
A Graph Editing Framework for the StreamIt

Language

by

Juan C. Reyes

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2004

c© Juan C. Reyes, MMIV. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2004

Certified by. .
Saman Amarasinghe
Associate Professor

Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

A Graph Editing Framework for the StreamIt Language

by

Juan C. Reyes

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2004, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

A programming language is more useful if it provides a level of abstraction that
makes programming more intuitive and also allows the development of tools that
take advantage of the language’s internal representation. StreamIt, a language for
the development of streaming applications, has a hierarchical and structural nature
that lends itself to a graphical programming tool.

I created a prototype StreamIt Graph Editor (SGE) to facilitate the development
of streaming applications using StreamIt. The SGE provides intuitive visualization
tools that allow developers to work more efficiently by automating certain processes.
Thus, the programmer can focus more on design issues than on low level details that
slow down the development process.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

I would like to thank my thesis advisor, Saman Amarasinghe, for giving me the

opportunity to work on an exciting project. I have really enjoyed developing the

StreamIt Graph Editor. Many people from the StreamIt group were instrumental in

the coming together of this project and I would like to thank them all: Jasper Lin,

Bill Thies, Kimberly Kuo, and Michal Karczmarek. In particular, I am grateful to

Rodric Rabbah for his guidance in this project. He greatly contributed in determining

the project’s direction and in fixing various problems.

A special thanks to my academic advisor, Dennis Freeman. His good advice

allowed me to make the right decisions during my MIT career.

My deepest gratitude goes to all my friends from MIT and Mexico who have

always been there for me during the past five years. They have been essential in

maintaining my sanity. I will always treasure all the memories from my MIT days.

I am grateful to all my relatives in Mexico who always believed in me. Most

importantly, I want to thank my parents, Roberto and Aida, my sisters, Erika and

Darlenne, my grandma, Carmen, and Tito. Your encouragement, love and support

has been what has driven me to always do my best. I am lucky to have such a great

family.

5

6

Contents

1 Introduction 11

1.1 Overview . 12

1.2 Organization . 14

1.3 Motivating Example . 14

2 Background 17

2.1 StreamIt . 17

2.1.1 Language Specifics . 18

2.2 Related Work . 21

3 A Graphical Editor for StreamIt 23

3.1 Intuitive Visualization of Components 23

3.2 Alternate Perspectives . 26

3.2.1 Editing Perspective . 26

3.2.2 Overview Perspective . 26

3.2.3 Hierarchy Perspective . 26

3.3 Graphical Editing . 27

3.4 Property Modification . 28

3.5 Graph Layout . 29

3.6 Display Tools . 30

3.7 Editing Tools . 31

3.8 Merging . 33

3.9 Image Export . 33

7

3.10 Code Creation . 34

4 Implementation of the StreamIt Graphical Editor 35

4.1 General Overview . 35

4.1.1 Eclipse . 35

4.1.2 JGraph . 36

4.1.3 SGE Internal Representation 36

4.2 Features . 36

4.2.1 Creating StreamIt components 37

4.2.2 Connecting Components . 38

4.2.3 Changing Properties . 39

4.2.4 Expanding/Collapsing . 40

4.2.5 Zoom . 41

4.2.6 Visibility of Containers . 42

4.2.7 Copying/Pasting/Deleting . 43

4.2.8 Graph Layout . 43

4.2.9 Merging . 44

4.2.10 Specialized Splitjoin Functionality 45

4.2.11 Template Code Creation . 45

4.2.12 Exporting Graph Images . 47

4.3 Future Work . 48

5 Concluding Remarks 49

A Code 51

B Figures 53

8

List of Figures

1-1 Merging splitjoin A and splitjoin B to produce splitjoin C 15

2-1 Container structures supported by StreamIt. 19

2-2 Hierarchical nature of components . 20

3-1 Component representation in SGE. 24

3-2 Different perspectives of the stream graph 25

3-3 Hierarchy Perspective . 27

3-4 Pipeline Layout . 29

3-5 Splitjoin Layout . 30

3-6 Feedback Loop Layout . 30

3-7 Expanding/Collapsing Components . 32

4-1 SGE Prototype . 37

4-2 Toolbar . 37

4-3 Property Window . 39

4-4 Zoom (using hierarchy perspective) 41

4-5 Visibility of containers . 42

4-6 Graph Layout . 44

4-7 Sample Template Code. 46

4-8 Graph corresponding to template code sample 47

A-1 Source code for the EchoEffect StreamIt program. 52

B-1 Graph representation of the EchoEffect program 54

9

10

Chapter 1

Introduction

Software systems have become increasingly complex as the demand for better software

has increased. As a result, software developers need to meet tight deadlines while at

the same time construct these complex systems. In order to fight this problem, new

tools to create software are required. These tools must be so simple and powerful

that the software nearly writes itself.

The process of programming should be intuitive and automated. According to

Charles Simonyi, the lead developer of the first WYSIWYG word-processing editor,

“software should be as easy to edit as a PowerPoint presentation” [12]. The same way

that PowerPoint slides are created by dragging components and setting properties,

a graphical programming environment can be used to produce code faster and with

less errors.

The ideal programming tool should have an intuitive graphical interface to sim-

plify the software development process. James Gosling, inventor of Java, proposes

a modeling tool that represents existing code graphically rather than with lines of

code [12]. To produce an ideal programming tool, the language used to develop an

application must resemble the design. Developers should be able to create high-level

designs of what they want their programs to do. The developer should only have to

modify the graphical representation of the application (something resembling a flow

chart) instead of changing the actual code. Thus, the developer can focus more on

design issues.

11

The ideal programming tool should also include a “software generator”. The

software development process is accelerated by making the machine write the code

for the graphical representation of the code. Software developers should not have to

worry about the details of the code. Instead, they should focus on finding the optimum

solution to a problem. It is impossible for people to create bug free programs due

to human errors. Therefore, it makes sense to try to automate the software creation

process as much as possible. Automating the process eliminates some of the bugs

that might have been introduced otherwise.

This thesis introduces a graphical editing framework for the StreamIt language.

Better programming tools are required to accelerate the software development process

in the DSP domain. As a result, a prototype graphical editor has been developed for

the rapid creation of StreamIt programs. This tool will allow developers to work more

efficiently by automating certain processes and providing intuitive visualization tools.

