
The StreamIt Development Tool:

A Programming Environment for StreamIt

by

Kimberly S. Kuo

Submitted to the
Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Engineering and Computer Science

and

Master of Engineering in Elecrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 20, 2004

c© 2004 M.I.T. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2004

Certified by. .
Saman Amarasinghe
Associate Professor
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

2

The StreamIt Development Tool:

A Programming Environment for StreamIt

by

Kimberly S. Kuo

Submitted to the
Department of Electrical Engineering and Computer Science

May 20, 2004

In Partial Fulfillment of the Requirements for the Degrees of
Bachelor of Science in Electrical Engineering and Computer Science

and
Master of Engineering in Elecrical Engineering and Computer Science

ABSTRACT

StreamIt [28] is a high-level programming language intended for the development of
large-scale and high-performance streaming applications that are characterized by the
processing of data streams by modular structures. The StreamIt Development Tool
(SDT) [25] is designed to aid the coding and simultaneous code- and graph-based
debugging and visualizing of programs written in StreamIt. The goal is to provide
a graphical programming environment that simply and intuitively conveys the hier-
archical and structured nature of the StreamIt language by visually interpreting the
dynamic behavior and graph representation of a StreamIt application. Consequently,
the SDT provides utilities for program creation and code editing, compilation and
launch support, breakpoints and code stepping, general debugging infrastructure,
help support, stream graph examination and navigation, and stream data display,
modification, and tracking. A user study evaluating the SDT uncovered several prob-
lems and areas of improvement that need to be addressed before this tool can approach
its goals. Assessment of the SDT’s efficacy in its current state is inconclusive—the
SDT demonstrates both the ability to improve and hinder a user’s debugging ability.
Facilitating effective coding and debugging techniques and developing for scalability
are critical elements in improving the SDT’s effectiveness.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor

3

4

Acknowledgments

I would like to thank my thesis advisor, Saman Amarasinghe, for his guidance and

support throughout the development of this thesis. I am also thankful to the StreamIt

group at MIT, from whom I have learned so much about StreamIt and Eclipse: Ro-

dric Rabbah coordinated and assisted in the design of the user study and provided

invaluable feedback for the SDT’s functionality and this thesis. William Thies sug-

gested and/or wrote many of the applications in the user study and supplied advice

on improving and enhancing the SDT and the user study. Both David Maze and

Bill Thies modified the StreamIt Java library to interface with the SDT. Jasper Lin,

Juan Carlos, Sitij Agarwal, Jeremy Wong, Michael Gordon, and Michal Karczmarek

all participated in in-house evaluations of the SDT.

Finally, I would like to thank my parents, Kuonan and Sue, and my brother,

Raymond. I am eternally grateful for their support and encouragement in both my

academic and personal endeavors. I could not have made through MIT or this thesis

without them.

5

6

Contents

1 Introduction 17

1.1 Overview . 17

1.2 Organization . 19

2 Related Work 21

2.1 High-Level Language Debuggers and Program Visualization Tools . . 21

2.2 OOP Debuggers and Program Visualization Tools 26

3 Background 29

3.1 The StreamIt Language . 29

3.1.1 Channels . 29

3.1.2 Filters . 30

3.1.3 Pipelines . 30

3.1.4 Split-joins . 31

3.1.5 Feedback-loops . 32

3.1.6 Hierarchical Graph Representation 33

3.1.7 Execution Model . 34

3.2 Eclipse . 34

3.2.1 Plug-ins . 36

3.2.2 Workbench . 36

3.2.3 Launching, Running, and Debugging Infrastructure 38

4 SDT Common Coding and Debugging Features 41

7

4.1 Code Editing . 41

4.2 Breakpoints . 46

4.2.1 Line Breakpoints . 46

4.2.2 Method Breakpoints and Watchpoints 48

4.2.3 Breakpoint Property Specification 50

4.3 Program Compilation and Launch Support 51

4.4 General Debugging Support . 54

4.4.1 Features in the Debug View 61

4.4.2 Variable Value Modification 61

4.5 Help Support . 64

5 SDT Stream Graph-Specific Features 67

5.1 Stream Graph Examination and Hierarchical Navigation 67

5.1.1 Streams in the Stream Graph View 70

5.1.2 Stream Graph Debugging Behavior 71

5.1.3 Stream Graph Navigation . 73

5.1.4 Stream Statistics . 75

5.2 Stream Data Display, Modification, and Tracking 78

6 Results 83

6.1 Target Population . 84

6.2 Procedure . 84

6.3 In-House Evaluation . 87

6.4 During the Study . 89

6.5 Quantitative Results . 90

6.6 Qualitative Results . 95

6.6.1 Problems with the SDT . 95

6.6.2 Usability of the SDT . 97

6.6.3 Improvements and New Functionality 98

6.7 Lessons Learned . 99

8

7 Conclusion 101

7.1 Future Work . 101

7.2 Summary . 102

A User Study Documents 103

A.1 Pre-Study Questionnaire . 104

A.2 SDT Tutorial . 106

A.3 User Tasks . 108

A.4 Description of Applications and Code 110

A.4.1 Application 1: BitTwiddle . 110

A.4.2 Application 2: Fibonacci . 112

A.4.3 Application 3: EchoEffect . 113

A.4.4 Application 4: MergeSort . 114

A.4.5 Application 5: Cornerturn . 116

A.4.6 Application 6: EchoEffect2 . 118

A.4.7 Application 7: BubbleSort . 119

A.4.8 Application 8: BitReverse . 121

A.4.9 Application 9: Overflow . 123

A.5 Post-Study Questionnaire . 124

9

10

List of Tables

6.1 User groupings describing whether the SDT was or was not used for

each application. 87

11

12

List of Figures

2-1 Screenshot of the VisualDSP++TM [42]. 22

2-2 Screenshot of the Embedded Workbench [32]. 23

2-3 Screenshot of the Rapid Development System [37]. 23

2-4 Screenshot of the BoxView [6]. 24

2-5 Screenshot of the Momentics r© [33]. 24

2-6 Screenshot of the Debugger RTOS [4]. 25

2-7 Graphical view of an application created with the PDG [8]. 27

2-8 The PDG’s hierarchical graphical representation. 27

2-9 Screenshot of the MULTI r© Integrated Development Environment [20]. 28

3-1 The code (a) and conceptual representation (b) of an Averager filter. 31

3-2 The code (a) and conceptual representation (b) of a MovingAverage

pipeline with three children. 31

3-3 The code (a) and conceptual representation (b) of a BPFCore splitjoin

with two children. 32

3-4 The code (a) and conceptual representation (b) of an Echo feedbackloop. 33

3-5 A static stream graph generated by the StreamIt compiler. 35

3-6 An Eclipse Workbench window in the Resource perspective, containing

a text editor and the Navigator, Outline, and Tasks views. 37

3-7 A Launch Configurations dialog. 39

3-8 An Eclipse Workbench window in the Debug perspective, containing a

text editor and the Debug, Variables, Console, and Properties views. . . . 40

4-1 A StreamIt project wizard. 42

13

4-2 A StreamIt project wizard (continued). 43

4-3 A StreamIt Editor with an associated Outline view. 44

4-4 Icons used by the Outline view for StreamIt files: a plus box (a), a minus

box (b), a state variable (c), a method (d), a filter (e), a pipeline (f),

a split-join (g), and a feedback-loop (h). 44

4-5 A preference page for adding and deleting StreamIt keywords. 45

4-6 A StreamIt Editor’s left gutter showing line breakpoints, method break-

points, and watchpoints that have been added (a). A pop-up menu

allows users to add line breakpoints. The StreamIt drop-down menu

found in the Workbench’s main menu bar also allows users to add line

breakpoints (b). 47

4-7 Breakpoint icons used in the StreamIt Editor and StreamIt drop-down

menu for line breakpoints (a), method breakpoints (b), and watch-

points (c). 47

4-8 A pop-up menu allows users to remove line breakpoints (a). The

StreamIt drop-down menu allows users to remove line breakpoints (b). 48

4-9 The StreamIt drop-down menu allows the user to add method break-

points (a) and watchpoints (b). 49

4-10 The StreamIt drop-down menu allows the user to remove method

breakpoints (a) and watchpoints (b). 49

4-11 Disabled watchpoint, method breakpoint, and line breakpoints (a). A

pop-up menu allows users to disable or enable breakpoints or watch-

point (b). 50

4-12 Disabled selections in the StreamIt Editor’s pop-up menu (a) and StreamIt

drop-down menu (b). 51

4-13 The StreamIt drop-down menu allows the user to compile the file cur-

rently being displayed in the StreamIt Editor. 52

4-14 Errors and warnings are displayed in the Tasks view, Package Explorer

view, and StreamIt Editor. 53

14

4-15 The Run drop-down menu (a) and the toolbar’s run (b) and debug (c)

icons allow users to launch StreamIt applications. 55

4-16 Launch configuration management wizard for running. 56

4-17 Launch configuration management wizard for debugging. 57

4-18 The arguments tabs allows user to specify iterations or secondary

StreamIt files to include in a launch. 58

4-19 A StreamIt program suspended at a breakpoint in the Debug perspective. 60

4-20 Icons from the Debug view’s toolbar and pop-up menu for resuming

(a), terminating (b), and stepping over (c). 61

4-21 The Debug view logs all launches, which allows them to be re-launched. 62

4-22 The Variables view’s pop-up menu (a) and the “Set Variable Value”

dialog (b). 63

4-23 The StreamIt Development User Guide. 65

5-1 The Stream Graph view displaying a stream graph during program sus-

pension. 68

5-2 The Overview of Stream Graph view displaying a stream graph during

program suspension. 69

5-3 The Stream Graph view displays channels (a), filters (b), pipelines (c),

split-joins (d), and feedback-loops (e). 70

5-4 The Stream Graph view displays the children of pipelines (a), split-joins

(b), and feedback-loops (c). 72

5-5 Stream Graph view icons for duplicate splitters (a), weighted splitters

and joiners (b), data flow (c) (d), and “Hide Lines” (e). 73

5-6 The Stream Graph view allows users to add (a) and remove (b) filter

instance breakpoints. 73

5-7 The Stream Graph view’s icons for navigation: a plus box (a), a minus

box (b), “Collapse All” (c), and “Expand All” (d). 74

5-8 A large(r) StreamIt graph. 76

5-9 An expanded filter with statistics displayed. 77

15

5-10 The Properties view displaying the statistics for an entire stream graph. 77

5-11 The Stream Graph view displays data in channels and grays out peeked

at data. Some channels are expanded and some are collapsed. 78

5-12 The Stream Graph view enables users to show, change, highlight, and

un-highlight data (a). These features are disabled when not applicable

for a particular channel or datum (b). 79

5-13 A dialog box for showing all of the data within a channel. 80

5-14 A dialog box for modifying all of the data within a channel. 81

6-1 Graph comparing the number of users who solved and did not solve

each application with and without the SDT. 91

6-2 Graph comparing the average time it took users to solve or not solve

each application with and without the SDT. 93

6-3 Graph comparing the average normalized time it took users to solve

applications 3 through 9 with and without the SDT. 94

6-4 The Stream Graph view displaying a portion of Application 4’s stream

graph. 96

16

Chapter 1

Introduction

1.1 Overview

Streaming applications encompass a set of programs characterized by large data

streams, independent modular transforms called filters that can execute on these

streams concurrently, a predictable pattern of applying certain transforms, some dy-

namic change in the pattern of transform application, some inter-filter communi-

cation, and high-performance [40]. Streaming applications are prevalent in desktop

applications such as streaming media, software radio, real-time encryption, and graph-

ics packages; hand-held computers, cell phones, and DSPs in the embedded domain;

and high-performance systems such as internet routers, cell phone base stations, and

multimedia editing consoles [29] [30] [31] [40].

