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Abstract—The explosion of genomic data is fostering research
in fields such as personalized medicine and agritech, raising the
necessity of providing more performant, power-efficient and easy-
to-use architectures. Devices such as GPUs and FPGAs, deliver
major performance improvements, however, GPUs present no-
table power consumption, while FPGAs lack programmability. In
this paper, we present SALSA, a Domain-Specific Architecture
for sequence alignment that is completely configurable, extensible
and is based on the RISC-V ISA. SALSA delivers good perfor-
mance even at 200 MHz, outperforming Rocket, an open-source
core, and an Intel Xeon by factors up to 350x in performance
and 790x in power efficiency.

Index Terms—Domain Specific Architecture, genomics,
SALSA, Sequence Alignment, systolic arrays

I. INTRODUCTION

The increasing amount of genomic data is empowering areas

such as personalized medicine and agritech where drugs are

selected based on the DNA of the patient and plants are

engineered to be resistant to climate change [1]. In these

regards, one of the most important tasks in the analysis of

genomic data is sequence alignment, as it allows to find

similarities and patterns among DNA sequences. The algo-

rithms used in these fields are computationally intensive and

the architectures on which they run need to process massive

amounts of data [2]. General-purpose CPUs are inefficient in

processing large genomic data due to their generality [3]. A

better approach to analyze the big amount of genomic data,

however, would be to create domain specific architectures

that can process efficiently and in reasonable times huge

data workloads, while keeping power consumption low [4].

The improvements of specific architectures in the genomic

domain in terms of both performance and power consumption

have been widely demonstrated in the state of art using

both GPUs and FPGAs as hardware accelerators [3], [5]–[7].

GPUs offer massive performance and good programmability

but they suffer from high power consumption. On the other

hand, FPGAs offer a good ratio of performance over power

consumption and unprecedented performance in this domain,

with the drawback of harder programmability. In this paper,

we propose the design and evaluation of SALSA, a Domain

Specific Architecture (DSA) for sequence alignment. SALSA

is designed to provide a good tradeoff between performance,

power consumption, and programmability. SALSA is more

programmable than FPGA implementations and consumes less

energy than GPUs. The architecture of SALSA is based on

Systolic Arrays (SAs) and is designed using Chisel HDL [8] It

is programmable using RISC-V instructions [9], allowing users

to add new instructions and, it is composed of multiple ALUs,

where users can extend it by adding their own. While this

paper is about accelerating sequence alignment applications

using SALSA, we chose to base SALSA on SAs so that we

can extend it, in the future, to other areas that can benefit from

SAs too such as the ones where matrix multiplication, multiply

and accumulate or convolution/correlation are involved [4].

The contribution of this paper is the design and evaluation of

SALSA, a DSA for sequence alignments that is:

• Highly programmable: thanks to RISC-V ISA, with the

possibility to extend the Instruction Set by introducing

custom instructions;

• Customizable: it is possible to tune different parameters

in the source code to generate architectures with different

features like the number of processing elements, or the

size of the memory port;

• Extensible: each Processing Element (PE) is composed of

a general purpose ALU programmable via software, and

more specific ALUs. The user can design and integrate

custom ALUs inside SALSA.

II. RELATED WORKS

The State of the Art is dense of hardware acceleration of

sequence alignment algorithms such as the Smith-Waterman

or Needleman-Wunsch on CPU, GPU or FPGA [3], [10]–

[12] with performance reaching billions of cell update per

second (CUPS). In [3] an FPGA implementation of the Smith-

Waterman algorithm is presented. The architecture can process

single query to database alignment at a rate of more than

40 GCUPS, but is limited in processing a single version of

the algorithm. [10], presents a non-reconfigurable heuristic

accelerator integrable in Bowtie2 with notable performance

increase with relation to well-known alignment algorithms.

Darwin [13] is a co-processor for genomics exploiting FPGAs

to speed up a non-optimal Smith-Waterman. This system

as well is a hyper optimized version of an aligner that

considerably differs from SALSA. The SAMBA accelerator

[14] is based on systolic arrays and implements a Smith-

Waterman algorithm with performance around 2 Mega CUPS,

however, it is considered an ASIC, and users cannot modify

the algorithm. The great majority of works done on this

topic are implementations of a single algorithm that exploit

the hardware to get the maximum performance, not allowing

direct modifications. These implementations are hence hardly
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comparable with SALSA where the goal is to provide an

architecture that is more general and capable of providing

a tradeoff among performance, programmability, and easi-

ness to use, so that the user can create different alignment

algorithms. Furthermore, SALSA allows modifications at its

microarchitecture, allowing the user to define specific ALUs to

exploit the systolic array and the insertion of new customized

instructions. SALSA cannot be considered as a revolutionary

architecture,but it implements features which makes it unique.

