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Abstract

We present program shepherding, a method for monitoring control flow transfers during
program execution in order to enforce a security policy. Program shepherding provides
three basic techniques as building blocks for security policies. First, program shepherding
can restrict execution privileges on the basis of code origins. This distinction can ensure
that malicious code masquerading as data is never executed, thwarting a large class of
security attacks. Second, shepherding can restrict control transfers based on instruction
type, source, and target. Finally, shepherding guarantees that sandboxing checks around
any program operation will never be bypassed.

Security attacks use inevitable bugs in trusted binaries to coerce a program into per-
forming actions that it was never intended to perform. We use static and dynamic analyses
to automatically build a custom security policy for a target program, which specifies the
program’s execution model. An accurate execution model restricts control flow transfers
only to the intended ones and can thwart attacker attempts to alter program execution. For
example, shepherding will allow execution of shared library code only through declared
entry points. Finer specifications can be extracted from high-level information present in
programs’ source code — for example, which values a function pointer may take. Pro-
gram shepherding will allow indirect calls only to their known targets, and function returns
only to known callers. These analyses build a strict enough policy to prevent all deviations
from the program’s control flow graph and nearly all violations of the calling convention.
This technique renders most security vulnerabilities unexploitable and thwarts current and
future security attacks.

We present an efficient implementation of program shepherding’s capabilities in the Dy-
namoRIO [6, 7] runtime code modification system. The resulting system imposes minimal
performance overhead, operates on unmodified binaries, and requires no special hardware
or operating system support.

Thesis Supervisor: Saman P. Amarasinghe
Title: Associate Professor
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Chapter 1

Introduction

Remote exploitation of program vulnerabilities poses a very serious threat to our modern

information infrastructure. It allows rapid automatic self-propagating programs (worms)

to gain control over large number of hosts [57]. Grave secondary effects are possible due

to the extent to which critical infrastructure relies on the Internet. Worms usually exploit

well-known security vulnerabilites since flawed software is quite often left unpatched. For

example, a recent worm worthy of a CERT Advisory [9] (CA-2003-04), propagates by

exploiting a vulnerability in Microsoft’s SQL Server announced six months earlier (CA-

2002-22). The worm infected most vulnerable hosts within 10 minutes [42]. Although

it has no malicious payload it wrought considerable damage by secondary effects of net-

work outages, e.g. in ATM networks. Notably, even the vendor of the flawed software

had unpatched systems, and this shows the inadequacy of the patch deployment process

even for already known vulnerabilities. At the other end of the spectrum, vulnerabilities

that are not publicly disclosed may be used in an attack specifically targeting a security

sensitive entity. This thesis introduces techniques that can effectively render most security

vulnerabilities unexploitable and thence mitigate disruptions due to distributed denial of

service attacks. We have implemented them in a software system which provides a secure

execution environment while imposing minimal performance overhead.

The goal of most security attacks is to gain unauthorized access to a computer system

by taking control of a vulnerable program. This is generally done by exploiting bugs that

allow overwriting stored program addresses with pointers to malicious code. An attacker
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who gains control over a program can simply inject code to perform any operation that the

overall application has permission to do. Hijacking trusted applications which are typically

run with global permissions, such as login servers, mail transfer agents, and web servers,

gives full access to machine resources. Vulnerabilities allowing remote execution of arbi-

trary code and their exploitation account for 34 of the 37 CERT Advisories [9] for 2002.

Today’s most prevalent attacks use buffer overflow and format string vulnerabilities to over-

write program addresses. Our threat model of security attacks assumes that an attacker is

able to exploit inadvertent program vulnerabilities to gain random write access to arbitrary

memory locations in the program address space.

Nearly all attacks have one thing in common: they coerce a target program into per-

forming actions that it was never intended to perform. In short, they violate the execution

model followed by legitimate program runs. The execution model encompasses the Ap-

plication Binary Interface (ABI) and higher-level specifications from the program’s source

programming language. The model also incorporates components specific to the program,

for example, which values a particular function pointer may take.

A program’s execution model is invariably narrower than that imposed by the underly-

ing hardware. As such, there is typically no efficient way to require that the rules of this

execution model be adhered to. The result is that the execution model becomes, in practice,

a convention rather than a strict set of rules. If this model were enforced, and only program

actions that the programmer intended were allowed, a majority of current security holes

would be closed. Whenever the execution model allows only a single choice, or choices

equivalent in their system effects, an attacker cannot gain new abilities. For example, a

common attack type overwrites a return address to point to a malicious destination. If

this destination is not a valid return target in the program’s execution model, it would be

disallowed by an enforcement of the model.

1.1 Overview

In this thesis, we employ program shepherding [38] to enforce a security policy. Instead of

attempting to protect data, program shepherding monitors control flow in order to enforce
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a program’s execution model. Program shepherding provides three basic techniques: re-

stricted code origins to prevent execution of data or modified code, restricted control trans-

fers to preclude deviations from the execution model, and un-circumventable sandboxing

checks around any type of program operation.

The execution model implicitly provided by the programs according to the Application

Binary Interface (ABI) can be extracted dynamically. For example, shepherding will allow

execution of shared library code only through exported entry points, and can ensure that a

return instruction only targets instructions after a call. Finer specifications of the execution

model can be extracted statically from high-level information present in programs’ source

code — for example, which values a function pointer may take. Program shepherding will

allow indirect calls only to their known targets, and function returns only to instructions

after their known callers.

We use static and dynamic analyses to automatically build a custom security policy for

a target program which specifies the program’s execution model. This process requires no

user interaction, but is able to build a strict enough policy to prevent all deviations from the

program’s control flow graph and nearly all violations of the calling convention. Therefore

it greatly reduces the possibility of an unintended program action. Our static analyses

require source code access but not recompilation.

We have efficiently implemented program shepherding capabilities in the DynamoRIO [6,

7] runtime code modification system. DynamoRIO executes only sanitized copies of the

original program code and stores these in a trusted code cache. This code cache is the first

key feature to providing efficient secure execution, because it allows many security checks

to be performed only once. A second key feature of DynamoRIO is the creation of traces,

hot streams of code that cross control flow transitions. Security checks on indirect control

flow transitions can be elided when execution follows the trace. These features result in

a secure system that imposes minimal performance overhead, operates on unmodified na-

tive binaries, and requires no special hardware or operating system support. Our program

shepherding implementation on top of DynamoRIO supports both Windows and Linux on

IA–32 processors. However, the detailed security discussion in this thesis is mainly focused

on Linux applications.
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1.2 Organization

In Chapter 2 we classify the types of security exploits that we are aiming to prevent. Pro-

gram shepherding’s three basic techniques are described in Chapter 3. The execution model

and how to enforce it is discussed in Chapter 4. We analyze features of the execution model

that can be enforced with reasonable cost using program shepherding in Chapter 5, where

we also identify aspects of enforcement that can be performed dynamically when source

code is unavailable. In Chapter 6 we discuss how we implement program shepherding

efficiently, and how to prevent attacks directed at our system itself. We show how to incor-

porate static analyses to automatically extract features of the program’s execution model

such as its call graph in Chapter 7. We present experimental results and the performance

of our system in Chapter 8. We demonstrate that enforcing a program’s execution model

via program shepherding can thwart many security attacks. We give experimental evidence

that the execution model can be enforced efficiently and effectively using a runtime code

modification system. We discuss related work in Chapter 9, propose future extensions in

Chapter 10, and conclude this thesis in Chapter 11.
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Chapter 2

Security Exploits

This section provides some background on the types of security exploits we are targeting

to prevent. We dissect security exploits along three basic characteristics: the program vul-

nerability being exploited, the stored program address being overwritten, and the malicious

code that is then executed.

2.1 Program Vulnerabilities

The C language memory model allows unsafe writes to objects which are often unintended

by programmers. Most programmers code with the assumption that program objects are

accessible only via valid references, which is the logical memory model [60]. However,

numerous unsafe language features result in bugs that break this model, e.g. pointer arith-

metic with no bounds checking, variadic arguments, dangling pointers, weak types, unions.

All provide venues for overwriting other than the intended objects.

Currently, the most-exploited classes of program bugs involve buffer overflow [46, 13,

8], integer overflow [5], and format string [45, 12] vulnerabilities. These vulnerability

classes are reported in respectively 22, 3, and 2 of the CERT advisories [9] for 2002 together

with 4 advisories for other program bugs.

Buffer overflow vulnerabilities are present when a buffer with weak or no bounds

checking is populated with user supplied data. A trivial example is unsafe use of the C

library functions strcpy or gets. This allows an attacker to corrupt adjacent structures
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containing program addresses, most often return addresses kept on the stack [13]. Inte-

ger overflow and integer signedness problems allow attackers to bypass imprecise bound

checking code, which can then cause typical buffer overflow problems. Buffer overflows

affecting a regular data pointer, for example an output argument of a function, can actually

have a more disastrous effect by allowing a memory write to an arbitrary location on a

subsequent use of that data pointer. One particular attack corrupts the fields of a double-

linked free list kept in the headers of malloc allocation units [36]. On a subsequent call

to free, the list update operation

this � prev � next = this � next;

will modify an arbitrary location (controlled by prev) with an arbitrary value (next).

Format string vulnerabilities also allow attackers to modify arbitrary memory locations

with arbitrary values and often out-rank buffer overflows in recent security bulletins [12,

45]. A format string vulnerability occurs if the format string to a function from the printf

family ( � ,f,s,sn � printf, syslog) is provided or constructed from data from an

outside source. The most common case is when printf(str) is used instead of printf("%s",str).

1 As another example, a well-intended security logging facility syslog(LOG_INFO, str)

ironically introduces a serious vulnerability. The first problem is that attackers may intro-

duce conversion specifications to enable them to read the memory contents of the process.