StreamIt [28] is a high-level programming language intended for large-scale and

high-performance streaming application development. This language introduces ab-

stractions, such as hierarchically structured streams that are designed to facilitate

modularity, programmer productivity, and robustness [29]. StreamIt aims to allow

programmers to easily and naturally express their design of streaming applications.

The StreamIt compiler generates a representation of a streaming program, called a

stream graph, which is a directed graph of filters connected by streams. A streaming

application developer can analyze these graphs separately from program execution

[27].

17

In partnership with creation and design, the debugging, incremental building,

and performance optimization of large streaming applications necessitates utilities for

stream graph visualization, data tracking, and filter execution order. The StreamIt

Development Tool (SDT) [25] is designed to aid the coding and simultaneous code-

and graph-based debugging and visualizing of programs written in StreamIt. The

SDT’s goal is to provide a graphical programming environment that simply and in-

tuitively conveys the hierarchical and structured nature of the StreamIt language by

interpreting and visually representing the stream graph and the dynamic behavior

of a StreamIt program. To address this goal, the SDT needs to provide common

code editing and debugging functionality analogous to the functionality available in

traditional application development environments. As such, the SDT supplies the

following features:

• A StreamIt file editor with customizable syntax highlighting

• Utilities for creating and managing StreamIt applications

• Line breakpoint, method breakpoint, and watchpoint addition to executable
code

• Breakpoint property specification, such as enabling, disabling, conditional break-
ing, etc.

• Program launching and compilation support with syntax error detection and

reporting

• Program suspension and code stepping

• Variable inspection and value modification

• Help manual with tutorial

Moreover, the SDT offers features tailored to the StreamIt language’s syntax and se-

mantics and targeted at debugging the salient quality of streaming applications—the

ability to easily represent a streaming program graphically, structurally, and hierar-

chically:

18

• Stream graph examination and hierarchical navigation

• Stream statistical information display

• Data inspection and modification

• Dataflow tracking

Built in a visual, integrated development environment (IDE) with a human-computer

interface, the SDT is composed of the following modules: an IDE-integrated debug-

ger, graphical text editor, a runtime stream graph view, and a corresponding graph

overview. The SDT is implemented in Java as an Eclipse [23] plug-in.

1.2 Organization

The rest of this thesis is organized as follows. Related work is presented in chapter 2:

debugging and visualizing tools for high-level (2.1) and object-oriented programming

(OOP) languages (2.2). In chapter 3, appropriate background material on StreamIt

(3.1) and Eclipse (3.2) is provided. Chapter 4 describes common coding and debug-

ging features of the SDT: program creation and code editing (4.1), breakpoints (4.2),

program compilation and launch support (4.3), and general debugging (4.4) and help

(4.5) support. In chapter 5, the SDT’s StreamIt- and stream graph-specific features

are given: stream graph examination and navigation (5.1) and stream data display,

modification, and tracking (5.2). Chapter 6 presents a user study of the SDT: analy-

sis of the target user population (6.1), procedures (6.2), an in-house evaluation (6.3),

what occurred during the study (6.4), quantitative results (6.5), qualitative results

(6.6), and lessons learned (6.7). Future research opportunities are discussed (7.1) and

this thesis is concluded with (7.2).

19

20

Chapter 2

Related Work

In this chapter, related work is presented on tools for debugging and visualizing high-

level (2.1) and object-oriented programming (OOP) languages (2.2).

2.1 High-Level Language Debuggers and Program

Visualization Tools

Although the theory of streaming applications dates back to the 1960s [34], the major-

ity of streaming applications are traditionally written in various assembly languages

[30]. However, as these applications increase in size, functionality, and complexity,

high-level languages such as C are being used to increase programmer productivity,

improve program reliability and readability, and decrease development and debug-

ging time [30]. In conjunction, technical computing tools like Matlab [2] are often

employed for algorithm development and verification [18].

Numerous debuggers and program visualization tools exist for streaming applica-

tions written in high-level languages. The majority of these tools are C debuggers

targeted at specific hardware or platforms, offering traditional debugging features

(i.e. program suspension, breakpoint stepping, watchpoints, local variable and out-

put display, etc.) combined with assembly code, memory register, and signal plot

display. Indeed, screenshots of those described below reveal this similarity, as seen in

21

Figure 2-1: Screenshot of the VisualDSP++TM [42].

Figures 2-1 through 2-6.

VisualDSP++TM [42] is an IDE and debugger developed by Analog Devices, Inc.

[10] for building and debugging DSP applications written in C/C++ and assembly

(Figure 2-1). It produces executables that can run on simulators and emulators.

IAR Systems’ [35] Embedded Workbench [44] is another IDE intended for C/C++

embedded applications (Figure 2-2). Created by Cradle Technologies, Inc. [38], Rapid

Development System (RDS) [7] is a software development kit (SDK) for developing

and debugging DSP applications in C (Figure 2-3). After compilation, the RDS can

debug using simulators or proprietary hardware. BoxView [6] and Debug-56K [9]

are two debuggers built by Domain Technologies, Inc. [39] for DSP-targeted C and

assembly applications (Figure 2-4). Both typically interface with emulators, which in

turn interact with third-party DSPs. QNX Software Systems’ [36] Momentics r© [19]

is an Eclipse-integrated IDE for real-time operating systems (RTOS) and embedded

applications in C, C++, and Java (Figure 2-5). Unlike RDS, Momentics’ source

code debugger functions separately from target hardware interaction. Finally, the

Debugger RTOS [4] is a RTOS built-in module aimed at embedded software (Figure 2-

6).

22

Figure 2-2: Screenshot of the Embedded Workbench [32].

Figure 2-3: Screenshot of the Rapid Development System [37].

23

Figure 2-4: Screenshot of the BoxView [6].

Figure 2-5: Screenshot of the Momentics r© [33].

24

Figure 2-6: Screenshot of the Debugger RTOS [4].

25

2.2 OOP Debuggers and Program Visualization

Tools

In recent years, some movement in the streaming domain has been made towards

OOP languages such as C++ or Java, which introduce abstractions that improve the

portability and reusability of code [30]. The introduction of conceptual abstractions

empowers the design, debugging, visualization, and analysis tools created for OOP-

based streaming applications to introduce hierarchical, modular structures while hid-

ing unnecessary details from the programmer. On top of the traditional debugging

features previously mentioned, all three of the tools described next use some variation

on the theme of signal processing blocks that are connected, displayed, and navigated

graphically.

Simulink [1] is a modeling, simulation, and analysis tool for control, signal pro-

cessing, and communications system design. This tool imposes OOP conventions on

Matlab, C, Fortran, and Ada programmers by allowing its users to insert their code

into the methods of pre-defined blocks or to use application-specific standard block

libraries. Furthermore, hierarchically block navigation at both the design and debug-

ging stages is offered: command-line Simulink Debugger enables breakpoint stepping

of the currently executing method which is simultaneously displayed on its associated

block. Additional information, such as block state, inputs, and outputs, are visible

in other windows.

Process-Level Debugger (PDG) [8] is designed for a graphical parallel program-

ming environment for concurrent applications called GRAPE. The PDG models

processes as black boxes that interact with each other, as illustrated in Figure 2-

7. Like Simulink, programmers build their applications by creating and connecting

black boxes hierarchically (i.e., each black box may be composed of sub-boxes—sub-

processes—and displayed in a graphical view). As an application is debugged, the

PDG shows the application’s behavior on this view and allows a programmer to zoom

down on suspicious process blocks in the hierarchy. This top-down debugging method

can eventually find the associated erroneous code, as seen in Figure 2-8.

26

Figure 2-7: Graphical view of an application created with the PDG [8].

Figure 2-8: The PDG’s hierarchical graphical representation of an application showing
successively lower levels of the hierarchy from left to right [8].

27

Figure 2-9: Screenshot of the MULTI r© Integrated Development Environment [20].

The MULTI r© Integrated Development Environment [12] produced by Green Hills

Software, Inc. is designed for multiprocessor, distributed systems and embedded

applications using C, C++, Ada, Fortran, and assembly. Besides standard editing

and debugging functionality, this IDE conveys program control flow with perusable

static and dynamic call graphs and class hierarchies, as seen in Figure 2-9.

28

Chapter 3

Background

Unlike the programming languages described in the previous chapter, StreamIt is

specifically designed for streaming applications. This chapter formally introduces the

StreamIt language (3.1). This thesis contributes the first IDE for StreamIt and does

so as a plug-in to Eclipse, a universal tool platform from IBM. Relevant background

on the infrastructure and functionality of Eclipse is given (3.2).

3.1 The StreamIt Language

Since the language-specific features of StreamIt determine much of the SDT’s features

and functionality, this section provides an overview of the syntax and semantics of

StreamIt version 2.0 [26, 40]. StreamIt programs are composed of computational units

that process large streams of data. These units, called filters, can be hierarchically

composed into pipelines, split-joins, and feedback-loops. A stream is defined to be

a filter, pipeline, split-join or feedback-loop. Channels provide the means by which

data is communicated between streams.

3.1.1 Channels

Channels are one-way FIFO queues that pass data of a specific type from one stream

to another. Each stream has one input channel from which it can read data, and one

29

output channel to which it can write data. A channel’s source stream writes data

to it, while a channel’s sink stream reads data from it. The data type of a channel

can be one of the following: boolean, int, float, one-bit integer, complex number.

Furthermore, a channel’s type can also be fixed-length arrays of any of the data types

previously mentioned.

3.1.2 Filters

The fundamental computational unit in StreamIt is the filter, depicted in Figure 3-1.

A filter’s behavior is defined by its init, prework, and work functions, which contain

C-style code. The init function executes only once at the start of a program, the

prework runs in place of the work function the first time the work function should

execute, and the work function runs repeatedly thereafter. The code within each

function can call helper functions and access and modify state variables, which are

the non-local variables of stream. However, only the prework and work functions can

call the three special functions that read from or write to the I/O channels: push(x)

pushes a datum with value x onto the output channel’s queue, pop() pops and returns

the last datum from the input channel’s queue, and peek(n) returns the value of the

datum at the n-th index on the input channel’s queue. For example, peek(0) returns

the value of the next datum that could be popped. The prework and work functions

must declare their push, pop, and peek1 rates—the number of data they push, pop,

and peek during each execution.

