
Programming by Sketching for Bit-Streaming Programs

Armando Solar-Lezama1 Rodric Rabbah2 Rastislav Bodı́k1 Kemal Ebcioğlu3

1Computer Science Division, University of California, Berkeley
2Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology

3T.J. Watson Research Center, IBM Corporation
{asolar, bodik}@cs.berkeley.edu, rabbah@mit.edu, kemal@us.ibm.com

Abstract
This paper introduces the concept of programming with sketches,
an approach for the rapid development of high-performance ap-
plications. This approach allows a programmer to write clean and
portable reference code, and then obtain a high-quality implemen-
tation by simply sketching the outlines of the desired implemen-
tation. Subsequently, a compiler automatically fills in the missing
details while also ensuring that a completed sketch is faithful to
the input reference code. In this paper, we develop StreamBit as
a sketching methodology for the important class of bit-streaming
programs (e.g., coding and cryptography).

A sketch is a partial specification of the implementation, and as
such, it affords several benefits to programmer in terms of produc-
tivity and code robustness. First, a sketch is easier to write com-
pared to a complete implementation. Second, sketching allows the
programmer to focus on exploiting algorithmic properties rather
than on orchestrating low-level details. Third, a sketch-aware com-
piler rejects “buggy” sketches, thus improving reliability while al-
lowing the programmer to quickly evaluate sophisticated imple-
mentation ideas.

We evaluated the productivity and performance benefits of
our programming methodology in a user-study, where a group of
novice StreamBit programmers competed with a group of experi-
enced C programmers on implementing a cipher. We learned that,
given the same time budget, the ciphers developed in StreamBit
ran 2.5× faster than ciphers coded in C. We also produced imple-
mentations of DES and Serpent that were competitive with hand
optimized implementations available in the public domain.

Categories and Subject Descriptors D.2.2 [Software Engineer-
ing]: Software Architectures, Design Tools and Techniques; D.3.3
[Programming Languages]: Language Constructs and Features;
D.3.4 [Programming Languages]: Processors; D.3.2 [Program-
ming Languages]: Language Classifications

General Terms Languages, Design, Performance

Keywords Stream Programming, StreamIt, Synchronous Dataflow,
Sketching, Domain Specific Language, Domain Specific Compiler

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’05, June 12–15, 2005, Chicago, Illinois, USA.
Copyright c© 2005 ACM 1-59593-080-9/05/0006. . . $5.00.

1. Introduction
Applications in domains like cryptography and coding often have
the need to manipulate streams of data at the bit level. Such ma-
nipulations have several properties that make them a particularly
challenging domain from a developer’s point of view. For exam-
ple, while bit-level specifications are typically simple and concise,
their word-level implementations are often daunting. Word-level
implementations are essential because they can deliver an order of
magnitude speedup, which is important for servers where security-
related processing can consume up to 95% of processing capac-
ity [20]. Converting bit-level implementations to word level imple-
mentations is akin to vectorization, but the characteristics of bit-
streaming codes render vectorizing compilers largely ineffective.
In fact, widely used cipher implementations often achieve perfor-
mance thanks to algorithm-specific algebraic insights that are not
available to a compiler.

Additionally, correctness in this domain is very important be-
cause a buggy cipher may become a major security hole. In 1996,
a release of the BlowFish cipher contained a buggy cast (from un-
signed to signed characters) which threw away two thirds of the
encryption-key in many cases. As a result, 3/4 of all keys could be
broken in less than 10 minutes [17]. This accident illustrates not
only the severity of cipher bugs, but also the difficulty with cipher
testing. The buggy BlowFish cipher actually worked correctly on
all test cases, exemplifying a common issue with many ciphers, es-
pecially those based on Feistel rounds. These ciphers can encrypt
and decrypt a file even when coded incorrectly, thus complicating
correctness checking and verification.

In this paper we present StreamBit as a new programming
methodology that simultaneously (i) ensures correctness and (ii)
supports semi-automatic performance programming. We achieve
these goals by allowing the user to guide the compilation process
by sketching the desired implementation. To explain how sketching
works, consider the following bit manipulation example we refer
to as DropThird. It is concisely described as: “produce an output
stream by dropping every third bit from the input stream”. Some-
what surprisingly, this seemingly simple problem exhibits many is-
sues arising in the more involved bit-stream manipulations algo-
rithms, including parity checking and bit permutations.

To illustrate why this is a non-trivial example, consider a
general-purpose processor with the usual suite of bitwise oper-
ations: and, or, xor, left/right shift—this is the target machine
assumed in this paper. In order to obtain a high-performing im-
plementation on such a machine, we must satisfy several trade-
offs. For example, we can carefully prearrange the bits into words
and therefore exploit more parallelism within a word. However,
the cost of prearrangement may not be offset by word-level paral-
lelism alone. In general, arriving at a good implementation requires
employing locally sub-optimal implementation strategies. Further-

(a) (b)

w = 16 (word size)

Figure 1. Two implementations of DropThird: (a) naive implemen-
tation with a O(w) running time; and (b) log-shifter implementa-
tion with a O(log w) running time.

more, the exact way in which the prearrangement is implemented
can lead to significant differences in performance. This is illustrated
in Figure 1. The naive scheme shown on the left needs O(w) steps,
while the smarter scheme (on the right) requires O(log(w)) steps;
w = 16 in our example and it represents the word size. The smarter
algorithm, known to hardware circuit designers as a log-shifter, is
faster because it utilizes the word parallelism better: it shifts more
bits together while ensuring that no bit needs to be moved too many
times—again, a tricky trade-off. Finding a better implementation
is worth it: on a 32-bit Pentium processor, the log-shifter imple-
mentation is 1.6× faster than the naive implementation; on a 64-bit
Itanium architecture, it is 3.5× faster; and on an IBM SP processor,
it is 2.3× faster. The log-shifter is also significantly faster than our
table-lookup implementations, on all our platforms.

Besides finding an implementation algorithm with a suitable
trade-off, the programmer faces several tedious and bug-prone
tasks:

• Low-level details. Programming with low-level codes results
in implementations that are typically disproportionate in size
and complexity to the algorithm specification. For example, a
FORTRAN implementation of a log-shifter (for a DropThird
variant) requires 140 lines of code. The complexity is due to
the use of different bit-masks at each stage of the algorithm.

• Malleability and portability. The low-level code is hard to mod-
ify, even for simple changes to the program specification (e.g.,
changing the specification to drop the second of every three
bits). Furthermore, porting a 32-bit implementation to a 64-bit
machine typically requires rewriting the entire implementation
(not doing so will halve the performance of DropThird).

• Instruction-level parallelism. Micro-architectural characteris-
tics may significantly influence performance. For example, the
naive implementation in Figure 1 may win on some machines
because it actually offers more instruction-level parallelism
than the log-shifter (there are less data dependencies). To find a
suitable implementation, the programmer typically implements
and measures the performance of various implementation ideas.

When programming with StreamBit, the programmer first
writes a full behavioral specification of the desired bit manipulation
task. This specification, called the reference program, is written in
the StreamIt dataflow language [19], and is nothing more than a
clean, unoptimized program describing the task at the level of bits
(rather than at the level of words). In case of ciphers, the reference
program is usually a simple transcription of the cipher standard.
In the absence of a Sketch, we compile the reference program to
low-level C code with a base compiler. The base compiler exploits
word-level parallelism using a simple greedy strategy based on
local substitution rules.

Once the reference program is complete, either the programmer
or a performance expert sketches an efficient implementation. The
goal of sketching is to provide only a loosely constrained template

of the implementation, with the compiler filling in the missing
details. The details are obtained by ensuring that when the sketch is
resolved, it implements the reference program; that is, the resolved
sketch is behaviorally equivalent to the reference program.

A challenge with sketching the outline of an implementation
is that the programmer may want to sketch implementation ideas
at different levels of abstraction. StreamBit affords such a conve-
nience by allowing the user-provided sketch to transform the pro-
gram at any point through the base compilation process. Effec-
tively, as the base compiler proceeds to transform the program to
low-level C through local substitutions, the sketches will prompt
additional transformations, which will result in an implementation
that will approach the level of performance that the expert desires.
The underlying intuition is that the local substitutions of the base
compiler will perform a more optimal translation if the difficult
global decisions are supplied via sketches—this is especially im-
portant when the complexity of an optimization is well beyond the
scope of what a compiler can autonomously discover.

In Figure 2, we illustrate the key ideas behind sketching. On
the very left is the reference program in visual form. This bit
manipulation task is translated by the base compiler into a task that
is equivalent, but also word-aligned. Now, if the base compiler is
allowed to continue, it produces the slow implementation strategy
shown in Figure 1(a). Instead, the programmer supplies a sketch of
how the word-aligned task should be implemented. With sketching,
the programmer states no more than a rough idea of the task: it
is potentially possible to implement the DropThird permutation by
first shifting some bits by one position, then some bits by two
positions, and so on. The sketch does not specify which bits must
shift in each step; in fact, it may not be possible to satisfy the
sketch—log-shifting of course does not work for all permutations.
If the sketch is satisfiable, then the details (i.e., which bits to shift)
are derived automatically. Otherwise, it is rejected, and thus the
user cannot introduce bugs into the implementation.