The real danger, however, comes from the %n conversion specification which directs the

number of characters printed so far to be written back. The location where the number is

stored and its value can easily be controlled by an attacker with type and width specifica-

tions, and more than one write of an arbitrary value to an arbitrary address can be performed

in a single attack.

It is very difficult to prevent all exploits that allow address overwrites, as they are as

varied as program bugs themselves. All of the above bugs have been found exploitable in

circumstances reducing them to an arbitrary write problem. More than one write to disjoint

memory ranges may also be performed, either in result of a single intrusion or of repeated

1Of course, the proper C idiom in this case is fputs(str, stdout).
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careful intrusions. We assume from now on a program vulnerability exists, which allows

random write accesses with attacker chosen values. In most security attacks modifying data

is simply the means to executing a sequence of instructions that will ultimately compromise

the whole system. Attackers induce this by overwriting a stored program address that will

be used in an indirect control transfer.

2.2 Stored Program Addresses

Security exploits can attack program addresses stored in many different places. Buffer over-

flow attacks target addresses adjacent to the vulnerable buffer. The classic return address at-

tacks and local function pointer attacks exploit overflows of stack allocated buffers. Global

data and heap buffer overflows also allow global function pointer attacks and setjmp

structure attacks. Data pointer buffer overflows, malloc overflow attacks, and %n format

string attacks are able to modify any stored program address in the vulnerable application

— in addition to the aforementioned addresses, these attacks target entries in the atexit

list, .dtors destructor routines, and in the Global Offset Table (GOT) [20] of shared

object entries. In the assumed arbitrary write threat model, any function pointer or other

stored address that is later supplied to an indirect control transfer instruction (such as return,

indirect call, or indirect jump) provides a vector to a potential attack.

Program addresses are credibly manipulated by a number of entities. For example,

dynamic loaders patch shared object functions; dynamic linkers update relocation tables;

and language runtime systems modify dynamic dispatch tables. Generally, these program

addresses are intermingled with and indistinguishable from data. In such an environment,

preventing a control transfer to malicious code by stopping illegitimate memory writes is

next to impossible. It requires the cooperation of numerous trusted and untrusted enti-

ties that need to check many different conditions and understand high-level semantics in a

complex environment. The resulting protection is only as powerful as the weakest link.
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2.3 Malicious Code

Using the privileges of the application, an attacker can cause damage by executing newly

injected malicious code or by maliciously reusing already present code. Currently, the first

approach is prevalently taken and attack code is implemented as new native code that is

injected in the program address space as data [46]. Modifying any stored program address

to point to the introduced code triggers intrusion when that address is used for control

transfer. New code can be injected into various areas of the address space: in a stack

buffer, static data segment, near or far heap buffer, or even the Global Offset Table. Since

normally there is no distinction between read and execute privileges for memory pages

(this is the case for IA-32), the only requirement is that the pages are writable during the

injection phase.

It is also possible to reuse existing code by changing a stored program address and con-

structing an activation record with suitable arguments. For example, a simple but powerful

attack changes a function pointer to the C library function system, and arranges the first

argument to be an arbitrary shell command to be run. Similar attacks may be launched to

the arguments of any system call normally accessible to the application. Note that reuse

of existing code can also include jumping into the middle of a sandboxed application op-

eration, bypassing the sandboxing checks and executing the operation that was intended to

be protected. In addition, a jump into the middle of an instruction (on IA-32 instructions

are variable-sized and unaligned) could cause execution of an unintended and possibly ma-

licious instruction stream, which will not be visible even in manual inspection of normal

dissasembly; however, such an attack is very unlikely.

An attacker may be able to form higher-level malicious code by introducing data care-

fully arranged as a chain of activation records, so that on return from each function ex-

ecution continues in the next function of the chain [44]. The prepared activation record

return address points to the code in a function epilogue that shifts the stack pointer to the

following activation record and continues execution in the next function.

Modifying the targets of a suitable sequence of indirect calls as well as their arguments

also may allow an attacker to produce higher-level malicious code. Undetected sequential
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intrusions may also allow orchestration of existing pieces of code to produce an unintended

malicious outcome. While attacks of this kind are currently not widely publicized, a deter-

mined attacker can easily steer an application in this fashion.
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Chapter 3

Program Shepherding

The program shepherding approach to preventing execution of malicious code is to mon-

itor all control transfers to ensure that each satisfies a given security policy. This allows

us to ignore the complexities of various vulnerabilities and the difficulties in preventing

illegitimate writes to stored program addresses. Instead, we catch a large class of security

attacks by preventing execution of malevolent code. We do this by employing three ba-

sic techniques: restricted code origins, restricted control transfers, and un-circumventable

sandboxing. The following sections describe these techniques, while Chapter 5 discusses

how to combine them to build efficient security policies.

3.1 Restricted Code Origins

In monitoring all code that is executed, each instruction’s origins are checked against a

security policy to see if it should be given execute privileges. This restriction can be used

to ensure that malicious code masquerading as data is never executed, thwarting the largest

class of current security attacks. Code origins are classified into these categories: from the

original image on disk and unmodified, dynamically generated but unmodified since gener-

ation, and code that has been modified. Finer distinctions could also be made. We describe

in Section 6.3 how to distinguish original code from modified and possibly malicious code.

Additional hardware flag for execute permissions on memory pages can provide simi-

lar features to our restricted code origins. However, it cannot by itself duplicate program
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shepherding’s capabilities because it cannot stop inadvertent or malicious changes to pro-

tection flags. Program shepherding uses its un-circumventable sandboxing to prevent this

from happening by monitoring all such privileged operations, e.g. system calls that change

page protection. Furthermore, program shepherding provides more than one bit of privi-

lege information, hence distinguishable code origins allow different execute privileges to

be specified by security policies for each type.

3.2 Restricted Control Transfers

Program shepherding allows arbitrary restrictions to be placed on control transfers in an

efficient manner. These restrictions can be based on both the source and destination of a

transfer as well as the type of transfer (direct or indirect call, return, jump, etc.). Indirect

calls, indirect jumps, and returns obtain their targets from data, which can be modified by

an attacker. Enforcing the execution model involves allowing each branch to jump only

to a specified set of targets. For example, the calling convention could be strengthened by

requiring that a return instruction only target the instruction after a call. Stricter policies

may allow indirect calls only to their apriori known targets, and function returns only to

instructions after their known callers. These restrictions can prevent attackers from forming

malicious code sequences from existing code. Different policies for determining the valid

transition sets and the trade-offs between security, performance and applicability will be

discussed in Section 5.2.

3.3 Un-Circumventable Sandboxing

Program shepherding provides direct support for restricting code origins and control trans-

fers. Execution can be restricted in other ways by adding sandboxing checks on all other

types of instructions of particular interest, for example privilege changing instructions.

Customized policies can be added to validate system call arguments to limit data attacks.

With the ability to monitor all transfers of control, program shepherding is able to guaran-

tee that these sandboxing checks cannot be bypassed. Sandboxing without this guarantee
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can never provide true security — if an attack can gain control of the execution, it can jump

straight to the sandboxed operation, bypassing the checks. In addition to allowing construc-

tion of arbitrary security policies, this guarantee is used to enforce the other two program

shepherding techniques by protecting the shepherding system itself (see Section 6.6).
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Chapter 4

Execution Model Enforcement

The execution model of a program includes several components. At the lowest level, the

Application Binary Interface (ABI) specifies the register usage and calling conventions of

the underlying architecture, along with the operating system interface mechanism. Higher-

level conventions come from the source language of the program in the form of runtime

data structure usage, expected interaction with the operating system, and usage of system

libraries. Finally, the program itself is intended by the programmer to perform a limited set

of actions.

Even the lowest level, the ABI, is usually not efficiently enforceable when there is

no hardware support. There is no support for ensuring that calls and returns match, and

it is prohibitively expensive to directly implement this in software. For this reason, the

execution model is a convention rather than a strictly enforced set of rules. However,

most security exploits come from violations of the execution model. Overwriting a stored

program address lets an attacker control further program execution. However, transfer of

control to that code should not allowed be under the program’s execution model. Enforcing

the model would thwart these security attacks.

Restrictions on data usage are very difficult to enforce efficiently because distinguish-

ing memory references requires expensive runtime checks on every memory access. Most

security attacks target not just any data, but data storing program addresses. Even limit-

ing data protection to these locations, protecting the data incurs significant performance

costs[13]. We restrict our enforcement of the execution model to the set of allowed control
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transfers. Although caused by abnormal data operations, unintended program actions will

surface as unintended control flow. We will show how to obtain accurate control transfer

specifications and that an execution model can be efficiently enforced.

4.1 Degree of Freedom

The degree of freedom of an attacker is given by the size of the set of allowed values

for an attacked stored program address. Ideally, these sets should be singletons, because

in a real program execution at any point there is only one valid value (in the absence of

race conditions). Therefore, we aim to minimize the size of the sets and convert them to

singletons when possible.

4.2 Context-Insensitive Policies

Our first aim is to determine the points-to sets for function pointers by using an accurate

static analysis. We use a flow-insensitive and context-insensitive analysis, discussed in de-

tail in Chapter 7, to gather the sets of valid targets for indirect calls. Using that information

we construct the complete call graph for the program. Targets of return instructions are then

computed from the graph, since the instructions after caller sites of a function constitute

the only valid targets for its exit point.