3.1.3 Pipelines

A pipeline, seen in Figure 3-2, is a simple container structure composed of one or more

child streams connected sequentially. Within a pipeline, each stream’s output channel

is chained to the stream’s input channel. The first child’s input channel is linked to the

pipeline’s input channel, while the last child’s output channel is linked to the pipeline’s

output channel. Children are specified with add statements. Although a pipeline does

1A prework and work function’s peek rate is the maximum index at which the function peeks

30

(a) (b)

Figure 3-1: The code (a) and conceptual representation (b) of an Averager filter.

(a) (b)

Figure 3-2: The code (a) and conceptual representation (b) of a MovingAverage

pipeline with three children.

not have formal init, prework, or work functions, and its declaration effectively acts

as an init function, which can contain code that parameterizes its composition. The

execution of a pipeline (like that of a split-join or feedback-loop described next) can

be thought of as the composition of all its children’s work functions.

3.1.4 Split-joins

A split-join, depicted in Figure 3-3, models parallel computation by linking its input

channel to a splitter, which redistributes data to input channels of the child streams,

and linking its output channel to a joiner, which recombines data from the children’s

output channels. A split-join has two or more children. Splitters are created with

31

(a) (b)

Figure 3-3: The code (a) and conceptual representation (b) of a BPFCore splitjoin
with two children.

split statements and are either duplicate or roundrobin(x1, x2, . . ., xn)—the

former distributes a copy of each datum to each child, while the latter distributes x1

data to the first child, x2 data to the second child, etc. Joiners are created with join

statements and are only of type roundrobin(x1, x2, . . ., xn)—takes x1 data from

the first child, x2 data from the second child, etc. Children are specified with add

statements, with the i-th add statement corresponding to a split-join’s i-th child. As

in Figure 3-3, the children are usually drawn left to right, first to last. Furthermore,

like a pipeline, a split-join does not have formal init, prework, or work functions,

but its declaration in effect is an init function.

3.1.5 Feedback-loops

In order to models cycle, a feedback-loop, seen in Figure 3-4, is composed of a joiner, a

splitter, and two child streams. The first child acts as the body of the cycle while the

second child acts as the loop. The joiner combines data from the loop’s output channel

and the feedback-loop’s input channel and sends it to the body’s input channel.

32

(a) (b)

Figure 3-4: The code (a) and conceptual representation (b) of an Echo feedbackloop.

The splitter, which is linked to the body’s output channel, distributes data to the

loop’s input channel and the feedback-loop’s output channel. Splitters and joiners

are created in the same way and have the same types as in split-joins. The first

child is specified with a body statement, the second with a loop statement. As in

Figure 3-4, the children are usually drawn left to right, first to last. Furthermore, like

a pipeline, a feedback-loop does not have formal init, prework, or work functions, but

its declaration is really an init function. This code is also the place where enqueue

statements can be used to push data onto the loop’s output channel at the start of a

program.

3.1.6 Hierarchical Graph Representation

As seen in Figures 3-1 through 3-4, a StreamIt program can be visually depicted as

a hierarchical directed graph of streams, with graph nodes representing streams and

graph edges representing channels. The unique root of a stream graph is defined to

be a top-level pipeline—a pipeline with no input or output channels. Because the

StreamIt language allows its programmers the ability to define a stream element once

33

but use it many times throughout the code, a one-to-many correspondence exists

between the code and graph representations of a StreamIt program. Accordingly, the

code of a stream shall be called a declaration, while the graph node of a stream shall

be called an instance.

3.1.7 Execution Model

When a StreamIt application is initially executed, the init function of each stream

is executed in a depth first search order starting at the top-level pipeline of the

hierarchical stream graph. Because the init functions contain the code to specify

child streams, these functions build the stream graph when executed. Once all the

init functions are finished, all channels are created and connected. Afterwards, the

prework and work functions are executed until program completion.

In order to generate an executable program, the StreamIt compiler is responsible

for deriving a schedule of filter execution—the order in which the work function of

each filter in the stream graph can be executed (“fired”) so that each filter’s peek, pop,

and push rates are satisfied. The number of times that a filter fires during program

execution is also dependent on the programmer-specified number of iterations of the

top-level pipeline.

The StreamIt compiler also generates a file containing a static stream graph that

programmers can analyze separate from its execution (Figure 3-5).

3.2 Eclipse

The Eclipse Platform [24] was chosen as the SDT’s implementation toolkit because it

is designed for building integrated development environments (IDEs) that can be used

to create a diverse array of applications on Eclipse. As such, the SDT makes heavy

use of a user interface (UI) for editing files and viewing file and program metrics, a

resource management model and help system, GUI and UI libraries, and language-

independent launching, running, and debugging infrastructure provided by Eclipse.

34

Figure 3-5: A static stream graph generated by the StreamIt compiler.

35

Furthermore, Eclipse’s ability to run on many platforms2 was also considered because

of the desire to make the SDT widely deployable. Accordingly, because much of

the Eclipse-provided infrastructure and functionality influences the SDT’s features,

design, and implementation, this section provides a brief overview of Eclipse version

2.1.1 [22].

3.2.1 Plug-ins

The SDT is implemented as a plug-in for the Eclipse Platform. A plug-in is a module

encapsulating the IDE (in this case, the SDT) to be added to the existing Eclipse

Platform. Plug-ins operate on the IDE-specific files and add IDE-specific UI to the

existing Eclipse UI. Plug-in usability and quality is contingent upon successful inte-

gration with the Eclipse Platform and upon how well different features of the plug-in

work with each other [16].

3.2.2 Workbench

Depicted in Figure 3-6, Eclipse’s general desktop environment is called theWorkbench.

Each Workbench window contains one or more perspectives, which in turn contain

editors and views. A perspective defines the menus, toolbars, and views that appear

within a Workbench window at a given time. Their purpose is to logically group

menus, toolbars, and views related to specific user tasks. For instance, the Resource

perspective seen in Figure 3-6 is intended for resource management, while the Debug

perspective combines views related to debugging programs.

Perspectives generally dedicate an area to editors. Eclipse provides a primitive

text editor seen in Figure 3-6. The Workbench window also contains a main menu

bar and toolbar which contain items relevant to the current perspective and currently

opened file. The Workbench provides a Preferences dialog for setting user preferences

and a help system for browsing and searching documentation.

2Windows 98/ME/2000/XP, Red Hat Linux Version 7.1 (x86/Motif and x86/GTK), SuSE Linux
7.1 (x86/Motif and x86/GTK), Solaris 8 (SPARC/Motif), QNX (x86/Photon), AIX (PPC/Motif),
HP-UX (HP9000/Motif), and Mac OSX (Mac/Carbon)

36

Figure 3-6: An Eclipse Workbench window in the Resource perspective, containing a
text editor and the Navigator, Outline, and Tasks views.

37

Views display alternative presentations of files opened in editors and provide ways

of navigating the information in your Workbench. Unlike editors, they have their own

menus and toolbars. In Figure 3-6, there are three views of interest: The Navigator,

Outline, and Tasks views. The Navigator view displays a hierarchical representation of

the resources within the Workbench and allows users to perform various operations

on files (e.g. add, remove, open, etc). Eclipse uses a resource management system

consisting of projects, which contain files and folders. The Outline view displays an

editor-specific outline of a file that is currently open. The Tasks view displays prob-

lems, errors, or warning related to Workbench resources.

3.2.3 Launching, Running, and Debugging Infrastructure

Eclipse enables users to manage how programs are launched for running or debugging

with the Launch Configurations dialog depicted in Figure 3-7. Launch configurations

can be created to configure how a program is launched, such as its arguments or the

particular file within a project to be used.

A Debug perspective, depicted in Figure 3-8, is provided for users to run and debug

their programs. There are three views of interest in Figure 3-8: the Debug, Variables,

Console, and Properties views. The Debug view displays the processes, threads, and

stack frames of the programs being run or debugged. The Variables view displays in-

formation, such as variable type or value, about variables in the stack frame currently

being selected in the Debug view. The Console view displays the standard output,

error, and input of processes that have been run or debugged. The Properties view

displays properties of the view or editor that has focus (i.e., is selected) in the Work-

bench. Properties are displayed in a tabular format with one column for property

names and another column for property values. The toolbar of the Properties view

allows users to decide the sorting order of the properties, such as by category, with

filters, default order, etc.

Finally, Eclipse comes pre-packed with Java Development Tooling (JDT) [41]. The

JDT is a set of plug-ins that create an extensive IDE for Java application development.

38

Figure 3-7: A Launch Configurations dialog.

39

Figure 3-8: An Eclipse Workbench window in the Debug perspective, containing a
text editor and the Debug, Variables, Console, and Properties views.

40

Chapter 4

SDT Common Coding and

Debugging Features

The time spent debugging software can take up to 50% of total development time

[3] [14]. The SDT seeks to reduce this time through the features described in this

chapter. First, program creation and code editing facilities are described (4.1). Then,

breakpoint functionality is presented (4.2), followed by program launching and com-

pilation support (4.3). Finally, general debugging (4.4) and help (4.5) support are

detailed.

4.1 Code Editing

The SDT adopts Eclipse’s resource management system of projects and files by as-

sociating each StreamIt application with its own StreamIt project. A project wiz-

ard automatically links each newly created project with the SteamIt compiler, while

StreamIt source files are created in the same way as text files (Figures 4-1 and 4-2).

Users can perform operations on these projects and their files in the Navigator view

like any other project in Eclipse.

The StreamIt perspective groups menus, toolbars, and views related to develop-

ment of StreamIt applications: the StreamIt menu and the menu items for StreamIt

launching (described below). The StreamIt Editor is a graphical text editor that provides

41

Figure 4-1: A StreamIt project wizard.

42

Figure 4-2: A StreamIt project wizard (continued).

default syntax highlighting and basic code indenting, in addition to the functionality

provided by Eclipse’s text editor (Figure 4-3). When a StreamIt file is open, the

Outline view also displays a code-based, hierarchical outline of the file. Each stream

declaration is represented as a parent node, with its child nodes being state vari-

ables or relevant functions (e.g., init, work, etc). Parent nodes can be expanded

and collapsed by clicking on plus and minus boxes to respectively reveal and hide

information as the user chooses (Figures 4-4(a) and 4-4(b)). Each node shows the

name and type (if applicable) of its stream, state variable, or function. Furthermore,

each node displays an icon from Figure 4-4 depending on what it is representing. In

order to maintain look-and-feel and icon-idea association, state variable and method

icons are leveraged from icons for package-visible fields and public methods created

by Eclipse’s JDT. However, because no analogous concept in Java exists, the icons for

streams are selected from Eclipse based on shape or lettering, as seen in Figure 4-4.

A downward pointing triangle indicates a filter, a long rectangle a pipeline, a circle

43

Figure 4-3: A StreamIt Editor with an associated Outline view.

a feedback-loop, and an S a split-join. The Outline view and the StreamIt Editor are

linked together such that clicking on a node in the former causes the editor to scroll

to the corresponding code and scrolling through the latter results in the Outline view

highlighting a node associated with the currently displayed code.