Section 1.1 provides an overview of the StreamIt Graph Editor. Section 1.2 dis-

cusses the organization of the rest of the thesis. Finally, the last section in this chapter

(1.3) presents a motivating example of how the StreamIt Graph Editor simplifies the

development process for the developer of stream programs.

1.1 Overview

A programming language can be more useful if it provides the right level of abstrac-

tion. Not only does the right level of abstraction make programming more intuitive,

but it also allows for the creation of tools that take advantage of the language’s in-

ternal representation. Such a programming tool can make the process to develop

software easier and more straightforward. As a result, an increase in productivity can

be expected when these advantages are exploited.

StreamIt is a programming language and compilation infrastructure designed to

facilitate the programming of streaming applications while at the same time maintain

efficiency [11]. The StreamIt language has a hierarchical structure that can be best

expressed with a graphical environment that can capture and represent the stream

12

graph structure. The stream graph structure itself provides many opportunities for

good visualization tools. A text editor does not have all the functionality needed in

the ideal development environment for the creation of StreamIt programs.

The StreamIt Graph Editor (SGE) is a graphical tool built as a plugin for Eclipse,

a universal programming tool from IBM [3] that provides a simple and intuitive

programming interface that takes advantage of StreamIt’s graph structure. Although

execution of a StreamIt program follows a complex concurrent pattern, the streaming

nature can lead to simple visualization of the current state of the program.

The SGE can improve developer performance by serving both as a visualization

tool and as an automatic engine for creating StreamIt programs. The increase in

performance results from providing a method to do things faster and reduce human

errors.

A visual representation of StreamIt code makes sense due to the nature of the

language. The advantage of having this graphical representation is that the developer

can see the components on the screen instead of having to mentally visualize them.

This is especially true for large, complex graphs. The developer might get lost in the

code trying to figure which components are connected to each other by having to go

through pages of code.

Allowing the SGE to automatically create code for the user minimizes the number

of possible errors since SGE will automatically create the code according to the cur-

rent state of the connections and the properties of the components in the graphical

editor. In other cases, the SGE also minimizes errors when trying to refactor compo-

nents. Refactoring is the process of combining two or more components into a single

component. It is more likely that the user might make a mistake while manually doing

all the steps to refactor the components than if the SGE does this automatically.

The SGE provides all of the features expected from a graphical editor so that

the user can fully take advantage of the tool. Some of the features in the SGE in-

clude automatic layout of the graph, zoom in/out capabilities, expanding/collapsing

of StreamIt hierarchical nodes, the modification of properties of specific stream struc-

tures, and the ability to copy/paste StreamIt object.

13

1.2 Organization

The remainder of this chapter will present a motivating example for the usefulness

of a programming tool such as the StreamIt Graph Editor (1.3). Chapter 2 presents

background information on the StreamIt language (2.1) and mentions related work

(2.2). Chapter 3 contains a description of the features one would expect in the

StreamIt Graph Editor. A prototype version containing some of these features was

developed. Chapter 4 discusses the prototype version of the SGE and possibilities for

future work. Chapter 5 presents the concluding remarks.

1.3 Motivating Example

The StreamIt Graph Editor has several advantages over the typical way of developing

programs by using a text editor. The following example will illustrate how the SGE

simplifies the process of creating StreamIt code by automating functionality and pro-

viding a graphical view of the stream program. Furthermore, it will be shown that

the StreamIt Graph Editor reduces the possibility of any unexpected errors.

The StreamIt language was developed to facilitate the development of streaming

applications. The basic building blocks in the StreamIt language are filters. Each filter

inputs some data, processes the data and outputs new data. StreamIt has certain

constructs that can be used as containers in different hierarchy levels: pipelines,

splitjoins and feedback loops. The example in this section deals with splitjoins. A

splitjoin contains parallel streams encapsulated within a splitter (one input, multiple

outputs) and joiner (multiple inputs, one output).

Assume that we have some StreamIt code in which there are two splitjoins (A and

B) that we want to merge. The result of merging two splitjoins is a new splitjoin (C)

that contains the inner children of the two splitjoins (A and B). Figure 1-1 shows the

result of the merge just described.

In addition to the merge, another change will be to duplicate the last inner child

of splitjoin B thirty times. The final result of the merge and the duplication will

14

A1 An........

Splitter B

........

Splitter A

Joiner A

A2

........

Splitjoin C

Splitjoin A

Splitjoin B

A1 An

Splitter A

Joiner B

Joiner B

B1

B1 B2

Bn

Bn

Figure 1-1: Merging splitjoin A and splitjoin B to produce splitjoin C

be a splitjoin with the following inner child structure: inner children of splitjoin A

+ thirty instances of the last inner child of splitjoin B + the rest of the children of

splitjoin B.

Let us first examine the process that someone using a text editor has to go through

in order to merge the two splitjoins. The first step is to identify where the code

belonging to splitjoin A and splitjoin B is located. There is the possibility that

the code corresponding to each of these two splitjoins will not be adjacent. As a

consequence, the user will have to constantly move around different sections of the

code to perform the necessary actions. This causes problems since it increases the

chances that the user might copy or paste the code in the wrong location when trying

to manually merge.

In addition to problems related to human error, it also takes a significant amount

of steps to manually perform the merge and the duplication. Once the user has

identified the two splitjoins to merge, the code for splitjoin C has to be created. The

code that adds the inner children and the splitter of splitjoin A must be copied in the

declaration of splitjoin C. The same has to be done with the inner children and the

15

joiner of splitjoin B. The user has to be careful that the elements have been copied in

the correct order. The references to splitjoin A and splitjoin B can now be removed

(the places in the code where these two splitjoins were added). An alternative to

the process above would have been to modify splitjoin A to be the new splitjoin C.

Although this saves a couple of steps, the user still has to perform a considerable

number of actions. After the merge, the user would proceed with the duplication of

the last child of splitjoin B. The add statement for this child must be selected and

duplicated the correct number of times (perhaps using a for-loop). The user is done

once this last step is completed. However, one should note all the steps that were

required. The large quantity of steps increases the probability that a mistake was

made at some point.