If we assume that the only security relevant events are due to system calls, we can per-

form reachability analysis to identify the system calls accessible from each of the functions

in a set, up to a node dominated by all targets in the set. If different execution paths can

reach different system calls, then an attacker has a choice of action for constructing a mali-

cious sequence. (We may make a further unification by assuming the order of system calls

is immaterial since attackers may be interested in any of them.) Whenever the system call

sets are all equivalent (in the best case all being empty), we can accept any valid target in a

set, because changing a stored pointer from one value to another provides no new abilities

to an attacker.

In the following example with vulnerable code, the only accepted values for the function
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pointer f are � sin,cos � , but not system for that matter.

double eval(double f(double), double x, char* msg) {
printf(msg, x); // format string vulnerability
return f(x);

}
void sincos(char* usermsg) {

eval(sin, 0, usermsg);
eval(cos, 0, "cos(%f)");

}

If an attacker can never cause deviations from the trace of system calls, then the only

vector of attack left is changing their arguments. Simple stateless system call sandboxing

may be successfully employed to limit the arguments to those statically predicted, however

this type of automatic policy generation is not covered in this thesis.

Context-insensitive policies make an attacker’s life much more difficult, narrowing po-

tential attack targets from any instruction in the program to a small handful. The program’s

control-flow graph and call graph can be enforced using only context-insensitive policies,

as such graphs are themselves context-insensitive. However, the execution model is more

than the control flow graph, which still allows unrealizable program paths. For one thing,

the program model should incorporate the calling convention, which restricts each return

to have exactly one target – the return site of the caller depending on the context of invoca-

tion. In our example, a return address overwrite may still lead to an (innocuous) omission

of the second execution of eval. One approach is to enforce the calling convention by

introducing sandboxing checks to match call and return pairs. There are also a number of

schemes we can use to reduce the size of allowed targets further without incurring high

overheads.

4.3 Selective Code Duplication

Even the most accurate static analysis will not produce only singleton sets for context-

insensitive policies. However, dynamic program transformations may be applied to further
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reduce the points-to sets. We can try to partition the set of targets by dynamically applying

program transformations on the generated traces.

We can apply program specialization with respect to function pointers passed as argu-

ments, which is a common use case. This way way the target set of a function pointer’s

later uses is a singleton set. In our example, this will result in two versions of eval spe-

cialized on the different function pointers passed, which would be useful if the sets reached

valuable system calls.

Furthermore, leaf functions can be partially inlined in traces from their callers, therefore

they are also effectively reduced to singletons. A simple compare with the value of the

singleton replaces the hash table lookup when detection of security violations is desired,

otherwise it can be elided in a trace. In order to reduce the degree of freedom of return

overwrite attacks, leaf functions with large fan-in can be selectively cloned and thus the

return set of the original function is partitioned into smaller sets. In general, static analysis

can determine each definition and use of a pointer used as an indirect branch target, and

by selectively duplicating code from different definitions we can obtain selective flow- and

context-sensitivity in the execution traces dynamically generated by the runtime system.
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Chapter 5

Security Policies

Program shepherding’s three techniques can be used to provide powerful security guaran-

tees. They allow us to strictly enforce a safe subset of the instruction set architecture and

the operating system interface. There are tradeoffs between program freedom and security:

if restrictions are too strict, many false alarms will result when there is no actual intrusion.

This section discusses the potential design space of security policies that provide significant

protection by limiting attackers degree of freedom while preserving program correctness.

We envision a system with customizable policy settings to allow the maximum protection

level for each application. Our philosophy is to start with a completely safe subset and

examine the causes of false alarms. The responsible operation is potentially dangerous, so

its restrictions should be relaxed only so far as to reduce false alarms to a reasonable level

while maintaining as much security as possible. Table 5.1 lists sample policy decisions that

can be implemented with program shepherding. Our system currently implements a set

of security policies for which allows normal execution for most application binaries, and

a more restrictive set when static analysis of source code provides an accurate execution

model. The applicability and attack resilience of these policies are described and analyzed

later in this chapter.
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Restricting Least restrictive Most restrictive

Code
origins

Any Dynamically
written code, if
self-contained
and has no system
calls

Only code from
disk, can be dy-
namically loaded

Only code from
disk, originally
loaded

Function
returns

Any Only to
after-call
targets

Only to known
call sites

Random xor
as in Stack-
Ghost [26]

Return only from
called function

Intra-
segment
call or jump

Any Only to function entry points Only to bindings
given in an inter-
face list

Inter-
segment
call or jump

Any Only to export of
target segment

Only to im-
port of source
segment

Only to bindings
given in an inter-
face list

Indirect
calls

Any Only to address
stored in read-
only memory

Only within user
segment or from
library

Only to bindings
given in an inter-
face list

execve Any Static arguments Only if the oper-
ation can be vali-
dated

None

open Any Disallow writes to
specific files, e.g.
/etc/passwd

Only to a subre-
gion of the file
system

None

Table 5.1: Sample list of policies built using program shepherding. Each row shows a
continuum of choices ranging from most restrictive on the right to least restrictive on the
left for how to control the action in the left-hand column. Bold entries indicate the policy
choices that we implemented for our experimental system for binaries with no external
information. Italicized entries show the more restrictive policies in place when an execution
model is provided statically.
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5.1 Code Origin Policies

Consider the policy decision in the upper right of the table: allowing unrestricted execution

of code only if it is from the original application or library image on disk and is unmodified.

Such a policy will allow the vast majority of programs to execute normally. Yet the policy

can stop all security exploits that inject code masquerading as data into a program. This

covers a majority of currently deployed security attacks, including the classic stack buffer

overflow attack.

Shared libraries that are explicitly loaded (i.e., with dlopen or LoadLibrary) and

dynamically selected based on user input should also be considered potentially unsafe un-

less properly validated. A relaxation of this policy allows dynamically generated code, but

requires that it contain no system calls. Legitimate dynamically-generated code is usually

used for performance; for example, many high-level languages employ just-in-time compi-

lation [2, 19] to generate optimized pieces of code that will be executed natively rather than

interpreted. This code almost never contains system calls or other potentially dangerous op-

erations. For this reason, imposing a strict security policy on dynamically-generated code

is a reasonable approach. Similarly, self-modifying code should usually be disallowed, but

may be explicitly allowed for certain applications.

5.2 Control Transfer Policies

Direct control transfers that satisfy the code origin policies can always be allowed within a

segment. Given that we limit execution models to those that disallow self-modifying code,

direct control transfers will always perform as the program intends, as they are part of the

code itself and cannot be modified by an attacker as guaranteed by the other techniques.

Calls and jumps that transition from one executable segment to another, e.g., from appli-

cation code to a shared library, or from one shared library to another, can be restricted to

enforce library interfaces. Targets of inter-segment calls and jumps can be verified against

the export list of the target library and the import list of the source segment, in order to

prevent malevolent jumps into the middle of library routines.
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Indirect control transfers can be carefully limited. The calling convention can be strength-

ened by preventing return instructions from targeting non-call sites, and limiting direct call

sites to be the target of at most one return site. Controlling return targets severely restricts

exploits that overwrite return addresses, as well as opportunities for stitching together frag-

ments of existing code in an attack.

Indirect calls can be completely disallowed in many applications. Less restrictive gen-

eral policies are needed, but they require higher-level information and/or compiler support.

For C++ code it is possible to keep read-only virtual method tables and allow indirect calls

using targets from these areas only. However, further relaxations are needed to allow call-

back routines in C programs. A policy that provides a general solution requires source

access, compiler support, profiling runs, or other external sources of information to deter-

mine all valid indirect call targets (Chapter 7). A more relaxed policy restricts indirect calls

from libraries no more than direct calls are restricted (if between segments they can only

target import and export entries), while calls within the application text segment can target

only intra-segment function entry points. The requirement of function entry points beyond

a simple intra-segment requirement prevents indirect calls from targeting direct calls or in-

direct jumps that validly cross executable segment points and thus avoid the restriction. It is

possible to extract the valid user program entry points from the symbol tables of unstripped

binaries. Unfortunately, stripped binaries do not keep that information.

Indirect jumps are used in the implementation of switch statements and dynamically

shared libraries. The first use can easily be allowed when targets are validated to be coming

from read-only memory and are hence trusted. The second use, shared library calls, should

be allowed, but such inter-segment indirect jumps can be restricted to library entry points.

These restrictions will not allow an indirect jump instruction that is used as a function return

in place of an actual return instruction. However, we have yet to see such code. It will

certainly not be generated by compilers since it breaks important hardware optimizations

in modern IA-32 processors [47].
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5.3 Sandboxing Policies

Sandboxing can provide detection of attacks that get past other barriers. For example, a

data attack that overwrites the argument passed to the system routine may not be stopped

by any aforementioned policy. Program shepherding’s guaranteed sandboxing can be used

for intrusion detection for this and other attacks. The security policy must decide what to

check for (for example, suspicious calls to system calls like execve) and what to do when

an intrusion is actually detected. These issues are beyond the scope of this thesis, but have

been discussed elsewhere [30, 39].

A further on return target restriction can easily be provided to emulate a technique

proposed in StackGhost [26]. A random number can be xor-ed with the return address

stored on the stack after a call and before a return. Any modification of the return address

will result with very high probability in a request for an invalid target. In a threat model in

which attackers can only write to memory, this technique renders execution of the attacker’s

intended code very unlikely. This protection comes at the low cost of two extra instructions

per function call, but its additional value is hard to determine due to the already limited

applicability of this kind of exploit. Furthermore, an attacker able to exploit a vulnerability

that provides random read rights will not be stopped by this policy. Thus, we currently do

not impose it. Instead we propose using a parallel stack in an inaccessible to the application

area in memory and cached in hardware registers (XMM, or RSB – see Section 10.2), to

match returns with their respective caller.

Sandboxing with checks around every load and store could be used to ensure that only

certain memory regions are accessed during execution of untrusted code segments. This

would provide significant security but at great expense in performance, unless largely in-

dependent modules are to be isolated [65].