A preference page is available for customizing the syntax highlighting for the

StreamIt language (Figure 4-5). Keywords are grouped into categories which define

the particular highlight color, and can be added and deleted as desired.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4-4: Icons used by the Outline view for StreamIt files: a plus box (a), a minus
box (b), a state variable (c), a method (d), a filter (e), a pipeline (f), a split-join (g),
and a feedback-loop (h).

44

Figure 4-5: A preference page for adding and deleting StreamIt keywords.

45

4.2 Breakpoints

Breakpoints and watchpoints are the means by which StreamIt programmers can

pause an executing StreamIt application at a particular place in code. This cor-

responds to pausing execution when certain parts of the stream graph and code

are reached. Many functionality decisions related to performing operations, such as

adding, removing, enabling, etc, on breakpoints and watchpoints were influenced by

mirroring Eclipse JDT conventions for Java breakpoints and being externally consis-

tent.

4.2.1 Line Breakpoints

The left gutter of a StreamIt Editor containing StreamIt code (Figure 4-6(a)) is used

to add and remove line breakpoints, method breakpoints, and watchpoints. Line

breakpoints—breakpoints that cause an application to pause right before a certain line

of the code is executed—are the most general purpose of the three. Line breakpoints

can be added in four ways:

(1) double-clicking on the left gutter at a location horizontal to a line of code,

(2) right-clicking on the left gutter and selecting “Add Breakpoint” from the pop-up

menu that appears under the mouse (Figure 4-6(a)),

(3) holding the keyboard’s Ctrl and Shift keys and then pressing the B key when

the StreamIt Editor’s cursor is at a line of code, or

(4) selecting “Add Breakpoint” from the StreamIt drop-down menu found in the

Workbench’s main menu bar (Figure 4-6(b)) when the StreamIt Editor’s cursor is

at a line of code of interest.

These four options are the same as those available for Java line breakpoints, as is the

icon chosen for line breakpoints (Figure 4-7).

Likewise, four corresponding ways are available for removing line breakpoints:

(1) double-clicking on the left gutter where a line breakpoint is,

46

(a) (b)

Figure 4-6: A StreamIt Editor’s left gutter showing line breakpoints, method break-
points, and watchpoints that have been added (a). A pop-up menu allows users to
add line breakpoints. The StreamIt drop-down menu found in the Workbench’s main
menu bar also allows users to add line breakpoints (b).

(a) (b) (c)

Figure 4-7: Breakpoint icons used in the StreamIt Editor and StreamIt drop-down menu
for line breakpoints (a), method breakpoints (b), and watchpoints (c).

47

(a) (b)

Figure 4-8: A pop-up menu allows users to remove line breakpoints (a). The StreamIt
drop-down menu allows users to remove line breakpoints (b).

(2) right-clicking on the left gutter and selecting “Remove Breakpoint” from the

pop-up menu that appears under the mouse (Figure 4-8(a)),

(3) holding the keyboard’s Ctrl and Shift keys and then pressing the B key when

the StreamIt Editor’s cursor is at a line of code that has a line breakpoint, and

(4) selecting “Remove Breakpoint” from the StreamIt drop-down menu (Figure 4-

8(b)) when the StreamIt Editor’s cursor is at a line of code that has a line break-

point.

These four ways are the same ways that Java line breakpoints can be removed.

4.2.2 Method Breakpoints and Watchpoints

Method breakpoints cause an application to pause right before or after a certain

method is executed and watchpoints cause an application to pause when a variable

is modified or accessed. Because both are specialized versions of line breakpoints

and are therefore less used, only one way is provided for adding method breakpoints

and watchpoint—selecting “Add Method Breakpoint” or “Add Watchpoint” from the

48

(a) (b)

Figure 4-9: The StreamIt drop-down menu allows the user to add method breakpoints
(a) and watchpoints (b).

(a) (b)

Figure 4-10: The StreamIt drop-down menu allows the user to remove method break-
points (a) and watchpoints (b).

StreamIt drop-down menu (Figure 4-9). Method breakpoints can be removed in three

ways, which correspond to (2), (3), and (4) for removing a line breakpoint (Figure 4-

10). Watchpoints can be removed in two ways, which correspond to (2) and (4) for

removing a line breakpoint (Figure 4-10). Again, this functionality mirrors the way

that Java method breakpoints and watchpoints are added and removed, as are the

icons chosen (Figure 4-7).

49

(a) (b)

Figure 4-11: Disabled watchpoint, method breakpoint, and line breakpoints (a). A
pop-up menu allows users to disable or enable breakpoints or watchpoint (b).

4.2.3 Breakpoint Property Specification

Disabling a breakpoint or watchpoint means that an application being debugged

behaves as if that particular breakpoint or watchpoint does not exist. Instead of

frequently adding and removing the same breakpoint, disabling allows a programmer

to remember that a breakpoint was added at a particular location and rendered

inactive until later. Breakpoints and watchpoints are enabled and disabled by right-

clicking on the left gutter and selecting “Disable Breakpoint” or “Enable Breakpoint”

from the pop-up menu that appears under the mouse (Figure 4-11).

StreamIt breakpoints and watchpoints also inherit conditional breaking function-

ality from Java breakpoints. That is, StreamIt line breakpoints can be configured

to suspend programs only when an expression is true or when its value changes,

while method breakpoints and watchpoints can be configured to suspend on either

entry or exit and either access or modification, respectively. For more information on

configuring breakpoint properties, see [11].

In general, line breakpoints cannot be added when the associated line contains no

executable code (such as a line with only an ending bracket), while method break-

50

(a) (b)

Figure 4-12: Disabled selections in the StreamIt Editor’s pop-up menu (a) and StreamIt
drop-down menu (b).

points and watchpoints cannot be added on non-methods or non-variables. Users

are prevented from adding breakpoints or watchpoints at such invalid lines of code

by disabling the selections in the StreamIt drop-down menu and the StreamIt Editor’s

pop-up menu (Figure 4-12). Furthermore, hot key codes and double-clicking are not

responsive at invalid lines.

4.3 Program Compilation and Launch Support

StreamIt applications need to be compiled whenever the user would like to add break-

points or discover syntactic errors. Compiling the file currently being displayed in

the StreamIt Editor can be done by selecting “Compile Changes” from the StreamIt

drop-down menu (Figure 4-13).

Syntax errors and compilation warnings and errors from the StreamIt compiler

are reported in several ways, as depicted in Figure 4-14:

• In the Tasks view, the warnings and errors are listed by a short textual descrip-

tion of the problem, an icon indicating severity (i.e. warning or error), the name

of the associated file and project, and its line number.

51

Figure 4-13: The StreamIt drop-down menu allows the user to compile the file cur-
rently being displayed in the StreamIt Editor.

• In the Package Explorer view, severity icons appear on the affected StreamIt file.

• In the StreamIt Editor’s left gutter and on its tab, severity icons are displayed near

the affected line.

• Squiggly lines appear under the text that might be causing the problem.

The problem description also appears when the mouse is hovered over the severity

icon in the left gutter. In the Tasks view, right clicking on a problem and selecting

“Go To” from the pop-up menu that appears under the mouse opens the associated

file at the location of the problem.

The SDT also assumes Eclipse’s conventions for launching programs and config-

uring the parameters of launches. Programs are launched in several ways, depending

on whether the user wishes to run or debug his or her application (Figure 4-15):

• selecting “Run As” or “Debug As” and then “StreamIt Application” from

the Run drop-down menu found in the Workbench’s main menu bar when a

StreamIt file is open or selected in the Package Explorer view,

• clicking on the run or debug icons from the Workbench’s main toolbar and

selecting “Run As” or “Debug As” and then “StreamIt Application” from the

drop-down menu that appears when a StreamIt file is open or selected in the

Package Explorer view,

52

Figure 4-14: Errors and warnings are displayed in the Tasks view, Package Explorer

view, and StreamIt Editor.

53

• selecting “Run History” or “Debug History” and then a previously launched
application from the Run drop-down menu,

• clicking on the main toolbar’s run or debug icons and then selecting a previously
launched application from the drop-down menu that appears,

• selecting “Run Last Launched” or “Debug Last Launched” from the Run drop-

down menu,

• selecting “Run ” or “Debug ” from the Run drop-down menu, or

• clicking on the main toolbar’s run or debug icons and then selecting “Run ” or
“Debug ” from the drop-down menu that appears.

For the first two methods, an application is run or debugged with a default con-

figuration. For the last two methods, a launch configuration management wizard

appears that enables programmers to create and configure several different launches

for a particular application (Figures 4-16 and 4-17). Launches can be configured for

the number of iterations of the top-level pipeline or secondary StreamIt files to include

in a launch (Figure 4-18). Secondary files are useful when large amounts of code are

split among several files in a modular way.

4.4 General Debugging Support

When StreamIt program is launched, the Debug perspective displays code in the

StreamIt Editor and five views of interest to the user: the Debug, Variables, Console,

Stream Graph, and Overview of Stream Graph views (Figure 4-19). The Console view

prints anything written to standard-out or standard-error and sends anything to be

read to standard-in. The Stream Graph and Overview of Stream Graph views are described

in chapter 5. In the Debug view, each launch is registered as a parent node with its

children as sub-processes or sub-threads, which in turn have child stack frames. In

general, the main thread with its two stack frames is the only thread of interest to

a StreamIt programmer. One stack frame corresponds to the stream whose init

54

(a)

(b) (c)

Figure 4-15: The Run drop-down menu (a) and the toolbar’s run (b) and debug (c)
icons allow users to launch StreamIt applications.

55

(a)

Figure 4-16: Launch configuration management wizard for running.

56

(a)

Figure 4-17: Launch configuration management wizard for debugging.

57

Figure 4-18: The arguments tabs allows user to specify iterations or secondary
StreamIt files to include in a launch.

58

or work function is currently executing, while the other frame corresponds to the

top-level pipeline. When either stack frame is selected, the Variables view displays a

stream as a parent node whose child nodes are either state variables or child streams.

Stream nodes show a name and instance id number, while state variable nodes display

a name, type, and value. Like nodes in the Outline view, nodes here can be expanded

and collapsed by clicking on plus and minus boxes to reflect the hierarchical nature

of stream programs.

In addition to the Variables view, user selection of a stack frame in the Debug

view propagate to the Stream Editor, highlighting the associated stream declaration,

and the Stream Graph and Overview of Stream Graph views, highlighting the associated

stream in the graph. This feature is intended to (1) show what is currently being

executing, (2) convey the correspondence between the views and editor, and (3) offer

another way for the user to navigate a stream graph. Representing highlights as a

blue background with white letters is externally consistent with other editors and

views in the Eclipse platform. Furthermore, because all launches are registered with

the Debug view, user selections of different launches will result in the Stream Graph

and Overview of Stream Graph views changing to show the stream graph associated with

currently selected launch.