Now let us analyze how the StreamIt Graph Editor can be used to achieve the

same objective described above. First, the user will have no problems identifying the

splitjoins that have to be merged since we are dealing with a graphical representation

of the stream graph. The zoom option can be used to adjust the view accordingly.

In the same manner, the user can expand or collapse structures to adjust the level of

detail so that only the relevant blocks are shown. These tools are provided in order

to enhance the developer’s efficiency by making things easier.

Once the two splitjoins that will be merged have been selected, the automatic

merge option can be selected. The SGE will handle all the steps that had to be

done manually in the case where the text editor was used to modify the source code.

The user can now select the child to duplicate in the new splitjoin and choose the

duplication option in the SGE. The number of times the child will be duplicated must

be specified. The SGE will make the corresponding changes to the graph.

The user can now continue making modifications to the graph representation of

the stream program. Once the user is done with all the changes, the option to generate

the code for the graph can be selected.

The example above was a simple one. More complicated cases would even take

more advantage of the SGE’s functionality. Manually merging the inner components

of the splitjoin as well as the splitjoins themselves is prone to more human errors.

16

Chapter 2

Background

StreamIt is the programming language for which the graphical programming envi-

ronment described in this thesis was designed for. Section 2.1 presents an overview

of StreamIt language. The details of the StreamIt language are discussed in Section

2.1.1. The last Section of Chapter 2 describes related work in the area of programming

(prototyping) tools for the development of DSP applications.

2.1 StreamIt

The StreamIt language [11] [10] was developed at the MIT Computer Science and

Artificial Intelligence Laboratory to facilitate the development of streaming applica-

tions such as digital signal processing. Each data item in a streaming application is

in the system for only a small amount of time. Stream programs also have regular

communication patterns and abundant parallelism. In StreamIt, these properties are

exposed to the compiler while maintaining a high level of abstraction for the developer.

StreamIt is intended to simplify coding of DSP and other streaming computations.

Languages such as C, C++ and Matlab have been traditionally used for developing

DSP applications. However, programming streaming applications in these languages

is generally tedious and error prone since development is done at lower abstraction

levels. Unlike the scientific domain, stream programs are characterized by regular

communication patterns, abundant parallelism, and short data lifetimes. All these

17

can be exploited to improve programmability and performance. The advantage of

StreamIt is that it provides the right level of abstraction for stream programming

while at the same time providing compiler level optimizations.

At this time when the streaming application domain is becoming increasingly

prevalent and widespread due to the popularity of the internet and wireless commu-

nication, it is important to provide a tool that will enhance the development process

of stream programs. StreamIt is a language that can provide this functionality since

it is easy to use and efficient at the same time.

2.1.1 Language Specifics

The StreamIt language provides a simple high level abstraction that allows software

engineers without lower level DSP knowledge to easily represent stream programs.

Perhaps the most useful abstraction that StreamIt provides is the categorization of

streaming programs [10].

The basic building block in the StreamIt language is a filter. Each filter inputs

some data, processes the data and outputs the new data. The values that the filter

reads are taken from its input tape (pop) and the values it writes are placed on the

output tape (push). A filter also has a work function which describes the filter’s

atomic execution step.

Programs in the StreamIt language can be described as hierarchical graphs of

filters. This representation is useful because streaming algorithms are also viewed the

same way from a digital signal processing perspective. The constructs that can be

used as containers to hold filters in different hierarchy levels are pipelines, splitjoins,

and feedback loops. Every subcomponent of a structure is a stream. Figure 2-1 shows

the container structures in the StreamIt language.

A pipeline contains streams that are arranged sequentially one after another. The

output of one stream will be the input of another stream in the pipeline. The top

level pipeline is the outermost pipeline that contains the rest of the streams in the

graph.

Splitjoins, on the other hand, contain parallel streams that are encapsulated within

18

Stream

Stream

Stream

Splitter

Stream Stream

Joiner

.........

Joiner

Stream
(Body)

Stream
(Loop)

Splitter

(a) A pipeline. (b) A splitjoin. (c) A feedbackloop.

Figure 2-1: Container structures supported by StreamIt.

a splitter and a joiner. The way in which data is taken in and out of a splitter or joiner

varies depending on the type. A splitter can either be a duplicate or a roundrobin. A

duplicate sends copies of the data to all its outputs. On the other hand, a roundrobin

distributes items cyclically according to its array of weights (w0, w1,..., wn). The

roundrobin will send w0 items to the first child, w1 items to the second child, and

so on until the last child receives wn elements. Splitters and joiners can support any

number of child streams.

Feedback loops allow cycles to be introduced into the stream graph. A feedback

loop is composed of a joiner, a body, a splitter and a loop. The joiner takes in an

input from another node and connects to the body. The body is connected to the

splitter which in turn connects to an element outside the feedback loop and to the

loop of the body. The loop takes inputs from the splitter and sends its output to the

joiner.

The hierarchical structure of StreamIt can be shown in Figure 2-2. The encapsu-

lating component of filters F1 and F2 is pipeline B. Splitjoin C is the encapsulating

19

Pipeline B

F3

Joiner

Splitter
Splitjoin C

F1

F2

Figure 2-2: Hierarchical nature of components

node of the splitter, joiner, pipeline B and filter F3. The same hierarchical structure

continues outward until the top level node is reached.

The general process of creating an application in StreamIt can be described as

follows. The programmer constructs a stream graph containing blocks with a single

input and a single output, and specifies the functionality of each block. Then, the

programmer has to define the structure of the container structures (the way in which

the blocks are connected to each other). The compiler will generate code for each

block, and at the same time apply optimizations to the stream graph to produce effi-

cient code. StreamIt allows the easier development and debugging of stream programs

since it resembles a higher level programming language.

Figure A-1 contains the source code for a StreamIt program that simulates how

echos are added to sound waves. The sound waves are represented as digital data.

The original sequence of data will be added to a time-shifted version of the original

sequence. The toplevel pipeline of the program is EchoEffect2. This pipeline contains

all of the other constructs in the stream graph. A number is generated by IntSource

and it is written to its output tape. The input tape of Echo (a feedback loop)

receives the value from IntSource. Eventually Echo will produce an output and put

it on Adder’s input tape. Adder takes the top two values in its input tape and adds

20

them. The sum will be printed by IntPrinter.