5.4 Attack Resilience

We now turn our attention to a specific security policy made up of the bold entries in

Table 5.1. We implemented this policy in our prototype system when only a program
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Injected Code Existing Code

Single Calls Chained Calls Multiple Calls

Return Indirect 
Jump or

Call

ImportedNot
Imported

Attack Type

Return Indirect
Jump or

Call

ImportedNot
Imported

No
Information

With Information
(e.g., Symbol

Table)

Restricted code origins

Restricted control transfers

Un-circumventable sandboxing

Figure 5-1: Capabilities of program shepherding’s three techniques toward stopping dif-
ferent attack types, for the security policy indicated in bold in Table 5.1. The three boxes
represent the three components. A filled-in box indicates that that component can com-
pletely stop the attack type above. Stripes indicate that the attack can be stopped only in
some cases. The vertical order of the techniques indicates the preferred order for stopping
attacks. If a higher box completely stops an attack, we do not show techniques below it
(e.g., sandboxing is capable of stopping some attacks of every type, but we show its use
only when the other techniques do not provide full protection).
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binary is available. For this security policy, Figure 5-1 summarizes the contribution of each

program shepherding technique toward stopping the types of attacks described in Section 2.

The following sections describe in detail which policy components are sufficient to stop

each attack type.

5.4.1 Injected Code Attacks

The code origin policy disallows execution from address ranges other than the text pages of

the binary and mapped shared libraries. This technique stops all exploits that introduce ex-

ternal code, and will eradicate a majority of currently deployed security attacks. However,

code origin checks are insufficient to thwart attacks that change a target address pointer to

point to existing code in the program address space.

5.4.2 Existing Code Attacks

Most vulnerable programs are unlikely to have code that could be maliciously used by

an attacker. However, all of them have the standard C library mapped into their address

space. The restrictions on inter-segment control transfers limit the available code that can

be attacked to that explicitly declared for use by the application. Still, many of the large

programs import the library routines a simple attack needs. For this reason, restricting

inter-segment transitions to imported entry points would stop only a few attacks.

Return address attacks, however, are severely limited: they may only target code fol-

lowing previously executed call instructions. With more accurate execution models they

are even further limited only to their respective callers.

Single Calls

By single call attack we mean an attack that overwrites only a single program address

(perhaps overwriting non-address data as well), thus resulting in a single malicious control

transfer. We consider the readily available execve system call to be the most vulnera-

ble point in a single-call attack. However, it is possible to construct an intrusion detection

predicate [39] to distinguish attacks from valid execve calls, and either terminate the
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application or drop privileges to limit the exposure. Since only a single call can be exe-

cuted, system calls that need to be used in combination for an intrusion do not need to be

sandboxed. Sandboxing execve also prevents intrusion by an argument overwrite attack.

Nevertheless, sandboxing alone does not provide protection against sequences of op-

erations that an application is allowed to do and can be controlled by an attacker. For

example, an exploit that emulates the normal behavior of sshd, i.e., listens on a network

socket, accepts a connection, reads the password file for authentication, but at the end writes

the password file contents to the network, cannot be stopped by simple sandboxing. The

mimicry attacks introduced [62] and further analyzed by Wagner [64] show how attackers

can easily evade intrusion detection at the system call level. Therefore, restrictions on con-

trol transfers are crucial to prevent construction of such higher-level code from primitives,

and hence to limiting possible attacks only to data attacks targeting unlikely sequences of

existing code.

Chained Calls

An attacker may be able to execute a malicious code sequence by carefully constructing a

chain of activation records, so that on return from each function execution continues in the

next one [44]. Requiring that return instructions target only call sites is sufficient to thwart

the chained call attack, even when the needed functions are explicitly imported and allowed

by inter-segment restrictions. The chaining technique is countered because of its reliance

on return instructions: once to gain control at the end of each existing function, and once

in the code to shift to the activation record for the next function call.

Multiple Calls

We were able to construct applications that were open to an exploit that forms higher-

level malicious code by changing the targets of a sequence of function calls as well as

their arguments. Multiple sequential intrusions may also allow execution of higher-level

malicious code.

It is also possible to extract the valid user program entry points from the symbol tables

of unstripped binaries. Allowing indirect calls to target only valid entry points within the
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executable and within the shared libraries limits the targets for higher-level code construc-

tion. If there are no simple wrappers in the executable that allow arbitrary arguments to be

passed to the lower level library functions, the possibility of successful attack of this type

will be minimal.

Higher-level semantic information is needed to thwart these attacks’ intrusion method

by limiting the valid indirect call targets. The policy that is able to stop such attacks in

general, and without any false alarms, requires an execution model to provide the list of

valid transfers. Whenever the degree of freedom of an attacker is limited to equivalent

actions malicious sequences will never be constructed.

Nevertheless, interpreters that are too permissive are still going to be vulnerable to data

attacks that may be used to form higher-level malicious code and will not be recognized as

a threat by these techniques.
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Chapter 6

Efficient Implementation of Program

Shepherding

In order for a security system to be viable, it must be efficient. In order to be widely

and easily adoptable, it must be maximally transparent to its users. Transparency includes

whether a target application must be recompiled or instrumented and whether the security

system requires special hardware or operating system support. We examined possible im-

plementations of program shepherding in terms of these two requirements of efficiency and

transparency.

One possible method of monitoring control flow is instrumentation of application and

library code prior to execution to add security checks around every branch instruction and

privileged operation. Significant runtime components would also be needed to overcome

the difficulties of statically handling indirect branches by merging information about dy-

namically loaded libraries and verifying that all modules are properly instrumented. In

addition, the invariably introduced checks will impose significant performance penalties.

Another possibility is to use an implementation in an interpreter. Interpretetation is the

most straightforward solution to provide complete mediation of control transfers on native

binaries. It is a natural way to monitor program execution because every application oper-

ation is carried out by a central system in which security checks can be placed. However,

interpretation via emulation is slow, especially on an architecture like IA-32 with a complex

instruction set, as evidenced in Table 6.1.
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BASIC BLOCK CACHE
non−control−flow

instructions

TRACE CACHE
non−control−flow

instructions

START basic block builder

dispatch

trace selector

context switch

indirect branch lookup indirect branch
stays on trace?

Figure 6-1: Flow chart of the DynamoRIO system infrastructure. Dark shading indicates
application code. Note that the context switch is simply between the code cache and Dy-
namoRIO; application code and DynamoRIO code all runs in the same process and address
space. Dotted lines indicate the performance-critical cases where control must leave the
code cache and return to DynamoRIO.

6.1 Dynamic Optimization Framework

Recent advances in dynamic optimization have focused on low-overhead methods for ex-

amining execution traces for the purpose of optimization. This infrastructure provides the

exact functionality needed for efficient program shepherding. Dynamic optimizers begin

with an interpretation engine. To reduce the emulation overhead, native translations of

frequently executed code are cached so they can be directly executed in the future. For a

security system, caching means that many security checks need be performed only once,

when the code is copied to the cache. If the code cache is protected from malicious modifi-

cation, future executions of the trusted cached code proceed with no security or emulation

overhead.

We decided to build our program shepherding system as an extension to a dynamic

optimizer called DynamoRIO [7]. DynamoRIO is based on top of an IA-32 port [6] of Dy-

namo [3]. DynamoRIO’s optimizations are still under development. However, its baseline

performance is already reasonable for many applications (see Section 8.3). DynamoRIO

is implemented on IA-32 for both Windows and Linux, and is capable of running large
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desktop applications.

A flow chart showing the operation of DynamoRIO is presented in Figure 6-1. The

figure concentrates on the flow of control in and out of the code cache, which is the bottom

portion of the figure. The copied application code looks just like the original code with the

exception of its control transfer instructions, which are shown with arrows in the figure.

Below we give an overview of DynamoRIO’s operation, focusing on the aspects that

are relevant to our implementation of program shepherding. The techniques of program

shepherding fit naturally within the DynamoRIO infrastructure. Most monitoring opera-

tions only need to be performed once, allowing us to achieve good performance in the

steady-state of the program. In our implementation, a performance-critical inner loop will

execute without a single additional instruction beyond the original application code.

6.2 DynamoRIO: Runtime Introspection and Optimiza-

tion

DynamoRIO copies basic blocks (sequences of instructions ending with a single control

transfer instruction) into a code cache and executes them natively. At the end of each

block the application’s machine state must be saved and control returned to DynamoRIO (a

context switch) to copy the next basic block. If a target basic block is already present in the

code cache, and is targeted via a direct branch, DynamoRIO links the two blocks together

with a direct jump. This avoids the cost of a subsequent context switch.

Indirect branches cannot be linked in the same way because their targets may vary. To

maintain transparency, original program addresses must be used wherever the application

stores indirect branch targets (for example, return addresses for function calls). These

addresses must be translated into their corresponding code cache addresses in order to

jump to the target code. This translation is performed as a fast hash table lookup. Security

policies that restrict indirect control transfers are put in place by varying this hash table

lookup.

To improve the efficiency of indirect branches, and to achieve better code layout, basic
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Normalized
System Type Execution Time

crafty vpr
Emulation ˜ 300.0 ˜ 300.0
+ Basic block cache 26.1 26.0
+ Link direct branches 5.1 3.0
+ Link indirect branches 2.0 1.2
+ Traces 1.7 1.1

Table 6.1: Performance achieved when various features are added to an interpreter, mea-
sured on two of the SPEC2000 benchmarks [56], crafty and vpr. Pure emulation results in
an estimated slowdown factor of several hundred. Successively adding caching, linking,
and traces brings the performance down dramatically.

blocks that are frequently executed in sequence are stitched together into a unit called a

trace. When connecting beyond a basic block that ends in an indirect branch, a check is

inserted to ensure that the actual target of the branch will keep execution on the trace. This

check is much faster than the hash table lookup, but if the check fails the full lookup must

be performed. The superior code layout of traces usually amortizes the overhead of creating

them and often speeds up the program [3, 51]. For context-insensitive security policies, no

extra checks are required when execution continues across an indirect branch in a trace.