A StreamIt application runs until a breakpoint or watchpoint is reached, at which

time execution is suspended. The editor and views (except for the Console view)

highlight their representation of the currently executing part of the program, as seen

in Figure 4-19. For the StreamIt Editor, the line of code about to be executed is auto-

matically opened, scrolled to, and highlighted if applicable. As previously mentioned,

the Debug view highlights the stack frame whose stream’s init or work function is

executing, while the Variables view displays the stream, its child streams, and its state

variables. The Stream Graph and Overview of Stream Graph views also highlight and scroll

to the stream (as described in chapter 5).

59

Figure 4-19: A StreamIt program suspended at a breakpoint in the Debug perspective.

60

(a) (b) (c)

Figure 4-20: Icons from the Debug view’s toolbar and pop-up menu for resuming (a),
terminating (b), and stepping over (c).

4.4.1 Features in the Debug View

The Debug view enables StreamIt programmers to resume, terminate, and perform

breakpoint stepping of an application. Clicking the resume icon in the Debug view’s

toolbar, pressing the F8 key, or right-clicking on a suspended thread and selecting

“Resume” from the pop-up menu that appears allows a program to run until the next

breakpoint or watchpoint is encountered or until completion. Clicking the terminate

icon or right-clicking on a suspended thread and selecting “Terminate” from the pop-

up menu that appears terminates a program. Clicking the step over icon or pressing

the F6 key resumes execution at the line of code originally highlighted when the

program was suspended (Figure 4-20). The application is suspended on the next

executable line. Stepping can continue until program completion.

Finally, re-launching a StreamIt application is done by right-clicking on a launch

and selecting “Relaunch” from the pop-up menu that appears (Figure 4-21).

4.4.2 Variable Value Modification

In the Variables view, the values of state variables can be changed by right-clicking

on the variable and selecting “Change Variable Value” from the pop-up menu that

appears (Figure 4-22). A “Set Variable Value” dialog provides a text box for entering

a new value and detects invalid variable values.

61

Figure 4-21: The Debug view logs all launches, which allows them to be re-launched.

62

(a)

(b)

Figure 4-22: The Variables view’s pop-up menu (a) and the “Set Variable Value”
dialog (b).

63

4.5 Help Support

The SDT adds “The StreamIt Development User Guide” to Eclipse’s help system.

The SDT guide consists of instructions for installing Eclipse and the SDT, a basic

tutorial on using the SDT, conceptual descriptions of the SDT’s features, a sec-

tion devoted to tasks the user can perform, reference material, and sample StreamIt

programs. This guide is accessible in the same way that all Eclipse help manuals

are—through the Help menu of the Workbench’s main menu bar.

64

Figure 4-23: The StreamIt Development User Guide.

65

66

Chapter 5

SDT Stream Graph-Specific

Features

This chapter is divided into two sections directed at StreamIt-specific debugging and

visualization: stream graph examination and hierarchical navigation (5.1) and data

display, modification, and tracking (5.2).

5.1 Stream Graph Examination and Hierarchical

Navigation

When a StreamIt program is suspended at a breakpoint or watchpoint, the program’s

stream graph representation is displayed in the Stream Graph (Figure 5-1) and Overview

of Stream Graph (Figure 5-2) views. The Stream Graph view is the primary, interactive

way for a programmer to examine and navigate through the stream graph. In contrast,

the Overview of Stream Graph view reflects the contents of the Stream Graph view scaled

down 75%. When a program is initially suspended, the entire the stream graph is

shown.

67

Figure 5-1: The Stream Graph view displaying a stream graph during program suspen-
sion.

68

Figure 5-2: The Overview of Stream Graph view displaying a stream graph during
program suspension.

69

(a) (b) (c) (d) (e)

Figure 5-3: The Stream Graph view displays channels (a), filters (b), pipelines (c),
split-joins (d), and feedback-loops (e).

5.1.1 Streams in the Stream Graph View

Channels and streams are depicted with different shapes to suggest their meaning.

As seen in Figure 5-3, channels are drawn as elongated rectangles to convey that data

is only passing through them. In contrast, streams are wider figures to suggest data

manipulation: Filters are meant to look like funnels, while pipelines are depicted as

wide rectangles, indicating that they can contain more than just data. A split-join

is drawn as a blunted diamond, intended to imply that the data within channels are

split, operated on, and then joined together, while a feedback-loop is an ellipse to

suggest a loop.

A child stream is rendered depending on whether its parent is a pipeline, split-

join, or feedback-loop (Figure 5-4). The children of a pipeline are drawn in a column

starting from its parent’s input channel and ending at its parent’s output channel. As

a result, the input channels of the pipeline and its first child are connected, and the

output channels of the pipeline and its last child are connected. In contrast, a split-

join’s children are drawn left to right in a row, with its splitter and joiner depicted

as T-shaped channels. The splitter is drawn from the parent’s input channel to each

child’s input channel, while the joiner is drawn from the parent’s output channel to

each child’s output channel. The body and loop children of a feedback-loop are also

drawn left to right in a row, but the loop child is drawn in the reverse direction of

the body child. In contrast to a split-join, the joiner is drawn from the parent’s input

channel to each child’s input channel, while the joiner is drawn from the parent’s

70

output channel to each child’s output channel. The I/O types of all splitters and

joiners are indicated with an icon or circle at a location above or below each child’s

input or output channel, respectively, yet still within the splitter or joiner (Figure 5-

4). Duplicate splitters are designated by a duplicate icon, while roundrobin splitters

and joiners are specified by a circle containing a number representing the weight given

to the child stream above or below it (Figures 5-5(a) and 5-5(b)).

Streams within the Stream Graph view are also portrayed with their name, instance

id, and an icon of a yellow arrow (Figures 5-1, 5-5(c), and 5-5(d)). The instance id

next to a stream’s name corresponds to a unique number in the Variables view. Ids are

useful for programs that use the same streams multiple times, as these streams are

indistinguishable otherwise. Furthermore, yellow arrow icons are displayed in every

stream to indicate which channel is the input or output channel and to convey the

direction that data flows within the stream (i.e., the arrow points from input channel

to output channel).

Although the lines of a stream demarcate it from other streams, these lines may

become confusing when viewing the graphs of very large StreamIt applications. There-

fore, the Stream Graph view provides a “Hide Lines” button within its toolbar (Fig-

ures 5-1 and 5-5(e)). Pressing this button hides the lines of any non-filter stream,

while depressing this button restores those lines. Therefore, a stream graph with its

non-filter lines hidden is only showing a graph of filters connected together.

5.1.2 Stream Graph Debugging Behavior

When a StreamIt application is suspended at a breakpoint or watchpoint, the Stream

Graph view highlights and scrolls to the stream whose init or work function is cur-

rently being executed. As previously mentioned, because it mirrors the contents

of the Stream Graph view, the Overview of Stream Graph view also shows the stream

highlighted. Because init function build the stream graph, suspending the program

during an init function means that only the portion of the stream graph that has

been created so far is displayed by the Stream Graph view. After a StreamIt program

runs to completion, both views continue to display stream graphs so that a program-

71

(a) A pipeline’s children. (b) A split-join’s children.

(c) A feedback-loop’s children.

Figure 5-4: The Stream Graph view displays the children of pipelines (a), split-joins
(b), and feedback-loops (c).

72

(a) (b) (c) (d) (e)

Figure 5-5: Stream Graph view icons for duplicate splitters (a), weighted splitters and
joiners (b), data flow (c) (d), and “Hide Lines” (e).

(a) (b)

Figure 5-6: The Stream Graph view allows users to add (a) and remove (b) filter
instance breakpoints.

mer can reference the stream graph when making any improvements to their code

(hopefully based on information learned from the debugging session).

Filter instance breakpoints cause an application to pause right before the work

function of a particular filter instance is executed. Adding and removing these break-

points is done by right-clicking on a filter instance within the stream graph and

selecting “Add Filter Instance Breakpoint” or “Remove Filter Instance Breakpoint”

(depending on the state of the filter instance) from the pop-up menu that appears

(Figure 5-6). The same icon used for line breakpoints is used for filter instance break-

points, as method breakpoints imply that a program suspends on every work function

of a filter declaration. “Add Filter Instance Breakpoint” and “Remove Filter Instance

Breakpoint” are disabled when the program has run to completion.

5.1.3 Stream Graph Navigation

The Stream Graph view offers several ways for a programmer to examine and navigate

through various parts of a stream graph, all based on the ability to expand and

collapse hierarchical streams (i.e. pipelines, split-joins, and feedback loops).

73

(a) (b) (c) (d)

Figure 5-7: The Stream Graph view’s icons for navigation: a plus box (a), a minus box
(b), “Collapse All” (c), and “Expand All” (d).

• Clicking on a plus icon (Figure 5-7(a)) expands a hierarchical stream so that

its children are visible (Figure 5-4).

• Clicking on a minus icon (Figure 5-7(b)) collapses a hierarchical stream so that

its children are hidden (Figure 5-3).

• Double-clicking on a hierarchical stream toggles its expanded and collapsed

state.

• Pressing the “Collapse All” button (Figure 5-7(c)) in the Stream Graph view’s

toolbar collapses all streams.

• Pressing the “Expand All” button (Figure 5-7(d)) in the Stream Graph view’s

toolbar expands all streams.

The expanded or collapsed state of the children of an expanded or collapsed hi-

erarchical streams depends on the state the user left them in. For example, take a

pipeline P with two child split-joins S and J. Initially, a user expands P and then

S, but leaves J collapsed. Next, the user collapses and then expands P. When this

happens, S is expanded as well, but J is left collapsed. The state of streams is main-

tained across program suspensions, although the graph is always expanded to show

the currently being executed stream for any suspension. Since large graphs make

navigation more difficult, the various ways to navigate the graph are provided for

scalability, flexibility, and efficiency.

As a miniaturized version of the Stream Graph view, the Overview of Stream Graph view

reflects the contents of the Stream Graph scaled down by 75%, such that everything

but size is the same for the sake of consistency. Clicking on a location in the Overview

74

of Stream Graph view causes the corresponding location in the Stream Graph view to be

scrolled to and shown, facilitating faster navigation of large streaming applications.

For example, in Figure 5-8, the graph window is too small to show anything of interest.

Instead of repeatedly scrolling to the bottom of the graph, the user can make one

click to get there. A blue rectangle in the Overview of Stream Graph view indicates

what is currently being displayed in the Stream Graph view. The Overview of Stream

Graph view is a separate view that can be optionally closed, which may be desirable

for small graphs.

5.1.4 Stream Statistics

During program suspension and after program completion, statistics on streams can

be found in the Stream Graph and Properties views. In the former view, when filters are

expanded using the plus icon previously mentioned (Figure 5-7), programmers can

examine (Figure 5-9):

(1) a filter’s input and output channels’ data types,

(2) a filter’s push, pop, and peek rates,

(3) the amount of data pushed and popped so far within a filter’s work function,

(4) the maximum index of data peeked so far within a filter’s work function, and

(5) the number of times the init, prework, or work functions have been executed.

