop();

}

handler setWeights(float[N] _weights) {
weights = _weights;

}
}

N

filter
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parallel computation

StreamIt Language Overview
• StreamIt is a novel 

language for streaming
– Exposes parallelism and 

communication
– Architecture independent
– Modular and composable

• Simple structures composed 
to creates complex graphs

– Malleable
• Change program behavior 

with small modifications

may be 
any StreamIt 
language construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter



13Outline
• StreamIt
• Teleport Messaging
• Case Study
• Related Work and Conclusion



14Providing a Common Timeframe
• Control messages need precise

timing with respect to data stream

• However, there is no global 
clock in distributed systems
– Filters execute independently,

whenever input is available

• Idea:  define message timing
with respect to data dependences
– Must be robust to multiple datarates
– Must be robust to splitting, joining



15Stream Dependence Function (SDEP)

• Describes data dependences between filters

B

A



16Stream Dependence Function (SDEP)

• Describes data dependences between filters

B

A

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times



17Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1
0

SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times



18Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1

00
SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times



19Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1

00
SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times

× 1



20Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1

00
SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times

× 2



21Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
1

00
SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times

× 2

× 1



22Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times

× 2

× 1



23Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times

× 3

× 1



24Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

2
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times

× 3

× 2



25Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

32
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times

× 3

× 2



26Stream Dependence Function (SDEP)

• Describes data dependences between filters

pop 3
B

A
push 2

32
21
00

SDEPA B(n)n

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times

× 3

× 2

n*3 
2

=



27Calculating SDEP:  General Case

A

SDEPA B(n): minimum number of times 
that A must execute to make it possible 
for B to execute n times

SDEPA C(n) = 
max [SDEPA Bi(SDEPBi C(n))]B1

C

Bm i ∈ [1,m]

SDEP is compositional



28Teleport Messaging using SDEP
• SDEP provides precise 

semantics for message timing
If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2

X

R

S



29Teleport Messaging using SDEP
• SDEP provides precise 

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



30Teleport Messaging using SDEP
• SDEP provides precise 

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 1
If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



31Teleport Messaging using SDEP
• SDEP provides precise 

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 2
If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



32Teleport Messaging using SDEP
• SDEP provides precise 

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3
If S sends message to R:

• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



33Teleport Messaging using SDEP
• SDEP provides precise 

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3

× 1

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



34Teleport Messaging using SDEP
• SDEP provides precise 

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3

× 2

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2
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• SDEP provides precise 

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3

× 2

× 1

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



36Teleport Messaging using SDEP
• SDEP provides precise 

semantics for message timing

pop 1
X

push 1

pop 1
R

S
push 1

× 3

× 3

× 1

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



37Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the nth execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



38Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [k1, k2]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



39Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

n+k1 · SDEPS R(m) · n+k2



40Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0



41Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4
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pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4
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pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 1

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4



44Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 2

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4



45Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 3

× 3

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4
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pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 4

× 3

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4



47Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 4

× 4

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4



48Teleport Messaging using SDEP

pop 1
X

push 1

pop 1
R

S
push 1

× 4

× 4

× 4

Receiver r;
r.increaseGain() @ [0:0]

If S sends message to R:
• on the 4th execution of S
• with latency range [0, 0]

Then message is delivered to R:
• on any iteration m such that

4+0 · SDEPS R(m) · 4+0
SDEPS R(m) = 4

m = 4



49Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

× 4

× 4

× 4



50Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]



51Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

× ?

× ?

× 7

??

?

Receiver r;
r.decimate() @ [3:3]



52Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

× ?

× ?

× 6

??

Receiver r;
r.decimate() @ [3:3]

?



53Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

×10

× 8

× 6

Receiver r;
r.decimate() @ [3:3]



54Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

×10

× 7

× 6

Receiver r;
r.decimate() @ [3:3]



55Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

× 9

× 7

× 6

Receiver r;
r.decimate() @ [3:3]



56Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

× 9

× 6

× 6

Receiver r;
r.decimate() @ [3:3]



57Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

× 8

× 6

× 6

Receiver r;
r.decimate() @ [3:3]



58Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps  

pop 1
X

push 1

pop 1
S

R
push 1

× 7

× 6

× 6

Receiver r;
r.decimate() @ [3:3]



59Sending Messages Upstream
• If embedding messages in stream,

must send in direction of dataflow
• Teleport messaging provides 

provides a unified abstraction
• Intuition:

– If S sends to R with latency k
– Then R receives message after producing

item that S sees in k of its own time steps

pop 1
X

push 1

pop 1
S

R
push 1

× 7

× 6

× 6

Receiver r;
r.decimate() @ [3:3]

R receives message after iteration 7



60Constraints Imposed on Schedule

No constraintMust not buffer 
too little data

Message travels 
downstream

Must not buffer 
too much dataIllegalMessage travels 

upstream

latency ≥ 0latency < 0



61Finding a Schedule
• Non-overlapping messages:

greedy scheduling algorithm

• Overlapping messages:  
future work
– Overlapping constraints 

can be feasible in isolation, 
but infeasible in combination 



62Outline
• StreamIt
• Teleport Messaging
• Case Study
• Related Work and Conclusion