Table 6.1 shows the typical performance improvement of each enhancement to the basic

interpreter design. Caching is a dramatic performance improvement, and adding direct

links is nearly as dramatic. The final steps of adding a fast in-cache lookup for indirect

branches and building traces improve the performance significantly as well.

The Windows operating system directly invokes application code or changes the pro-

gram counter for callbacks, exceptions, asynchronous procedure calls, setjmp, and the

SetThreadContext API routine. These types of control flow are intercepted in order

to ensure that all application code is executed under DynamoRIO [6]. Signals on Linux are

similarly intercepted. Security checks can be placed at the interception points, similarly to

indirect branches. These abnormal control transfers are rare and so extra checks upon their

interception do not affect overall performance.
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6.3 Restricted Code Origins Implementation

Restricting execution to trusted code is accomplished by adding checks at the point where

the system copies a basic block into the code cache. Checking code origins involves neg-

ligible overhead because code need only be checked once prior to insertion into the code

cache. Once in the cache no checks need to be executed.

Code origin checking requires that DynamoRIO know whether code has been modified

from its original image on disk, or whether it is dynamically generated. This is done by

write-protecting all pages that are declared as containing code on program start-up. In

normal ELF [20] binaries, code pages are separate from data pages and are write-protected

by default. Dynamically generated code is easily detected when the application tries to

execute code from a writable page, while self-modifying code is detected by monitoring

calls that unprotect code pages.

If code and data are allowed to share a page, we make a copy of the page, which we

write-protect, and then unprotect the original page. The copy is then used as the source

for basic blocks, while the original page’s data can be freely modified. A more complex

scheme must be used if self-modifying code is allowed. Here DynamoRIO must keep track

of the origins of every block in the code cache, invalidating a block when its source page

is modified. The original page must be kept write-protected to detect every modification to

it. The performance overhead of this depends on how often writes are made to code pages,

but we expect self-modifying code to be rare. Extensive evaluation of applications under

both Linux and Windows has yet to reveal a use of self-modifying code. For our prototype,

we limit execution models to applications with no self-modifying or dynamically generated

code, which is the case for the targeted security sensitive applications.

6.4 Restricted Control Transfers Implementation

The dynamic optimization infrastructure makes monitoring control flow transfers very sim-

ple. For direct branches, the desired security checks are performed at the point of basic

block linking. If a transition between two blocks is disallowed by the security policy, they
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are not linked together. Instead, the direct branch is linked to a routine that announces or

handles the security violation. These checks need only be performed once for each poten-

tial link. A link that is allowed becomes a direct jump with no overhead.

Indirect control transfer policies add no performance overhead in the steady state, since

no checks are required when execution continues on the same trace. Otherwise, the hash

table lookup routine translates the target program address into a basic block entry address.

6.4.1 Transfer Type Restrictions

Policies that only examine the target of a control flow transition are the cheapest to en-

force. A separate hash table is used to look up the target for validation for different types

of indirect control transfers (return instruction, indirect calls, and indirect branches). Se-

curity checks for indirect transfers that only examine their targets have little performance

overhead, since we place in the hash table only targets that are allowed by the security

policy. This enables type specific restrictions without sacrificing any performance when

execution continues in the code cache. Targets of indirect branches are matched against

entry points of PLT-defined [20] and dynamically resolved symbols to enforce restrictions

on inter-segment transitions, and targets of returns are checked to ensure they target only

instructions after call sites.

6.4.2 Transition Pair Restrictions

Our static analyses produce context-insensitive policies, which can be easily enforced with

minimal overhead. This is because context-insensitive policies are always valid after initial

verification, therefore they can be cached and cheaply evaluated with minimal execution

overhead. Our execution model policies need to examine both the source and the target of

a transition, which will have a slightly slower hash table lookup routine when shared tables

are used. These checks can be optimized to be as efficient as only checking the target by

using a separate hash table for each source location. The space drawback of this scheme

is minor as equivalent target sets can be shared, and furthermore, the hash tables can be

precomputed to be kept quite small without increase in access time.
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6.5 Un-Circumventable Sandboxing Implementation

When required by the security policy, DynamoRIO inserts sandboxing into a basic block

when it is copied to the code cache. In normal sandboxing, an attacker can jump to the

middle of a block and bypass the inserted checks. DynamoRIO only allows control flow

transfers to the top of basic blocks or traces in the code cache, preventing this.

An indirect branch that targets the middle of an existing block will miss in the indirect

branch hash table lookup, go back to DynamoRIO, and end up copying a new basic block

into the code cache that will duplicate the bottom half of the existing block. The necessary

checks will be added to the new block, and the block will only be entered from the top,

ensuring that we follow the security policy.

When sandboxing system calls, if the system call number is determined statically, we

avoid the sandboxing checks for system calls we are not interested in. This is important for

providing performance on applications that perform many system calls.

Restricted code cache entry points are crucial not just for building custom security

policies with un-circumventable sandboxing, but also for enforcing the other shepherding

features by protecting DynamoRIO itself.
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6.6 Protecting DynamoRIO

Program shepherding could be defeated by attacking DynamoRIO’s own data structures,

including the code cache, which are in the same address space as the application. This

section discusses how to prevent attacks on DynamoRIO. Since the core of DynamoRIO

is a relatively small piece of code, and DynamoRIO does not rely on any other component

of the system, we believe extensive code review and analysis will leave no loopholes for

exploitation.

6.6.1 Memory Protection

We divide execution into two modes: DynamoRIO mode and application mode. Dy-

namoRIO mode corresponds to execution while in the top half of Figure 6-1. Applica-

tion mode corresponds to the bottom half of Figure 6-1, including the code cache and the

DynamoRIO routines that are executed without performing a context switch back to Dy-

namoRIO. For the two modes, we give each type of memory page the privileges shown in

Table 6.2. DynamoRIO data includes the indirect branch hash table and other data struc-

tures.

All application and DynamoRIO code pages are write-protected in both modes. Appli-

cation data is of course writable in application mode, and there is no reason to protect it

from DynamoRIO, so it remains writable in DynamoRIO mode. DynamoRIO’s data and

the code cache can be written to by DynamoRIO itself, but they must be protected during

application mode to prevent inadvertent or malicious modification by the application. We

should also protect RIO’s Global Offset Table (GOT) [20] by binding all imported symbols

on program startup and then write-protecting the GOT.

If a basic block copied to the code cache contains a system call that may change page

privileges, the call is sandboxed to prevent changes that violate Table 6.2. Program shep-

herding’s un-circumventable sandboxing guarantees that these system call checks are exe-

cuted. Because the DynamoRIO data pages and the code cache pages are write-protected

when in application mode, and we do not allow application code to change these protec-

tions, we guarantee that DynamoRIO’s state cannot be corrupted within the process.
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Page Type DynamoRIO mode Application mode
Application code R R
Application data RW RW
DynamoRIO code cache RW R (E)
DynamoRIO code R (E) R
DynamoRIO data RW R

Table 6.2: Privileges of each type of memory page belonging to the application process
executed under DynamoRIO. R stands for Read, W for Write, and E for Execute. We
separate execute privileges here to make it clear what code is allowed by DynamoRIO to
execute.

6.6.2 Multiple Application Threads

DynamoRIO’s data structures and code cache are thread-private. Each thread has its own

unique code cache and data structures. System calls that modify page privileges are checked

against the data pages of all threads. When a thread enters DynamoRIO mode, only that

thread’s DynamoRIO data pages and code cache pages should be unprotected.

A potential attack could exploit this race condition: while one thread is in DynamoRIO

mode another thread in application mode can modify the first thread’s DynamoRIO data

pages. We could solve this problem by forcing all threads to exit application mode when

any one thread enters DynamoRIO mode. We have not yet implemented this solution, but

its performance cost would be minimal on a single processor or on a multiprocessor when

every thread is spending most of its time executing in the code cache. However, the per-

formance cost of extra synchronization would be unreasonable on a multiprocessor when

threads are continuously context switching. We are investigating alternative solutions, in-

cluding those in Section 10.1.
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Chapter 7

Call Graph Construction

Constructing the call graph for a C program in the presence of indirect calls requires use of

pointer analysis to disambiguate between the potential values of the used function pointers.

Current research on pointer analyses [1, 58, 59, 15, 34] offers different tradeoffs between

accuracy and scalability. Previous points-to analyses for C have also been specifically

applied to call graph construction [33, 41].

7.1 Points-to Analysis

We have employed a context-insensitive, flow-insensitive Andersen’s [1] style points-to

analysis using projection merging [59] and cycle elimination [23]. It is implemented using

the Banshee [4] analysis toolkit to build a customized constraint resolution engine. The C

front-end is derived from David Gay’s Region Compiler [28] and the GNU C Compiler.

This type of points-to analysis scales very well to the size of our target applications, and on

our targets it is practically dominated by source code preprocessing time. Flow-insensitive

analysis ignores control flow and the order of assignments, and therefore the improved

scalability comes at the cost of some losses in accuracy. However, the analysis results also

hold even in concurrent programs.

Our current implementation is currently inaccurate in regards to treatment of assign-

ments to struct/union fields. The field names are ignored and only the base object is

looked at. Therefore, the analysis may produce larger than the actual points-to sets. Ac-

53



cording to the notion in [34] it is field-independent similar to the works in [59, 15, 58].

