
Cache Optimizations for Stream Programs

by

Jānis Sermuliņš

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2005

c© Massachusetts Institute of Technology 2005. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis
and to grant others the right to do so.

Author .
Department of Electrical Engineering and Computer Science

May 6, 2005

Certified by. .
Saman Amarasinghe

Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Cache Optimizations for Stream Programs

by

Jānis Sermuliņš

Submitted to the Department of Electrical Engineering and Computer Science
on May 6, 2005, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

As processor speeds continue to increase, the memory bottleneck remains a primary
impediment to attaining performance. Effective use of the memory hierarchy can
result in significant performance gains. This thesis focuses on a set of transforma-
tions that either reduce cache-miss rate or reduce the number of memory accesses for
the class of streaming applications, which are becoming increasingly prevalent in em-
bedded, desktop and high-performance processing. A fully automated optimization
algorithm is presented that reduces the memory bottleneck for stream applications
developed in the high-level stream programming language StreamIt.

This thesis presents four memory optimizations: 1) cache aware fusion, which
combines adjacent program components while respecting instruction and data cache
constraints, 2) execution scaling, which judiciously repeats execution of program com-
ponents to improve instruction and state locality, 3) scalar replacement, which con-
verts certain data buffers into a sequence of scalar variables that can be register
allocated, and 4) optimized buffer management, which reduces the overall number
of memory accesses issued by the program. The cache aware fusion and execution
scaling reduce the instruction and data cache-miss rates and are founded upon a sim-
ple and intuitive cache model that quantifies the temporal locality for a sequence of
actor executions. The scalar replacement and optimized buffer management reduce
the number of memory accesses.

An experimental evaluation of the memory optimizations is presented for three
different architectures: StrongARM 1110, Pentium 3 and Itanium 2. Compared to
unoptimized StreamIt code, the memory optimizations presented in this thesis yield
a 257% speedup on the StrongARM, a 154% speedup on the Pentium 3, and a 152%
speedup on Itanium 2. These numbers represent averages over our streaming bench-
mark suite. The most impressive speedups are demonstrated on an embedded pro-
cessor StrongARM, which has only a single data and a single instruction cache, thus
increasing the overall cost of memory operations and cache misses.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

I would like to thank William Thies and Rodric Rabbah for their guidance throughout

my work that led to this thesis. This thesis is an expanded version of a paper [24]

by the author, William Thies, Rodric Rabbah and Saman Amarasinghe that will

appear in proceedings of ACM SIGPLAN/SIGBED 2005 Conference on Languages,

Compilers, and Tools for Embedded Systems. I would also like to thank all members

of the StreamIt group. I would like to thank William Thies for his work on filter

fusion and loop unrolling in the StreamIt compiler. I would like to thank Jasper Lin

for his work on scalar replacement and loop unrolling in the StreamIt compiler. I

would also like to thank my advisor, Saman Amarasinghe, for his guidance.

Most importantly, I would like to thank my parents.

5

6

Contents

1 Introduction 13

1.1 Overview . 14

1.2 Organization . 16

2 Background 17

2.1 StreamIt . 17

2.1.1 Hierarchical Streams . 17

2.1.2 Execution Model . 19

2.1.3 Compilation Process . 20

2.1.4 Implementation of Cache Optimizations 21

3 Cache Model 23

3.1 Instruction Cache . 24

3.2 Data Cache . 28

4 Optimization Algorithm 31

4.1 Cache Optimizations . 32

4.1.1 Cache Aware Fusion . 32

4.1.2 Execution Scaling . 35

4.2 Scalar Replacement . 37

4.2.1 Scalar Replacement Example 37

4.2.2 Implications for the Cache Aware Fusion 38

4.2.3 Implications for Unrolling . 39

7

4.3 Optimized Buffering of Live Items . 40

4.3.1 Modulation . 41

4.3.2 Copy-Shift . 42

4.3.3 Optimized Copy-Shift . 43

5 Experimental Evaluation 45

5.1 Evaluation of Cache Aware Fusion, Scaling and Scalar Replacement . 47

5.2 Evaluation of Copy-Shift and Modulation 50

5.3 Evaluation of Peek-Scaling and Cut-Peek 53

5.4 Comparison to Cache Unaware Full Fusion 56

5.5 Evaluation of Modified Cache Aware Fusion for Pentium 3 and Itanium 2 58

6 Related Work 61

7 Conclusion 65

7.1 Future Work . 66

A Experimental Evaluation of Execution Scaling Heuristic 67

8

List of Figures

2-1 StreamIt code for an FIR filter . 18

2-2 Hierarchical streams in StreamIt. 18

2-3 Example pipeline with FIR filter. 19

2-4 Example pipeline. 20

2-5 C code for running the steady state 20

3-1 Impact of execution scaling on performance. 27

4-1 Outline of the cache aware fusion algorithm 34

4-2 Our heuristic for calculating the scaling factor. 35

4-3 Example StreamIt code . 37

4-4 Generated C code corresponding to the fused filter with no unrolling . 38

4-5 Generated C code corresponding to the fused filter with full unrolling

and scalar replacement . 38

5-1 Impact on average execution time for our benchmark suite. 47

5-2 Performance results for StrongARM 1110 49

5-3 Performance results for Pentium 3 . 49

5-4 Performance results for Itanium 2 . 49

5-5 Original StreamIt code for the buffer test. 51

5-6 Performance of buffer management strategies on a StrongARM 1110 . 52

5-7 Performance of buffer management strategies on a Pentium 3 52

5-8 Performance of buffer management strategies on an Itanium 2 52

5-9 Performance of peek-scaling and cut-peek on a StrongARM 1110 . . . 55

9

5-10 Performance of peek-scaling and cut-peek on a Pentium 3 55

5-11 Performance of peek-scaling and cut-peek on an Itanium 2 55

5-12 Comparison to full fusion on a StrongARM 1110 57

5-13 Comparison to full fusion on a Pentium 3 57

5-14 Comparison to full fusion on an Itanium 2 57

5-15 Performance of cache optimizations after instruction limit modification

on a Pentium 3 . 59

5-16 Performance of cache optimizations after instruction limit modification

on an Itanium 2 . 59

10

List of Tables

5.1 Evaluation benchmark suite. 46

5.2 The best performing buffer management strategies for each benchmark-

architecture pair [along with speedup over CAF+scaling+SR] 53

11

12

Chapter 1

Introduction

As processor speeds continue to increase, the memory bottleneck remains a primary

impediment to attaining performance. Effective use of the memory hierarchy can

result in significant performance gains. Current practices for hiding memory latency

are invariably expensive and complex. For example, superscalar processors resort

to out-of-order execution to hide the latency of cache misses. This results in large

power expenditures and also increases the cost of the system. Compilers have also

employed computation and data reordering to improve locality, but this requires

a heroic analysis due to the obscured parallelism and communication patterns in

traditional languages such as C.

For performance-critical programs, the complexity inevitably propagates all the

way to the application developer. Programs are written to explicitly manage paral-

lelism and to reorder the computation so that the instruction and data working sets

fit within the cache. For example, the inputs and outputs of a procedure might be ar-

rays that are specifically designed to fit within the data cache on a given architecture;

loop bodies are written at a level of granularity that matches the instruction cache.

While manual tuning can be effective, the end solutions are not portable. They are

also exceedingly difficult to understand, modify, and debug.

The recent emergence of streaming applications presents an opportunity to miti-

gate these problems using simple transformations in the compiler. Stream programs

are rich with parallelism and regular communication patterns that can be exploited by

13

the compiler to automatically tune memory performance. Streaming codes encompass

a broad spectrum of applications, including embedded communications processing,

multimedia encoding and playback, compression, and encryption. They also range to

server applications, such as HDTV editing and hyper-spectral imaging. It is natural

to express a stream program as a high-level graph of independent components, or

actors. Actors communicate using explicit FIFO channels and can execute whenever

a sufficient number of data items are available on their input channels. In a stream

graph, actors can be freely combined and reordered to improve caching behavior as

long as there are sufficient inputs to complete each execution. Such transformations

can serve to automate tedious approaches that are performed manually using today’s

languages; they are too complex to perform automatically in hardware or in the most

aggressive of C compilers.

1.1 Overview

A näıve way to execute a stream program on a uniprocessor is to execute all program

components in some precomputed order. However, the size of the instruction footprint

of the whole program may not fit into the instruction cache. Thus we need to divide

the stream program into parts such that each part has an instruction footprint that

fits into the instruction cache; we then scale the execution of the parts to amortize

the instruction and data cache misses associated with loading the instructions and

state variables associated with each part into the instruction and data cache. The

execution scaling needs to be judicious so that the data produced by a scaled stream

program part does not exceed the data cache.

This thesis presents four memory optimizations for stream programs: (i) cache

aware fusion, (ii) execution scaling, (iii) scalar replacement, and (iv) optimized buffer

management. This thesis also presents a simple quantitative model of caching behav-

ior for streaming workloads, providing a foundation to reason about the transforma-

tions that improve cache usage. Work in this thesis is done in the context of the

Synchronous Dataflow [18] model of computation, in which each actor in the stream

14

graph has a known input and output rate. This is a popular model for a broad range

of signal processing and embedded applications.

Cache aware fusion combines adjacent actors into a single function. This allows

the compiler to optimize across actor boundaries. The fusion algorithm presented in

this thesis is cache aware in that it never fuses a pair of actors that will result in an

overflow of the data or the instruction cache. However, our experimental evaluation

will show that on some architectures we can relax the instruction cache constraint to

allow more aggressive optimization across actor boundaries.

Execution scaling is a transformation that improves instruction locality by exe-

cuting each fused actor in the stream graph multiple times before moving on to the

next actor. Since an actor that has been produced using cache aware fusion usually

fits within the cache, the repeated executions serve to amortize the cost of loading

the actors instruction stream and state from off-chip memory. However, as the cache

model will show, actors should not be scaled excessively, as their outputs will eventu-

ally overflow the data cache. This thesis presents a simple and effective algorithm for

calculating a scaling factor that respects both instruction and data constraints. The

cache aware fusion in conjunction with execution scaling represent a unified approach

that simultaneously considers the instruction and data working sets.

As actors are fused together, new buffer management strategies become possible.

The most aggressive of these, termed scalar replacement, serves to replace an array

with a series of local scalar variables. Unlike array references, scalar variables can be

register allocated, leading to large performance gains.