In summary, the StreamBit methodology offers the following
benefits: (1) it obviates the need to code low-level details thereby
making developers more productive, (2) it rejects buggy sketches
and guarantees correctness by construction, (3) it allows the pro-
grammer to rapidly test and evaluate various implementation ideas,
even before they are known to be correct—without the fear of intro-
ducing bugs. In addition, the sketches are robust because they are
devoid of low-level details. For example, note that even though the
implementation of the log-shifter is slightly different for different
words, the same sketch applies to all of them because the general
strategy remains the same; only the details of exactly which bits to
shift change. In fact, if DropThird is modified to drop the second of
every three bits, we simply need to change the reference program;
the original sketch remains applicable. Thus, the sketch has a level
of re-usability across a family of algorithms.

This paper makes the following contributions.

• We describe programming by sketching, a method for rapidly
developing correct-by-construction implementations of bit-
streaming programs.

• We develop a constraint solver for compiling sketch. The solver
uses the reference program and the sketch to derive a complete
(and optimized) implementation.

• We develop a sketching language that allows programmers to
specify a large number of implementations.

• We report the results of a user study which showed that in the
same amount of time, StreamBit programmers were more pro-
ductive, producing code that ran 3× faster than C programmers.

• We show that sketched implementations of DES and Serpent
perform as well as (and in some cases outperform) heavily
optimized and widely used implementations of these ciphers.

(b) same task, word-aligned

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

(c) sketch

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

?? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

(d) resolved sketch

+

(a) reference program

translated by
base compiler sketch

resolution

Figure 2. An illustration of programming with sketches on our running example. The compiler translates the reference program into machine
code in several steps; at each step, it checks whether there is a sketch on how to implement the given program. In the figure, the compiler
first unrolls the reference program to operate on words, rather than bits. Then, this word-aligned task (a full specification of a bit-stream
manipulation function) is combined with the sketch (a partial specification of the implementation) to derive the full implementation. The
compiler then continues to translate the resolved sketch into machine instructions.

The remainder of the paper is organized as follows. Section 2
describes the StreamIt programming language and model of com-
putation. Sections 3 and 4 describe the program representation
and base compiler infrastructure. Section 5 details the sketching
methodology. Section 6 presents our evaluation and results. Lastly,
a discussion of related work appears in Section 7, and our summary
and concluding remarks appear in Section 8.

2. StreamIt
The StreamBit compiler is concerned with the domain of bit-
streaming programs, with a focus on private-key ciphers. Such
programs generally consume input bits from a stream (in blocks
ranging in size from 32 to 256 bits), and produce output bits via
a sequence of transformations on the stream. The transformations
generally include permutations, substitutions, or arbitrary boolean
functions. Additionally, in the case of ciphers, some functions will
involve mixing an encryption key with the stream. An important
characteristic of ciphers is that they tend to avoid data dependent
computations, since this makes them vulnerable to side channel
attacks; in particular, loop trip counts are fixed at compile time [8].

The StreamBit system uses StreamIt as the language for writ-
ing the reference programs. StreamIt [19] embraces a synchronous
dataflow model of computation. In this model, a program consists
of a collection of filters that produce and consume data through
output and input ports respectively, and a set of FIFO communica-
tion channels that connect the output and input ports of different
filters. A filter is an autonomous unit of computation that executes
(or fires) whenever there is a sufficient amount of data queued on
the input channel. In StreamIt, a filter is a single input-single output
component with statically bound I/O rates—that is, the amount of
data produced and consumed during a single filter firing is deter-
mined at compile time. The static I/O bounds allow the compiler
to orchestrate the execution of the entire program, and to implicitly
manage the buffers between filters. The compiler can thus lessen
the burden on the programmer in terms of interleaving filter execu-
tions or allocating adequate buffer space between filters.

Figure 3 illustrates a simple filter that implements DropThird;
this filter is our running example. The work function defines the
output of the filter as a function of its input. The work function
may contain arbitrary code, but sketching is only allowed when the
loop bounds in the work function are not dependent on the input
data, and when the filters do not maintain state (i.e., the output is
strictly a function of the input). These requirements, along with
the requirement of statically defined input and output rates, are
not an impediment in our domain, since ciphers tend to avoid data
dependent computation, and are generally defined as a sequence of
functions that do not resort to any saved state.

In StreamIt, the communication channels are defined implicitly
by composing filters into pipelines or splitjoins. A pipeline is a

bit->bit filter DropThird {
work push 2 pop 3 {

for (int i=0; i<3; ++i) {
bit x = peek(i)
if (i<2) push(x);
pop();

}
}

}

Figure 3. The reference program of DropThird, our running exam-
ple, expressed here as a StreamIt filter that drops every third bit.

sequence of filters that are linked together such that the output of
filter i is the input of filter i + 1. The StreamIt program below
illustrates a pipeline that consumes an input stream and drops every
third bit from it, and subsequently drops every third bit from the
resulting stream.

bit->bit pipeline DropTwice {
add DropThird();
add DropThird();

}

A splitjoin consists of a splitter which distributes its input
stream to N children filters, and a joiner which merges the out-
put of all N children. There are two types of splitters: duplicate
splitters and roundrobin splitters. A duplicate splitter passes iden-
tical copies of its input to every one of its children. In contrast,
a roundrobin splitter distributes the input stream to the individual
filters in a roundrobin fashion, according to the specified rate for
each filter. Similarly, a roundrobin joiner reads data in a roundrobin
fashion from every branch in the splitjoin and writes them in order
to the output stream (such a joiner effectively concatenates its in-
puts). In the splitjoin example below, every three consecutive bits
x, y, z in the input stream are processed as follows: the duplicate
splitter sends identical copies of these three bits to the two chil-
dren filters. The roundrobin joiner reads the two bits x, y from the
output of the DropThird filter, and one bit z from the output of the
KeepThird filter, and concatenates them, producing x, y, z again in
the output stream.

bit->bit splitjoin FunnyIdentity {
split duplicate;
add DropThird();
add KeepThird();
join roundrobin(2,1);

}

In StreamIt, filters, pipelines, and splitjoins can be nested, lead-
ing to a hierarchical composition of a stream program. The lan-
guage exposes the communication between filters and the task level
parallelism in the program, while also affording modularity, mal-
leability, and portability. It is therefore well suited for our purpose,

and is also rich and expressive enough to serve as an intermediate
representation throughout the compilation process.

3. Program Representation
The synchronous dataflow programming model of the StreamIt lan-
guage serves as a convenient foundation for the intermediate repre-
sentation used throughout the StreamBit compilation process. We
use an abstract syntax tree (AST) to represent the three possible
stream constructs: leaves represent filters, and internal nodes repre-
sent pipelines and splitjoins.

3.1 Filters
In general, a filter can represent an arbitrary mapping between its
input bit vector and its output bit vector. However, there is class of
filters whose output is an affine function of their input. Such filters
are important because they have useful algebraic properties, and
can serve as building blocks to represent permutations and arbitrary
boolean functions, and for this reason they will constitute the leaves
of the AST.

Affine Filters Formally, an affine filter f is a filter whose work
function performs the following transformation:

[[f]](x) = Mx + v

where x is a n-element boolean (i.e., binary) vector, M is a m× n
boolean matrix, and v is a m-element “offset” boolean vector. Note
that all vectors in this paper are column vectors but are sometimes
written as row vectors for compactness. We denote an affine filter
with f = (M, v), and the work function with [[f]](x). If the offset
vector is the zero vector (i.e., v = [0, . . . , 0]), then we simply write
f = M .

We distinguish three types of affine filters: and, or, and xor.
These filters differ in the boolean operations used to carry out the
scalar multiplication and scalar addition that make up the vector
operations. The three types of filters are summarized as follows.
The type of a filter f is obtained via typeof (f).

typeof (f) scalar multiplication scalar addition
and ∨ ∧
or ∧ ∨
xor ∧ ⊕

For the rest of the paper, unless otherwise noted, we assume filters
are of type xor.

Permutation Filters In cipher implementations, permutations are
a particularly important class of affine filters. In this paper, a per-
mutation is a filter that optionally removes some bits from the n-bit
input vector, and arbitrarily reorders the remaining input bits to ob-
tain an m-bit result. In StreamBit, as a matter of convention, a per-
mutation filter is of type xor, but the type is not important because
permutation filters have a zero offset vector v, and a work matrix
M with at most one non-zero value per row, and hence no addition
is involved 1.

As an example, the work matrix for the DropThird permutation
filter is:

MDropThird =

»

1 0 0
0 1 0

–

.

A natural way to interpret the matrices is to realize that each
row corresponds to single output bit, and that the non-zero element
in the row represents which of the input bits (if any) will appear in
the output.

1 The only caveat to this statement is that if we want to represent a permu-
tation with an and filter, we need to negate all the entries in the matrix and
offset vector, i.e. we must have one zero value per row, and the offset vector
must be all ones.

Arbitrary Boolean Functions Filters that implement arbitrary
boolean functions can be transformed to pipelines of affine fil-
ters. This is possible because any boolean function is expressible
in disjunctive normal form, i.e., as a disjunction of minterms. In
StreamBit, a pipeline of three affine filters implements functions
in disjunctive normal form as follows: first, an xor filter negates
input bits; second, an and filter computes the minterms; and fi-
nally an or filter performs the disjunction. The StreamBit compiler
uses a more complicated algorithm based on symbolic execution—
which is not exponential, unlike minterm expansion—to produce a
pipeline of and, or and xor filters for work functions with arbi-
trary boolean expressions.