2.2 Related Work

The Generic Modeling Environment [6] is a configurable toolkit for creating domain

specific modeling and program synthesis environments. This modeling tool also uses

Eclipse as its IDE. The GME is more of a generic modeling environment rather than

a development environment specific to DSP applications like the SGE.

Matlab’s Simulink [7] is an object oriented dynamic simulation package for mod-

eling, simulating, and analyzing dynamic, multidomain systems. Simulink is usually

used for control system design, DSP system design and other simulation applications.

Although both Simulink and the SGE provide graphical tools for the DSP domain,

Simulink’s main goal is to provide a simulation environment while SGE’s goal is to

provide a programming environment.

Texas Instrument’s Research and Development engineers are working on a DSP

prototyping tool that uses MATLAB, Simulink, the Signal Processing Blockset, and

Real-Time Workshop along with TI development tools [8]. This tool will use in-

teractive block-diagram simulation and automatic code generation. The goal is to

allow DSP engineers to refine implementation details directly in the system model

and produce real-time software prototypes without traditional programming. Both

TI’s tool and the SGE share the objective of becoming a development environment

that increases programmer efficiency. The SGE is more simple in that it is not a

combination of other tools and that it tries to take advantage of StreamIt’s specific

constructs.

LabVIEW [5] provides a powerful graphical development environment for signal

acquisition, measurement analysis, and data presentation. LabVIEW is similar to

SGE in that it tries to simplify things for the developer by providing a graphical

development environment. However, LabVIEW is mainly used for data acquisition

rather than actual program development.

21

22

Chapter 3

A Graphical Editor for StreamIt

A graphical editor for StreamIt must provide all the functionality required to accel-

erate the development of DSP applications. At the same time it must provide all (or

most) of the functionality needed to create StreamIt programs independently from

the text editor. This chapter describes the most important features and the properties

for such an infrastructure.

3.1 Intuitive Visualization of Components

The graphical editor makes it possible to create a graphical representation of legal

StreamIt code. A graphical representation of the stream program makes it easier

for the developer of the application to see how everything fits together as a whole

without having to visualize everything on his mind. This is especially useful for

large complicated graphs. The visualization element allows the developer to view

the overall design of the program. Any flaws in the design would be easier to detect

having the graphical representation instead of just looking at lines of code.

It is important that the elements in the StreamIt Graph Editor are intuitively

represented on the screen. The user should be able to clearly distinguish a filter

from a splitter or a pipeline. Therefore, the components should be represented in an

intuitive manner so that they can be easily identified.

One such representation of the elements is the following. Directed arrows connect-

23

(a) Filter. (b) Splitter. (c) Joiner.

Figure 3-1: Component representation in SGE.

ing one component to another can illustrate the flow of data in the graph. Filters are

like “black boxes” whose internal function must be specified by the programmer. A

filter can be represented as a solid box since they represent the basic building block

of StreamIt (Figure 3-1 (a)).

The shape of a splitter should be something that clearly illustrates that it is a

structure that takes one input, but may have several outputs. An inverted funnel-like

figure would serve such a function (Figure 3-1(b)). Similarly, a joiner could have

funnel-like shape to show that it supports several inputs, but only one output Figure

3-1(c)).

Container structures (splitjoins, pipeline, feedback loops) also require an intuitive

representation. The simplest way to represent these containers would be to have

rectangular borders that encapsulate the objects within them. Pipelines, splitjoins

and feedback loops would each have a different color assigned to them in order to

distinguish them from the other types of containers.

Different shades of color could be used for all of the StreamIt components to

distinguish the hierarchy level in which they are located. Components that have the

toplevel pipeline as their immediate encapsulating node can be shaded lightly. The

more embedded components are within other encapsulating nodes, the darker the

shade of color that would be assigned to them.

Figure A-1 contains the source code for a StreamIt program that simulates how

24

echos are added to sound waves. Figure B-1 contains the graphical representation

of the StreamIt program. Notice how it is easier to view the overall design and flow

of data in the graph. The first component in the graph is IntSource. The output of

IntSource is connected to the feedback loop. The graph clearly shows the way that the

components in the feedback loop. The output of the feedback loop is then connected to

the Adder filter that gives its result to IntPrinter. Without the graph, the user would

have to spend some time trying to figure the graph’s structure. This process would

be time consuming in applications that have many container components embedded

in each other.

Figure 3-2: Different perspectives of the stream graph

25

3.2 Alternate Perspectives

The SGE must provide the user with different perspectives of the model. The per-

spective most appropriate for a situation can then be used. Some actions can be

performed faster using a certain perspective. In addition, having the different per-

spectives can also provide more information to the user at any given moment. Three

perspectives essential to a graphical editor include editing, overview and hierarchy.

Figure 3-2 shows how these perspectives fit together.

3.2.1 Editing Perspective

The main perspective where most actions are performed is the editing perspective.

The developer can make graphical changes to the stream graph representation of the

code using this perspective. Changes that occur in this perspective should immedi-

ately be reflected in the other perspectives. Some of these changes include addition

of nodes, deletion of nodes, and reordering of nodes.

3.2.2 Overview Perspective

The overview perspective provides a way in which the user can examine the entire

graph. The user can see the entire stream graph structure even when dealing with

large, complex graphs. A bounding box in the overview window would allow the

user to identify the region of the graph that is currently being shown in the editing

perspective. The current region in the editing perspective changes when the bounding

box is moved around the overview window. The box can also be resized in order to

zoom in or zoom out of the graph.

3.2.3 Hierarchy Perspective

The hierarchy perspective shows the hierarchy of the stream graph. The hierarchical

nature of stream graphs makes it possible to have nodes encapsulated by other levels

of nodes. A tree model can be used to quickly examine the hierarchy of the graph

26

(Figure 3-3). Modifications of the graph should be allowed from this perspective. The

user could select a component in the hierarchy perspective, press the Delete button

and the change would be reflected on all of the other perspectives.

Figure 3-3: Hierarchy Perspective

3.3 Graphical Editing

One of the essential features of the SGE is that the developer should be able to

graphically edit the StreamIt graph and hence the program. The SGE must allow

the addition, deletion, and connecting of StreamIt components.