63Frequency Hopping Radio
• Transmitter and receiver 

switch between set of
known frequencies

• Transmitter indicates
timing and target of 
hop using freq. pulse

• Receiver detects
pulse downstream,
adjusts RFtoIF
with exact timing:
– Switch at same time as transmitter
– Switch at FFT frame boundary



64Frequency Hopping Radio:
Manual Feedback

• Introduce feedback loop 
with dummy items to 
indicate presence or 
absence of message

• To add latency, enqueue
1536 initial items on loop

• Extra changes needed 
along path of message
– Interleave messages, data
– Route messages to loop
– Adjust I/O rates

• To respect FFT frames, 
change RFtoIF granularity



65Frequency Hopping Radio:
Teleport Messaging

• Use message latency of 6
• Modify only RFtoIF, detector
• FFT frame boundaries

automatically respected:
SDEPRFIF det(n) = 512*n
Teleport 
messaging
improves 
programmability



66Preliminary Results



67Outline
• StreamIt
• Teleport Messaging
• Case Study
• Related Work and Conclusion



68Related Work
• Heterogeneous systems modeling

– Ptolemy project (Lee et al.); scheduling (Bhattacharyya, …)
– Boolean dataflow:  parameterized data rates
– Teleport messaging allows complete static scheduling

• Program slicing
– Many researchers; see Tip’95 for survey
– Like SDEP, find set of dependent operations
– SDEP is more specialized; can calculate exactly

• Streaming languages
– Brook, Cg, StreamC/KernelC, Spidle, Occam, Sisal, 

Parallel Haskell, Lustre, Esterel, Lucid Synchrone
– Our goal: adding restricted dynamism to static language



69Conclusion

Static
Powerful optimizations

Dynamic
Expressive behavior

Language Features 

Control messages

Teleport messaging

Static-rate streaming
(Synchronous dataflow)

StreamIt Language

• Teleport messaging provides precise and flexible 
event handling while allowing static optimizations
– Data dependences (SDEP) is natural timing mechanism
– Messaging exposes true communication to compiler 



70

Extra Slides



71Calculating SDEP in Practice
• Direct SDEP formulation:

SDEPA C(n) = 
max [max(0,                                          ),max(0,              )*ob1 – k

ua

n*oc – k 
ub1

max(0,                                          ),max(0,              )*ob2 – k

ua

n*oc – k 
ub2

max(0,                                          )]max(0,              )*ob3 – k

ua

n*oc – k 
ub3

Direct calculation could grow unwieldy



72Calculating SDEP in Practice

SDEPA C(n)

n

init steady0 steady1 steady2

SDEP(n) =
0               n ∈ init
lookup_table[n] n ∈ steady0
k*SA + SDEP(n – k*SC)    n ∈ steadyk

Build small SDEP table statically, use for all n

SA

SC



73Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [k1, k2]
• on the nth execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(n+k1) · m · SDEPR S(n+k2)



74Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [k1, k2]
• on the nth execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(n+k1) · m · SDEPR S(n+k2)

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]



75Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the nth execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(n+k1) · m · SDEPR S(n+k2)

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]



76Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the 4th execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(n+k1) · m · SDEPR S(n+k2)

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]



77Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the 4th execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(4+3) · m · SDEPR S(4+3)

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]



78Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the 4th execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(4+3) · m · SDEPR S(4+3)
m = SDEPR S(7) 

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]



79Sending Messages Upstream

pop 1
X

push 1

pop 1
S

R
push 1

If S sends upstream message to R:
• with latency range [3, 3]
• on the 4th execution of S

Then message is delivered to R:
• after any iteration m such that

SDEPR S(4+3) · m · SDEPR S(4+3)
m = SDEPR S(7)
m = 7

× 4

× 4

× 4

Receiver r;
r.decimate() @ [3:3]



80Constraints Imposed on Schedule
• If S sends on iteration n, then

R receives on iteration n+3
– Thus, if S is on iteration n, then

R must not execute past n+3
– Otherwise, R could miss message

pop 1
X

push 1

pop 1
S

R
push 1

Receiver r;
r.decimate() @ [3:3]

Messages constrain the schedule
• If latency is -1 instead of 3, then

no schedule satisfies constraint
Some latencies are infeasible



81Implementation
• Teleport messaging implemented in 

cluster backend of StreamIt compiler
– SDEP calculated at compile-time, stored in table

• Message delivery uses “credit system”
– Sender sends two types of packets to receiver:

1. Credit: “execute n times before checking again.”
2. Message: “deliver this message at iteration m.”

– Frequency of credits depends on SDEP, latency range
– Credits expose parallelism, reduce communication



82Evaluation
• Evaluation platform:

– Cluster of 16 Pentium III’s (750 Mhz)
– Fully-switched 100 Mb network

• StreamIt cluster backend
– Compile to set of parallel threads, expressed in C
– Threads communicate via TCP/IP
– Partitioning algorithm creates load-balanced threads