We also present several optimized buffer management strategies for FIFO channels

that always have to retain a set of live items. We compare two implementations:

using a circular buffer, and periodically shifting the live items to the start of the

buffer. Our experimental evaluation suggests that shifting the live items is the best

implementation if the shifting is performed infrequently.

The memory optimizations presented in this thesis are implemented as part of

StreamIt, a language and compiler infrastructure for stream programming [27]. We

evaluate the optimizations on three architectures. The StrongARM 1110 represents an

15

embedded system without a secondary cache, the Pentium 3 represents a superscalar

processor and the Itanium 2 represents a VLIW processor. We find that cache aware

fusion, scalar replacement, execution scaling and optimized buffer management each

offer significant performance gains, and the most consistent speedups result when all

are applied together. Compared to unoptimized StreamIt code, the optimizations

presented in this thesis yield a 257% speedup on the StrongARM, a 154% speedup on

the Pentium 3, and a 152% speedup on Itanium 2. These numbers represent averages

over our streaming benchmark suite.

1.2 Organization

This thesis is organized as follows. Chapter 2 gives background information on the

StreamIt language. Chapter 3 lays the foundation for the cache optimizations by pre-

senting a quantitative model of caching behavior for any sequence of actor executions.

Chapter 4 describes cache aware fusion, execution scaling, scalar replacement and op-

timized buffer management in detail. Chapter 5 evaluates optimizations proposed in

this thesis as they were implemented in the StreamIt compiler. Finally, Chapter 6

describes related work and Chapter 7 concludes the thesis.

16

Chapter 2

Background

In this chapter we present StreamIt, a high level stream programming language [27].

2.1 StreamIt

StreamIt is an architecture independent language that is designed for stream pro-

gramming. In StreamIt, programs are represented as graphs where nodes represent

computation and edges represent FIFO-ordered communication of data over tapes.

See [27], [10], [28], [17] and [14] for more information and research about StreamIt.

2.1.1 Hierarchical Streams

In StreamIt, the basic programmable unit (i.e., an actor) is a filter. Each filter

contains a special function (called work function) that executes atomically, popping

(i.e., reading) a fixed number of items from the filter’s input tape and pushing (i.e.,

writing) a fixed number of items to the filter’s output tape. A filter may also peek

at a given index on its input tape without consuming the item; this makes it simple

to represent computation over a sliding window. The push, pop, and peek rates are

declared as part of the work function, thereby enabling the compiler to construct a

static schedule of filter executions. An example implementation of a Finite Impulse

Response (FIR) filter appears in Figure 2-1.

17

float->float filter FIRFilter (int N, float[] weights) {
// declare work function along with I/O rates

 work push 1 pop 1 peek N {
 float sum = 0;
 for (int i = 0; i < N; i++) {

// examine items on the input queue
 sum += peek(i) * weights[i];
 }
 pop(); // remove an item from the input queue
 push(sum); // enqueue the sum onto the output queue
 }
}

Figure 2-1: StreamIt code for an FIR filter

stream

stream

stream

stream

splitter

stream stream

joiner

joiner

stream

splitter

stream

(a) pipeline (b) splitjoin (c) feedback loop

Figure 2-2: Hierarchical streams in StreamIt.

The work function is invoked (fired) whenever there is sufficient data on the input

tape. For the FIR example in Figure 2-1, the filter requires at least N elements

before it can execute. The value of N is known at compile time when the filter is

constructed. A filter is akin to a class in object oriented programming with the work

function serving as the main method. The parameters to a filter (e.g., N and weights)

are equivalent to parameters passed to a class constructor.

In StreamIt, the application developer focuses on the hierarchical assembly of the

stream graph and its communication topology, rather than on the explicit manage-

ment of the data buffers between filters. StreamIt provides three hierarchical struc-

tures for composing filters into larger stream graphs (see Figure 2-2). The pipeline

construct composes streams in sequence, with the output of one connected to the

input of the next. An example of a pipeline appears in Figure 2-3.

18

float -> float pipeline Main() {

 add Source(); // code for Source not shown

 add FIR();
 add Output(); // code for Output not shown

}

Source

FIR

Output

Figure 2-3: Example pipeline with FIR filter.

The splitjoin construct distributes data to a set of parallel streams, which are then

joined together in a roundrobin fashion. In a splitjoin, the splitter performs the data

scattering, and the joiner performs the gathering. A splitter is a specialized filter with

a single input and multiple output channels. On every execution step, it can distribute

its output to any one of its children in either a duplicate or a roundrobin manner. For

the former, incoming data are replicated to every sibling connected to the splitter. For

the latter, data are scattered in a roundrobin manner, with each item sent to exactly

one child stream, in order. The splitter type and the weights for distributing data

to child streams are declared as part of the syntax (e.g., split duplicate or split

roundrobin(w1, . . . , wn)). The splitter counterpart is the joiner. It is a specialized

filter with multiple input channels but only one output channel. The joiner gathers

data from its predecessors in a roundrobin manner (declared as part of the syntax)

to produce a single output stream.

StreamIt also provides a feedback loop construct for introducing cycles in the graph.

2.1.2 Execution Model

As noted earlier, an actor (i.e., a filter, splitter, or joiner) executes whenever there are

enough data items on its input tape. In StreamIt, actors have two epochs of execution:

one for initialization, and one for the steady state. The initialization primes the input

tapes to allow filters with peeking (i.e. peek rate > pop rate) to execute the very first

instance of their work functions. A steady state is an execution that does not change

the buffering in the channels: the number of items on each channel after the execution

is the same as it was before the execution. Every valid stream graph has a steady

state [18], and within a steady state, there are often many possibilities for interleaving

19

pop=1

push=3

pop=2

push=3

pop=2

push=1

pop=3

push=1
A B C D

Figure 2-4: Example pipeline.

 run_steady_state() {
A_work(4); // execute Filter A 4 times
B_work(6); // execute Filter B 6 times
C_work(9); // execute Filter C 9 times
D_work(3); // execute Filter D 3 times

 }

Figure 2-5: C code for running the steady state

actor executions. An example of a steady state for the pipeline in Figure 2-4 requires

filter A to fire 4 times, B 6 times, C 9 times, and D 3 times.

2.1.3 Compilation Process

The StreamIt compiler derives the initialization and steady state schedules [15] and

outputs a C program that includes the initialization and work functions, as well as

a driver to execute each of the two schedules. The compilation process allows the

StreamIt compiler to focus on high level optimizations, and relies on existing compil-

ers to perform machine-specific optimizations such as register allocation, instruction

scheduling, and code generation—this two-step approach affords us a great deal of

portability (e.g., code generated from the StreamIt compiler is compiled and run on

three different machines as reported in Chapter 5).

For example, referring to Figure 2-4, the compiler generates C code for running

the steady state that is shown in Figure 2-5.

To execute the program, the steady state is wrapped with another loop that

invokes the steady state a designated number of times. Preceding the steady state, a

similar initialization schedule is run to prime the data buffers.

20

2.1.4 Implementation of Cache Optimizations

The cache optimization algorithm presented in this thesis and described in more detail

in the Chapter 4 has been implemented in the StreamIt optimizing stream compiler.

The cache optimization algorithm first uses cache aware fusion to combine adjacent

actors such that each fused actor can fit its instruction and data footprint within

the instruction and data cache. The cache optimization algorithm then optimizes

fused actors by performing aggressive loop unrolling, scalar replacement, constant

propagation and other optimizations supported by the StreamIt compiler. A special

compiler pass has been implemented by the author that creates the top level function

that invokes the work functions of granularity adjusted actors, scales their execution

and implements optimized buffer management strategy.

21

22

Chapter 3

Cache Model

From a caching point of view, it is intuitively clear that once an actor’s instruction

working set is fetched into the cache, we can maximize instruction locality by running

the actor as many times as possible. This of course assumes that the total code size

for all actors in the steady state exceeds the capacity of the instruction cache. For

the benchmarks used in this thesis, the total code size for a steady state ranges from

2 Kb to over 135 Kb (and commonly exceeds 16 Kb). Thus, while individual actors

may have a small instruction footprint, the total footprint of the actors in a steady

state exceeds a typical instruction cache size. From these observations, it is evident

that we must scale the execution of actors in the steady state in order to improve

temporal locality. In other words, rather than running a actor n times per steady

state, we scale it to run m × n times. We term m the scaling factor.

The obvious question is: to what extent can we scale the execution of actors in

the steady state? The answer is non-trivial because scaling, while beneficial to the

instruction cache behavior, may overburden the data cache as the buffers between

actors may grow to prohibitively large sizes that degrade the data cache behavior.

Specifically, if a buffer overflows the cache, then producer-consumer locality is lost.

This chapter presents a simple and intuitive cache model to estimate the instruc-

tion and data cache miss rates for a steady state sequence of actor firings. The model

serves as a foundation for reasoning about the cache aware optimizations introduced

in this thesis. We develop the model first for the instruction cache, and then generalize

it to account for the data cache.

23

3.1 Instruction Cache

A steady state execution is a sequence of actor firings S = (a1, . . . , an), and a program

execution corresponds to one or more repetitions of the steady state. We use the

notation S[i] to refer to the actor a that is fired at logical time i, and |S| to denote

the length of the sequence.

Our cache model is simple in that it considers each actor in the steady state

sequence, and determines whether one or more misses are bound to occur. The miss

determination is based on the the instruction reuse distance (IRD), which is equal

to the number of unique instructions that are referenced between two executions of

the actor under consideration (as they appear in the schedule). The steady state is a

compact representation of the whole program execution, and thus, we simply account

for the misses within a steady state, and generalize the result to the whole program.

Within a steady state, an actor is charged a miss penalty if and only if the number

of referenced instructions since the last execution (of the same actor) is greater than

the instruction cache capacity.

Formally, let phase(S, i) for 1 ≤ i ≤ |S| represent a subsequence of k elements of

S:

phase(S, i) = (S[i], S[i + 1], . . . , S[i + k − 1])

where k ∈ [1, |S|] is the smallest integer such that S[i+k] = S[i]. In other words, a

phase is a subsequence of S that starts with the specified actor (S[i]) and ends before

the next occurrence of the same actor (i.e., there are no intervening occurrences

of S[i] in the phase). Note that because the steady state execution is cyclic, the

construction of the subsequence is allowed to wrap around the steady state1. For

example, the steady state S1 = (AABB) has phase(S1, 1) = (A), phase(S1, 2) = (ABB),

phase(S1, 3) = (B), and phase(S1, 4) = (BAA),

1In other words, the subsequence is formed from a new sequence S ′ = S|S where | represents

concatenation.