In the Properties view, streams are displayed as parent nodes whose child nodes

are either properties or child streams (Figure 5-10). All stream nodes have properties

corresponding to filter statistics (1) through (4) in the Stream Graph view and a prop-

erty describing the type of stream, while filter nodes also have (5). Like nodes in the

Variables and Outline views, nodes here can be expanded and collapsed by clicking on

plus and minus boxes (Figure 5-7).

75

Figure 5-8: A large(r) StreamIt graph.

76

Figure 5-9: An expanded filter with statistics displayed.

Figure 5-10: The Properties view displaying the statistics for an entire stream graph.

77

Figure 5-11: The Stream Graph view displays data in channels and grays out peeked
at data. Some channels are expanded and some are collapsed.

5.2 Stream Data Display, Modification, and Track-

ing

During program suspension, the data within channels are drawn in a column, from

the source to sink stream (Figure 5-11). By default, the size of all channels in the

graph is set to only display three data at a time because the number of data can often

grow to un-manageable sizes. Furthermore, data that is within the maximum index

peeked in a work function is grayed out (data is normally in black text).

The Stream Graph view offers several ways for a programmer to examine data within

a stream graph.

• Clicking on a plus icon (Figure 5-7) to the left of a channel expands it length-
wise to reveal all data within it (Figure 5-11).

• Clicking on a minus icon (Figure 5-7) collapses the channel to show only three

78

(a) (b)

Figure 5-12: The Stream Graph view enables users to show, change, highlight, and un-
highlight data (a). These features are disabled when not applicable for a particular
channel or datum (b).

data within it (Figure 5-11).

• Pressing the “Collapse All” button (Figure 5-7) in the Stream Graph view’s tool-

bar collapses all channels.

• Pressing the “Expand All” button (Figure 5-7) in the Stream Graph view’s toolbar

expands all channels.

• Right-clicking on a channel and selecting “Show Channel Values” from the pop-

up menu appears under the mouse (Figure 5-12).

The number directly below the plus or minus icon to the left of a channel indicates

the number of data within the channel. A channel with three or less data cannot be

expanded or collapsed and therefore will not have a plus or minus box next to it.

Channels are treated like streams in that their expanded or collapsed state is main-

tained across program suspensions and the state the user left them in, as described

in section 5.1.3.

When a programmer selects “Show Channel Values” from a channel’s pop-up

menu, a dialog appears displaying all the data within the channel (Figure 5-13). This

feature is useful when the width of the data exceeds the width of the channel. Within

the dialog, each datum is presented on a new line of a read-only text box, mirroring

79

Figure 5-13: A dialog box for showing all of the data within a channel.

the column format of the Stream Graph view. Using a read-only text box prevents

the user from trying the change data values, which must be done with the “Change

Channel Values” (described below).

Selecting “Change Channel Values” from a channel’s pop-up menu (Figure 5-12)

lets users change data within channels, much like state variables can be changed in

the Variables view. The dialog that appears displays the data within a channel in the

same manner as the “Show Channel Values” dialog except that the text box is not

read-only (Figure 5-14). Programmers can modify all of the data within a channel

at the same time. Entering in invalid data or the wrong amount of data is prevented

and causes an “Invalid value(s)” to appear directly below the text box.

While stepping through a work function, data can be tracked with highlighting by

right-clicking on an un-highlighted datum and selecting “Highlight Datum” from the

pop-up menu that appears or double-clicking on an un-highlighted datum (Figure 5-

12). Data can be un-highlighted in an analogous way.

“Show Channel Values,” “Change Channel Values,” “Highlight Datum,” and “Un-

highlight Datum” are disabled when no data exists within the channel or at a partic-

ular location within the channel.

80

Figure 5-14: A dialog box for modifying all of the data within a channel.

81

82

Chapter 6

Results

A user study was designed and executed to assess the efficacy of the SDT. The goals

of the user study were two-fold. The first goal was to discover problems with the

SDT and to generate feature suggestions. In addition to generic bugs and glitches

within the SDT itself, difficulties with functionality, performance, reliability, and

usability (efficiency, subjective satisfaction, and ability to learn, remember, and avoid

making errors) were specifically targeted. As seen in section 6.2, addressing these goals

was done mainly through questionnaires and programmatic logging of user actions.

The second goal was to gather data and qualitative findings that might be used

to draw conclusions suggesting that the SDT improved a programmer’s ability to

debug StreamIt applications. The SDT’s impact on improvement was quantified by

the time required for a user to successfully debug an application. In addition, the

design decisions of the study’s setup were influenced by the need to minimize as much

as possible threats to the internal validity (ordering and selection effects), external

validity (population sampling, training relevancy, and task relevancy), and reliability

(user differences and measurement error) of the study.

This chapter discusses the target user population (6.1), procedures used in the

study (6.2), a pre-study in-house evaluation (6.3), salient details that occurred during

the study (6.4), quantitative results (6.5), qualitative results (6.6), and lessons learned

(6.7) from the user study.

83

6.1 Target Population

In the long term, the target population of the StreamIt language and SDT is stream-

ing application programmers who habitually code in assembly, C, C++, etc. Unfor-

tunately, as a relatively new language [43] still under development, StreamIt is used

mainly in research academia at major universities, such as MIT, Stanford [5] [15], and

Berkeley [21], with low usage in professional settings. Consequently, the target pop-

ulation of this user study is potential streaming application programmers: computer

science students experienced in general-purpose languages such as C, C++, Java, etc.

who specialize in fields such as communications, signal processing, computer systems

and architecture, and systems, decision, and control. Since these fields require knowl-

edge of more advanced computer science topics, target users are probably graduates

and experienced undergraduates. In terms of general tool experience, users probably

have intermediate to advanced knowledge of program visualization tools, debuggers,

and programming in a UNIX or Windows development environments.

Users were found for this study through solicitations to computer science graduate

and undergraduate MIT mailing lists. The nature of the programming language and

development tool were not divulged to avoid potential users studying StreamIt or the

SDT before the day of the study. Moreover, in order to screen participants for the

qualities detailed above, these solicitations asked the potential users for a description

of their programming experience and their year in school.

6.2 Procedure

The study’s setup was to present each user with an ordered set of documents describ-

ing tasks to complete using the SDT:

(1) Pre-Study Questionnaire: This document was designed to gather information

on the participant’s programming background and skill level. Questions such as

year in school, major, degree being sought, area of computer science concentra-

tion, relevant classes, language proficiency, application development experience,

84

and background in DSP, IDE, and the SDT are asked (appendix A.1).

(2) StreamIt Language Tutorial: This written presentation was intended to give

a baseline knowledge of the StreamIt language to all users. It describes and

illustrates the syntax and semantics of the StreamIt language, covering all of

the topics discussed in section 3.1. Furthermore, example toy applications and

tips on the most common mistakes new StreamIt programmers are likely to

make were included.

(3) SDT Tutorial: Another written presentation, this document was aimed at in-

forming users of the essential features of the SDT. The first part of the tutorial

describe and illustrate the functionality of each view and editor in the StreamIt

and Debug perspectives (appendix A.2). For the second portion of the docu-

ment, the tutorial of the help manual described in section 4.5 was adapted by

condensing its length and breadth of features. The resulting tutorial contains

step-by-step instructions on how to compile, run, and debug a sample applica-

tion.

(4) User Tasks: This document (appendix A.3) instructs users to debug nine StreamIt

applications, each containing one or more bugs (see appendix refsec:appscode

for code listings and descriptions). These programs were to be debugged sequen-

tially, some with and some without the SDT. As each application is debugging,

users are asked to record their start and end times, the debugging methods they

used, and a short diagnosis of each bug.

(5) Description of Applications and Code: This document contains a description

of each application (numbered 1 through 9), a code listing, a sample of buggy

output, and a sample of correct output (appendix A.4).

(6) Post-Study Questionnaire: This document was designed to gather data on the

participant’s experience debugging with and without the SDT. Furthermore,

questions pertaining to the perceived difficulty of each problem and a general

description of how the user debugged each application are asked, in addition to

85

questions concerning bugs, satisfaction, ability to learn and remember, speed

after learning, ease of use, functionality, comments, and improvements related

to the SDT (appendix A.5).

(7) Post-Study Interview: Instead of completing a document, users participated in

an interview concerning their overall experience with the SDT. General ques-

tions about their satisfaction, debugging difficulties, suggested improvements,

etc. with the SDT were asked.

Both StreamIt and SDT tutorials were written, rather than oral, presentations

because learning by reading informational material is more akin to how program-

mers normally learn new languages. Furthermore, written material also maintained

consistency across the three sessions of the study and across users for reliability.

In this study, debugging without using the SDT is defined as using only Eclipse’s

default text editor, the SDT’s ability to launch applications in run mode, and the

Console view. Since switching between debugging with and without the SDT might

have been confusing to some users, preventative measures against inappropriately

using the SDT were taken by programming the SDT to check a permissions file in

the user’s workbench.

In order to control against the SDT’s effect on a programmer’s debugging ability

and ensure internal validity, users were grouped into four categories, which were

based on which applications were to be debugged with and without the SDT (as seen

in Table 6.1). All users were asked to debug application 1 without the SDT and

application 2 with the SDT to assess starting ability and create a baseline reference

for later comparison. Moreover, the simplicity of their purpose and bugs was aimed

at bolstering the user’s confidence with easy warm-ups. Then, half of the users

(group A) were told to debug applications 3, 4, and 5 with the SDT and 6, 7, and 8

without the SDT. Meanwhile, the other half (group B) were told to debug 3, 4, and

5 without the SDT and 6, 7, and 8 with the SDT to avoid ordering effects. Due to

this grouping structure, applications 3 and 6, 4 and 7, and 5 and 8 were written to

be of comparable difficulty. For application 9, half of group A (A1) and half of group

86

Table 6.1: User groupings describing whether the SDT was or was not used for each
application.

B (B1) were asked to debug with the SDT, while the other halves (A2 and B2) were

asked to debug without the SDT. Cross-sectioning the groups was aimed at ensuring

external validity.

The entire study was intended to take two hours, with roughly 45 minutes spent

on the tutorials and the rest of the time spent on debugging. Participants were asked

to complete the set of documents at their own pace. All of the material and software

involved in the study was made available on pre-configured, pre-installed computers.

Although users were allowed to ask questions throughout the study, answers related

solving a particular bug or performing a particular SDT operation were not given.

Upon completion of the study, participants received a $40 gift certificate.

6.3 In-House Evaluation

An in-house evaluation was held as a pilot test several days before the study. The

goal of the in-house evaluation was to fix confusing material (e.g. questionnaires, in-

structions, tutorials, tasks, etc), streamline the test procedures, and refine the study’s

applications. Three designers of the StreamIt language and compiler participated in

the dry run of the study, which uncovered several problems with the study (beyond

small bugs) as it was then. This section describes the salient issues below.

87

• Most of the documents had either too little or too much information. The ques-
tionnaires and tasks files did not have detailed enough instructions, causing the

in-house evaluators to waste time on figuring out what to do, rather than doing

it. The applications and code listings did not provide high-level descriptions

and the code contained little comments and used complicated variables names.