3.2 Pipelines and Splitjoins
In our intermediate representation, the internal nodes of the AST
are pipelines and splitjoins. A pipeline AST node with children
x1 to xn is denoted PL(x1, . . . , xn). The children may in turn
represent filters, pipelines, or splitjoins (since StreamIt allows for
a hierarchical composition of stream components). For example a
pipeline of n filters is represented as

PL((M1, v1), ..., (Mn, vn)),

whereas a pipeline of n pipelines is represented as

PL(PL1(...), ..., PLn(...)).

In both cases however, the communication topology is clear: the
output of child xi is the input of child xi + 1.

A splitjoin AST node connects its children x1 to xn to a splitter
sp and a joiner jn. A splitjoin is denoted SJsp,jn(x1, . . . , xn), with
duplicate splitters denoted dup, and roundrobin splitters (or joiners)
with rates k1, . . . , kn denoted rr(k1, . . . , kn). For example, the
splitjoin for FunnyIdentity in section 2 is described as:

SJdup,rr(2,1)(MDropThird, MKeepThird).

When the rates of a roundrobin splitter or joiner are equal (k1 =
... = kn), we simply write rr(k1). We will use the notation rr[i]
to refer to the ith rate in the round-robin. In StreamBit, we also
support a reduction joiner which is denoted red. There are three
types of reducing joiners—namely and, or, and xor—each of
which applies the corresponding boolean operator to n bits from the
input stream (one bit from each of n input streams) and commits
the result to the output stream. In other words, a reduction joiner is
semantically equivalent to a rr(1) joiner whose output is consumed
by an affine filter f = M where typeof(f) corresponds to the type
of the reduction joiner, and every entry of the binary work matrix
M is non-zero.

4. The Base Compiler
This section describes the base compilation algorithm that is used
by the StreamBit system to produce code from the reference pro-
gram. The base algorithm is very fast and predictable, but the code
it produces is not optimal. The next section will address this by ex-
plaining how StreamBit builds on top of this algorithm to allow for
sketching of user-defined implementations.

The base compilation works by applying local substitution rules
on the AST to convert the reference program into an equivalent
StreamIt program with the property that each of its affine filters
corresponds to an atomic operation in our machine model. A pro-
gram with these characteristics is said to be in Low-Level Form
(LL-form). More formally, an LL-form program is defined as a pro-
gram with the following two properties:

(1) Its communication network (AST internal nodes) transfers data
in blocks of a size that can be handled directly by the atomic
operations in the model machine.

(a) (b) (c)

dup

1 00 1

or

0 00 1

1 0 0 00 1 0 0 0 0 1 00 0 0 1

1 00 10 0
0 0

0 00 01 00 1

rr(2,2)

1 00 1

rr(2,2)

0 00 1

dup

1 00 1

rr(2,2)

0 00 1

1 0 0 00 1 0 0
0 0 1 00 0 0 1

Figure 4. The Splitjoin Resizing transformations. The original
filter (a) is transformed using Split Equivalence (b); the result is
then transformed using Join Equivalence (c).

(2) Its filters (AST leaves) correspond to a single atomic operation.

Throughout this paper, as well as in our current implementation,
we use as our machine model a processor that can move data in
blocks of size w (the word-size), and apply any of the following
atomic operations on it: right and left logical shift on words of size
w, and, or and xor of two words of size w, and and, or and xor of
one word of size w with a fixed constant.

Programs in LL-form are easily mapped to C code, because
their dataflow graphs consist of atomic operations linked together
through communication channels that define how values flow
among them. Our choice of machine model makes translation into
C easy, because all the atomic operations can be expressed in a
single C statement. We chose C as the target of our compilation,
both for portability reasons, and to take advantage of the register
allocation and code scheduling performed by good C compilers,
which allows us to focus on higher level optimizations.

The base compilation algorithm will transform any program to
satisfy the two properties of LL-form by following three simple
steps, all based on local substitution rules:

i) Splitjoin Resizing;
ii) Leaf Size Adjustment;
iii) Instruction Decomposition.

Figure 6 shows the complete algorithm. Before describing each
of the stages in detail, we point out that the first two stages will be
responsible for enforcing property (1), while the third stage will be
responsible for property (2).

Splitjoin Resizing This stage will apply local rewrite rules to
the internal nodes of the AST when it is necessary in order to
remove a violation of property (1). This, it turns out, will only
be necessary in the case of splitjoins with roundrobin splitters or
joiners where there is an i for which rr[i], the number of bits to
deliver, is not a multiple of w (w equals the number of bits our
assumed machine can handle in one instruction). In this case, we
apply a transformation based on the Join and Split Equivalences
of Figure 5 to transform the splitter/joiner to one that makes no
mention of rates, i.e., a duplicate spliter or a reduction joiner.
Figure 4 illustrates the effect of the transformations on this stage
for a simple splitjoin. As it will become apparent shortly, pipelines
and other types of splitjoins do not need to make substitutions to
the internal nodes of the AST to satisfy property (1), and therefore
are not affected by this stage. In particular, this transformation is
not needed when compiling DropThird because DropThird has no
splitjoins.

Leaf Size Adjustment Once all splitjoins are transformed via
Splitjoin Resizing, we complete the transformation to LL-form
using only local rewrite rules on the leaves of the AST.

We can do this because in the case of pipelines and splitjoins
with dup splitters or red joiners, property (1) is trivially maintained
as long as all their children produce and consume bits in multiples
of the w. Therefore, a simple inductive argument shows that we
don’t need to make any more changes to the internal nodes to
satisfy property (1); we only need to guarantee that the leaf nodes
produce and consume bits in multiples of w.

The Leaf Size Adjustment stage will enforce property (1) by
forcing each leaf node to consume exactly w bits and produce w
bits through the application of the UNROLL, COLSPLIT, and ROWS-
PLIT substitution rules as shown in the pseudocode in Figure 6.

To understand how the LEAF-SIZE-ADJ procedure works, con-
sider the running example as illustrated in Figure 7. The figure
shows the complete sequence transformations we would perform
on the DropThird filter to compile it into instructions for a 4 bit
wide machine.

First, in step (a), we use the unroll equivalence from Figure 5
to substitute DropThird with an equivalent filter whose size is a
multiple of the word size.

Mu :=

2

6

4

MDropThird 0 0 0
0 MDropThird 0 0
0 0 MDropThird 0
0 0 0 MDropThird

3

7

5
= MDropThird

Then, in step (b), we use the column equivalence to replace the
affine filter with an equivalent splitjoin of filters whose input size
is equal to the word size

SJrr,or(M1, M2, M3) = Mu

where the Mi are defined such that

Mu = [M1, M2, M3]

Finally, in step (c) we use the row equivalence to substitute each
of the new affine filters with a splitjoin of filters whose input and
output size is equal to w.

SJrr,or(
SJdup,rr(M1,1, M1,2),
SJdup,rr(M2,1, M2,2),
SJdup,rr(M3,1, M3,2)

) = SJrr,or(M1, M2, M3)

Where

Mi =

»

Mi,1

Mi,2

–

Note that all we have done is apply local substitution rules to the
leaves until all the leaf filters take w bits of input and produce w
bits of output, and as a consequence, property (1) is fully satisfied.
Also note that the validity of the substitutions can be ascertained
by looking only at a single node and its immediate children in the
AST, so the process is very fast.

Instruction Decomposition Once all the leaf nodes in the AST
map one word of input to one word of output, we need to decom-
pose them into filters corresponding to the atomic bit operations
available in our assumed machine model.

The pseudocode in Figure 6 shows the Instruction Decompo-
sition as simply applying to every leaf-node one last substitution
called IDECOMP.

The IDECOMP transformation is based on the observation that
any matrix can be decomposed into a sum of its diagonals. Each
diagonal in turn can be expressed as a product of a matrix cor-
responding to a bit-mask with a matrix corresponding to a bit
shift. Thus, any matrix m of size w × w can be expressed as
m =

Pw−1
i=−(w−1) ais

i, where the ai are diagonal matrices, and
si is a matrix corresponding to a shift by i. Given this decompo-
sition, we use the sum and product equivalences from Figure 5 to

Unroll Equivalence

UNROLL[n]((M,v))
Where n is the number of times to unroll.

(M,V) → (

2

6

4

M 0 . . .
0 M 0 . . .

.
0 . . . M

3

7

5
,

2

6

4

v
v

. . .
v

3

7

5
)

Column Equivalence

COLSPLIT[s1, . . . , sn]((M, v))
Where the si define the partition of matrix
M into the Mi.

([M1,M2, . . . , Mn] ,
Pn

i=1 vi) → SJrr,red((M1, v1), (M2, v2), . . . , (Mn, vn))

COLMERGE(SJ)
Precondition:
rr[i] = insize(Mi) and
typeof(Mi) = typeof(red) ∀i

SJrr,red((M1, v1), (M2, v2), . . . , (Mn, vn)) → ([M1, M2, . . . , Mn] ,
Pn

i=1 vi)

Row Equivalence

ROWSPLIT[s1, . . . , sn]((M,v))
Where the si define the partition of matrix
M into the Mi.