24

Let I(a) denote the code size of the work function for actor a. Then the instruction

reuse distance is

IRD(S, i) =
∑

a

I(a)

where the sum is over all distinct actors a occurring in phase(S, i). We can then

determine if a specific actor will result in an instruction cache miss (on its next

firing) by evaluating the following step function:

IMISS(S, i) =











0 if IRD(S, i) ≤ CI ; hit: no cache refill,

1 otherwise; miss: (some) cache refill.

(3.1)

In the equation, CI represents the instruction cache size.

Using Equation 3.1, we can estimate the instruction miss rate (IMR) of a steady

state as:

IMR(S) =
1

|S|

|S|
∑

i=1

IMISS(S, i). (3.2)

Our cache model allows us to rank the quality of an execution ordering: schedules

that boost temporal locality result in miss rates closer to zero, and schedules that do

not exploit temporal locality result in miss rates closer to one.

For example, in the steady state S1 = (AABB), assume that the combined instruc-

tion working sets exceed the instruction cache, i.e., I(A)+I(B) > CI . Then, we expect

to suffer a miss at the start of every steady state because the phase that precedes

the execution of A (at S1[1]) is phase(S1, 2) with an instruction reuse distance greater

than the cache size (IRD(S1, 2) > CI). Similarly, there is a miss predicted for the

first occurrence of actor B since phase(S1, 4) = (BAA) and IRD(S1, 4) > CI . Thus,

IMR(S1) = 2/4 whereas for the following variant S2 = (ABAB), IMR(S2) = 1. In the

case of S2, we know that since the combined instruction working sets of the actors

exceed the cache size, when actor B is fired following A, it evicts part of actor A’s

instruction working set. Hence when we transition back to fire actor A, we have to

25

refetch certain instructions, but in the process, we replace parts of actor B’s working

set. In terms of the cache model, IRD(S2, i) > CI for every actor in the sequence,

i.e., 1 ≤ i ≤ |S2|.

Note that the amount of refill is proportional to the number of cache lines that

are replaced when swapping actors, and as such, we may wish to adjust the cache

miss step function (IMISS). One simple variation is to allow for some partial re-

placement without unduly penalizing the overall value of the metric. Namely, we can

allow the constant CI to be some fraction greater than the actual cache size. Alterna-

tively, we can use a more complicated miss function with a more uniform probability

distribution.

Temporal Locality According to our model, the concept of improving temporal

instruction locality translates to deriving a steady state where, in the best case, every

actor has only one phase that is longer than unit-length. For example, a permutation

of the actors in S2 (where all phases are of length two) that improves temporal locality

will result in S1, which we have shown has a relatively lower miss rate.

Execution Scaling Another approach to improving temporal locality is to scale

the execution of the actors in the steady state. Scaling increases the number of

consecutive firings of the same actor. A scaled steady state has a greater number

of unit-length phases (i.e., a phase of length one and the shortest possible reuse

distance).

We represent a scaled execution of the steady state as Sm = (am

1
, . . . , am

n
): the

steady state S is scaled by m, which translates to m − 1 additional firings of every

actor. For example, scaling S1 = (AABB) by a factor of two results in S2

1
= (AAAABBBB)

and scaling S2 = (ABAB) by the same amount results in S2

2
= (AABBAABB);

From Equation 3.1, we observe that unit-length phases do not increase the in-

struction miss rate as long as the size of the actor’s instruction working set is smaller

than the cache size; we assume this is always the case. Therefore, scaling has the

effect of preserving the pattern of miss occurrences while also lengthening the steady

26

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

0 5 10 15 20 25 30 35 40

scaling factor

FFT on a Pentium 3

e
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Figure 3-1: Impact of execution scaling on performance.

state. Mathematically, we can substitute into Equation 3.2:

IMR(Sm) =
1

|Sm|

|Sm|
∑

i=1

IMISS(Sm, i)

=
1

m × |S|

|Sm|
∑

i=1

IMISS(Sm, i).

=
1

m × |S|

|S|
∑

i=1

IMISS(S, i). (3.3)

The last step is possible because IMISS is zero for m−1 out of m executions of every

scaled actor. The result is that the miss rate is inversely proportional to the scaling

factor.

In Figure 3-1 we show a representative curve relating the scaling factor to overall

performance. The data corresponds to a coarse-grained implementation of a Fast

Fourier Transform (FFT) running on a Pentium 3 architecture. The x-axis represents

the scaling factors (with increasing values from left to right). The y-axis represents

the execution time and is an indirect indicator of the miss rate (the two measures

are positively correlated). The execution time improves in accord with the model:

the running time is shortened as the scaling factor grows larger. There is however an

27

eventual degradation, and as the sequel will show, it is attributed to the data cache

performance.

3.2 Data Cache

The results in Figure 3-1 show that scaling can reduce the running time of a program,

but ultimately, it degrades performance. This section provides a basic analytical

model that helps in reasoning about the relationship between scaling and the data

cache miss rate.

We distinguish between two types of data working sets. The static data working

set of an actor represents state, e.g., weights in the FIR example (Figure 2-1). The

dynamic data working set is the data consumed (poped) from the input channel and

generated (pushed) to the output channel by the work function. Both of these working

sets impact the data cache behavior of an actor.

Intuitively, the presence of state suggests that it is prudent to maximize that

working set’s temporal locality. In this case, scaling positively improves the data

cache performance. To see that this is true, we can define a data miss rate (DMR)

based on a derivation similar to that for the instruction miss rate, replacing CI with

CD in Equation 3.1, and I(a) with State(a) when calculating the reuse distance. Here,

CD represents the data cache size, and State(a) represents the total size of the static

data in the specified actor.

Execution scaling however also increases the I/O requirements of a scaled actor.

Let pop and push denote the declared pop and push rates of an actor, respectively.

The scaling of an actor by a factor m therefore increases the pop rate to m× pop and

the push rate to m × push. Combined, we represent the dynamic data working set

of an actor a as IO(a, m) = m × (pop + push). Therefore, we measure the data reuse

distance (DRD) of an execution S with scaling factor m as follows:

DRD(Sm, i) =
∑

a

State(a) + IO(a, m)

28

where the sum is over all distinct actors a occurring in phase(Sm, i). While this simple

measure double-counts data that are both produced and consumed within a phase,

such duplication could be roughly accounted for by using IO′(a, m) = IO(a, m)/2.

We can determine if a specific work function will result in a data cache miss (on

its next firing) by evaluating the following step function:

DMISS(Sm, i) =











0 if DRD(Sm, i) ≤ CD; hit: no cache refill,

1 otherwise; miss: (some) cache refill.

(3.4)

Finally, to model the data miss rate (DMR):

DMR(Sm) =
1

|Sm|

|Sm|
∑

i=1

DMISS(Sm, i). (3.5)

It is evident from Equation 3.5 that scaling can lead to lower data miss rates,

as the coefficient 1/|Sm| = 1/(m × |S|) is inversely proportional to m. However, as

the scaling factor m grows larger, more of the DMISS values transition from 0 to 1

(they increase monotonically with the I/O rate, which is proportional to m). For

sufficiently large m, DMR(Sm) = 1. Thus, scaling must be performed in moderation

to avoid negatively impacting the data locality.

Note that in order to generalize the data miss rate equation so that it properly

accounts for the dynamic working set, we must consider the amount of data reuse

within a phase. This is because any actor that fires within phase(S,i) might consume

some or all of the data generated by S[i]. The current model is simplistic, and leads to

exaggerated I/O requirements for a phase. We also do not model the effects of cache

conflicts, and take an “atomic” view of cache misses (i.e., either the entire working

set hits or misses).

29

30

Chapter 4

Optimization Algorithm

In this chapter we describe our memory optimizations that are geared toward im-

proving the memory behavior of streaming programs. First, we describe cache aware

fusion which performs a series of granularity adjustments to the actors in the steady

state. The fusion serves to (i) reduce the overhead of switching between actors,

(ii) create coarser grained actors for execution scaling, and (iii) enable novel buffer

management techniques between fused actors. Second, we describe execution scal-

ing which scales a steady state to improve instruction locality, subject to the data

working set constraints of the actors in the stream graph. Third, we describe scalar

replacement which enables register allocation of intermediate values that are passed

between fused filters. Last, we discuss an optimized management strategy for the

data in the FIFO channels to support peeking, that reduce the number of memory

accesses without introducing substantial computational overhead.

31

4.1 Cache Optimizations

The cache aware fusion in conjunction with execution scaling represent a unified cache

optimization that simultaneously considers the instruction and data working sets of

actors that make up a stream program.

4.1.1 Cache Aware Fusion

In StreamIt, the granularity of actors is determined by the application developer,

according to the most natural representation of an algorithm. When compiling to

a cache-based architecture, the presence of a large number of actors exacerbates the

transition overhead between work functions. It is the role of the compiler to adjust

the granularity of the stream graph to mitigate the execution overhead.

In this section we describe an actor coarsening technique we refer to as cache

aware fusion (CAF). When two actors are fused, they form a new actor whose work

function is equivalent to its constituents. For example, let an actor A fire n times,

and an actor B fire 2n times per steady state: Sn = (AnBnBn). Fusing A and B results

in an actor F that is equivalent to one firing of A and two firings of B; F fires n times

per steady state (Sn = (Fn)). In other terms, the work function for actor F inlines

the work functions of A and B.

When two actors are fused, their executions are scaled such that the output rate

of one actor matches the input rate of the next. In the example, A and B represent a

producer-consumer pair of filters within a pipeline, with filter A pushing two items per

firing, and B popping one item per firing. The fusion implicitly scales the execution

of B so that it runs twice for every firing of A.

Fusion also reduces the overhead of switching between work functions. In our

infrastructure, the steady state is a loop that invokes the work functions via method

calls. Thus, every pair of fused actors eliminates a method call (per invocation of the

actors). The impact on performance can be significant, but not only because method

calls are removed: the fusion of two actors also enables the compiler to optimize across

actor boundaries. In particular, for actors that exchange only a few data items, the

32

compiler can allocate the data streams to registers. The data channel between fused

actors is subject to special buffer management techniques (e.g. scalar replacement)

as described in the Section 4.2.