In contrast, the SDT tutorial contained too much depth and breadth of fea-

tures, as the original idea was to ask users to read the entire tutorial of the help

manual.

• The applications themselves were considered much too difficult, especially given
that some were taken from real benchmark applications. One evaluator gave

up after 15 minutes because he could not figure out what the application was

trying to do. He expressed concern that users would complete a few problems

and then give up. The evaluators recommended smaller, synthetic examples

that test basic knowledge of StreamIt and suggested new applications, which

resulted in applications 1, 3, 6, and 8 to replace the more difficult examples.

Furthermore, one of the sorting applications had an unrealistic bug, as it lacked

any comparison code.

• Debugging the applications also yielded new feature suggestions from the evalu-

ators: The display of roundrobin weights within the Stream Graph view for both

splitters and joiners, maintaining a view of the stream graph after a program

had run to completion, the ability to debug multiple launches simultaneously,

and stepping through the execution of the splitter or joiner. These features were

all added to the SDT except for the last suggestion, due to time constraints.

This suggestion is a candidate for future work, as discussed in section 7.1.

After making the recommended changes to the study materials, another iteration

of the in-house evaluation was done. However, most of the problems uncovered were

minor bugs.

88

6.4 During the Study

The study was divided into three sessions over a three-day period, and a cluster of

Windows XP machines was used. Although each session was intended to last around

two hours, the sessions on average took four hours for the last user to finish. Many

users were either unable or did not have enough time to debug certain applications.

Even though 25 users were scheduled to participate (5 people for sessions 1 and 2

and 15 people for session 3), cancellations reduced the participation to 20 users and

led to uneven groupings: There were 6 people in A1, 5 in A2, 4 in B1, and 5 in B2. Of

the 20 participants, there were 4 juniors, 2 seniors, 8 masters, and 6 Ph.D. students,

all majoring in Electrical Engineering and Computer Science. Although none had

used the SDT in the past, 6 users had experience with DSP.

During the study (as well as in the user tasks and post-study questionnaire), the

majority of questions asked by participants centered around a core set of issues:

(1) Debugging without the SDT (see section 6.2).

(2) The execution model and the effect of suspending within init functions (see

section 3.1.7).

(3) The number of iterations of the top-level pipeline in comparison to the number

of executions of a filter’s work function (see section 3.1.7).

(4) The meaning of peek as a maximum index rather than amount of data peeked

(see section 3.1.2).

(5) Changing between the Debug and StreamIt perspectives.

(6) Confirming that a user could not use the SDT for application 9.

Although questions 1 through 4 were explained in the tutorials provided, a likely

reason for this pattern is that not enough time was budgeted for learning the StreamIt

language and tutorial, as indicated by the actual length of the sessions. Issue (5)

was a clear bug in the study, as the tutorial did not include information on how

89

to change between different perspectives. As a result, users wasted time trying to

change perspectives rather than debug applications, which impacts the reliability of

the study’s results. For issue (6), application 9’s size and ordering probably frustrated

users who were not allowed to use the SDT for application 9, resulting in those users

questioning whether their directions were correct.

6.5 Quantitative Results

In general, the quantitative data gathered from the study concerning the SDT’s abil-

ity to improve a programmer’s productivity in debugging StreamIt applications is

inconclusive—the SDT helped productivity only in some cases. Attempts to find

patterns in the data by normalizing against the control applications (1 and 2) were

mostly futile.

Figure 6-1 compares the number of users who solved (and did not solve) each

of the applications with (and without) the SDT. Because the groupings are uneven

as previously mentioned, the numbers seen in Figure 6-1 are weighted depending

on which group is lacking users. The percentage above each quadruple of columns

represents the percentage increase or decrease in solving each application caused by

using the SDT. On average, 1.56 (32.97%) less users solved applications 3, 4, and 5

when using the SDT compared to participants not using the SDT, while 2.56 (41.76%)

more users solved applications 6, 7, 8, and 9 when using the SDT compared to

participants not using the SDT.

Figure 6-2 compares the average time spent on each application. The percentage

above each pair of columns represents the percentage improvement or deficiency in

time caused by using the SDT. On average, users took 7.78 (36.48%) more minutes

to solve applications 3, 4, 5, 6, 7, and 9 with the SDT compared to participants not

using the SDT, while users took 0.44 (5.19%) less minutes to solve application 8 with

the SDT compared to participants not using the SDT. Furthermore, users could not

solve a problem spent an average of 16.96 (83.35%) more minutes on applications 6, 7,

and 8 with the SDT and 10.67 (-293.9%) less minutes with the SDT for applications

90

Figure 6-1: Graph comparing the number of users who solved and did not solve each
application with and without the SDT.

91

3, 4, 5, and 9.

A salient trend that emerges from Figures 6-1 and 6-2 is that the SDT may have

mitigated user frustration. As previously mentioned, because users generally took

much more than the two hours allotted to complete the study, users often became

frustrated or rushed with the later applications. Correspondingly, this might cause

users to spend less time and solve fewer applications as users progressed through

the applications. Although this pattern is true for participants who did not use the

SDT, the opposite occurs for participants who used the SDT: Even though 32.97%

fewer users were able to solve applications 3, 4, and 5 using the SDT compared to

participants not using the SDT, 41.76% more users were able to solve applications

6, 7, 8, and 9 using the SDT compared to participants not using the SDT. Likewise,

although users spent -191.93% less time when unable to solve applications 3, 4, and 5

using the SDT compared to participants not using the SDT, users spent 83.35% more

time when unable to solve applications 6, 7, and 8. These results suggest that users

are willing to spend more time and work on more problems when using the SDT.

Figure 6-3 compares the average normalized time it took user to solve each appli-

cation with and without the SDT. Since 6 users were not able to solve both application

1 and 2, their times were excluded from this chart. The percentage above each pair

of columns represents the percentage improvement or deficiency caused by using the

SDT. For applications 3, 6, 8, and 9, the SDT increased debugging time by an average

of 241.02% and a median of 37.02%, while the SDT decreased debugging time by an

average of 33.4% and a median of 29.0% for applications 4, 5, and 7.

Therefore, although more people were able to successfully debug more applications

using the SDT than not using the SDT, the SDT also increases the amount of time it

takes to debug some of these applications. However, the SDT is able to decrease the

amount of time it takes to debug some applications solved by more users without the

SDT. Moreover, if an application’s difficulty is measured by the amount of time to

solve it, then there seems to be no apparent correspondence between using and not

using the SDT and an application’s difficulty.

92

Figure 6-2: Graph comparing the average time it took users to solve or not solve each
application with and without the SDT.

93

Figure 6-3: Graph comparing the average normalized time it took users to solve
applications 3 through 9 with and without the SDT.

94

6.6 Qualitative Results

In contrast to the previous section, qualitative data obtained from the post-study

questionnaire was more productive toward finding new feature ideas and problems

with functionality, performance, reliability, and usability.

6.6.1 Problems with the SDT

A major problem that many users found was that the SDT does not display large

stream graphs well and does not allow users to view the entire stream graph easily.

Specifically, the SDT rendering stream graphs were considered too large and intimi-

dating in comparison to the amount of space available in the Eclipse workbench, as

even participants who used Eclipse’s functionality for expanding a view to encompass

the entire workbench still could not see the entire graph without scrolling. Fur-

thermore, when applications contained streams with many descendants, the stream

graph became confusing due to the narrow spacing of the boundaries between parent

and child streams. As a result, many users expressed difficulty in distinguishing the

various hierarchical levels of large graphs (see Figure 6-4 for an example).

A few users found that using the Overview of Stream Graph view to navigate the

Stream Graph view was inconvenient and confusing. On one user’s computer, the

rectangle in the Overview of Stream Graph view was the same color as the stream graph,

which made distinguishing it from complicated stream graphs impossible.

Using breakpoints was another major problem because users spent too much time

trying to figure out where to add breakpoints so that they could view the stream

graph. As previously mentioned, users would add breakpoints within init functions

and expect to view the entire stream graph even though at that point it was not fully

built. Within work functions, users had difficultly stepping through the code, as users

would try other stepping functionality (only the step over button is supported by the

SDT) or try to step beyond the end of a work function (only stepping within a work

function is supported).

Although the post-study questionnaire was focused on gathering problems with

95

Figure 6-4: The Stream Graph view displaying a portion of Application 4’s stream
graph.

96

the SDT, several users commented on their difficulty using Eclipse and the StreamIt

language and how they interfered with debugging stream applications. For Eclipse,

10 participants commented that, in general, Eclipse is difficult to get used to and

that, specifically, switching between perspectives was confusing and non-intuitive.

For the StreamIt language, 5 participants mentioned that they were uncomfortable

or unaccustomed to thinking in terms filters and streams, while an equal number also

found it difficult or overwhelming to remember concepts such as roundrobin, enqueue,

and general syntax.

6.6.2 Usability of the SDT

In general, users found the SDT somewhat easy to use: From a scale of 1 to 10 (1

being very easy and 10 being very hard), participants on average gave the SDT a

3.85. Many cited various aspects of the Stream Graph view, such as visualizing the

stream graph easily, expanding and collapsing graph, simultaneously being able to

view the code and graph, and viewing data flow. Furthermore, 14 users said they

would use the SDT for debugging StreamIt applications, while 5 said they would not

and felt more comfortable debugging “by hand”—just with pen and paper or looking

at the code (one user would not use StreamIt). Those who said they would use the

SDT stressed that it was most useful for graphically seeing what was going on in a

StreamIt program, such as program flow, the entire stream graph, data values, etc.

Furthermore, this visualization is more important when code inspection or stepping

through code is inappropriate or impractical, as in the case of large-scale applications.

Users found it somewhat easy to learn how to use the SDT: From a scale of 1

to 10 (1 being very easy to learn and 10 being very hard to learn), participants on

average gave the SDT a 3.55. Many cited the tutorial as a good reference and easy to

follow and said that the GUI layout was either intuitive for a beginner to find basic

functionality or similar to other IDE that they have used. In general, when a user

did not have experience using IDEs, he said that the amount of information, in the

form of views, menus, and buttons, was overwhelming to a beginner. Several users

commented that there were too many windows and options from which to choose,

97

while one person said that the Stream Graph view contained so much information that

finding vital information immediately was slow.

Users said it was fairly easy to remember how to use the SDT: From a scale of 1

to 10, participants on average gave the SDT a 2.95. Many users wrote that the SDT

only had a few concepts to remember. Participants also stated that GUI had simple

repeatable actions and was intuitive enough that remembering was not difficult.

Users remarked that the SDT was marginally fast to use: From a scale of 1 to 10

(1 being very slow and 10 being very fast), participants on average gave the SDT a

5.75. Several users observed that the SDT was fast, especially in comparison to other

programming environments, because (1) information displayed was easy to find and

viewable simultaneously with other information and (2) breakpoints enabled users

to narrow in on relevant code. However, for large-scale stream graphs, many users

thought that the SDT was too slow in drawing complex structures. Furthermore,

when navigating through the stream graph or stepping through the code, the SDT’s

redrawing capability was frustratingly slow for many users.