(

2

6

4

M1

M2

. . .
Mn

3

7

5
,

2

6

4

v1

v2

. . .
vn

3

7

5
) → SJdup,rr((M1, v1), (M2, v2), . . . , (Mn, vn))

ROWMERGE(SJ)
Precondition:
rr[i] = outsize(Mi) and
typeof(Mi) = typeof(Mj) ∀i, j

SJdup,rr((M1, v1), (M2, v2), . . . , (Mn, vn)) → (

2

6

4

M1

M2

. . .
Mn

3

7

5
,

2

6

4

v1

v2

. . .
vn

3

7

5
)

Product Equivalence

PCOLLAPSE(PL)
Precondition:
typeof(Mi) = typeof(Mj) ∀i, j

PL((M1, v1), (M2, v2), . . . , (Mn, vn)) →
. (Mn ∗ Mn−1 . . . ∗ M1,

Pn
i=1(Mn ∗ Mn−1 . . . ∗ Mi+1)vi)

PEXPAND[M1, . . . , Mn]((M, v))
Where M1, . . . , Mn define the partition of
the Mi.

(Mn ∗ Mn−1 . . . ∗ M1,
Pn

i=1(Mn ∗ Mn−1 . . . ∗ Mi+1)vi) →
. PL((M1, v1), (M2, v2), . . . , (Mn, vn))

Sum Equivalence

SCOLLAPSE(SJ)
Precondition:
typeof(Mi) = typeof(Mj) ∀i, j

SJdup,red((M1 , v1), (M2, v2), . . . , (Mn, vn)) → (
Pi=n

i=1 Mi,
Pn

i=1 vi)

SEXPAND[M1, . . . , Mn]((M, v))
Where M1, . . . , Mn define the partition of
the Mi.

(
Pi=n

i=1 Mi,
Pn

i=1 vi) → SJdup,red((M1 , v1), (M2, v2), . . . , (Mn, vn))

Split Equivalence

SJTODUP(SJ)
See Figure 4 for an example of this trans-
formation.

SJrr,any(F1, F2, . . . , Fn) → SJdup,any(PL(S1, F1), PL(S2, F2), . . . , PL(S3, Fn))

where Si is an M × N matrix where M = rr[i] and N =
Pn

l=1 rr[l]

and the Si[j, k] = 1 when k − j =
Pi−1

l=1 rr[l] and 0 ≤ j ≤ M , and is zero otherwise.

Join Equivalence

SJTOXOR(SJ)
See Figure 4 for an example of this trans-
formation.

SJany,rr(F1, F2, . . . , Fn) → SJany,red(PL(F1, S1), PL(F2, S2), . . . , PL(Fn, S3))

where Si is an M × N matrix withM =
Pn

l=1 rr[l] and N = rr[i]

and the S1[j, k] = 1 when j − k =
Pi−1

l=1 rr[l] and 0 ≤ k ≤ N , and is zero otherwise.

Figure 5. Rewrite rules on our StreamIt AST.

BASE-COMPILATION(program : AST)

1 program← SJ-RESIZE(program)
2 program← LEAF-SIZE-ADJ(program)
3 program← INSTRUCTION-DECOMPOSITION(program)
4 return program

SJ-RESIZE(program : AST)

1 while ∃ node n ∈ program s.t typeof(n) = SJ and (split(n) = RR or join(n) = RR) and ∃ i s.t. w - rr[i]
2 � w - rr[i] means w doesn’t divide the ith entry of the round-robin spliter/joiner
3 do APPLY-SKETCH(program)
4 if split(n) = RR and ∃ i s.t. w - rr[i] then program← program[n\SJTODUP(n)]; continue
5 if join(n) = RR and ∃ i s.t. w - rr[i] then program← program[n\SJTOXOR(n)]; continue
6 return program

LEAF-SIZE-ADJ(program : AST)

1 while ∃ leaf-node n ∈ program s.t ¬(w = INSIZE(n) = OUTSIZE(n))
2 do APPLY-SKETCH(program)
3 if w - INSIZE(n) then program← program[n\UNROLL[w/gcd(w, insize(n))](n)]; continue
4 if w - OUTSIZE(n) then program← program[n\UNROLL[w/gcd(w, outsize(n))](n)] continue
5 if insize(n) 6= w then program← program[n\COLSPLIT[w, . . . , w](n)] continue
6 if outsize(n) 6= w then program← program[n\ROWSPLIT[w, . . . , w](n)] continue
7 return program

INSTRUCTION-DECOMPOSITION(program : AST)

1 for each leaf-node n ∈ program
2 do APPLY-SKETCH(program)
3 � The IDECOMP transformation is defined in section 4
4 program← program[n\IDECOMP(n)]
5 return program

Figure 6. Pseudocode for the base compilation algorithm.

Figure 7. An illustration of the base compilation algorithm for our running example, assuming a 4 bit machine: (a) involves unrolling the
filter to take in and push out a multiple of w, the word size; (b) shows how a filter is broken into columns with a semantics preserving
transformation; (c) shows the effect of a similar transformation for breaking into rows; (d) shows one of the filters from (c) as it is finally
converted into LL-form filters. Steps (a) through (c) correspond to size adjustment. Step (d) corresponds to instruction decomposition.

define IDECOMP as

(M, v) = SJdup,red(PL(s1, (a1, v)), . . . , PL(sn, an))

As an example, to continue with our DropThird running exam-
ple, we can take matrix M1,1 and note that

M1,1 = Diag[1100] ∗ s0 + Diag[0010] ∗ s1

= PL(s0, Diag[1100]) + PL(s1, Diag[0010])
= SJdup,or(PL(s0, Diag[1100]), PL(s1, Diag[0010])).

In this case, the first equality is simply a statement about matrices.
The second one is an application of PEXPAND, and the third equal-
ity is an application of SEXPAND, and the composition of the two
gives us IDECOMP.

This transformation is illustrated in Figure 7(d). Note that in
the figure, PL(s0, Diag[1100]) has been replaced by Diag[1100]
since s0 corresponds to the identity matrix.

In the remainder of this section, we digress a little to show that
this approach is actually quite general, and can allow us to build
IDECOMP functions to produce code for more complicated machine
models. For example, adding a rotation instruction to our machine
model poses no major problem, since for positive i, si = a+

i ∗ r|i|,
and for negative i, si = a−

i ∗ r|i|, where a+
i and a−

i are diagonal
matrices that mask either the upper i bits or the lower i bits. Thus,
we only need to replace si in the original expression for m, and
collect terms to get a decomposition m =

Pw−1
i=0 air

i in terms
of rotations ri. With this new equation, the IDECOMP function can
be produced trivially as a composition of SEXPAND and PEXPAND,
just as with the original machine model.

In fact, the same strategy works even for more complicated
shifts, like those found in some SIMD extensions, which have
shift instructions to shift entire bytes at a time ti = s8∗i, as
well as packed byte shifts ui which correspond to shifting several
contiguous bytes independently but in parallel, with bits that move
past the boundary of a byte being lost. In that case, si = tbi/8c ∗
ui mod 8 + tbi/8c+1 ∗u(i mod 8)−8, and just like before, we can simply
replace this expression for the si in the original formula and get a
decomposition in terms of sequences of shifts of the form ti ∗ uj .

The base algorithm has the advantage that because the transfor-
mation is based on local substitution rules, its results are easy to
predict. In particular, the final number of operations is roughly pro-
portional to the number of diagonals in the original matrix. It will
generally produce suboptimal results because bits that shift by the
same amount are shifted together all the way to their final position
in a single operation. For example, in the case of DropThird, this
strategy produces the naive implementation from Figure 1(a). In
order to get the better implementation, we’ll need to use sketching.

5. Sketching
We are now ready to describe the sketching compiler, which syn-
thesizes an implementation that is functionally identical to the ref-
erence program while being structurally conformant to the sketched
implementation.

We will explain synthesis with sketches in two steps. We will
first assume that the sketch provided by the programmer is com-
plete, i.e., that it does not omit any implementation detail. We will
then explain how proper sketches, those which do omit details,
can be resolved to complete sketches. In our running example, the
dataflow program in Figure 2(d) is a complete sketch, while the
program in Figure 2(c) is a proper sketch.2

2 Note that in Figure 2, the complete sketch (d) has been obtained automati-
cally, by resolving the proper sketch (c), but the programmer is nonetheless
free to develop a complete sketch manually. This is still easier than devel-
oping the complete implementation, and is beneficial when we desire an

The benefit of restricting ourselves initially to complete sketches
is that we can focus on how to synthesize an implementation
that conforms to a sketch, without distracting ourselves with how
sketches are resolved. Sketch resolution, which synthesizes the de-
tails missing in a sketch, will be the focus of the second step.

Our sketching constructs provide support for several important
implementation patterns: implementation of an affine filter, and in
particular of permutations, as a sequence of steps; restructuring of
pipelines and splitjoins; and implementation of filters with table
lookups. We explain sketching on the problem of permutation de-
composition. Section 5.1 then explains how we efficiently resolve
sketches by means of combining search with constraint solving. In
Sections 5.2–4, we discuss sketching for the remaining implemen-
tation patterns.