There are, however, downsides to fusion. First, as more and more actors are fused,

the instruction footprint can dramatically increase, possibly leading to poor use of the

instruction cache. Second, fusion increases the data footprint when the fused actors

maintain state (e.g., coefficient arrays and lookup tables). Our fusion algorithm is

cache aware in that it is cognizant of the instruction and data sizes.

The CAF algorithm uses a greedy fusion heuristic to determine which filters should

be fused. It continuously fuses actors until the addition of a new actor causes the

fused actor to exceed either the instruction cache capacity, or a fraction of the data

cache capacity. For the former, we estimate the instruction code size using a simple

count of the number of operations in the intermediate representation of the work

function. For the latter, we allow the state of the new fused actor to occupy up to

some fraction of the data cache capacity (e.g. 50%).

The algorithm illustrated in Figure 4-1 leverages the hierarchical nature of the

stream graph, starting at the leaf nodes and working upward. For pipeline streams,

the algorithm identifies the connection in the pipeline with the highest steady-state

I/O rate, i.e., the pair of filters that communicate the largest number of items per

steady state. These two filters are fused, if doing so respects the instruction and data

cache constraints. To prevent fragmentation of the pipeline, each fused filter is further

fused with its upstream and downstream neighbors so long as the constraints are met.

The algorithm then repeats this process with the next highest-bandwidth connection

in the pipeline, continuing until no more filters can be fused. For splitjoin streams,

the CAF algorithm fuses all parallel branches together if the combination satisfies the

instruction and data constraints. Partial fusion of a splitjoin is not helpful, as the

child streams do not communicate directly with each other; however, complete fusion

can enable further fusion in parent pipelines.

33

// Following recursive algorithm can be used to find a set of
// partitions for each pipeline or splitjoin such that all actors
// within a partition can be fused without violating instruction or
// data cache constraint.

// For each partition that is returned for the top level pipeline
// all actors within that partition are fused into a new actor.

// To find partitions for a pipeline:

Calculate the number of partitions required for each child,
if for any child this is > 1 then remember those partitions.

For each sequence (i..j) of children where for each child
number of partitions is 1 use function Interval(i,j) to find partitions.

Interval(i,j) = “
Find maximum bandwidth connection between children (in the
interval (i..j)), let this be a pair m and m + 1.

Estimate instruction and data footprint of fused m and m + 1.

If fused m and m + 1 violates any cache constraint, use Interval(i,m)
and Interval(m + 1,j) to find two sets of partitions.

If fused m and m + 1 do not violate any cache constraint, start with
m and m + 1 fused, try fusing up or down until can not fuse up or down
without violating a cache constraint. Let this result in a partition (a..b),
use Interval(i,a − 1) and Interval(b + 1,j) to find remaining partitions.”

// To find partitions for a splitjoin:

Calculate the number of partitions required for each child.

If each child can be fused into a single partition, estimate instruction and
data footprint of a fused splitjoin, if this does not violate any cache
constraint return a single partition.

Otherwise, return the set of partitions required for each child.

Figure 4-1: Outline of the cache aware fusion algorithm

34

// Returns a scaling factor for steady state S
// - c is the data cache size
// - α is the fraction of c dedicated for I/O
// - p is the desired percentile of all actors to be
// satisfied by the chosen scaling factor (0 < p ≤ 1)
calculateScalingFactor(S, c, α, p) {

create array M of size |S|
for i = 1 to |S| {

a = S[i]
// calculate effective cache size
c′ = α × (c − State(a))
// calculate scaling factor for a such
// that I/O requirements are close to c′

M [i] = round(c′ / IO(a, 1))
}
sort M into ascending numerical order
i = b (1 − p) × |S| c
return M [i]

}

Figure 4-2: Our heuristic for calculating the scaling factor.

4.1.2 Execution Scaling

After we have applied the cache aware fusion algorithm the next step is to scale the

granularity adjusted actors in order to reduce the cache-miss rate. According to our

instruction cache model, increasing the number of consecutive firings of the same

actor leads to lower instruction cache miss rates. However, scaling increases the data

buffers that are maintained between actors. Thus it is prudent that we account for

the data working set requirements as we scale a steady state.

Our approach is to scale the entire steady state by a single scaling factor, with

the constraint that only a small percentage of the actors are allowed to overflow the

data cache. Our two-staged algorithm is outlined in Figure 4-2.

First, the algorithm calculates the largest possible scaling factor for every actor

that appears in the steady state. To do this, it calculates the amount of data consumed

and produced by each actor firing and divides the available data cache size by this

data production rate. In addition, the algorithm can toggle the effective cache size

to account for various eviction policies.

35

Second, it chooses the largest factor that allows a fraction p of the steady state

actors to be scaled safely (i.e., the cache is adequate for their I/O requirements).

For example, the algorithm might calculate mA = 10, mB = 20, mC = 30, and

mD = 40, for four actors in some steady state. That is, scaling actor A beyond 10

consecutive iterations will cause its dynamic I/O requirements to exceed the data

cache. Therefore, the largest m that allows p = 90% of the actors to be scaled

without violating the cache constraints is 10. Similarly, to allow for the safe scaling

of p = 75% of the actors, the largest factor we can choose is 20.

In our implementation, we use a 90-10 heuristic. In other words, we set p = 90%.

We empirically determined this value via a series of experiments using our benchmark

suite. See Appendix A for an experimental evaluation of our heuristic.

Note that our algorithm adjusts the effective cache size that is reserved for an

actor’s dynamic working set (i.e., data accessed via pop and push). This adjustment

allows us to control the fraction of the cache that is used for reading and writing

data—and affords some flexibility in targeting various cache organizations. For ex-

ample, architectures with highly associative and multilevel caches may benefit from

scaling up the effective cache size (i.e., α > 1), whereas a direct mapped cache that is

more prone to conflicts may benefit from scaling down the cache (i.e., α < 1). In our

implementation, we found α = 2/3 to work well on desktop processors Pentium 3 and

Itanium 2, and α = 4/3 to work well on an embedded processor StrongARM 1110.

We note that the optimal choice for the effective cache size is a complex function

of the underlying cache organization and possibly the application as well; this is an

interesting issue that warrants further investigation.

36

void->void pipeline Program {
 add Source();
 add Printer();
}

void->int filter Source {
 int i;
 init { i = 0; }
 work push 2 { push(i++); push(i++); }
}

void->int filter Printer {
 work pop 3 { print(pop() + pop() + pop()); }
}

Figure 4-3: Example StreamIt code

4.2 Scalar Replacement

After two filters have been fused into a single work function using cache aware fusion,

the buffer that contains the intermediate values can be replaced by a set of scalar

variables. Such transformation allows the C compiler to register allocate intermediate

values and it also eliminates the need to keep track of the current index within the

buffer while adding to or removing items from the buffer. In order for the scalar

replacement to be possible all instructions that access the buffer must access it with

a constant index. As our example will show, we can guarantee this property by

performing sufficient loop unrolling.

4.2.1 Scalar Replacement Example

Consider a StreamIt program shown in Figure 4-3. The program consists of two

filters (Source and Printer) that have mis-matched rates (filter Source pushes two

items and filter Printer pops three items). If the two filters are fused the compiler

will create a pair of loops to match the production and consumption rates as shown

in the Figure 4-4. Note that we can not replace the buffer with scalar variables yet

since each instruction that accesses the buffer uses a non-constant subscript. To allow

scalar replacement we need to fully unroll the loops. Note that the result will have

three copies of instructions that correspond to the filter Source and two copies of

37

fused_work() {
 int buf[6];
 int pushindex = 0;
 int popindex = 0;

// execute Source
 for (j = 0; j < 3; j++) {
 buf[pushindex++] = i++;
 buf[pushindex++] = i++;
 }

// execute Printer
 for (j = 0; j < 2; j++) {
 print(buf[popindex++] + buf[popindex++] + buf[popindex++]);
 }
}

Figure 4-4: Generated C code corresponding to the fused filter with no unrolling

fused_work() {
 int buf0, buf1, buf2, buf3, buf4, buf5;

 buf0 = i++; buf1 = i++; // execute Source
 buf2 = i++; buf3 = i++; // execute Source
 buf4 = i++; buf5 = i++; // execute Source

 print(buf0 + buf1 + buf2); // execute Printer
 print(buf3 + buf4 + buf5); // execute Printer
}

Figure 4-5: Generated C code corresponding to the fused filter with full unrolling and
scalar replacement

instructions that correspond to the filter Printer. Figure 4-5 shows the C code that

has been generated after StreamIt compiler has performed full loop unrolling and

scalar replacement.

4.2.2 Implications for the Cache Aware Fusion

The goal of fusion is to allow aggressive optimization across actor boundaries. Our

cache aware fusion algorithm is modified to only fuse a group of filters if a given

unroll limit will allow all intermediate buffers to be scalar replaced. For our StreamIt

example in Figure 4-3 the filters Source and Printer will only be fused if the loop

unrolling limit is greater than or equal to 3 (otherwise the loop around the statements

38

corresponding to filter Source in the fused work function will not be fully unrolled).

For our benchmark suite we use an unrolling limit of 128 to allow as much fusion and

scalar replacement as possible. The cache aware fusion algorithm also keeps track of

the code size expansion due to loop unrolling, so that the instruction size of the new

actor after unrolling does not exceed the instruction cache.

4.2.3 Implications for Unrolling

We need to perform aggressive unrolling to maximize the number of buffers that are

replaced by scalars. However, not all loops should be fully unrolled. For example

fully unrolling a loop that does not perform any push or pop operations unnecessarily

increases the instruction size of the actor (this may limit our ability to fuse an actor

with other actors without exceeding the instruction cache). Therefore loops that do

not perform push or pop operations are unrolled no more than 4 times.

39

4.3 Optimized Buffering of Live Items

For FIFO channels where the consumer only examines (peeks) the same items that it

consumes during each iteration (peek ≤ pop) a simple buffer of sufficient size can be

used. The buffer is first filled up by the producer and subsequently emptied by the

consumer. As shown in the previous section such buffers can be replaced with a set of

scalar variables if the two filters are fused and sufficient loop unrolling is performed.