However, field-based analyses that ignore the base are suggested [33, 41] to be more ac-

curate for call-graph construction. We further plan to use the intersection of result sets of

both types of analysis to provide even more accurate points-to sets. In this thesis we will

discuss only the performance of the field-independent instance of our analysis.

7.1.1 Dynamic Linking Support

The points-to information in our system is used at runtime and therefore needs to be ef-

ficiently propagated, and in case of position independent code relocated at run time. Use

of dynamic libraries poses new problems in respect to combining the results of the inde-

pendent local analyses on the shared objects and application executable. Previous modular

combination techniques have been used for compile time analyses only by Das [15], and

Heintze and Tardieu [34]. Our static analysis supports this model for shared objects by

symbolically evaluating arguments that contain function pointers and thus allows binding

and unification at runtime.

Currently our runtime component performs only a single level indirection of symbolic

arguments to obtain the full points-to sets. While this scheme supports most use cases, it

easily breaks when a structure containing function pointers is successively crossing module

boundaries. Nevertheless, in practice this crude binding technique was sufficient to handle

all SPEC2000 benchmarks, with the exception of one transition in gcc. In that case, an

assignment to an obstack structure field was crossing two module boundaries, which

resulted in an incomplete transition set in the forementioned settings. Therefore, it was

flagged as alarming by the runtime system. This particular case is shown to be properly

handled by a field-based analysis of structure field assignments [41] and will be valid even

across module boundaries within our system.

The general problem of merging points-to sets, however, should be solved by comput-

ing the transitive closure for all points-to sets that cross module boundaries. The depth

needed for this graph reachability analysis is determined by the maximum number of mod-

ule boundary transitions between pointer definition and use. In order to reduce program
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startup overhead, the fully expanded sets should be precomputed together with the exe-

cutable. They will need to be recomputed only in the rare occasions that shared libraries

are modified. The memory footprint of a straightforward representation of the final pre-

computed unique sets, as observed on our benchmarks, is in one or two 4KB pages. A

self-contained security sensitive executable should be augmented with an ELF [20] sec-

tion which holds the fully precomputed points-to sets for each indirect call and is memory

mapped as read-only. Our prototype implementation currently refrains from binary mod-

ifications. Furthermore, statically available transition sets allow code auditors to easily

analyze vulnerable program address targets.

7.1.2 Matching Analysis Results with Program Binaries

Since our analysis is not in the program build process, we have to match the call-site in-

formation we obtain from static source code analysis to the actual indirect call instructions

in the executable. We have applied our post-process call-site matching on locally installed

or previously built program executables and shared objects. We have experimented so far

only with binaries produced by the gcc compiler, but any other compiler may be used

to build the final binary, as far as it generates accurate enough debugging information at

high optimization levels. Most calls can be unambiguously matched since they are usually

sparsely located across function and line boundaries. However, debugging information is

insufficient to disambiguate between indirect calls on the same line. Since evaluations be-

tween sequence points are compiler implementation dependent, we occasionally have to

merge points-to sets for several indirect calls. If this analysis is used in an infrastructure

with more precise code generation information, any artifactual inaccuracy of this external

matching will not be present. On the other hand, although our current static analysis re-

quires source code access, debug information is usually already present and recompilation

is not necessary.
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7.2 Program Profiling

Our static analysis provides a close upper bound on the points-to sets. It should be noted

that for our purposes, a safe approximation on a points-to set can even be a lower bound

on the accurate points-to set. In this respect it is opposite to the traditional notion of con-

servative estimation. An automatic points-to analysis that may miss some potential valid

transitions may produce false alarms (false positives), but it will not introduce unintended

transitions in the model. Therefore an omission in the deduced model may cause denial

of service to unusual requests with legitimate intent, but it will never allow an malicious

request.

An easy way to obtain the target sets for a flow-insensitive, context-insensitive vali-

dation in our program shepherding system is to run it in in “learning” mode to only flag

invalid indirect transitions pairs. Successive executions use the results of previous runs as

a model and allow only those transitions. This method has its own merit, especially in the

absence of source code access. However, it is prone to a high number of false positives and

for quick convergence requires profiling runs with high code coverage. Notwithstanding

these adverse effects on program correctness, alarms on execution paths which have not

been covered in test environment may be considered useful to establishments with high

security requirements.
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Chapter 8

Experimental Results

This section presents our test suite of vulnerable programs, shows the effectiveness of our

program shepherding system on this test suite, and then evaluates the performance and

memory requirements of our system on the SPEC2000 benchmarks [56].

8.1 Test Suite of Vulnerable Programs

We constructed several programs exhibiting a full spectrum of buffer overflow and format

string vulnerabilities. Our experiments also included the SPEC2000 benchmark applica-

tions [56] and the following applications with recently reported security vulnerabilities:

stunnel-3.21 CVE-2002-0002 [14] A format string vulnerability in stunnel (SSL tun-

nel) allows remote malicious servers to execute arbitrary code because several calls

to fdprintf (a custom file descriptor wrapper of fprintf) have no format argu-

ment.

groff-1.16 CVE-2002-0003 [14] The preprocessor of the groff formatting system has an

exploitable buffer overflow which allows remote attackers to gain privileges via lpd

in the LPRng printing system. The pic picture compiler from the groff package

also has a format string vulnerability [48].

ssh-1.2.31 CVE-2001-0144 [14] An integer-overflow bug in the CRC32 compensation at-

tack detection code causes the SSH daemon (typically run as root) to create a hash
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table with size zero in response to long input. Later attempts to write values into the

hash table provide attackers with random write access to memory.

sudo-1.6.1 CVE-2001-0279 [14] sudo (superuser do) allows local users to gain root priv-

ileges. A vulnerability caused by an out-of-bound access due to incomplete end of

loop condition is triggered by long command line arguments. An exploit based on

malloc corruption has been published [36].

Attack code is usually used to immediately give the attacker a root shell or to prepare

the system for easy takeover by modifying system files. Hence, the exploits in our tests

tried to either start a shell with the privilege of the running process, typically root, or to add

a root entry into the /etc/passwd file. We based our exploits on several “cookbook”

and proof-of-concept works [8, 66, 36, 48] to inject new code [46], reuse existing code in a

single call, or reuse code in a chain of multiple calls [44]. Existing code attacks used only

standard C library functions.

When run natively, our test suite exploits were able to get control by modifying a wide

variety of code pointers including return addresses; local and global function pointers;

setjmp structures; and atexit, .dtors, and GOT [20] entries. We investigated attacks

against DynamoRIO itself, e.g., overwriting DynamoRIO’s GOT entry to allow malicious

code to run in DynamoRIO mode, but could not come up with an attack that could bypass

the protection mechanisms presented in Section 6.6.

All vulnerable programs were successfully exploited when run on a standard RedHat

7.2 Linux installation. Execution of the vulnerable binaries under DynamoRIO with all se-

curity checks disabled also allowed successful intrusions. Although DynamoRIO interfered

with a few of the exploits due to changed addresses in the targets, it was trivial to modify

the exploits to work under our system. Execution of the vulnerable binaries under Dy-

namoRIO enforcing the policies shown in bold on Table 5.1, effectively blocked all attack

types. All intrusion attempts that would have led to successfully exploitable conditions

were detected. Nevertheless, the vulnerable applications were able to execute normally

when presented with benign input. The SPEC2000 benchmarks also gave no false alarms

on the reference data set.
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8.2 Effectiveness of Static Analysis

We applied our static points-to analysis and runtime execution model enforcement of in-

direct branches on the SPEC2000 benchmarks [56] in C, two popular security sensitive

applications that are usually run with high privileges, the GNU C library which is dynami-

cally linked to all applications, as well as other supporting libraries.

We have not invested considerable time and effort to actually devise exploits for these

target applications, without being detected by the policies shown in bold in Table 5.1.

Nevertheless, specifically crafted vulnerable programs, which allow multiple intrusions to

modify function pointers, were quite easily used as proxies to all already present system

calls. It will be hard to argue that the difficulties in similar attacks to real applications are

unsurmountable, therefore we dissect the worst case scenario of potential future attacks

when the policies shown in italic in Table 5.1 are enforced.

We summarize the results for the benchmarks with nontrivial target sets in Table 8.1.

The size of the maximum set of targets for an indirect call is given, as a measure of the

largest degree of freedom for an execution deviation. (We consider average set sizes to be

a misleading metric for security assessment and instead provide a worst case metric.) The

indirect calls in the executable or the shared object are given for reference. The size of the

union of all indirect call targets in our sets is provided for comparison with a much simpler

analysis technique that allows indirect calls to any address taken function. An even less

restrictive policy that can be applied on unstripped binaries may allow all function entry

points in the executable and the shared libraries to be in the valid target sets.

The interpreters in the benchmarks — gap and perl have high maximum call set size

due to dynamic method dispatch and that is not surprising. Inspection of the maximum size

sets of the other benchmarks show that they contain functions with similar behavior and

their size reflects intrinsically equivalent operations for the application, e.g. generic code

generation in gcc, generic handling of multiple ciphers in sshd. However, inaccuracies

due to field-independence result in larger sets than best obtainable. For example, the max-

imal size set of sshd is three times smaller when that points-to set is decomposed over

the structure fields. In terms of freedom of choice for an attacker, most of the sets usually
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Benchmark Indirect calls Functions Union Maximum
ammp 27 191 32 16
mesa 694 1073 440 440
gap 1275 865 614 268
gcc 137 2031 269 129
perlbmk 64 1042 448 433
vortex 18 935 41 37
glibc-2.2.4.so 687 2582 380 185
sendmail-8.12.6 100 685 116 84
openssh-3.5p1 133 738 100 41

Table 8.1: Static points-to analysis results. The total number of functions and indirect calls
shown is as found in the executable or shared object. The size of the set of functions present
in the union of all target sets, and the size of the maximum set of call targets are obtained
by our analysis.

provide similar facilities, i.e. equivalent, if any, system calls. Therefore control over a

function pointer constrained to each of these sets will have limited utility. We are currently

automating this evaluation in order to fully quantify the effective degree of freedom of all

target sets, and to identify potential applications of the techniques from Section 4.3.