Complete sketches To motivate the definition of the sketch, it
helps to recall that we view the synthesis of a bit-streaming im-
plementation as a process of decomposing a dataflow program into
Low-Level form; the base compiler performs one such decompo-
sition. It is thus natural to view the sketch as a constraint on the
shape of the decomposed program. We allow sketches to impose
constraints at an arbitrary stage in the decomposition: constraining
an early stage has the effect of sketching high-level steps of the
implementation algorithm (e.g., that we want to pack bits within
words first), while constraining later stages sketches finer details
(e.g., how to manipulate bits within a word).

A key research question is what form these constraints on the
decomposition should take so that the sketch is both concise and
natural to express. To obtain conciseness, we rely on the base com-
piler to perform most of the decomposition. The base compiler per-
forms a fixed decomposition sequence, which permits the program-
mer to anticipate the dataflow programs created throughout the de-
composition, which in turn enables him to sketch these programs.
The base compiler leads to conciseness because the programmer
will control the compiler (with a sketch) only when its base algo-
rithm would make a poor decoposition transformation.

The question now is how to override the base compiler with a
sketch while making it natural for the programmer to express the
sketch. Our solution is to express sketches as rewrite rules; these
rewrite rules will extend the set of rules employed by the base
compiler.

It may seem awkward to sketch the desired implementation with
a rewrite rule, but to the programmer a sketch looks just like a
program. Specifically, a complete sketch is a StreamIt program P
that implements some permutation f . This program serves as a
sketch in the following way: when the decomposition encounters
a leaf filter with a permutation f , the filter is not decomposed using
the base rewrite rules; instead, it is replaced with the program P .
In effect, the leaf filter is rewritten with the AST of the program
P . A compiler that consults the sketches in such a way is called
sketching compiler.

As an example, consider the complete sketch in Figure 2(d).
The StreamIt version of this complete sketch is below. The filter
Stage1 implements the first stage of the pipeline in the figure;
the other two stages are analogous. To understand the code, recall
that the first pop() reads the left-most bit in the pictured word. If
the code looks too complicated, note that the programmer actually
writes the simpler proper sketch shown below.

bit->bit pipeline LogShifter {
add Stage1();
add Stage2();
add Stage3();

}

implementation that sketching does not support, e.g., when one wants to
decompose a general affine filter in a way not expressible in our domain
algebra.

bit->bit filter Stage1 {
work push 16 pop 16 {
// lines below either copy or drop a bit
// or shift a group of bits by one position
push(pop()); push(pop());
pop(); push(pop()); push(pop()); push(0);
push(pop()); push(pop()); push(pop());
pop(); push(pop()); push(pop()); push(0);
push(pop()); push(pop()); push(pop());
pop(); push(pop()); push(0);

}
}
...

Although this StreamIt program has structurally three pipeline
stages, it implements the one-stage permutation shown in Fig-
ure 2(b); its equivalence is provable using the Product Equivalence
rules in Figure 5. Figure 2 also shows how the sketching compiler
uses the sketch: the reference program shown in Figure 2(a) is de-
composed using base rules until one of the AST leaves is a filter
with the function in Figure 2(b). At this point, this filter node is
rewritten into the one shown in Figure 2(d). After the sketch is ap-
plied, the compiler will continue its base decomposition, breaking
down each stage of the pipeline into machine instructions using the
rule IDECOMP defined in Section 4. Note that in order take full ad-
vantage of the log-shifter, the implementation of DropThird should
pack bits within a word before packing them across words. This is
also expressed with a sketch, which we omit for lack of space.

Figure 6 shows that to extend the base compiler into a sketching
compiler, it suffices to perform all applicable sketches before a base
rewrite rule is applied; this is done in the function APPLY-SKETCH.
A careful reader has by now observed that malformed sketches may
prevent termination of the sketching compiler. Consider a sketch
that decomposes a filter f into a pipeline PL(f, identity); such a
sketch can be applied indefinitely. Our current solution is to specify
the position in the AST where each sketch should be applied. In the
future, we plan to analyze the sketches.

Proper Sketches Informally, proper sketches differ from com-
plete ones in that they omit some implementation details. For-
mally, we define proper sketches as non-deterministic StreamIt pro-
grams with the choice operator ’*’. A non-deterministic program
may compute one of several functions, potentially a different one
for each of its executions. The process of resolving a sketch thus
amounts to selecting the execution that computes the desired func-
tion f (if such an execution exists). We call this process deter-
minization to function f . In other words, the deterministic portion
of the sketch is what the implementation must adhere to; the rest is
synthesized.

To make it work with proper sketches, we generalize the sketch-
ing compiler slightly: when the compiler is about to decompose a
filter with a permutation f , it looks not for a complete sketch that
implements f but instead for a proper sketch whose set of non-
deterministic executions includes f ; if such a sketch exists, it is
determinized to f and applied as if it was a complete sketch.

As an example, consider the proper sketch in Figure 2(c). The
non-deterministic StreamIt program equivalent to this sketch is a
pipeline of three filters as follows.

bit->bit filter SketchedStage1 {
work push 16 pop 16 {
while(*) {

switch (*) {
case CopyOneBit: push(pop()); break;
case ShiftBits:

pop(); while (*) push(pop()); push(0);
}

}
}

}

Note that the complete sketch we gave above corresponds to one
possible execution of this non-deterministic program. The set of all
possible executions implement a generic version of the log-shifter
that shifts, in the first stage, an unspecified subset of bits to the left
by one position and copies the remaining bits; the remaining two
stages are analogous.

The proper sketch is already more concise than the complete
sketch, but the shifting pattern expressed in the non-deterministic
program is so common that we developed a small sketching lan-
guage to express it even more concisely. The proper sketch in this
language is shown below. The meaning of the sketch is that a per-
mutation filter is to be decomposed into a pipeline of three filters,
where the first pipeline shifts a subset of bits from the 1:16 range
by either zero bits or by one bit; similarly for the other pipeline
stages. The language allows us to express only a restricted set of
non-deterministic patterns, so it is not as expressive as the full non-
deterministic StreamIt would be, but this is what will allow us to
control the combinatorial explosion in the search space.

SketchDecomp[
[shift(1:16 by 0 || 1)], // SketchedStage1
[shift(1:16 by 0 || 2)], // SketchedStage2
[shift(1:16 by 0 || 4)] // SketchedStage3

];

Recall that resolving a sketch amounts to finding an execution
of the non-deterministic program that implements the desired func-
tion. A straightforward way to resolve a sketch is a brute-force
search over all possible executions, but there are 23∗16 of them for
the non-deterministic pattern for the 16-bit log-shifter given above
(25∗64 for a 64-bit version). To make the search feasible, we need
to take advantage of the algebraic structure of the permutations to
reduce the search space to a manageable size. To do this, we sup-
port a restricted class of sketches; in particular, we support sketches
expressed in the sketching language described in the next subsec-
tion.

5.1 Sketching Decompositions of Permutations
We present next the algorithm for resolving sketches that decom-
pose a permutation into a pipeline of (simpler) permutations. Our
approach is to encode the desired pipeline as a vector of distances
traveled by bits in a pipeline stage; these distances are our un-
knowns. We will express the sketch using two kinds of constraints
on the decomposition vector: linear and non-linear; the former are
solvable with linear algebra, the latter are not. We will first solve
the linear constraints, leaving us with a reduced linear space of pos-
sible solutions. We then search for solutions in this space that also
satisfy the non-linear constraints. The search is exhaustive, but we
take advantage of the linear properties of the space to reduce it as
much as possible. If the search space remains too large for a prac-
tical search, the user is asked to add more details to the sketch to
further constrain the space (this was not necessary in our experi-
ments).

Suppose a permutation consumes and produces a vector of bits
numbered 1 to N . We express the permutation as a vector

〈x1, x2, . . . , xN 〉 with xi = pd
i − ps

i

where pd
i is the final position of bit i and ps

i is the initial position
of bit i. Since bits are labeled by their initial positions, we have
ps

i = i. A decomposition of this permutation into the desired k-
stage pipeline defines the decomposition vector ~Y :

~Y = 〈y1
1 , y1

2 , . . . , y1
N , y2

1 , y2
2 , . . . , y2

N , . . . , yk
1 , yk

2 , . . . , yk
N 〉

with yj
i = pj

i − pj−1
i , where pj

i is the position of bit i at the end
of pipeline stage j; p0

i = ps
i and pk

i = pd
i . Once the constraints are

generated, we want to solve for yj
i .

The next step is to translate the sketch into constraints over the
decomposition vector ~Y . In our sketching language, a sketch can be
built from four kinds of constraints. For each stage of the sketched
pipeline, the programmer can specify any combination of the four
types of constructs. For each sketching construct, we give below its
translation into constraints over ~Y .

1. shift(b1, . . . , bM by j). Shifts by j positions all bits in
the set {b1, . . . , bM}. The set can be expressed as a range a:b.
The bits are identified by their positions before stage 0 of the
pipeline. Generated constraints: yk

bi
= j, where k is the stage

where the constraint appears and i ∈ {1, . . . , M}.
2. shift(b1, . . . , bM by ?). Shifts all bits in {b1, . . . , bM}

by the same amount h, where h is unspecified in the sketch.
Generated constraints: yk

bi
= yk

bi+1
, where i ∈ {1, . . . , M−1}.