For FIFO channels where the consumer examines more items than it consumes

(peek > pop) the buffer will be primed during the initialization phase to allow the

consumer to execute. Subsequently, the buffer is never completely emptied by the

consumer. This imposes a difficult decision on our StreamIt compiler of how to best

implement a buffer that has to retain a set of live items for consumption during

subsequent steady state cycles.

We explore two basic strategies for implementing buffers that must retain live

items between steady state executions. The first strategy, termed modulation, im-

plements a traditional circular buffer that is indexed via a wrap-around head and

tail pointers. The second strategy, termed copy-shift, avoids modulo operations by

shifting the buffer contents to the start of the buffer after a certain number of execu-

tions. Our experimental evaluation demonstrates that, while a naive implementation

of copy-shift can be 2× to 3× slower than modulation, optimizations that utilize

execution scaling can boost the performance of copy-shift to be significantly faster

than modulation (51% speedup on StrongARM, 48% speedup on Pentium 3, and 5%

speedup on Itanium 2).

40

4.3.1 Modulation

The modulation scheme uses a traditional circular-buffer approach. Three vari-

ables are introduced: a BUFFER to hold all items transferred between the actors, a

push index to indicate the buffer location that will be written next, and a pop index

to indicate the buffer location that will be read next (i.e., the location corresponding

to peek(0)). The communication primitives are translated as follows:

push(val); ==> BUFFER[push_index] := val;

push_index := (push_index + 1) % BUF_SIZE;

pop(); ==> := BUFFER[pop_index];

pop_index := (pop_index + 1) % BUF_SIZE;

peek(i) ==> := BUFFER[(pop_index + i) % BUF_SIZE]

Note that, for performance reasons the StreamIt compiler converts the modulo oper-

ations to bitwise-and operations by scaling the buffer to a power of two.

41

4.3.2 Copy-Shift

A copy-shift implementation allows us to eliminate the bitwise-and operations, by

not allowing the head and tail pointers to wrap around the buffer. Instead, the live

items are periodically copied to the start of the buffer and the head and tail pointers

are decreased. The communication primitives are translated as follows:

push(val); ==> BUFFER[push_index++] := val;

pop(); ==> := BUFFER[pop_index++];

peek(i) ==> := BUFFER[pop_index + i]

An unoptimized implementation of copy-shift in our StreamIt compiler copies the live

items after each execution of the consumer that has been scaled only to match rates

with other fused actors. The cost of copying a substantial amount of data frequently

makes the unoptimized copy-shift substantially less efficient than simple modulation

as our experimental evaluation will show.

42

4.3.3 Optimized Copy-Shift

We can reduce the cost of copy-shift by increasing the size of the data buffer. This

allows us to reduce the frequency at which the live items are copied over to the

beginning of the buffer. We evaluate two transformations of a stream program that

allow us to reduce the frequency of copying the live items.

Peek-Scaling Implementation

A simple transformation, that allows us to reduce the number of times the live items

are copied, is to replace every filter that peeks (i.e., peek > pop) with a filter that

executes the original filter N times. N is chosen sufficiently large such that the

cost of copying items per execution of the original filter is reduced (since live items

will be copied to the beginning of the buffer N times less). After scaling, the new

filter has a pop rate equal to popn = N ∗ popo and a peek rate equal to peekn =

N ∗ popo + (peeko − popo), where popo and peeko are the pop and peek rates of the

original filter, and popn and peekn are the pop and peek rates of the replaced filter.

The compiler choses N such that (peekn − popn) ≤ popn/4 (the original filter is

executed N times such that the new filter consumes at least 4× as many items than

are copied over to the start of buffer after every iteration of the new filter). As our

experimental evaluation will show this transformation allows copy-shift to outperform

modulation for our synthetic benchmark. However, this transformation can lead to

significant performance reduction for some of our application benchmarks, since the

loop that is introduced by the peek-scaling will be unrolled to allow scalar replacement

leading to an increase in the instruction footprint. Also the loops enclosing other fused

actors will have larger iteration counts to match the new consumption/production rate

of the replaced filter; this leads to increased code size due to unrolling. Lastly, the

sum of input and output data consumed during a steady state for some actor after

the peek-scaling transformation might exceed the size of the data cache leading to

bad data cache performance.

43

Cut-Peek Implementation

Another approach that allows us to decrease the frequency at which live items are

copied to the start of the buffer is to modify our cache aware fusion algorithm to never

fuse a producer consumer pair if the consumer performs any peeking (i.e., peek > pop).

This ensures that after we perform execution scaling we can copy the live items only

once per execution of the scaled consumer (which might be fused with filters that

consume its output). The cut-peek implementation presents a unified optimization

framework for reducing cache miss rates and achieving good performance for our

copy-shift buffer implementation.

44

Chapter 5

Experimental Evaluation

In this chapter we evaluate the merits of the proposed memory optimizations and

buffer management strategies. We use three different architectures: a 137 MHz Stron-

gARM 1110, a 600 MHz Pentium 3 and a 1.3 GHz Itanium 2. The StrongARM results

reflect performance for an embedded target; it has a 16 Kb L1 instruction cache, an

8 Kb L1 data cache, and no L2 cache. The StrongARM also has a separate 512-byte

minicache (not targeted by our optimizations). The Pentium 3 and Itanium 2 reflect

desktop performance; they have a 16 Kb L1 instruction cache, 16 Kb L1 data cache,

and 256 Kb shared L2 cache.

Our benchmark suite (see Table 5.1) consists of 11 StreamIt applications. They

are compiled with the StreamIt compiler which applies the optimizations described in

this thesis, as well as aggressive loop unrolling (by a factor of 128 for all benchmarks)

to facilitate scalar replacement (see Chapter 4). The StreamIt compiler outputs a

functionally equivalent C program that is compiled with gcc (v3.4, -O3) for the

StrongARM and for the Pentium 3, and with ecc (v7.0, -O3) for the Itanium 2. Each

benchmark is then run five times, and the median user time is recorded.

As the StrongARM does not have a floating point unit, we converted all of our

floating point applications (i.e., every application except for bitonic) to operate on

integers rather than floats. In practice, a detailed precision analysis is needed in

converting such applications to fixed-point. However, as the control flow within these

applications is very static, we are able to preserve the computation pattern for the

45

Benchmark Description # of Actors

bitonic bitonic sort of 64 integers 972
fir finite impulse response (128 taps) 132
fft-fine fine grained 64-way FFT 267
fft-coarse coarse grained 64-way FFT 26
3gpp 3GPP Radio Access Protocol 105
beamformer beamformer with 64 channels and 1 beam 197
matmult matrix multiplication 48
fmradio FM Radio with 10-way equalizer 49
filterbank filterbank program (8 bands, 32 taps / filter) 53
filterbank2 independent filterbank (3 bands, 100 taps / filter) 37
ofdm Orthogonal Frequency Division Multiplexor [26] 16

Table 5.1: Evaluation benchmark suite.

sake of benchmarking by simply replacing every floating point type with an integer

type.

We also made an additional modification in compiling to the StrongARM: our

execution scaling heuristic scales actors until their output fills 4/3 of the data cache,

rather than 2/3 used for the Pentium 3 and the Itanium 2. This modification accounts

for the 32-way set-associative L1 data cache in the StrongARM. Due to the high degree

of associativity, there is a smaller chance that the actor outputs will repeatedly evict

the state variables of the actor, thereby making it worthwhile to further fill the data

cache. Note, that, since 4/3 > 1, we expect the data produced by the actor to

overwrite the data consumed without evicting the state. Using 4/3 instead of 2/3 on

StrongARM yields up to 30% improvement on some benchmarks.

46

0

0.2

0.4

0.6

0.8

1

StrongARM Pentium 3 Itanium 2

a
v

e
ra

g
e

 e
x

e
c

u
ti

o
n

 t
im

e

(n
o

rm
a
li

z
e

d
 t

o
 u

n
o

p
ti

m
iz

e
d

 S
tr

e
a

m
It

) CAF CAF+scaling CAF+scaling+SR

Figure 5-1: Impact on average execution time for our benchmark suite.

5.1 Evaluation of Cache Aware Fusion, Scaling and

Scalar Replacement

In this section we evaluate the performance impact of cache aware fusion, execution

scaling and scalar replacement on an embedded processor, a superscalar processor

and a VLIW processor. Instead of evaluating each optimization individually we first

evaluate the performance impact of applying just cache aware fusion (CAF), then the

impact of cache aware fusion in combination with execution scaling (CAF+scaling),

and lastly the impact of cache aware fusion in combination with execution scaling

and scalar replacement within the granularity adjusted actors (CAF+scaling+SR).

Instead of calculating a speedup of an optimization plan using geometric mean

of the execution times of individual benchmarks we use average execution time to

calculate speedups. We believe that using an average execution time is appropriate

instead of using a geometric mean since an average execution time gives an equal

weight to the execution time of all eleven benchmarks. Using the geometric mean

would actually make all of our speedups over unoptimized StreamIt larger.

Figure 5-1 shows the impact of our optimizations on the average execution time

for our benchmark suite on all three architectures. Cache aware fusion alone delivers a

speedup of 53% on StrongARM, a speedup of 63% on Pentium 3 and a speedup of 85%

on Itanium 2 over unoptimized StreamIt. Cache aware fusion with execution scaling

47

delivers a speedup of 214% on StrongARM, a speedup of 111% on Pentium 3 and a

speedup of 122% on Itanium 2 over unoptimized StreamIt. Cache aware fusion with

execution scaling and scalar replacement delivers a speedup of 250% on StrongARM, a

speedup of 146% on Pentium 3 and a speedup of 144% on Itanium 2 over unoptimized

StreamIt.

Figure 5-2, Figure 5-3 and Figure 5-4 show the performance impact of applying

optimizations CAF, CAF+scaling and CAF+scaling+SR for individual benchmarks

on all three architectures. At the right-hand side of each figure we show the average

and geometric mean of the normalized execution time.