8.3 Performance

Figure 8-1 shows the performance of our system enforcing execution model policies of

applications on a Linux system with a Pentium 4 processor. The figure shows normalized

execution time for the SPEC2000 benchmarks [56], compiled with full optimization and

run with unlimited code cache space. The first bar gives the performance of DynamoRIO

by itself. DynamoRIO breaks even on many benchmarks, even though it is not performing

any optimizations beyond code layout in creating traces. The second bar shows the perfor-

mance of program shepherding employing the context insensitive enforcement strategies on

indirect control transfers using a shared hash table, as discussed in Section 3.2. The bench-

marks marked with an asterisk were not in C and therefore were run with static analysis

based on profiling information. The results show that the additional overhead is negligible

on most benchmarks, even without optimizing our prototype to site-specific hash tables.

The final bar gives the overhead of protecting DynamoRIO itself. This overhead is
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Figure 8-1: Normalized program execution time for our system (the ratio of our execution
time to native execution time) on the SPEC2000 benchmarks (excluding FORTRAN 90
benchmarks) on Pentium 4 under Linux. They were compiled using gcc -O3. The final
set of bars is the harmonic mean. The first bar is for DynamoRIO by itself; the middle bar
shows the overhead of program shepherding (employing context insensitive restrictions on
indirect control transfers); and the final bar shows the overhead of the page protection calls
to prevent attacks against the system itself.

again minimal, within the noise in our measurements for most benchmarks. Only gcc

has significant slowdown due to page protection, because it consists of several short runs

with little code re-use. We are working on improving our page protection scheme by lazily

unprotecting only those pages that are needed on each return to DynamoRIO mode.

Dynamically constructed policies based on the bold entries in Table 5.1 for applications

with no source access provide another set of performance measurements. Figure 8-2 and

Figure 8-3 show the performance of our system on a Pentium III processor under Linux and

Windows, respectively. Each figure shows normalized execution time for the SPEC2000

benchmarks [56], compiled with full optimization and run with unlimited code cache space.

(Note that we do not have a FORTRAN 90 compiler on Linux or any FORTRAN compiler

on Windows.) The first bar gives the performance of DynamoRIO by itself. The slightly

lower performance of the base system on a Pentium 4 compared to a Pentium III likely

results from aggressive microarchitectural optimizations that improve native execution but

interact inefficiently with our runtime system (e.g. return stack buffer, trace cache for
� ops). The second bar shows the performance of program shepherding enforcing the poli-
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Program Shepherding Performance under Linux
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Figure 8-2: Normalized program execution time for our system (the ratio of our execu-
tion time to native execution time) on the SPEC2000 benchmarks [56] (excluding all FOR-
TRAN 90 benchmarks) on Pentium III under Linux. They were compiled using gcc -O3.
The first bar is for DynamoRIO by itself; the middle bar shows the overhead of program
shepherding (with the security policy shown in bold in Table 5.1); and the final bar shows
the overhead of the page protection calls to prevent attacks against the system itself.

cies shown in bold in Table 5.1. Resricted control transfers are enforced by hash table

partitions on instruction type. The results show that the overhead of program shepherding

enforcing these policies is indistinguishable from the overhead of the base system. This is

also expected to be the case for transition pair enforcement using hash tables per-site.

The final bar gives the protection overhead on each operating system. The previously

noted slowdowns on several benchmarks are seriously exarcebated on Windows, especially

gcc. We conjecture that the significant difference between slowdowns on protection on

Linux and Windows is because Windows is much less efficient at changing privileges on

memory pages than Linux due to coarse grain invalidations and significantly many subse-

quent TLB misses.

8.4 Memory usage

The memory usage of our security system is shown in Table 8.2. All sizes shown are in

KB. The left half of the table shows the total size of text sections of each benchmark and
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Figure 8-3: Normalized program execution time for our system (the ratio of our execution
time to native execution time) on the SPEC2000 benchmarks [56] (excluding all FOR-
TRAN benchmarks) on Pentium III under Windows 2000. They were compiled using cl
/Ox. The first bar is for DynamoRIO by itself; the middle bar shows the overhead of pro-
gram shepherding (with the security policy shown in bold in Table 5.1); and the final bar
shows the overhead of the page protection calls to prevent attacks against the system itself.

all shared libraries it uses compared to the amount of code actually executed. The third

column gives the percentage of the total static code that is executed. The right half of

Table 8.2 shows the memory overhead of DynamoRIO compared to the memory usage

of each benchmark. For most benchmarks the memory used by DynamoRIO is a small

fraction of the total memory used natively.

By operating dynamically, our system is able to focus on the small portion of code that

is run, whereas a static approach would have to examine the text sections in their entirety.

However, whenever multiple copies of a process are executed simultaneously these metrics

may provide an incomplete picture. On modern operating systems static code is usually

shared across processes and multiple instances do not require additional physical memory.

When such programs are executed under DynamoRIO, the portion of their executed code

will be duplicated in code cache in private pages per process. Therefore it may result in

higher physical memory requirements. On the other hand, if multiple instances operate on
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different data and hence exercise different code paths, each copy will be specialized for its

particular instance. We have yet not quantified these effects in systems with a lot of sharing

or with variations of application workload mixes. Still, we are considering schemes for

efficient sharing between code caches of different processes in order to minimize memory

overheads.

benchmark static code executed code % executed native DynamoRIO % extra

ammp 1515 52 3.4% 14893 1696 11.4%
applu 1597 181 11.3% 195715 2720 1.4%
apsi 1639 179 10.9% 197016 2208 1.1%
art 1424 22 1.5% 4612 928 20.1%
bzip2 1317 30 2.3% 190767 928 0.5%
crafty 1467 169 11.5% 3418 3232 94.6%
eon 2114 269 12.7% 2721 2208 81.1%
equake 1428 39 2.7% 34255 928 2.7%
gap 1713 167 9.7% 198916 4256 2.1%
gcc 2518 729 29.0% 145547 14496 10.0%
gzip 1323 27 2.0% 186374 928 0.5%
mcf 1289 24 1.9% 98516 928 0.9%
mesa 1885 63 3.3% 22812 1696 7.4%
mgrid 1475 63 4.3% 58233 1184 2.0%
parser 1390 114 8.2% 32407 3232 10.0%
perlbmk 1878 286 15.2% 76272 6304 8.3%
sixtrack 2812 347 12.3% 60786 4256 7.0%
swim 1452 44 3.0% 196433 928 0.5%
twolf 1591 124 7.8% 4256 3232 75.9%
vortex 1890 395 20.9% 50390 6304 12.5%
vpr 1540 114 7.4% 40425 2208 5.5%
wupwise 1477 67 4.5% 181527 1696 0.9%

arithmetic mean 1670 159 8.5% 90741 3023 16.2%
harmonic mean — — 4.5% — — 1.8%

Table 8.2: Memory usage of the SPEC2000 benchmarks [56], in KB, on Linux. For bench-
marks with multiple data sets, the run with the maximum memory usage is shown. Static
code is the total size of the text sections of the benchmark and all shared libraries it uses.
Executed code is the total size of all instructions processed by DynamoRIO when running
the benchmark. Extra memory is the total memory used by DynamoRIO code, code caches
and other DynamoRIO data. Native total is total memory used by the benchmark when run
natively (outside of DynamoRIO).
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Chapter 9

Related Work

Reflecting the significance and popularity of buffer overflow and format string attacks,

there have been several other efforts to provide automatic protection and detection of these

vulnerabilities. We summarize here the more successful ones.

StackGuard [13] is a compiler patch that modifies function prologues to place “ca-

naries” adjacent to the return address pointer. A stack buffer overflow will modify the “ca-

nary” while overwriting the return pointer, and a check in the function epilogue can detect

that condition. This technique is successful only against sequential overwrites and protects

only the return address. Attacks exploiting random access memory writes or targeting other

program addresses are therefore not affected.

FormatGuard [12] is a library patch for dynamic checks of format specifiers to detect

format string vulnerabilities. However, it is limited to programs which directly use the

standard printf library functions without using custom wrappers around them.

Static analyses have also been applied for detection of very common classes of vulnera-

bilities as buffer overflow [63] and format string [54] vulnerabilities. When capturing most

common cases, these tools report relatively low false positive rates.

StackGhost [26] is an example of hardware-facilitated return address pointer protection.

It is a kernel modification of OpenBSD that uses a Sparc architecture trap when a register

window has to be written to or read from the stack, so it performs transparent xor opera-

tions on the return address before it is written to the stack on function entry and before it

is used for control transfer on function exit. Return address corruption results in a transfer

65



unintended by the attacker, and thus attacks can be foiled unless attackers are able to read

the process addresses.

Techniques for stack smashing protection by keeping copies of the actual return ad-

dresses in an area inaccessible to the application are also proposed in StackGhost [26]

and in the compiler patch StackShield [61]. Both proposals suffer from various complica-

tions in the presence of multi-threading or deviations from a strict calling convention by

setjmp() or exceptions. Unless the memory areas are unreadable by the application,

there is no hard guarantee that an attack targeted against a given protection scheme can be

foiled. On the other hand, if the return stack copy is protected for the duration of a function

execution, it has to be unprotected on each call, and that can be prohibitively expensive

(mprotect on Linux on IA-32 is 60–70 times more expensive than an empty function

call). Techniques for write-protection of stack pages [13] have also shown significant per-

formance penalties.