Instead of writing source code, the programmer selects the type of component

that needs to be inserted in the stream graph. The StreamIt components that can be

added this way include filters, splitters and joiners. Container structures (pipelines,

splitjoins and feedback loops) can be added to the graph only when elements are

27

grouped together. All the grouped components will have the same new container

encapsulating them. Graph editing seems more intuitive due to the hierarchical nature

of StreamIt.

It also seems natural to allow the user to specify connections between the differ-

ent components in a graphical manner. Connecting an edge from component A to

component B represents that the output from A is connected to the input of B. The

process of making the connections can be compared to the one of specifying the data

flow in the graph.

3.4 Property Modification

The user should be able to modify the properties of each of the elements in the

graph. The main properties that can be modified for any node include the name,

the encapsulating container, and the input/output types. Other elements such as a

splitters and joiners can have their weights set. Filters can have their push, pop and

peek values modified. Property modification should be possible from the moment

that a component is created.

The advantage of allowing the SGE to control the modification of component prop-

erties is that it can prevent the user from entering illegal property values. The same

error would not be detected in the text editor until the user has compiled the program.

An example of such an error is having components with the wrong input/output types

connected to each other. All changes that result in illegal configurations of the graph

should be prevented as soon as possible.

The StreamIt application developer should also be able to change the properties

for several selected components at the same time. The SGE should determine the

common properties that can be modified for the selected components. Just as if the

SGE were dealing with a single structure, any property changes that cause problems

are disallowed.

28

Figure 3-4: Pipeline Layout

3.5 Graph Layout

The stream graph has to be graphically laid out in an intuitive manner. The SGE

should automatically order the components in a container according to the connec-

tions among them. The layout should prevent the cluttering of the different com-

ponents by allowing enough space for the user to make modifications. In addition,

the layout of the stream graph must maintain the hierarchical nature of the graph.

The user should be able to easily identify the different types of components by their

arrangement. The elements of a pipeline are arranged in a sequential manner (Fig-

ure 3-4). A splitjoin is laid out with its splitter at the top, all the children evenly

distributed in the middle and its joiner at the bottom (Figure 3-5). The components

inside a feedback loop are arranged in a cyclic manner (Figure 3-6). Note how each

of the container structures encapsulate the streams within them.

29

Figure 3-5: Splitjoin Layout

Figure 3-6: Feedback Loop Layout

3.6 Display Tools

A graphical editor needs to provide the user with tools that change how objects are

displayed on the screen. These tools are essential when editing complicated structures.

30

They improve performance by allowing the user to focus only on the relevant parts

of the graph that must be examined or modified.

The zoom functionality is extremely useful when the entire graph does not fit on

the screen. Too much time would be wasted if one had to change to another section of

the graph manually by moving the scroll bars. Zooming accelerates this process since

the user can quickly identify the region of the stream graph that has to be examined.

The zoom capability permits all the necessary components to fit on the window.

Collapsing and expanding of container nodes allow control over the level of detail

visible to the user. The overall structure of the graph remains intact, but fewer

components are shown. Assume that a graph contains a pipeline with many internal

elements and this pipeline does not have to be modified anymore. It would be easier

to work on the rest of the structure by treating this complex pipeline as a “black

box” and visually collapsing the structure. Thus, the developer can concentrate on

the interactions between components rather than on details. Figure 3-7(a)-(c) shows

the effect of collapsing a graph to simplify the overall structure.

Visibility of containers is another feature that would allow the user to control how

the graph is visualized. Container nodes can either be visible on the screen or they

can be hidden. When container nodes are visible, the user can observe the hierarchy

that exists among the different components. However, the user might choose to hide

the containers in order to facilitate the editing of the graph. Figure 3-7(d) shows a

graph with its containers invisible. The same graph with the containers visible is in

Figure 3-7(c).

3.7 Editing Tools

A graphical editor must have editing functionality such as copy, paste and undo.

Copy/paste increases the productivity of a programmer by allowing the reuse of ex-

isting structures. The stream graph might contain a component that needs to be

used again in a different part of the graph. Instead of creating a node with the same

properties, the user can just copy the object.

31

(a) Fully expanded. (b) 1 level collapsed. (c) 2 levels collapsed.

(d) Containers Invisible.

Figure 3-7: Expanding/Collapsing Components

32

A special paste functionality that would allow several instances of the copied

object to be created would be useful. A specific case where the special copy/paste

functionality would be useful is in the duplication of the inner nodes of a splitjoin.

Automating the creation of multiple instances of a splitjoin’s inner node would speed

up the development process for the programmer. Creating multiple instances of the

node would only require the programmer to specify how many copies must be created.

The ability to undo changes helps the user correct mistakes. Many times the

action performed was an error or had undesired result. Undoing the changes can

bring the user back to a state of the stream graph without the problems that had

been introduced.

3.8 Merging

Merging is another action that takes advantage of the automating capabilities of the

graph editor. Merging allows different container nodes to be selected in order to

create a single new component from the inner components of these structures. The

result of merging two splitjoins (A and B) is a new splitjoin (C) that contains the

inner children of the two splitjoins (A and B). Figure 1-1 shows the result of merging

two splitjoins.

Merging simplifies things for the user by automating the process. If this action

was to be done manually by the user, it would take more steps and it would also make

it more likely for an error to occur. The SGE should also automatically determine

when it is possible to merge components into a single component according to the

structure of the graph.

3.9 Image Export

The SGE should export images of the graph that is being edited. Different formats

should be supported. Having an image available can allow the programmer to further

analyze the design of the application being built. It is easier to explain the function-

33

ality of a StreamIt program if in addition to the code, the stream graph image is also

provided.

3.10 Code Creation

Ideally, there should be “isomorphism” between the graphical representation of the

stream graph and the source code. If the source code is modified, then the change

should be reflected in the graph. On the other hand, if the graph is modified, the

change should be reflected in the source code. This would allow the user to switch

between the graphical editor and the text editor at any point. To start developing

an application, the programmer can use the graph editor for visualization purposes.

Once the programmer is done creating the overall design of the application, the text

editor can be used to fill in the details.

34

Chapter 4

Implementation of the StreamIt

Graphical Editor

A prototype of the StreamIt Graph Editor was developed. The SGE was designed

as a plug-in for Eclipse, a universal tool platform from IBM. The first section (4.1)

of this chapter will describe relevant components in the design of the SGE. Section

4.2 presents some of the features and limitations of the SGE. Finally, Section 4.3

discusses future work.