3. pos(bi, p). Requires that bit bi will be in position p after
stage k, i.e., pk

bi
= p. Since yj

i = pj
i − pj−1

i , this constraint
translates to

p0
bi

+
k

X

j=1

yj
bi

= p.

4. shift(b1, . . . , bM by a ‖ b). Shifts each bit in {b1, . . . ,
bM} by either a or b positions. (Note that bits do not need to
all move by the same amount.) Generated constraints: yk

bi
∈

{a, b}. This is a non-linear constraint.

To ensure that the decomposition is semantics preserving, we add
two other constraints:

5. The final position of each bit must agree with the final position
of the bit in the permutation being decomposed. This constraint
is a special case of constraint (3), and is handled the same way.

6. No two bits can reside in the same position at the end of
any stage (otherwise, they would overwrite each other). This
constraint is non-linear.

The linear constraints will lead to a matrix equation of the form
S ∗ ~Y = ~T , where S is matrix and ~T is a vector representing
generated linear constraints. This equation is solved in polynomial
time using Gaussian elimination over the integers. The result will
be a particular solution ~Z and a set of decomposition vectors of
~V1, . . . , ~Vm such that the decomposition vector ~Y can be obtained
as a linear combination of ~Z and ~Vi:

~Y = ~Z +
m

X

i=1

αi ∗ ~Vi (1)

Any such ~Y satisfies our linear constraints. The goal now is to find
a set of αi that makes ~Y satisfy the non-linear constraints as well.
We will show in detail how this is done for the constraints of type 4,
and then outline handling of constraints of type 6. The key idea is
to view Equation 1 as a matrix equation by letting V be the matrix
whose columns are vectors ~Vi. Then, we have V ∗ ~α = ~Y − ~Z.

This equation has two unknowns, ~α and ~Y . We can choose vec-
tor ~α arbitrarily, but some of the entries of ~Y are limited by con-
straints of type 4. Now, because at this stage we are only interested
in solving the non-linear constraints of type 4, we eliminate from
the above equation rows corresponding to yi

j on which we don’t
have constraints of type 4. We call the new matrix V ′ and the new
vectors ~Y ′ and ~Z′.

V ′ ∗ ~α = ~Y ′ − ~Z′ (2)
Once we have this equation, we have two choices. One alter-

native is to search the space of ~α’s until we find an ~α that makes
the resulting ~Y satisfy all the non-linear constraints, both of type 4
and 6.

Another alternative is to try the different alternatives ~Y ′ permit-
ted by the type 4 constraints until we find ~Y ′ that is in the column
span of V ′. In this case, we know from basic linear algebra that ~Y ′

is in the column span of V ′ as long as (V ′∗V ′+−I)∗(~Y ′− ~Z′) =
0, where V ′+ is the pseudoinverse V ′+ = (V ′T ∗ V ′)−1 ∗ V ′T .
This implies

A ∗ ~Y ′ = ~B (3)
where A = (V ′ ∗ V ′+ − I) and ~B = A ∗ ~Z′.

For each yki

bj
in ~Y ′ we have a set of choices of the form yki

bj
=

(a or b or . . .) (remember we eliminated those entries of ~Y for
which we didn’t have constraints of type 4). Thus, we need to
search through all these choices until we find a set of choices
that satisfy Equation 3. In principle, we may have to explore all
possible combinations of the possible values for each of the yki

bj
,

but in practice, StreamBit first puts A in reduced row echelon
form (rref). In most cases this allows they yki

bj
to be isolated into

small clusters that can be searched independently, reducing the
exponential blowup. For example, in the case of the sketch for
DropThird, the rref reduction means that instead of having to search
a 23∗16 search space, we have to do 16 searches on spaces of size
23.

Once the search is done, we have a ~Y ′ vector that we can use to
find a set of solutions ~α to Equation 2. Now, given an ~α that satisfies
Equation 2 for a ~Y ′ found through this process will make V ∗~α+ ~Z
satisfy all the constraints of type 1 through 5, so now we have to
pick one of these ~α’s that also satisfies constraint 6. Note, however,
that at this point we are only searching among those decomposition
vectors that have satisfied constraints 1 through 5.

5.2 Restructuring
Restructuring transformations replace a sub-tree in the AST with
an equivalent but structurally different sub-tree. For example, re-
structuring may reorder filters in a pipeline, hoist filters out of
splitjoins, sink them into splitjoins, or coalesce several leaf filters
into a single leaf filter. Restructuring transformations are typically
enabling transformations that lead to dramatic code improvements
through subsequent permutation decomposition. Sketching helps in
performing restructuring by avoiding the need to specify the values
of matrices for filters composing the new filter structure. For ex-
ample, in our implementation of DES, we moved a filter across a
joiner, and sketching automatically computed the “compensating”
filter that had to be inserted into the other input of the joiner.

5.3 Sketching Decompositions of Affine Functions
It turns out that (sketches of) permutations are useful when imple-
menting the more general affine filters. In this setting, permutations
are often used to efficiently pack bits into words with the goal of
fully exploiting word-level parallelism. Consider a xor filter with
the matrix [1 1]. This filter takes two consecutive bits from the input
stream and xors them to produce a single output bit. To implement
this filter efficiently on a machine with a w-bit word, we want to
permute 2 ∗w consecutive bits of the input stream such that all odd
bits are in the first word and all even bits are in the second; after
this transformation, the two words can be xor-ed with full word-
level parallelism.

This permutation can be achieved in three steps: first, using
restructuring, insert a 2 ∗ w-bit identity filter in front of the [1 1]
filter. Next, the following sketch shuffles bits as desired using log-
shifting; specifically, the bits will be placed as desired at the entry to
the last stage, which is unspecified in the sketch. After sketching,
this stage will shuffle bits back into the original position so that
the whole sketched pipeline remains an identity. In the last step,
use restructuring to merge the last stage of the pipeline with the

(a) (b)

Figure 8. (a) A truncated version of the DES IP permutation. (b) Same permutation decomposed through sketching into a pipeline exposing
two identical permutations in the second stage, which can now be implemented using a single table, reducing table storage four-times.

[1 1] filter. This step will modify the [1 1] filter to operate on the
transformed stream.

SketchDecomp[
[shift(1:2*w by 0 || 1 || -1)],
[shift(1:2*w by 0 || 2 || -2)],
[shift(1:2*w by 0 || 4 || -4)],
[shift(1:2*w by 0 || 8 || -8)],
[shift(1:2*w by 0 || 16 || -16),
pos(1:2:2*w to 1:w), pos(2:2:2*w to w+1:2*w)],
[]

];

5.4 Table Conversion
Tables play an important role in efficient cipher implementations.
In particular, a filter with n input bits and m output bits can be
implemented as a lookup in a table with 2n entries of m-bit values.
To reduce the table size, the filter can be implemented using k
tables with 2n/k entries each using transformations based on the
column equivalence from Figure 5.

When filter properties permit, table conversion can be further
optimized, with great help from sketching. Consider the IP per-
mutation from the DES cipher shown in Figure 8(a). With sketch-
ing, this permutation can be decomposed into a two-stage pipeline,
shown in Figure 8(b), which the programmer obtained as follows:
after examining the IP permutation, he observed certain regularity
in how IP shifts bits, which lead him to suspect that IP is a compo-
sition of two narrower permutations. Guided by the observed regu-
larity, he sketched the first pipeline stage and the compiler produced
the second stage. The result of the sketch is an efficient implemen-
tation: the first stage is very efficient; the second stage contains two
table lookups that are not only narrower but also identical. As a re-
sult, the total table size was reduced four-fold, producing a speedup
of over 65% on an IA64 machine.

6. Evaluation
In this section, we quantify the productivity and performance re-
wards of sketching as compared to manually tuning programs writ-
ten in C. We also show that the performance of a sketched imple-
mentation is competitive with that of heavily optimized implemen-
tations for a couple of well known ciphers.

6.1 User Study
We held a user study to evaluate the productivity and performance
rewards attributed to sketching in general and StreamBit in partic-
ular. Specifically, we were interested in two questions.

• Time to first solution. How quickly can a reference program
be developed and debugged by a programmer unfamiliar with
the StreamIt dataflow programming language? In summary,
we found that novice StreamIt programmers develop the first
working solution faster than C programmers do (in C).

• Performance of base compiler. How good is the code gen-
erated from the reference program by the base compiler? In
other words, can the base compiler compete with rapidly devel-
oped and tuned C code? In summary, we found that the base-
compiled StreamBit code runs at least twice as fast as the C
code, which took nearly twice as long to tune.

6.1.1 Methodology
The study invited participants to implement a non-trivial cipher
based on Feistel rounds. The cipher consisted of an initial permu-
tation of the bits in the input message, followed by three rounds of
key mixing operations and a non-linear transformation. The cipher
is formally described by the following equations:

X0 = IP(M)

Xf
i+1 = Xb

i ⊕ F (Xf
i , Ki)

Xb
i+1 = Xf

i

F (Xi, Ki) = L(Ki ⊕ Pi(Xi))

where M is the input message, IP is the application of an initial bit
permutation, F performs the key mixing subject to some permuta-
tion P , and L applies a non-linear transformation. Each Xi is split
into a front half Xf

i and a back half Xb
i .