Enforcing non-executable permissions on IA-32 via OS kernel patches has been done

for stack pages [18] and for data pages in PaX [49]. Our system provides execution protec-

tion from user mode on unmodified binaries and achieves better steady state performance.

Protection against attacks using existing code was also proposed in PaX by randomizing

placement of position independent code; however, it is open to attacks that are able to read

process addresses and thus determine the program layout.

Type safety of C code has been proposed by the CCured system [43] which extends

the C type system, infers statically verifiable type safe pointers, and adds run time checks

only for unsafe pointers. Cyclone [35] provides a safe dialect of C in a similar fashion,

but requires annotations in conversion of legacy code. The reported overhead of these

systems is in the 30–300% range. We present a much easier to adopt system that requires

no recompilation or code modification.

Other programming bugs stemming from violations of specific higher level seman-

tic rules of safe programming have been targeted by static analyses like CQUAL [25],

ESP [16], MC [31], and static model checkers SLAM [60], MOPS [10]. In an unsafe lan-

guage like C, techniques that claim to be sound do not hold in the presence of violations of

the memory and execution model assumed in the analyses [60]. Our system may be used
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to complement these approaches and enforce the execution model of the application.

Most host-based intrusion detection systems focus on the sequences of system calls

executed by an application [24, 30, 27, 50, 62, 40]. The mimicry attacks introduced [62]

and further analyzed by Wagner [64] show how attackers can easily evade existing intrusion

detection at the system call level by introducing undetected sequences of system calls. Our

example from Section 5.4.2 is an information flow [32] mimicry attack. While we agree

that system calls contain all externally visible security relevant program actions, we also

argue that system call interposition provides an incomplete interface for containing attacks.

Allowing malicious code to masquarade as the normal application, and divert its system

call trace is already too empowering.

Our system is close in spirit to the hybrid approach of using static analysis and runtime

model checking proposed by Wagner and Dean [62]. A static analysis is used to construct

a finite state automaton recognizing the system calls possibly generated by a program, a

runtime component to simulate the nondeterministic model space, and a system call in-

terposition tool to verify the generated by the program sequence. The finite automata are

generated based on assumed valid execution models — context-insensitive represented as

a call graph, or context-sensitive as result of modeling a runtime stack. Our system is as

at least as accurate in detection of malicious system call sequences, since it disallows any

deviations from the execution model they assume. The non-determinism in the generated

finite automata often has high runtime simulation overheads for the more accurate models.

Our techniques subsume the need to further model and dynamically check system calls, and

we present a practical system with minimal overhead. An extension to the runtime model

checking applicable to the case of remote execution systems has been presented [29]. The

addition of network based attacks drastically changes the threat model, and the large net-

work latency dwarfs the overheads of NFA simulation. Hence, direct applicability to host

based intrusion detection is likely to be inefficient.

The indirect call target sets in both [62, 29] are considered to contain all address taken

functions. This is obtained either by source code [62] or binary code [29] analysis. The

call graphs in our models are much more accurate as obtained by a points-to analysis. The

possibility of adapting a points-to analysis to binary code is hypothesized [29] and that will
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be an interesting area of research. Both [62, 29] address the issue of argument manip-

ulation. However, the proposed techniques already allow arguments that can be changed

dynamically — and in our system statically determined by the existing code arguments

cannot be modified by attackers. Accurate containment of argument replacement attacks is

not yet effectively addressed by most other IDS.

Software fault isolation techniques [65, 55] modify a program binary to restrict the

address range of memory operations. Execution monitors [52] were applied in SASI [22]

to enforce a memory model via static code instrumentation. These systems have much

higher overheads due to heavy-weight sandboxing operations and inability to elide them

from critical paths.

Our base system infrastructure itself, DynamoRIO [6, 7], is based on an IA-32 port

of Dynamo [3]. Other software dynamic optimizers are Wiggins/Redstone [17], which

employs program counter sampling to form traces that are specialized for the particular

Alpha machine they are running on, and Mojo [11], which targets Windows NT running on

IA-32. None of the above has been used for anything other than optimization. Strata [53]

uses dynamic translation with lower performance to enforce a subset of the techniques we

have presented earlier [38].
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Chapter 10

Future Work

The performance results show that our prototype is an already practical system. We are

continuing our optimization efforts and believe that good engineering will yield close to

zero overheads in all aspects of the system. Many opportunities for optimization exist

in the base system and it is gradually improved with respect to latest microarchitecture

specifics. Better trace creation heuristics will result in easily reachable steady state which

has no overheads. We have already delineated how the security policy enforcement can be

implemented with minimal additional overhead. The costs of protection with the current

system can readily go down with an on-demand protection changes. Nevertheless, we

present here alternative solutions to these problems when supported by the operating system

or underlying hardware.

10.1 Operating System Extensions

The described so far technique allows a program shepherding implementation solely in one

protection domain — it may be an application or an OS kernel. A program shepherding

system protecting user mode applications, as our current prototype, can benefit from further

facilities already provided by the hardware memory management unit. Operating support

will be needed in order to take advantage of these privileged facilities. On most computer

architectures including IA32, a supervisor privilege bit determines whether a particular

page is writable. All pages that need to be read-only in application mode, but writable in
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shepherding mode, can be marked as supervisor pages. The protection bits of the pages

will thus be static and will not need to be modified between the two contexts. Switching

contexts will then have the cost of a kernel trap and will be free of race conditions. Addi-

tional techniques for improving context switch performance, including use of segmentation

hardware are discussed in CoVirt [37].

10.2 Hardware Support

The currently implemented system does not require any hardware support and yet achieves

minimal overheads. In order to fully remove the checks from critical execution paths

for maximum performance some components of the system can be implemented in hard-

ware. Our requirements often overlap substantially with already existing hardware facil-

ities. Therefore they only require minimal modifications for an interface with a program

shepherding system, whenever a fast hardware path fails. Modern processors cache control

data that needs to be validated only when it is put in the cache. Examples of these are the

instruction translation look-aside buffers (TLB); Branch Target Address Caches (BTAC)

used for indirect branch prediction; and return stack buffers (RSB) used for return target

prediction. Traps on misprediction or cache misses will often allow software to handle the

slow paths and perform the security checks needed.

Intel’s processors have included a return stack buffer (RSB) since the Pentium Pro [47].

The RSB is of limited size and is used as a branch predictor for return instructions. On a

call the return address is pushed onto the RSB, and on a return the top RSB value is popped

and used as the predicted target of the return. Since the hardware is storing each return

address, it is only natural to propose using the RSB to enforce the calling convention.

Exposing the RSB to software might be done by allowing read and write access. Then a

program shepherding system could monitor every call and return and insert code to handle

underflow and overflow and code to compare the RSB prediction to the real return address.

On overflow, the RSB is copied to memory which is then protected. On underflow, the

most recent saved RSB copy is written in to the RSB. For better performance only half of

the RSB is stored and swapped in, with the upper half being shifted down on overflow, to
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prevent thrashing due to frequent minor call depth changes.

A further level of hardware support would be to add traps for underflow, overflow, and

RSB misprediction. Then the software need not impose instrumentation on every call and

return; it would simply need to handle the traps.
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Chapter 11

Conclusions

This thesis introduced program shepherding, which employs the techniques of restricted

code origins, restricted control transfers, and un-circumventable sandboxing to provide

strong security guarantees. We have implemented program shepherding in the DynamoRIO

runtime system, which does not rely on hardware, operating system, or compiler support,

and operates on unmodified binaries on both generic Linux and Windows IA-32 platforms.

We have shown that our implementation successfully prevents a wide range of security

attacks efficiently. We have shown that by enforcing the program’s execution model by

restricting control transfers, we are able to thwart current and future security attacks. We

incorporate static program analysis with dynamic analysis and program transformations to

provide an efficient enforcement of the execution model.

We have discussed the potential design space of security policies that can be built us-

ing program shepherding. Our system currently implements a set of policy settings for

trusted binaries with no source access, and a stricter set when source is available. We are

expanding the set of security policies that our system can provide without significant loss

of performance. Future expansions include using more semantic information provided by

compilers to specify permissible operations on a fine-grained level, and performing explicit

protection and monitoring of known program addresses to prevent corruption. For example,

protecting the application’s GOT [20] and allowing updates only by the dynamic resolver

can easily be implemented in a secure and efficient fashion.

Program shepherding does not prevent exploits that overwrite sensitive data. However,
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if assertions about such data are verified in all functions that use it, these verifications can-

not be bypassed if they are the only declared entry points. Furthermore, data modifications

that lead to a conditional control flow shift may still be approachable by an extension of

this technique. Infeasible execution paths as a result of data changes in between guarding

conditional branches may be detected to point out memory model violations due to security

attacks or unspecified race conditions.

A potential application of program shepherding is to allow operating system services to

be moved to more efficient user-level libraries. For example, in the exokernel [21] operat-

ing system, the usual operating system abstractions are provided by unprivileged libraries,

giving efficient control of system resources to user code. Program shepherding can enforce

unique entry points in these libraries, enabling the exokernel to provide better performance

without sacrificing security.

We believe that program shepherding will be an integral part of future security systems.

It is relatively simple to implement, has little or no performance penalty, and can coexist

with existing operating systems, applications, and hardware to provide an easy adoption

path. Many other security components can be built on top of the un-circumventable sand-

boxing provided by program shepherding. Program shepherding provides useful security

guarantees that drastically reduce the potential damage from attacks.
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