4.1 General Overview

4.1.1 Eclipse

The StreamIt Graph Editor was built as a plug-in for IBMs Eclipse [3]. Eclipse is

an extensible integrated development environment (IDE). The Eclipse platform has a

mechanism for finding, integrating and running plug-ins. When Eclipse is launched,

an IDE composed of a set of available plug-ins is made available to the user. The SGE

has been integrated into Eclipse via in-process invocation [2]. The SGE runs in the

same JVM and can use the same class libraries as Eclipse [9]. The Eclipse plug-in that

launches the StreamIt Graph Editor is also responsible for resource synchronization

between Eclipse and the editor.

35

4.1.2 JGraph

JGraph is the graph component that was used to create the SGEs visual elements.

JGraph is one of the most powerful, lightweight and feature-rich opensource graph

components available for Java [1]. Instead of having to program the low level inter-

actions using Swing/AWT, JGraph provides a high level abstraction that facilitates

the creation of the visual representation of graphs.

4.1.3 SGE Internal Representation

The underlying internal representation (IR) of the stream graph contains all the

information necessary to display important details. The IR contains all of the nodes

in the graph and their connections. The IR consists of nodes that represent any

of the available structures that the StreamIt language supports: filters, pipelines,

splitter, joiners, feedback loops and splitjoins. A GEStreamNode is the basic unit

in the IR that represents a node and contains all of the data that is particular to

that object. A GEStreamNode provides functionality to access or modify properties

that are present in all of the StreamIt structures (i.e. name, encapsulating container,

type). Specific structures extend GEStreamNode to provide features particular to

that type of node. For example, a GEFilter contains the push, pop, and peek rates

for their work function while GESplitters and GEJoiners contain roundrobin weights.

Pipelines, splitjoins and feedback loops are also GEContainer nodes in addition

to being GEStreamNode due to their ability to encapsulate other components. Every

node, except for the top level node has a GEContainer as its encapsulating structure.

By having a GEContainer, more features in the SGE can take advantage of StreamIt’s

hierarchical nature.

4.2 Features

The following subsections will describe some of the tasks that can be done using the

prototype version of the SGE. In addition, the limitations of the prototype will also

36

Figure 4-1: SGE Prototype

be exposed. Figure 4-1 shows the SGE.

4.2.1 Creating StreamIt components

Filters, splitters and joiners can be created by clicking on their corresponding icons

on the toolbar in the editor. Figure 4-2 shows the SGE’s toolbar. Once the type of

the component that one wants to add has been selected, the user can use the mouse

to create the bounding box where the component is to be added.

Figure 4-2: Toolbar

Splitjoins, pipelines and feedback loops are created a different way. The com-

37

ponents that will be part of the container structure must first be selected so that

they can be “grouped”. The effect of grouping is that all of the selected structures

will have the same new encapsulating container. This process is similar to grouping

of elements in PowerPoint in that an association between the selected components

is created. Each of the container nodes will have a unique ID so that there is no

ambiguity at the time that an element is to be added to a container.

In the current version of the SGE prototype, there are no restrictions for grouping

elements into a pipeline. However, if one wants to group into a splitjoin or a feedback

loop, a splitter and a joiner must be among the elements selected to group. Splitjoins

and feedback loops are not legal if they do not include these components. Therefore,

it does not make sense to allow the creation of stream graph components that are

incomplete.

4.2.2 Connecting Components

Graph components can be connected graphically. Once the user has selected the edge

connection option from the editor’s toolbar, the source component must be selected

and the created edge must be dragged to the target component. Not all connections

are allowed since they would result in illegal stream graphs. The SGE will warn the

user whenever a connection is not possible (i.e. connecting an element to itself).

Connections are deleted the same way as other components of the graph. Certain

components such as filters require existing connections to be deleted before allowing

any more connections. Filters can only have one input and one output so trying to

create connections that would result in more than one input/output is not allowed.

Component connections determine the ordering of elements within their encapsu-

lating container. Elements belonging to a pipeline are automatically arranged accord-

ing to the connections among these inner components. As a result, the programmer

does not have to worry about specifying which element is the first one in the pipeline,

which one is the second one and so on. The SGE does this automatically when the

user connects the different structures.

38

Figure 4-3: Property Window

4.2.3 Changing Properties

The properties of a component can be modified using the SGE. The developer selects

the desired element and then selects the properties option in the menu or by right-

clicking. A window containing the current values of the component’s properties will

appear on the screen.

The specific properties that can be modified depend on the type of the component

selected. Splitters and joiners have weights, but they do not have an input type or

an output type. Their input and output types are determined by their encapsulating

container. In addition, splitters do not have a name field. Instead the user must

specify the type of the splitter or joiner (roundrobin or duplicate).

The properties window will prevent the user from certain illegal values that might

result in an illegal stream graph. The encapsulating component of a container cannot

be itself or any other element that it contains. In addition, an element’s encapsulating

container cannot be changed if the node selected is connected. Changes like this could

cause the hierarchy of the graph structure to be nonsensical.

In stream graphs, it is commonly the case that there is more than one instance of

the same component in the graph. These instances share the same “class” name and

39

the same properties. If the properties of one of these instances are modified, then

the name of the modifed component must also change because it no longer shares the

same properties as the other instances. The SGE changes the name of the structure

automatically so that when the code for the stream graph is generated, the definition

for the new type will be included. Ideally, the SGE should have prompted the user

to perform the action described above or to actually change the properties of all the

nodes with the same “class” name as the modified node.

The current version of the SGE does not support the modification of the properties

of multiple elements. Properties must be modified individually. When changing the

properties of multiple components, it is more likely that illegal configurations of the

graph are created. For example, selecting all of the elements in the graph and changing

the encapsulating container to be the same for all of them is impossible. The SGE

would have to consider if any problems are caused by the desired modification before

the change takes effect.