In general we observe that adding execution scaling to cache aware fusion improves

performance for all benchmarks on all platforms. The only exception is 3gpp on

StrongARM. This is possibly due to items in flight between the granularity-adjusted

actors overwriting the state of an executing actor in the data cache. Since StrongARM

has no L2 cache then such eviction can be quite expensive. It could also be due to our

scaling algorithm allowing input and output to occupy up to 4/3 of the data cache on

StrongARM. However, all other benchmarks on StrongARM have better performance

when we allow actors to fill 4/3 of the data cache instead of 3/3 or 2/3. Also note that

execution scaling has the most impact on StrongARM architecture, this is possibly

due to its lack of an L2 cache that makes cache-misses much more expensive than on

Pentium or Itanium which both have a substantial L2 cache.

We also observe that adding scalar replacement to cache aware fusion and execu-

tion scaling improves performance for almost all benchmarks on all platforms. The

only exceptions are fft-fine and filterbank2 on a StrongARM which experience

a modest 15% and 8% slowdown; also matrix multiply experiences a negligible 1%

slowdown on a Pentium 3.

48

0

0.2

0.4

0.6

0.8

1

1.2

bi
to

ni
c fir

fft
-fi

ne

fft
-c

oa
rs

e
3g

pp

be
am

fo
rm

er

m
at

m
ul
t

fm
ra

di
o

fil
te

rb
an

k

fil
te

rb
an

k2
of

dm

av
er

ag
e

geo
m

ea
n

e
x
e

c
u

ti
o

n
 t

im
e

(n
o

rm
a

liz
e

d
 t

o
 u

n
o

p
ti
m

iz
e

d
 S

tr
e

a
m

It
)

CAF CAF+scaling CAF+scaling+SR

Figure 5-2: Performance results for StrongARM 1110

0

0.2

0.4

0.6

0.8

1

1.2

bi
to

ni
c fir

fft
-fi

ne

fft
-c

oa
rs

e
3g

pp

be
am

fo
rm

er

m
at

m
ul
t

fm
ra

di
o

fil
te

rb
an

k

fil
te

rb
an

k2
of

dm

av
er

ag
e

geo
m

ea
n

e
x
e

c
u

ti
o

n
 t

im
e

(n
o

rm
a

liz
e

d
 t

o
 u

n
o

p
ti
m

iz
e

d
 S

tr
e

a
m

It
)

CAF CAF+scaling CAF+scaling+SR

Figure 5-3: Performance results for Pentium 3

0

0.2

0.4

0.6

0.8

1

1.2

bi
to

ni
c fir

fft
-fi

ne

fft
-c

oa
rs

e
3g

pp

be
am

fo
rm

er

m
at

m
ul
t

fm
ra

di
o

fil
te

rb
an

k

fil
te

rb
an

k2
of

dm

av
er

ag
e

geo
m

ea
n

e
x
e

c
u

ti
o

n
 t

im
e

(n
o

rm
a

liz
e

d
 t

o
 u

n
o

p
ti
m

iz
e

d
 S

tr
e

a
m

It
)

CAF CAF+scaling CAF+scaling+SR

Figure 5-4: Performance results for Itanium 2

49

5.2 Evaluation of Copy-Shift and Modulation

To compare the efficiency of different buffer management techniques we use a simple

synthetic StreamIt benchmark shown in Figure 5-5. Using a specialized synthetic

benchmark allows us to highlight the performance of specific buffer management im-

plementation techniques. We compile the benchmark with filter FIR having a peek

rate set equal to 0, 8, 16, 32 ...128 (by varying the PEEK variable). Varying the peek

rate of the FIR filter allows us to see how the strategies perform as we vary the num-

ber of live items that must be retained in the buffer. We ran the benchmark on the

StrongARM 1110, Pentium 3 and Itanium 2. The results are shown in Figure 5-6,

Figure 5-7 and Figure 5-8. The copy-shift represents an unoptimized implemen-

tation of copy-shift, where the live items are copied to the beginning of the buffer

after every execution of the filter FIR. The modulation represents an implementation

where the buffer is implemented as a wrap-around buffer. The copy-shift+scaling

represents peek-scaling where the FIR filter is replaced with a filter that executes the

original FIR filter N times. The N is chosen such that the new filter consumes at

least 4× as many items than are copied over to the start of buffer after every iteration

of the scaled filter.

As expected, modulation outperforms unoptimized copy-shift, because modulation

does not require the items in the buffer to be copied to the start of the buffer. The

somewhat surprising result is that optimized copy-shift (where live items are copied

to the start of the buffer infrequently) offers a substantial speedup over modulation.

The optimized copy-shift in comparison to modulation delivers a 51% speedup on

StrongARM, a 48% speedup on Pentium 3, and a 5% speedup on Itanium 2 for a

peek rate of 128. The modest speedup of using optimized copy-shift versus modulation

on Itanium 2 can be explained by the VLIW nature of the architecture, where the

bitwise-and operations can be scheduled by the C compiler in parallel with other

instructions, thus reducing the cost of bitwise-and operation relative to its cost on

StrongARM and Pentium 3.

50

void->void pipeline BufferTest {
 add Source();
 add FIR();
}

void->float filter Source {
 work push 1 {
 push(...);
 }
}

float->void filter FIR {
 int PEEK = 4;
 work pop 1 peek PEEK {
 float result = 0;
 for (int i = 1; i < PEEK; i++) {
 result += i * peek(i);
 }
 pop();
 print(result);
 }
}

Figure 5-5: Original StreamIt code for the buffer test.

51

0

10

20

30

40

50

60

0 16 32 48 64 80 96 112 128

Peek

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

copy-shift

modulation

copy-shift + scaling

Figure 5-6: Performance of buffer management strategies on a StrongARM 1110

0

2

4

6

8

10

12

14

16

0 16 32 48 64 80 96 112 128

Peek

E
x
e

c
u

ti
o

n
 t
im

e
 (

s
e

c
o

n
d

s
)

copy-shift

modulation

copy-shift + scaling

Figure 5-7: Performance of buffer management strategies on a Pentium 3

0

1

2

3

4

5

6

0 16 32 48 64 80 96 112 128

Peek

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
o

n
d

s
)

copy-shift

modulation

copy-shift + scaling

Figure 5-8: Performance of buffer management strategies on an Itanium 2

52

Table 5.2: The best performing buffer management strategies for each benchmark-
architecture pair [along with speedup over CAF+scaling+SR]

Benchmark StrongARM 1110 Pentium 3 Itanium 2

fmradio peek-scaling 5% peek-scaling 3% peek-scaling, cut-peek 0%
filterbank default default default
filterbank2 cut-peek 45% cut-peek 38% cut-peek 36%
ofdm peek-scaling 7% cut-peek 3% cut-peek 0%

5.3 Evaluation of Peek-Scaling and Cut-Peek

The previous section suggests that the best implementation for a buffer that has

to retain live items is a copy-shift that copies the live items to the start of buffer

infrequently. However, the buffer management strategy for the performance numbers

we presented in previous sections is unoptimized copy-shift. In this section we evaluate

two transformations of a stream program that allow us to use optimized copy-shift by

applying a simple transformation to the stream program. The two alternatives are:

peek-scaling and cut-peek (see Chapter 4 for details). From eleven benchmarks in

our benchmark suite, only four benchmarks have filters that peek (i.e., peek > pop).

They are fmradio, filterbank, filterbank2 and ofdm.

Table 5.2 shows the best buffer implementation for each benchmark and architec-

ture pair along with a speedup over CAF+scaling+SR with unoptimized copy-shift.

Although for some benchmarks on some architectures the peek-scaling is the best im-

plementation there are certain risks associated with the peek-scaling transformation.

Replacing a filter with a scaled version causes many loops that are placed around

filters by the fusion (in order to match rates) to have larger iteration counts. Due

to our aggressive unrolling (to allow scalar replacement) total code size after peek-

scaling can be substantially larger. Also peek-scaling is cache unaware in that it could

overscale some actor such that its total input and output processed during a steady

state greatly exceed the data cache size, thus causing a significant slowdown.

Figure 5-9, Figure 5-10 and Figure 5-11 show the performance impact of adding

peek-scaling or cut-peek to cache aware fusion, execution scaling and scalar replace-

53

ment. Note the significant slowdowns for some benchmarks due to applying peek-

scaling. The experimental evaluation suggests that cut-peek is better than peek-

scaling as an optimized buffer implementation. While cut-peek may result in up to

a 17% slowdown (for filterbank on Pentium 3) it does deliver significant speedups

for benchmarks that have filters with large peek - pop rate difference (i.e., many live

items need to be retained in the FIFO buffer). The best speedups that cut-peek

delivers over unoptimized copy-shift are for the filterbank2 benchmark which has

filters where peek - pop = 99 (a 45% speedup on StrongARM, a 38% speedup on

Pentium 3 and 36% speedup on Itanium 2).

A combination of cache aware fusion, execution scaling, scalar replacement and

cut-peek buffer management yields a 257% speedup on the StrongARM, a 154%

speedup on the Pentium 3, and a 152% speedup on Itanium 2 compared to unopti-

mized StreamIt.

54

0

0.2

0.4

0.6

0.8

1

fmradio filterbank filterbank2 ofdm

e
x

e
c

u
ti

o
n

 t
im

e

(n
o

rm
a

li
z
e

d
 t

o
 u

n
o

p
ti

m
iz

e
d

 S
tr

e
a

m
It

)

CAF+scaling+SR

CAF+scaling+SR+peekscale

CAF+scaling+SR+cutpeek

Figure 5-9: Performance of peek-scaling and cut-peek on a StrongARM 1110

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

fmradio filterbank filterbank2 ofdm

e
x

e
c

u
ti

o
n

 t
im

e

(n
o

rm
a

li
z
e

d
 t

o
 u

n
o

p
ti

m
iz

e
d

 S
tr

e
a

m
It

)

CAF+scaling+SR

CAF+scaling+SR+peekscale

CAF+scaling+SR+cutpeek

Figure 5-10: Performance of peek-scaling and cut-peek on a Pentium 3

0

0.2

0.4

0.6

0.8

1

1.2

fmradio filterbank filterbank2 ofdm

e
x

e
c

u
ti

o
n

 t
im

e

(n
o

rm
a

li
z
e

d
 t

o
 u

n
o

p
ti

m
iz

e
d

 S
tr

e
a

m
It

)

CAF+scaling+SR

CAF+scaling+SR+peekscale

CAF+scaling+SR+cutpeek

Figure 5-11: Performance of peek-scaling and cut-peek on an Itanium 2

55

5.4 Comparison to Cache Unaware Full Fusion

An alternative to the optimizations presented in this thesis that allows elimination

of method calls and optimizations across actor boundaries is to fuse all actors into

a single actor. After combining all actors we can apply scalar replacement to al-

low intermediate values to be register allocated. However, full fusion is unaware to

instruction and data locality, since if we perform aggressive unrolling then there is

almost no code reuse, and data locality is enhanced only by executing some actors

multiple times to match data production and consumption rates.