We recruited two sets of users: one set implemented the cipher
in C and the other group implemented the cipher in StreamBit3.
In all, there were six C participants of which five finished the
study and submitted working ciphers. On the StreamBit side, there
were seven participants of which four submitted working ciphers4.
The study participants were all well-versed in C but none had any
experience with StreamBit prior to the study; although they were
provided with a short tutorial on StreamBit on the day of the study.

C participants were also provided with a short tutorial, this
one on well known (bit-level) optimizations, and we encouraged
them to apply any other optimization ideas they could think of.
In the case of C participants, we did not restrict the number of
submissions that a participant could make, and instead encouraged
performance tuning of the initial solution.

6.1.2 Results
In Figure 9(a), we report the results from our user study. The x-axis
represents development time (in hours), and the y-axis represents
the performance of the ciphers in units of encrypted-words per mi-
croseconds. Each point on the graph represents the development
time and performance of a single participant; the C users have mul-
tiple points per participant connected by solid lines showing their
progress over time. It is readily apparent that the StreamBit partic-

3 The programming language used in StreamBit is StreamIt with a few
extensions as detailed in Section 2. Solely for the sake of clarity will we
refer to the language as StreamBit.
4 Users who left the study early chose to do so due to personal constraints.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8

Hours

W
o

rd
s

 p
e

r
m

ic
ro

s
e

c
o

n
d

C programs manually
optimized

StreamBit programs
unoptimized (no sketching)

w
o
rd

s
p
e
r

m
ic

ro
se

c
o
n
d

time (hours)

0

1

2

3

4

5

6

7

8

9

10

11

12

0 1 2 3 4 5 6 7 8

C implementations

StreamBit

implementation tuned

with sketching by

StreamBit expert

C implementation

tuned by expert
StreamBit

implementation tuned

with sketching by

StreamBit expert

C implementation

tuned by expert
StreamBit

implementation tuned

with sketching by

StreamBit expert

C implementation

tuned by expert

w
o
rd

s
p
e
r

m
ic

ro
se

c
o
n
d

time (hours)

(a) (b)

Figure 9. StreamBit vs. C : performance as a function of development time. (a) Comparison of first solutions for StreamBit and C
implementations. (b) Performance improvement through sketching.

ipants spent between two and four hours implementing the cipher
and achieved better performance compared to the C participants.

We also note that all but one of the C participants tried to tune
the performance of their ciphers. The C participants spent between
one and three hours optimizing their implementations, and while
some improved their performance by 50% or more, the StreamBit
ciphers were still two and a half times faster. The results highlight
the complexity of tuning bit-level applications, and demonstrate the
challenge in understanding which optimizations pay off.

The data also suggest that the scope of optimizations a program-
mer might attempt are tied to the implementation decisions made
much earlier in the design process. Namely, if an optimization re-
quires major modifications to the source code, a programmer is less
likely to try it, especially if the rewards are not guaranteed.

The C implementations were compiled with gcc version 3.3
and optimization level -O3 -unroll-all-loops. The base StreamBit
compiler produced low-level C code. This C code was subsequently
compiled with gcc and the same optimization flags. All resulting
executables were run on an Itanium2 processor.

Our sample of users is relatively small, so it’s hard to draw very
definitive judgments from it, but in terms of the two questions we
wanted to answer, we can see that it is possible for someone who
has never used StreamIt to produce a working solution in less time
than it would take an experienced programmer working in C. We
can also see that the performance of the base compilation algorithm
is very good compared with the performance of handwritten C
code, even after it has been tuned for several hours.

6.2 Benefits of Sketching
The user study showed that the StreamBit system can be a good
choice when developing prototypes of ciphers, because it allows for
the code to be developed faster, and the code is actually of much
better quality than code produced by hand in a comparable amount
of time. Next, we wanted to evaluate a sketched implementation
with a heavily optimized MiniCipher from the user study and also
with widely-used cipher implementations.

6.2.1 Optimizing the MiniCipher
The user study also provided us with an opportunity to evaluate
the separation of concerns afforded by sketching, and the potential
for performance improvement in a benchmark more realistic than
DropThird.

First, we assigned a performance expert (one of the authors)
to select one of the StreamBit reference programs written in the
user study, and sketch for it a high-performance implementation.

The sketching expert managed to iterate through ten different im-
plementations in four hours, tripling the performance of the base-
compiled code, which is a huge improvement considering the base
StreamBit implementation was already twice as good as the C
implementations from the user study. It is worth noting that this
sketching was done with code produced by another developer who
had no contact with the performance expert. The performance ex-
pert did have a list of implementation ideas to try in his sketches;
the same list was available to the user study participants.

As a point of comparison, we asked another member of our
research group to serve as a C performance expert and tune an
already working C implementation. He was done in just under eight
hours, and achieved a performance of eight encrypted-words per
microsecond. It must be said that of those eight hours, about 3/4
of an hour were spent understanding the reference implementation
and the specification. The results from this exercise are reported in
Figure 9(b).

The sketching methodology thus affords programmers the abil-
ity to prototype and evaluate ideas quickly, as they are not con-
cerned with low-level details and can rest assured that the com-
piler will verify the soundness of their transformations. This is in
contrast to the C performance expert who must pay close atten-
tion to tedious implementation details lest they introduce errors. As
an added advantage, programming with sketches does not alter the
original StreamBit code which therefore remains clean and much
easier to maintain and port compared to the manually tuned C im-
plementation.

6.2.2 Implementation of Real Ciphers
LibDES from OpenSSL We compare StreamBit generated code
with a libDES, a widely used publicly available implementation of
DES that is considered one of the fastest portable implementations
of DES [21]. LibDES combines extensive high-level transforma-
tions that take advantage of boolean algebra with careful low-level
coding to achieve very high performance on many platforms. Ta-
ble 1 compares libDES across different platforms with DES imple-
mentations produced by StreamBit.

We were able to implement most of the high-level optimizations
that DES uses, and even a few more that were not present in
libDES, including the one described in Section 5.4. Our code was
missing some of the low-level optimizations present in libDES. For
example, our code uses lots of variables, which places heavy strains
on the register allocation done by the compiler, and it assumes
the compiler will do a good job with constant folding, constant
propagation and loop unrolling.

Even with these handicaps, we were able to outperform libDES
on at least one platform. The 17% degradation on Pentium III is
mainly due to not implementing a libDES trick that our sketching
currently does not support. Finally, it is worth noting that whereas
the libDES code is extremely hard to read and understand, the
StreamBit reference program reads very much like the standard [9].

processor P-IV P-III IA64 Solaris IBMSP
performance 0.90 0.83 1.06 0.91 1.07

Table 1. Comparison of sketched DES with libDES on five proces-
sors. Performance is given as ratio of throughputs; sketched DES
was faster on IA64 and IBM SP.

Serpent Serpent is considered the most secure of the AES final-
ists5. Serpent is particularly interesting from the point of view of
sketching because of the way it was designed. The cipher is defined
in terms of bit operations including permutations, as well as lin-
ear and non-linear functions. However, all of these functions were
defined in such a way that a particular transformation known as
bit-slicing, together with some additional algebraic manipulation,
would produce a very efficient implementation of the cipher for
regular 32-bit machines [2].

As part of their submission, the Serpent team developed both a
reference implementation using the bit-level definition as well as
an optimized version of the cipher.

Table 2 shows our results for Serpent. It is worth pointing out
that the level of abstraction of the StreamBit code is comparable to
that of the bit-level reference implementation, yet the base compila-
tion algorithm produced code that was an order of magnitude faster
than the C reference implementation. This is not a small matter,
considering that the reference implementations are used to generate
correct outputs for large sets of inputs. The process of generating
reference outputs can take several hours, and is on the critical path
for testing optimized implementations.

By simply sketching the bit-slicing transformation, we were
able to achieve half of the performance of the heavily optimized
implementations. We believe that the other half of performance
can be had by implementing in our compiler a smarter conversion
from an arbitrary boolean function defined as a table-lookup into
one defined as a boolean expression, a transformation used as
part of bit-slicing. Furthermore, on the IA64, we were able to get
90% of the performance of the hand-optimized implementation by
using 64-bit-specific optimizations. Granted, the optimized AES
Serpent did not use 64-bit-specific optimizations, but it speaks of
the flexibility of our approach that we were able to modify our
sketch to produce 64-bit-specific optimizations by changing only
a single line in the sketch.

processor reference base
StreamBit

bit-sliced
StreamBit

64-bit
StreamBit

IA64 0.003 0.13 0.478 0.90
P-IV 0.003 0.08 0.62 N/A

Table 2. Several Serpent implementations compared to the official
optimized Serpent. Performance is given as ratio of throughputs;
sketched Serpent achieved 62% of “official” performance despite
infrastructure limitations.

7. Related Work
Our presentation of Sketching was inspired by some of the work on
partial programming in the AI community. For example, ALisp [3],

5 In 2000, a competition was held to define the new Advanced Encryption
Standard, to replace DES. Serpent was one of the finalists, and was widely
considered the most secure of the candidates.

developed by Andre and Russell to program Reinforcement Learn-
ing Agents is a form of lisp extended with non-deterministic con-
structs. In ALisp, the behavior of the non-deterministic branches
is defined through learning. Sketches in StreamBit can also be
thought of as non-deterministic descriptions of an algorithm, but
their behavior is determined not through learning, but by matching
them with the reference program.