4.2.4 Expanding/Collapsing

Expanding and collapsing of stream nodes is done according to the hierarchy level in

which nodes are located. Collapsing and expanding occurs one level at a time when

no nodes are selected in the editing window. The nodes at the deepest level are the

ones that have more ancestors between them and the toplevel pipeline. If the graph

is fully expanded, the deepest nodes will be collapsed first. Next time the graph is

collapsed, the next deepest nodes will be collapsed.

Containers can be expanded or collapsed by selecting the expand or collapse option

from the menus. Specific containers can be collapsed by explicitly selecting them and

then clicking the collapse button. Instead of collapsing all of the containers at a

certain level, only the selected component will be collapsed.

40

Figure 4-4: Zoom (using hierarchy perspective)

4.2.5 Zoom

The SGE provides functionality that allows the user to specify how much of the graph

should be visible in the editing window. Zooming can be achieved by selecting the

appropriate option from the menus. One can also zoom by changing the size of the

bounding box in the hierarchy panel. To zoom in, the bounding box is made smaller

and to zoom out the bounding box is made bigger. Other options in the view menu,

allow the graph to be fitted into the window. The level of zoom can also be specified

by the user.

41

(a) Containers invisible. (b) Containers visible.

Figure 4-5: Visibility of containers

4.2.6 Visibility of Containers

Containers can be made visible or invisible. It might be good to make the containers

visible to analyze the hierarchy structure of the graph. However, there might be

cases when the containers should be invisible in order to facilitate the editing of the

rest of the graph. Containers can be made visible/invisible by simply selecting the

corresponding option in the menu. Figure 4-5 shows how the same graph looks with

the containers visible and invisible.

42

4.2.7 Copying/Pasting/Deleting

The SGE supports the basic functionality that would be expected from a graph editor.

In order to copy an element, it must first be selected. Then, the copy option from

the menu must be chosen. The user can now use the paste option to create a new

instance of the node that was copied. It is not recommended to copy/paste large,

complex containers in the prototype version of the SGE. Copying/pasting has to be

optimized so that it takes a reasonable amount of time to perform the action on these

containers.

The user can delete a component by pressing the Delete button or by selecting the

corresponding option from the menus. If the selected component is a container, then

all of its inner components will also be deleted. It is not possible to delete splitters

or joiners that belong to a splitjoin or a feedback loop since these containers are not

defined without their splitter or joiner. The user would never have to delete a splitter

or a joiner to substitute it for another one since this is possible just by changing the

component’s properties.

4.2.8 Graph Layout

The SGE allows the graph to be laid out in an intuitive manner. As the stream

graph is created it might become obfuscated by virtue of the programmer’s actions.

Adding new components, making connections, and moving components around will

eventually lead to a graph with no structure. Figure 4-6(a) shows an extreme case

of what might eventually happen to the graph. The problem can be solved easily by

selecting the“Layout Graph” option. The end result is shown in Figure 4-6(b).

Elements that are not connected to the graph appear at the end of the container

to which they belong. In future versions of the SGE, this can be modified so that

unconnected components appear in another region where the user can easily identify

the components that still need to be connected.

43

(a) Obfuscated graph. (b) Laid out graph.

Figure 4-6: Graph Layout

4.2.9 Merging

The SGE currently supports the merge of pipelines or splitjoins. If two splitjoins are

to be merged, they must be selected from the graph first. The first splitjoin that is

selected is the one that will contribute its splitter to the new splitjoin and will also

have its inner components first. The second splitjoin selected will provide its joiner

and its inner components will come after the components of the first selected splitjoin.

When the merge option is selected, the user will be asked if the unused splitter and

joiners from the selected splitjoins should be deleted. It might be helpful not to

delete the old splitter and joiner to know the weight values for those components

while setting the values for the new ones. When merging pipelines, the order in

44

which the desired pipelines are selected determines if the pipeline’s elements come

before or after the other pipeline’s elements.

The prototype SGE only supports the merge of two components at a time. How-

ever, this functionality can easily be extended to support the merge of more compo-

nents. In addition, it can also be extended to support the merge of feedback loops.

4.2.10 Specialized Splitjoin Functionality

The unique properties of the splitjoin allow the SGE to provide special functions to

deal with this structure. Frequently, a splitjoin might contain several instances of the

same structure as an inner component. It would be time consuming to create such

a splitjoin since the user would have to copy the desired element a certain number

of times and then manually have to connect the component to the splitjoin’s splitter

and joiner. The SGE simplifies the process by providing functionality that allows

the duplication of the inner components of a splitjoin. The user only has to select

the component and determine the number of copies. The SGE will automatically

duplicate the component that many times, make the connections between the splitter

and the joiner of the splitjoin and adjust the weights accordingly. The prototype

SGE does not work well when trying to duplicate large, complex containers since

some changes are required to optimize this procedure.

The inner components of a splitjoin must maintain a certain order so that the

weights correspond to their respective elements. The user can specify a new value for

the index of a splitjoin’s inner component. The SGE will automatically adjust the

weights in the splitter and the joiner. The option to set the index is also available

when a component is added to the splitjoin.

4.2.11 Template Code Creation

The SGE allows the creation of template code from the structure that has been

created graphically. The template code will include the type definitions of each of

the components according to their properties in the SGE. Only one type declaration

45

void->void pipeline HelloWorld {

add Pusher();

add TestSplitJoin();

add Popper();

add StrFilter13();

}

void->int filter Pusher {

init {

}

work push 4 {

}

}

int->int splitjoin TestSplitJoin {

split duplicate();

for (int i = 0; i < 6 ; i++ {

add OnePopper();

}

join roundrobin();

}

int->int filter OnePopper {

init {

}

work pop 1 push 1 peek 1 {

}

}

int->void filter Popper {

init {

}

work pop 4 peek 4 {

}

}

Figure 4-7: Sample Template Code.

will be required for all of the instances of a certain component in the stream graph.

In addition, components will also be added to the containers they belong to.

Whenever there are more than N instances of the same component adjacent to each

other in the graph, instead of adding each of these instances explicitly (i.e. having

N different “add” statements) the SGE will produce code that contains a for-loop to

add all of them. The value of N is currently set to four, but there could be an option

that would allow the user to set this threshold value. The advantage of the for-loop

code creation is that this is the kind of code that a programmer would write. It does

not make sense to have N different “add” statements. Figure 4-7 shows the StreamIt

code that the SGE generated from the graph shown in Figure 4-8.