On the StrongARM 1110, our cache optimizations offer a 162% speedup over

full fusion with scalar replacement (108% speedup if we use geometric mean instead

of average, see Figure 5-12). Cache optimizations perform better that full fusion

with scalar replacement for all benchmarks except for 3gpp, where they yield a 45%

slowdown. This slowdown is due to conservative code size estimation: the compiler

predicts that the fused version of 3gpp will not fit into the instruction cache, thereby

preventing fusion. However, due to optimizations by gcc, the final code size is smaller

than expected and does fit within the cache. While such inaccuracies could be im-

proved by adding feedback between the output of gcc and our code estimation, each

fusion possibility would need to be evaluated separately as the fusion boundary affects

the impact of low-level optimizations (and thus the final code size).

The speedups offered by cache optimizations over a full fusion strategy are more

modest for the desktop processors: 34% speedup on Pentium 3 (17% speedup if

we use geometric mean, see Figure 5-13) and essentially zero speedup (6% by the

arithmetic mean, -8% by the geometric mean) on Itanium 2 (Figure 5-14). Out of the

11 benchmarks, our cache optimizations perform as well or better than full fusion for

7 benchmarks on the Pentium 3 and 5 benchmarks on the Itanium 2.

56

0

0.2

0.4

0.6

0.8

1

1.2

bi
to

ni
c fir

fft
-fi

ne

fft
-c

oa
rs

e
3g

pp

be
am

fo
rm

er

m
at

m
ul
t

fm
ra

di
o

fil
te

rb
an

k

fil
te

rb
an

k2
of

dm

av
er

ag
e

geo
m

ea
n

e
x
e

c
u

ti
o

n
 t

im
e

(n
o

rm
a

liz
e

d
 t

o
 u

n
o

p
ti
m

iz
e

d
 S

tr
e

a
m

It
)

Fuse All CAF+scaling+SR+cutpeek

2.7

Figure 5-12: Comparison to full fusion on a StrongARM 1110

0

0.2

0.4

0.6

0.8

1

1.2

bi
to

ni
c fir

fft
-fi

ne

fft
-c

oa
rs

e
3g

pp

be
am

fo
rm

er

m
at

m
ul
t

fm
ra

di
o

fil
te

rb
an

k

fil
te

rb
an

k2
of

dm

av
er

ag
e

geo
m

ea
n

e
x
e

c
u

ti
o

n
 t

im
e

(n
o

rm
a

liz
e

d
 t

o
 u

n
o

p
ti
m

iz
e

d
 S

tr
e

a
m

It
)

Fuse All CAF+scaling+SR+cutpeek

1.4

Figure 5-13: Comparison to full fusion on a Pentium 3

0

0.2

0.4

0.6

0.8

1

1.2

bi
to

ni
c fir

fft
-fi

ne

fft
-c

oa
rs

e
3g

pp

be
am

fo
rm

er

m
at

m
ul
t

fm
ra

di
o

fil
te

rb
an

k

fil
te

rb
an

k2
of

dm

av
er

ag
e

geo
m

ea
n

e
x
e

c
u

ti
o

n
 t

im
e

(n
o

rm
a

liz
e

d
 t

o
 u

n
o

p
ti
m

iz
e

d
 S

tr
e

a
m

It
)

Fuse All CAF+scaling+SR+cutpeek

Figure 5-14: Comparison to full fusion on an Itanium 2

57

5.5 Evaluation of Modified Cache Aware Fusion

for Pentium 3 and Itanium 2

Full fusion with scalar replacement outperforms cache optimized executables for

bitonic, fft-fine, fft-coarse and 3gpp on both the Pentium 3 and the Itanium 2

processors, and for matmult and fmradio benchmarks on the Itanium 2 (see Figure 5-

13 and Figure 5-14). Detailed investigation using a hardware performance analyzer

(VTune) on the Pentium 3 revealed that as our cache model would predict a fully

fused executable for bitonic, fft-coarse and fft-fine has 5× - 10× larger num-

ber of cycles during which instruction fetch unit has stalled (due to an instruction

cache miss). However, the analyzer also revealed that fully fused executable issues

up to 50% less total data memory references. Such a reduction in the number of data

memory references must be due to the optimizations enabled in the C compiler by

fusion and scalar replacement.

This observation suggests that on the Pentium 3 and the Itanium 2, which have

an L2 cache to fall back in cases of instruction fetch miss, it may be beneficial to

increase the instruction size limit for actors produced by our cache aware fusion to

allow more intermediate value buffers to be scalar replaced. In general, if the overall

speedup from the reduction in the number of data memory references is larger than

the slowdown due to an increase in the number of instruction fetch misses, then it is

beneficial to create actors that do not fit into L1 instruction cache.

Figure 5-15 and Figure 5-16 show the performance of our cache optimizations

(CAF+scaling+SR+cutpeek) on a Pentium 3 and an Itanium 2 when the instruction

limit for our cache aware fusion algorithm is set to 200Kb (80% of the L2 cache).

The only benchmark that is negatively impacted by this change is ofdm, where two

large actors are fused despite a very low communication to computation ratio, thereby

lessening the impact of eliminated memory accesses, while nonetheless worsening the

instruction locality and increasing the total instruction size from 47 Kb to 159 Kb

(due to unrolling).

The negative impact of our modified cache aware fusion algorithm on ofdm sug-

58

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

bi
to

ni
c fir

fft
-fi

ne

fft
-c

oa
rs

e
3g

pp

be
am

fo
rm

er

m
at

m
ul
t

fm
ra

di
o

fil
te

rb
an

k

fil
te

rb
an

k2
of

dm

e
x
e
c
u

ti
o

n
 t

im
e
 o

f
C

A
F

+
s
c
a
li
n

g
+

S
R

+
c
u

tp
e
e
k

(n
o

rm
a
li

z
e
d

 t
o

 u
n

o
p

ti
m

iz
e
d

 S
tr

e
a
m

It
)

before modification after instruction limit modification

Figure 5-15: Performance of cache optimizations after instruction limit modification
on a Pentium 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

bi
to

ni
c fir

fft
-fi

ne

fft
-c

oa
rs

e
3g

pp

be
am

fo
rm

er

m
at

m
ul
t

fm
ra

di
o

fil
te

rb
an

k

fil
te

rb
an

k2
of

dm

e
x

e
c

u
ti

o
n

 t
im

e
 o

f
C

A
F

+
s

c
a

li
n

g
+

S
R

+
c

u
tp

e
e

k

(n
o

rm
a

li
z
e

d
 t

o
 u

n
o

p
ti

m
iz

e
d

 S
tr

e
a

m
It

)

before modification after instruction limit modification

Figure 5-16: Performance of cache optimizations after instruction limit modification
on an Itanium 2

gests that in order to avoid the negative performance impact, we need to develop

a detailed cost model for evaluating the tradeoff between register allocation due to

scalar replacement, and the negative impact of increased code size due to the excessive

unrolling that is necessary to enable scalar replacement.

59

60

Chapter 6

Related Work

There is a large body of literature on scheduling synchronous dataflow (SDF) graphs

to optimize various metrics [4, 5]. The work most closely related to ours is a recent

study by Kohli [16] on cache aware scheduling of SDF graphs, implemented as part of

the Ptolemy framework for simulating heterogeneous embedded systems [19]. Kohli

develops a Cache Aware Scheduling (CAS) heuristic for an embedded target with

a software-managed scratchpad instruction cache. His algorithm greedily decides

how many times to execute a given actor based on estimates of the data cache and

instruction cache penalties associated with switching to the next actor. In contrast,

our algorithm considers the buffering requirements of all filters in a given container

and increases the multiplicity so long as 90% of buffers are contained within the data

cache. Kohli does not consider buffer management strategies, and the evaluation

is limited to one 6-filter pipeline and an assortment of random SDF graphs. An

empirical comparison of our heuristics on a common architectural target would be an

interesting direction for future work.

It is recognized that there is a tradeoff between code size and buffer size when

determining an SDF schedule. Most techniques to date have focused on “single ap-

pearance schedules” in which each filter appears at only one position in the loop nest

denoting the schedule. Such schedules guarantee minimal code size and facilitate

the inlining of filters. There are a number of approaches to minimizing the buffer

requirements for single-appearance schedules (see [4] for a review). While it has been

61

shown that obtaining the minimal memory requirements for general graphs is NP-

complete [3], there are two complimentary heuristics, APGAN (Pairwise Grouping of

Adjacent Nodes) and RPMC (Recursive Partitioning by Minimum Cuts), that have

been shown to be effective when applied together [3]. Buffer merging[21, 22] repre-

sents another technique for decreasing buffer sizes, which could be integrated with

our approach in the future.

Govindarajan et al. develop a linear programming framework for determining the

“rate-optimal schedule” with the minimal memory requirement [11]. A rate-optimal

schedule is one that takes advantage of parallel resources to execute the graph with

the maximal throughput. However, the technique is specific to rate-optimal schedules

and can result in a code size explosion, as the same node is potentially executed in

many different contexts.

The work described above is related to ours in that minimizing buffer requirements

can also improve caching behavior. However, our goal is different in that we aim

to improve spatial and temporal locality instead of simply decreasing the size of

the live data set. In fact, our scaling transformation actually increases the size of

the data buffers, leading to higher performance across our benchmark suite. Our

transformations also take into account the size of the instruction and data caches to

select an appropriate scaling and partitioning for the stream graph.

Proebsting and Watterson [23] give a fusion algorithm that interleaves the control

flow graphs of adjacent filters. However, their algorithm only supports synchronous

get and put operations; StreamIt’s peek operation necessitates buffer management

between filters.