The sketch resolution problem is a constraint satisfaction prob-
lem similar to those studied by the constraint programming com-
munity [11].

The idea of separating the task description from the implemen-
tation specification has been explored before. Ennals, Shart and
Mycroft [7], for example, have built a system for programming net-
work processors that allows the user to describe the task in a high-
level domain-specific language and then specify an implementa-
tion by applying a series of semantics preserving transformations.
Their transformations, however, involve no sketching, and have to
be fully specified.

Aspect-Oriented Programming (AOP) aims at supporting the
programmer in “cleanly separating concerns and aspects from each
other, by providing mechanisms that make it possible to abstract
and compose them to produce the overall system” [14]. Our ap-
proach can be understood as a form of AOP, where the algorithm
specification and the performance improving transformations are
the two aspects we are dealing with. There have been other efforts
at applying AOP to restricted application domains, for example Ir-
win et. al. demonstrate the use of AOP in the domain of sparse
matrix computations [12].

Efficiently compiling domain-specific languages to achieve
high-quality implementations without user intervention has been
an area of active research for a number of years. Padua et. al. have
been very successful in producing high-quality code from MAT-
LAB through the use of aggressive type and maximum matrix size
inference [1].

Kennedy et. al. have worked on an approach called telescoping
languages. The idea is that in many scripting languages, domain-
specific abstractions are provided through libraries. The telescop-
ing language approach is to preprocess those libraries to create spe-
cialized versions of them to allow for aggressive optimization of the
programs that use them without having to incur the cost of exten-
sive interprocedural analysis at compile time [5, 13].

One approach that has recently gained popularity in the high-
performance community has been the use of search to find opti-
mal implementations for important kernels. The idea is to search
through a suitably restricted implementation space by actually gen-
erating code for the possible implementations and either run them
directly on the machine, or do very detailed simulation. For ex-
ample, FFTW [10] uses a planner to try many different execution
plans for an FFT at run-time and find the best one. SPIRAL [18]
is another example of the search based approach; it generates high-
performance DSP kernels by searching the space of possible im-
plementations, taking advantage of the structure of the algorithm
and implementation space to speed up the search. Demmel et. al.
[6] also use search based methods to generate dense and sparse
linear algebra kernels. Wu, Weaver and Austin [20] developed an
architecture aimed at executing ciphers, and they also used a search
based method to derive optimal implementations of the ciphers for
their architecture. However, the search was simply to find an opti-
mal way to map a dataflow graph for the already optimized ciphers
into machine instructions.

We believe sketching complements the search based methods,
because instead of having to restrict the space of implementations
a priori to make the search tractable, the sketch encodes knowledge
the user has about the best way to implement an algorithm, allowing
the search to proceed faster.

Finally, our work builds very heavily on StreamIt [15, 19].
The StreamIt compiler automatically identifies linear filters, and
performs many optimizations targeted towards DSP applications.
The StreamIt language itself, traces its roots to the work on Syn-
chronous Data Flow by Edward Lee and his group since the
80’s [16, 4].

8. Conclusion
In programming by sketching, the developer outlines the imple-
mentation strategy and the compiler fills in the missing detail by
ensuring that the completed sketch implements the reference pro-
gram, which serves as a full behavioral specification.

In this paper, sketching is explored in the context of bit-
streaming. We believe that sketching is also applicable in other
domains where a domain algebra for semantics-preserving restruc-
turing of programs is available. One atractive candidate is sparse
matrix computation.

Depending on the development setting (and the point of view),
benefits of sketching can take different forms. First, sketching al-
lows collaboration between a domain expert (e.g., a crypto expert)
and a performance expert who understands the processor and a lit-
tle about the domain algebra, such as bit permutations. While the
former specifies the crypto algorithm and keeps modifying it, the
latter provides an efficient implementation by preparing a separate
sketch. Via separation of concerns, sketching thus allows collabo-
ration of programmer roles.

An alternative view is that sketching is a method for rapid
prototyping of an effective domain-specific compiler. Rather than
implementing an analysis and a transformation, which may not be
economical for a domain-specific compiler, we give a sketch that
is filled in according to the provided reference program. While a
sketch is not as generally applicable as an optimization, it is easy
to port to another reference program; it is also tailored to a given
reference program, which gives it unique power.

Acknowledgments
This work is supported in part by the National Science Foundation,
with grants CCF-0085949, CCR-0105721, CCR-0243657, CNS-
0225610, CCR-0326577, an award from University of California
MICRO program, the Okawa Research Award, as well as donations
from IBM and Intel. This work has also been supported in part by
the Defense Advanced Research Projects Agency (DARPA) under
contract No. NBCHC020056. The views expressed herein are not
necessarily those of DARPA or IBM.

The StreamIt project is supported by DARPA grants PCA-
F29601-03-2-0065 and HPCA/PERCS-W0133890; NSF awards
CNS-0305453 and EIA-0071841; and the MIT Oxygen Alliance.

We would like to thank Vivek Sarkar for his invaluable help in
initiating this project and organizing the user study. Our gratitude
also goes to the many user study subjects who suffered through the
glitches of our infrastructure.

We would also like to thank Brian Fields, Dave Mandelin, Bill
Thies and Renju Thomas for helping with preparations for the user
study.

References
[1] G. Almasi and D. Padua. Majic: Compiling matlab for speed and

responsiveness. In Proceedings of ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 294–
303, June 2002.

[2] R. Anderson, E. Biham, and L. Knudsen. Serpent: A proposal for the
advanced encryption standard. The implementation we tested can be
found at http://www.cl.cam.ac.uk/ rja14/serpent.html.

[3] D. Andre and S. Russell. Programmable reinforcement learning
agents. Advances in Neural Information Processing Systems, 13,
2001. MIT Press.

[4] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt. Ptolemy: A
framework for simulating and prototyping heterogeneous systems.
Int. Journal of Computer Simulation, 4:155–182, April 1994. special
issue on “Simulation Software Development”.

[5] A. Chauhan, C. McCosh, and K. Kennedy. Automatic type-driven
library generation for telescoping languages. In Proceedings of SC:
High-performance Computing and Networking Conference, Nov.
2003.

[6] J. Demmel, J. Dongarra, V. Eijkhout, E. Fuentes, A. Petitet, R. Vuduc,
C. Whaley, and K. Yelick. Self adapting linear algebra algorithms
and software. Proceedings of the IEEE, 93(2), 2005.

[7] R. Ennals, R. Sharp, and A. Mycroft. Task partitioning for multi-core
network processors. In Compiler Construction, Edinburgh, Scotland,
April 2005.

[8] N. Ferguson and B. Schneier. Practical Cryptography. Wiley
Publishing Inc, 2003.

[9] Data encryption standard (des). U.S. DEPARTMENT OF COM-
MERCE/National Institute of Standards and Technology, December
1993. http://www.itl.nist.gov/fipspubs/fip46-2.htm.

[10] M. Frigo and S. Johnson. Fftw: An adaptive software architecture
for the fft. In ICASSP conference proceedings, volume 3, pages
1381–1384, 1998.

[11] P. V. Hentenryck and V. Saraswat. Strategic directions in constraint
programming. ACM Comput. Surv., 28(4):701–726, 1996.

[12] J. Irwin, J.-M. Loingtier, J. R. Gilbert, G. Kiczales, J. Lamping,
A. Mendhekar, and T. Shpeisman. Aspect-oriented programming
of sparse matrix code. In Proceedings International Scientific
Computing in Object-Oriented Parallel Environments (ISCOPE),
number 1343 in LNCS, Marina del Rey, CA, 1997. Springer-Verlag.

[13] K. Kennedy, B. Broom, A. Chauhan, R. Fowler, J. Garvin, C. Koelbel,
C. McCosh, and J. Mellor-Crummey. Telescoping languages: A
system for automatic generation of domain languages. Proceedings
of the IEEE, 93(2), 2005.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. In proceedings
of the European Conference on Object-Oriented Programming
(ECOOP), number 1241 in LNCS. Springer-Verlag, June 1997.

[15] A. A. Lamb, W. Thies, and S. Amarasinghe. Linear analysis and
optimization of stream programs. In ACM SIGPLAN Conference on
Programming Language Design and Implementation, San Diego, CA,
June 2003.

[16] E. A. Lee and D. G. Messerschmitt. Synchronous data flow.
Proceedings of the IEEE, September 1987.

[17] M. Morgan. http://www.schneier.com/blowfish-bug.txt.
[18] M. Püschel, B. Singer, J. Xiong, J. Moura, J. Johnson, D. Padua,

M. Veloso, and R. Johnson. Spiral: A generator for platform-
adapted libraries of signal processing algorithms. Journal of High
Performance Computing and Applications, accepted for publication.

[19] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language
for streaming applications. In International Conference on Compiler
Construction, Grenoble, France, Apr. 2002.

[20] L. Wu, C. Weaver, and T. Austin. Cryptomaniac: A fast flexible
architecture for secure communication. In 28th Annual International
Symposium on Computer Architecture (28th ISCA 2001), Goteborg,
Sweden, June-July 2001. ACM SIGARCH / IEEE.

[21] E. Young. http://www.openssl.org. libDES is now part of OpenSSL.