6.6.3 Improvements and New Functionality

Users suggested new features and improvements directly related to problems they

found with the SDT in section 6.6.1. For the stream graphs, participants suggested

a button to expand all streams except filters, clearer markings of input and output

channels, being able to view the entire stream graph with using a breakpoint, a history

of data that had passed through channels and filters, and customized expansion and

collapse of stream graphs that can be saved for a given applications. Although most

users wanted improved drawing of large-scale graphs and better zooming, none men-

tioned specific functionality for this purpose. Another common request was for better

code-based debugging support, such as putting breakpoints on pipelines, split-joins,

and feedback-loops, better ability to print debug statements, the capacity to step

backwards through code, and the ability to step through code across work functions.

98

6.7 Lessons Learned

Many problems and issues arose in running the study itself. One of the major prob-

lems was the time allotted for users to complete the study. As previously mentioned,

on average it took the slowest user double the budgeted amount of time. This lack

of time negatively impacted users in several ways, all of which contributed to incom-

plete or unreliable data: users became frustrated and overwhelmed by the amount of

information presented to them, users were unable to complete the study due to time

constraints, users did not properly fill out the post-study questionnaire, rushed users

put down bogus answers, etc.

Better participant screening for DSP-related and general programming experience

should also have been done. In the post-study questionnaire, several users commented

that they were unaccustomed to thinking in terms of streaming applications, while

some users made remarks that suggested they never truly understood how streaming

applications work. In general, the more inexperienced users either focused their at-

tentions on Eclipse-related and StreamIt language problems, indicating a lack of IDE

and language-learning experience, or relied almost exclusively on breakpoint function-

ality and print statements. Because several of the applications were designed to test

the effectiveness of the Stream Graph view, these applications were purposely written

to be too large and complicated for these traditional debugging techniques.

Having a graduated pay scale for compensation may have alleviated some of the

above problems, as it would allow the participants to judge whether they could or were

willing to complete all of the applications in the study. Nonetheless, the variation in

each participant’s experience and skill within a user study is a well-documented issue.

Usability studies have found that the best users are often 10 times better than the

worst users and the fastest quartile of users are twice as fast as the slowest quartile

of users [13] [17]. However, because increasing the number of users within a study

only narrows the standard deviation of the mean by the square root of the number of

users [13], improving reliability of results is an expensive and time-consuming task.

For example, in order to double accuracy, the number of participants in this study

99

would have to be quadrupled to 80 users, which would cost an additional $2400 and

24 man-hours.

100

Chapter 7

Conclusion

In this chapter, future work is first described, followed by a summary of this thesis.

7.1 Future Work

Future work on the SDT can naturally progress from the improvements, problems,

and new functionality discussed throughout chapter 6. Perhaps the most important

are improvements aimed at handling large stream graphs. In addition to displaying

the entire stream graph, the Stream Graph view could be altered to only show the

graph below a certain node specified by the user—in effect “hanging” the hierarchical

tree by a non-root node. This change, in combination with allowing a user to specify

whether the Stream Graph view would respond to changes in the Debug view, could

focus a user’s attention on a specific part of the graph that may be causing an error.

Stream graph navigation might be enhanced by providing a way for users to ex-

pand all non-filter streams and making the SDT remember the collapsed and ex-

panded state of stream graph across debugging sessions. For data display, enabling

users to specific channel width would make viewing larger, multi-digit data easier,

while retaining a record of data that had passed through channels and streams might

improve I/O-related debugging. Moreover, although feasible, support for tracking—

the relationship between data popped and pushed by a filter—has yet to be developed

or investigated. Possible functionality might include (1) data coloring depending on

101

the particular filter(s) through which they are produced or modified and (2) program

suspension conditional on data of a certain color passing through another filter.

Breakpoint stepping can also be improved by allowing users to step through code

across work functions, to view the stepping through a splitter or joiner’s execution,

and to automatically suspend a program on every push, pop, or peek call within one or

more work functions. Furthermore, unsupported stepping functionality, such as step

into, step return, and step with filters, should also be disabled. Filter instance break-

points can be expanded to enable manipulation across debugging sessions. Moreover,

these breakpoints could be allowed for non-filter streams, which would suspend a

program on the work function of the first filter fired within the stream.

7.2 Summary

This thesis presents the StreamIt Development Tool, an IDE designed to improve

the coding, debugging, and visualization of streaming applications by exploiting the

StreamIt language’s ability to intuitively represent these applications as structured,

hierarchical graphs. Although industry and academia have devoted much effort to

tools for developing and debugging software, the SDT aims to emulate the best of

traditional debuggers and IDEs while moving toward hierarchical visualization and de-

bugging concepts specialized for streaming applications. As such, utilities for stream

graph examination and navigation and stream data display, modification, and track-

ing are provided, in addition to program creation and code editing, breakpoints,

program compilation and launch support, and general debugging and help support.

A user study evaluating the SDT uncovered several problems and areas of improve-

ment that need to be addressed before this tool can approach its goals. Assessment

of the SDT’s efficacy in its current state is inconclusive—the SDT demonstrates both

the ability to improve and hinder a user’s debugging ability. Facilitating effective

coding and debugging techniques and developing for scalability are critical elements

in improving the SDT’s effectiveness.

102

Appendix A

User Study Documents

This appendix contains documents pertaining to the user study.

103

A.1 Pre-Study Questionnaire

104

105

A.2 SDT Tutorial

106

107

A.3 User Tasks

108

109

A.4 Description of Applications and Code

A.4.1 Application 1: BitTwiddle

110

111

A.4.2 Application 2: Fibonacci

112

A.4.3 Application 3: EchoEffect

113

A.4.4 Application 4: MergeSort

114

115

A.4.5 Application 5: Cornerturn

116

117

A.4.6 Application 6: EchoEffect2

118

A.4.7 Application 7: BubbleSort

119

120

A.4.8 Application 8: BitReverse

121

122

A.4.9 Application 9: Overflow

123

A.5 Post-Study Questionnaire

124

125

126

Bibliography

[1] Simulink 5.1.1. http://www.mathworks.com/products/simulink.

[2] Matlab 6.5.1. http://www.mathworks.com/products/matlab.

[3] H. Agrawal, R.A. DeMillo, and E.H. Spafford. Efficient Debugging with Slicing

and Backtracking. Software Practice and Experience, pages 589–616, June 1993.

[4] T. Akgul, P. Kuacharoen, V.J. Mooney, and V.K. Madisetti. A Debugger RTOS

for Embedded Systems. Technical report, Georgia Institute of Technology, School

of Electrical and Computer Engineering, Atlanta, Georgia.

[5] Advanced Computer Organization: Stream Processor Architecture.

http://cva.stanford.edu/ee482s.

[6] BoxView. http://www.domaintec.com/BoxView.html.

[7] RDS Software Development Kit (SDK) Product Brief.

http://www.cradle.com/products/tools/development tools-

software.shtm.

[8] C. Caerts, R. Lauwereins, and J.A. Peperstraete. PDG: A Process-Level

Debugger for Concurrent Programs in the GRAPE Parallel Programming

Environment. Technical report, Katholieke Universiteit Leuven, E.S.A.T. Labo-

ratory, Heverlee, Belgium.

[9] Debug-56K. http://www.domaintec.com/Debug56K.html.

[10] Analog Devices, Inc. http://www.analog.com.

127

[11] Eclipse 2.1 Documentation. http://help.eclipse.org/help21/index.jsp.

[12] The MULTI r© Integrated Development Environment. http://www.ghs.com/

products/MULTI IDE.html.

[13] Controlled Experiments. http://graphics.lcs.mit.edu/classes/6.893/F03/

lectures/L13.pdf.

[14] B. Hailpern and P. Santhanam. Software Debugging, Testing, and Verification.

IBM Systems Journal, 41(1):5–8, November 2002.

[15] Advanced Topics in Computer Architecture: Chip Multiprocessors & Polymor-

phic Processors. http://www.stanford.edu/class/ee392c.

[16] Object Technology International, Inc. Eclipse Platform Technical Overview.

Technical report, IBM Corporation, February 2003.

[17] Research Issues. http://pages.cpsc.ucalgary.ca/saul/681/1997/jas/

issues.html.

[18] G. Jongren. How to Learn DSP Programming. March 2004.

[19] Momentics r©. http://www.qnx.com/products/development/momentics

glance.html.

[20] Screenshot of the MULTI r© Integrated Development Environment.

http://www.ghs.com/products/images/MULTI browser big.gif.

[21] CS 252 Spring 2002 Project on Streams. http://www.cs.berkeley.edu/

nmani/courses/cs252/proposal.html.

[22] Eclipse 2.1.1 Download Page. http://download2.eclipse.org/downloads/

drops/R-2.1.1-200306271545/index.php.

[23] Eclipse Home Page. http://www.eclipse.org.

[24] Eclipse Platform Subproject Page. http://www.eclipse.org/platform/

index.html.

128

[25] StreamIt Development Tool Page. http://catfish.csail.mit.edu/streamit/

html/eclipse-plugin.html.

[26] StreamIt Documentation Page. http://catfish.csail.mit.edu/streamit/

html/documentation.html.

[27] StreamIt Download Page. http://catfish.csail.mit.edu/streamit/html/

download.html.

[28] StreamIt Home Page. http://catfish.csail.mit.edu/streamit.

[29] StreamIt Research Page. http://catfish.csail.mit.edu/streamit/html/

research.html.

[30] R.J. Ridder. Programming Digital Signal Processors with High-Level Languages.

DSP Engineering, 2000.

[31] S. Saba. Embedded Digital Technology Defines the Next Generation of Medical

Electronics. In Medical Electronics Manufacturing, 1999.

[32] Embedded WorkbenchTM Screenshot. http://www.iar.com/FilesPublic/EW/

000319/gen3ide.gif.

[33] Momentics r© Screenshot. http://www.qnx.com/popups/imageview.html?

group=screenshot&key=src debugger.

[34] R. Stephens. A Survey of Stream Processing. Acta Informatica, 34(7), 1997.

[35] IAR Systems. http://www.iar.com.

[36] QNX Software Systems. http://www.qnx.com.

[37] Cradle Technologies, Inc. RDS Software Development Kit (SDK) Product Brief.

Technical report.

[38] Cradle Technologies, Inc. http://www.cradle.com.

[39] Domain Technologies, Inc. http://www.domaintec.com.

129

[40] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A Language for

Streaming Applications. In Proceedings of the International Conference on Com-

piler Construction (CC), 2002.

[41] Java Development Tooling. http://www.eclipse.org/jdt/index.html.

[42] VisualDSP++. http://www.analog.com/Analog Root/static/technology/

dsp/beginnersGuide/quickguide2.html.

[43] E.L. Waingold. SIFt: A Compiler for Streaming Applications. Master’s thesis,

Massachusetts Institute of Technology, June 2000.

[44] Embedded WorkbenchTM. http://www.iar.com/Products/EW.

130