The current version of the SGE does not provide much “isomorphism” between

the code and the graph. Whenever one of the models is modified, the change is not

reflected immediately in the other. The code needs to be compiled in order for the

graph to be created. The option to create template code must be selected in the SGE

to reflect the graph changes in the source code. In addition, the creation of template

46

Figure 4-8: Graph corresponding to template code sample

code overwrites the existing file with the StreamIt source code. As a result, comments

and other user changes in the source code are not preserved. The SGE would have to

parse the entire source code file in order to detect the place where user modifications

have occurred. A different underlying representation of the graph is needed to support

immediate changes and move closer to the goal of complete isomorphism.

4.2.12 Exporting Graph Images

The SGE allows the creation of JPEG, GIF, PNG, image maps, and graphviz images

of the graph. Thus, the developer can have the stream graphs created by the SGE

available off-line. A physical copy of the graph can be obtained by using the SGE’s

print option. The print option is useful if the user does not want to create a graph

image only to print it. No matter which option is used, the SGE’s functionality allows

users to have better control on how they can analyze their stream graphs.

47

4.3 Future Work

There are several things that still can be done in order to improve the current function-

ality of the prototype SGE [4]. One of the most extensive changes includes increasing

the level of “isomorphism” between the StreamIt source code and its graphical repre-

sentation. As it was mentioned before, this can be achieved by changing the internal

representation of the code and the graph to something that can easily reflect changes

(i.e. XML). Another change includes the duplication of large, complex components.

The current implementation must be optimized so that there are no delays when any

component is duplicated.

Another relevant change is to integrate the SGE completely into Eclipse. Cur-

rently, the SGE opens in a separate window from Eclipse. The SGE is not fully

integrated yet because Eclipse does not support Swing/AWT. Eclipse has its own

toolkit called SWT that deals with the graphical interface. Future versions of Eclipse

might provide support for Swing/AWT and SWT interoperability.

In addition, now that the basic framework for the SGE has been created, more

focus can be placed on exploring different features that could be useful to the StreamIt

developer from input and comments received from users.

48

Chapter 5

Concluding Remarks

This thesis presents a graphical programming tool that can improve the performance

of developers using the StreamIt programming language. The intuitive visualization

of a StreamIt application permits the programmer to rapidly view the organization,

flow of data and hierarchy in the stream graph. Various options in the SGE also allow

the user to customize the view of the graph to whatever is more appropriate.

Automating the process of software development eliminates the possibility for

human errors. The StreamIt Graph Editor can detect that the user is performing

an illegal action and will not allow it. In other cases, the SGE simplifies tasks by

automating all the work that the programmer would otherwise have to do manually.

The current version of the prototype contains many of the properties desired

for rapid prototyping of stream programs with a focus on DSP applications. This

thesis makes great strides towards more productive programming in the new and

increasingly popular stream computing paradigm.

49

50

Appendix A

Code

This section contains the StreamIt code samples used in this thesis.

51

//Write the generated number to the filter’s output tape.

void->int filter IntSource {

int x;

init {

x = 0;

}

work push 1 {

push(x++);

}

}

// Print the number taken from the filter’s input tape.

int->void filter IntPrinter {

init {

}

work pop 1 {

print(pop());

}

}

// Write the 1st element in the filter’s input tape to output tape.

int->int filter Original {

init {

}

work push 1 pop 1 {

push(pop());

}

}

// Write 2nd element in the filter’s input tape to output tape.

int->int filter Delayed {

init {

}

work push 1 pop 2 {

pop();

push(pop());

}

}

// Produce a delayed version of the data along with the original.

int->int feedbackloop Echo() {

join roundrobin(1, 1);

body Original();

loop Delayed();

split duplicate;

enqueue(0);

enqueue(0);

}

// Add the first two elements in the filter’s input tape.

int->int filter Adder {

init {

}

work push 1 pop 2 {

int a = pop();

int b = pop();

push(a + b);

}

}

// Toplevel pipeline.

void->void pipeline EchoEffect2() {

add IntSource();

add Echo();

add Adder();

add IntPrinter();

}

Figure A-1: Source code for the EchoEffect StreamIt program.

52

Appendix B

Figures

This section contains the graphs belonging to the StreamIt source programs that were

shown as examples in this document.

53

Figure B-1: Graph representation of the EchoEffect program

54

Bibliography

[1] Gaudenz Alder. Design and Implementation of the JGraph Swing Component.

Technical report, JGraph, 2003.

[2] Scott Fairbrother. Using and Extending Eclipse. Workshop at the Massachusetts

Institute of Technology, September 2003.

[3] IBM Eclipse Group. Eclipse Platform Technical Overview. Technical report,

IBM, 2003.

[4] StreamIt Group. StreamIt webpage. http://catfish.csail.mit.edu/streamit/.

[5] National Instruments. LabVIEW User Manual. National Instruments Corpora-

tion, Silicon Valley, 7.0 edition, April 2003.

[6] Mikls Marti kos Ldeczi and Pter Vlgyesi. The Generic Modeling Environment

Technical Report. Technical report, Vanderbilt University, 2003.

[7] The MathWorks. Simulink. Technical report, The MathWorks, Inc., 2003.

[8] The MathWorks. Texas Instruments Streamlines Research and Development

with Simulink and DSP Tools. MathWorks User Story, 2004.

[9] Sherry Shavor, Jim D’Anjou, Scott Fairbrother, Dan Kehn, John Kellerman, and

Pat McCarthy. The Java Developers Guide to Eclipse. Addison-Wesley, 2003.

[10] William Thies, Michal Karczmarek, and Saman Amarasinghe. StreamIt: A Lan-

guage for Streaming Applications. In International Conference on Compiler

Construction, Grenoble, France, April 2002.

55

[11] William Thies, Michal Karczmarek, Michael Gordon, David Z. Maze, Jeremy

Wong, Henry Hoffman, Matthew Brown, and Saman Amarasinghe. StreamIt: A

Compiler for Streaming Applications. MIT/LCS Technical Memo MIT/LCS

Technical Memo LCS-TM-622, Massachusetts Institute of Technology, Cam-

bridge, MA, December 2001.

[12] Claire Tristram. Everyone’s a Programmer. Technology Review, 2003.

56