There are a large number of stream programming languages; see [25] for a re-

view. The Brook language [6] extends C to include data-parallel kernels and multi-

dimensional streams that can be manipulated via predefined operators. Synchronous

languages such as Esterel [2] and LUSTRE [12] also target the embedded domain, but

they are more control-oriented than StreamIt and are less amenable to compile-time

optimizations. Benveniste et al. [1] also provides an overview of dataflow synchronous

languages. Sisal (Stream and Iteration in a Single Assignment Language) is a high-

62

performance, implicitly parallel functional language [13]. We are not aware of any

cache aware optimizations in these stream languages.

There is a large body of work covering cache miss equations, and an equally

large body of work concerned with analytical models for reasoning about data reuse

distances and cache behavior. The model introduced in this thesis is loosely based on

the notion of stack reuse distances [20]. Our model is especially tailored to streaming

computations, and unique in leveraging the concept of a steady state execution.

There is some work related to scalar replacement. See [7] for a set of transfor-

mations that allow traditional coloring-based register allocator to register allocate

individual array elements. Another article [8] presents a fully automated set of trans-

formations that improve memory usage for loops by balancing memory operations and

floating-point operations. See [9] for an experimental evaluation of the effectiveness

of scalar replacement on scientific benchmarks. While the above papers are concerned

with scalar replacement for languages like Fortran and C, this thesis highlights the

importance of scalar replacement in a stream compiler, which generally has much

more information due to a large fraction of loops with fixed iteration count and lack

of aliasing in the StreamIt programming language. Also in a stream program much of

the data is communicated using explicit FIFO channels; it is therefore important that

as many buffers as possible can be replaced by scalars to enable register allocation.

63

64

Chapter 7

Conclusion

This thesis presents a set of simple yet effective cache optimizations that are aimed

at improving runtime performance and energy requirements for executing stream

programs on commodity processors. We exploit the property of stream programs

that allows actors in a stream graph to be freely combined and reordered. This allows

the stream compiler to automatically perform the kind of transformations that are

often tediously carried out manually for today’s programs. Those transformations are

otherwise too complex to perform automatically in hardware or in the most aggressive

of C compilers.

The transformations presented in this thesis are: (i) cache aware fusion, which

combines adjacent actors into a single function thus allowing the C compiler to opti-

mize across actor boundaries and reducing the method call overhead. (ii) execution

scaling, which judiciously repeats actor executions to improve instruction and ac-

tor state locality, (iii) scalar replacement, which converts certain data buffers into a

sequence of scalar variables that can be register allocated, and (iv) optimized buffer

management, which reduces the overall number of memory accesses issued by the pro-

gram. The above transformations were implemented as part of StreamIt, a language

and compiler infrastructure for stream programming [27].

Finally an experimental evaluation of a fully automated implementation of the

cache and memory optimizations shows significant performance improvements over

unoptimized StreamIt and cache oblivious full-fusion on an embedded processor Stron-

65

gARM 1110. The performance gains over cache oblivious full-fusion are more modest

for the desktop processors Pentium 3 and Itanium 2.

7.1 Future Work

The 90-10 heuristic which is used for execution scaling might be improved by consid-

ering work estimates of stream actors instead of treating all actors as equal. Also on

some architectures it might be worth to change 90-10 ratio to 75-25 or some other

ratio to allow more scaling at the expense of overscaling larger fraction of actors.

An alternative optimized FIFO buffer implementation would be to increase the

size of the buffer and insert if statements that check if the head pointer is close to the

end of the data buffer; if so the live items would be copied to the start of the buffer.

It might be beneficial to place the if statements outside of the execution scaled actors

so that they are invoked infrequently.

Our experimental evaluation showed that sometimes it is beneficial to create actors

with an instruction footprint that exceeds the instruction cache size so that more

aggressive optimizations across actor boundaries can be performed. We would need

to develop an accurate cost model to allow full automation of such decisions in the

compiler.

The author of this thesis has also developed a StreamIt backend for a cluster of

workstations during his time with the StreamIt group. It would be interesting to see

if the cache optimizations presented in this thesis could be used to improve runtime

of stream programs on a cluster (by applying cache optimizations to actors that are

running on a given cluster node).

66

Appendix A

Experimental Evaluation of

Execution Scaling Heuristic

In this chapter we evaluate our execution scaling heuristic (see Section 4.1.2). Follow-

ing nine graphs show the normalized execution time of scaling cache aware partitions

that have been produced using cache aware fusion (without allowing the instruction

footprint of a partition to exceed the size of an L1 instruction cache). The experi-

ments are performed on a Pentium 3 processor. The large diamond represents the

scaling factor that has been chosen by our 90-10 heuristic.

67

FFT Coarse

0.7

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35 40

scaling factor

n
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

FFT Fine

0.88

0.9

0.92

0.94

0.96

0.98

1

0 20 40 60 80 100

scaling factor

n
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

68

FilterBank

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300

scaling factor

n
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Beamformer

0.82

0.85

0.88

0.91

0.94

0.97

1

1 10 100 1000

scaling factor

n
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

69

FM Radio

0.46

0.52

0.58

0.64

0.7

0.76

0.82

0.88

0.94

1

1 10 100 1000 10000

scaling factor

n
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

Bitonic Sort

0.46

0.52

0.58

0.64

0.7

0.76

0.82

0.88

0.94

1

0 20 40 60 80 100 120

scaling factor

n
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

70

Matrix Mult

0.88

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50 60

scaling factor

n
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

FIR

0.88

0.9

0.92

0.94

0.96

0.98

1

1 10 100 1000 10000

scaling factor

n
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

71

3GPP

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400

scaling factor

n
o

rm
a

li
z
e

d
 e

x
e

c
u

ti
o

n
 t

im
e

72

Bibliography

[1] Albert Benveniste, Paul Caspi, Paul Le Guernic, and Nicolas Halbwachs. Data-

Flow Synchronous Languages. In REX School/Symposium, pages 1–45, 1993.

[2] Gerard Berry and Georges Gonthier. The Esterel Synchronous Programming

Language: Design, Semantics, Implementation. Science of Computer Prog.,

19(2), 1992.

[3] Chuvra S. Bhattacharyya, Praveen K. Murthy, and Edward A. Lee. APGAN

and RPMC: Complementary Heuristics for Translating DSP Block Diagrams into

Efficient Software Implementations. Journal of Design Automation for Embedded

Systems., pages 33–60, January 1997.

[4] S. Bhattacharyya, P. Murthy, and E. Lee. Synthesis of embedded software from

synchronous dataflow specifications. Journal of VLSI Signal Processing Systems,

21(2), June 1999.

[5] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee. Software Synthesis from

Dataflow Graphs. Kluwer Academic Publishers, 1996.

[6] Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman, Kayvon Fatahalian, Mike

Houston, and Pat Hanrahan. Brook for GPUs: Stream Computing on Graphics

Hardware. In SIGGRAPH, 2004.

[7] David Callahan, Steve Carr, and Ken Kennedy. Improving register allocation for

subscripted variables. In PLDI, pages 53–65, 1990.

73

[8] Steve Carr and Ken Kennedy. Improving the ratio of memory operations

to floating-point operations in loops. ACM Trans. Program. Lang. Syst.,

16(6):1768–1810, 1994.

[9] Steve Carr and Philip Sweany. An experimental evaluation of scalar replacement

on scientific benchmarks. Softw. Pract. Exper., 33(15):1419–1445, 2003.

[10] Michael Gordon, William Thies, Michal Karczmarek, Jasper Lin, Ali S. Meli,

Andrew A. Lamb, Chris Leger, Jeremy Wong, Henry Hoffmann, David Maze,

and Saman Amarasinghe. A Stream Compiler for Communication-Exposed Ar-

chitectures. In ASPLOS, 2002.

[11] R. Govindarajan, G.R. Gao, and P. Desai. Minimizing memory requirements in

rate-optimal schedules. In Proceedings of the 1994 Int. conference on Application

Specific Array Processors, pages 75–86, August 1994.

[12] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow

programming language LUSTRE. Proc. of the IEEE, 79(9), 1991.

[13] J. Gaudiot and W. Bohm and T. DeBoni and J. Feo and P. Mille. The Sisal Model

of Functional Programming and its Implementation. In Proc. of the Second Aizu

International Symposium on Parallel Algorithms/Architectures Synthesis, 1997.

[14] Michael A. Karczmarek. Constrained and phased scheduling of synchronous data

flow graphs for the streamit language. Master’s thesis, MIT CSAIL, October

2002.

[15] Michal Karczmarek, William Thies, and Saman Amarasinghe. Phased scheduling

of stream programs. In LCTES, 2003.

[16] Sanjeev Kohli. Cache aware scheduling of synchronous dataflow programs. Mas-

ter’s Report Technical Memorandum UCB/URL M04/03, UC Berkeley, 2004.

[17] Andrew A. Lamb. Linear analysis and optimization of stream programs. Master’s

thesis, MIT CSAIL, May 2003.

74

[18] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous data

flow programs for digital signal processing. IEEE Transactions on Computers,

January 1987.

[19] Edward A. Lee. Overview of the Ptolemy Project. Technical report, Tech Memo

UCB/ERL M03/25, UC Berkeley, 2003.

[20] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation techniques

for storage hierarchies. IBM Systems Journal, 1970.

[21] P. K. Murthy and S. S. Bhattacharyya. A Buffer Merging Technique for Reducing

Memory Requirements of Synchronous Dataflow Specifications. In International

Symposium on System Synthesis, 1999.

[22] P. K. Murthy and S. S. Bhattacharyya. Buffer Merging — A Powerful Tech-

nique for Reducing Memory Requirements of Synchronous Dataflow Specifica-

tions. Technical report, Inst. for Adv. Computer Studies, UMD College Park,

2000.

[23] Todd A. Proebsting and Scott A. Watterson. Filter Fusion. In POPL, 1996.

[24] Janis Sermulins, William Thies, Rodric Rabbah, and Saman Amarasinghe. Cache

aware optimization of stream programs. In LCTES, 2005.

[25] Robert Stephens. A Survey of Stream Processing. Acta Informatica, 34(7), 1997.

[26] D. Tennenhouse and V. Bose. The SpectrumWare Approach to Wireless Signal

Processing. Wireless Networks, 1999.

[27] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Lan-

guage for Streaming Applications. In Proc. of the Int. Conf. on Compiler Con-

struction (CC), 2002.

[28] William Thies, Jasper Lin, and Saman Amarasinghe. Partitioning a structured

stream graph using dynamic programming. In 5th Workshop on Media and

Streaming Processors, December 2003.

75