III. SALSA

SALSA top level architecture is visible in Figure 1. It is

mainly composed of a pipeline with 4 stages: Fetch & Decode,

Dispatch, Load/Store and Compute. Each stage is associated

with a hardware unit that solves the specific task. Fetch &

Decode takes the instructions from the host processor and

delivers them to the Dispatcher that can then decide to send the

instruction to the Load/Store or directly to the Compute stage.

The Load/Store unit has a direct connection to the memory

controller to perform single, as well as multi-load/store re-

quests. While the Load/Store unit handles a memory request,

it asserts a busy signal and it is not able to process any new

memory request until completion. The computation and the

I/O are completely detached, hence if there is no dependency

among the operations, the Load/Store and Compute Unit can

work in parallel. Among all the stages there are fifos to buffer

the data: whenever a fifo gets full, a stalling mechanism is

activated until the fifo is able to store new data.For example,

whenever the Load/Store unit is unable to store data at the

same frequency of the Compute unit, it asserts a stall signal

and the computation is stalled until the Load/store unit returns

available. The size of the registers, the interfaces among

the different modules as well as the interface among the

Load/Store unit and the memory controller are tunable by

changing specific parameters in the Chisel code. In this way,

depending on the memory controller, it is possible to have 512

or 32/64 bits transactions. The value depends on whether we

are interfacing SALSA with a cache memory, as in a scenario

where SALSA is used as a co-processor sharing the same chip,

or directly with the DDR where SALSA would have direct

access to memory. The datapath of the entire architecture has

been reduced to map the genomic scenario, yet the user can

program the architecture to use a bigger datapath. SALSA

instructions can take more than a clock cycle per stage, unlike

traditional RISC pipelines that require 1 clock cycle per stage.

A. The Compute Unit and Processing Element

The Compute Unit Figure 1 is composed of a PE Dispatcher,

a set of PE Sub-dispatchers, a linear array of tightly coupled

PEs, a set of global registers accessible in read mode by all

the processing elements, a fifo buffer and a set of PE Sub-

collectors that communicate with a PE Collector. New data

values coming from the Load/Store Unit can be stored to a

Global Register, to the fifo or to one of the registers that

are inside a PE. Furthermore, an element could be loaded

and broadcasted to all the PEs or a specific register of a
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Fig. 1. Top Level architecture of SALSA with details of the CU.
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Fig. 2. Details of the PE inside the SA.

single PE. To route data values to internal register there is

a PE Dispatcher. To avoid routing congestion, between the

connection among the PE Dispatcher and the final register

there is a PE Sub-dispatcher serving 32 PEs. The fifo buffer

can be programmed to provide every clock cycle new data

to the first PE of the SA that then, depending on how the

computation is carried on, can be propagated each clock cycle

to the neighboring PE. The fifo can provide a specific bitwidth

of the input variable through a data selector, that fetches

a new data element from the fifo and stores it into a local

register. Every clock cycle, it selects the bitwidth chosen and

sends it to the first PE. All the PEs are connected with shared

registers and can be configured to perform the same operation

in parallel each clock cycle. The operation can be executed

using the general purpose ALU, or one of the more specialized

ALUs that can be designed and integrated by the user. Custom

ALUs speed up the execution of well-known computational

patterns perfming multiple operation within the clock cycle.

Every clock cycle, the SA can produce an output that is then

collected by a series of PE Sub-collectors - each Sub-collector

collects from 32 PEs - that communicate with a PE Collector
that prepares the transactions for the Load/Store Unit. The PE,

observable in Figure 2 contains all the logic to perform the

mathematical operation and to move the output data to the

neighboring PE. The PE can read the values shared from the

PE on its left and can store the value that needs to be passed

to the PE on the Shared Output registers. The General Purpose

ALU can read and store in any register but the Global, as are
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read only. At every point of the computation, it is possible

to store data to the memory by storing values into the last

N - where N is tunable at design time - registers into the

private bank and by asserting those registers to valid. In this

way, the PE Sub-Collectors know that there is data to store

and collect the data for the Load/Store Unit. To make SALSA

programmable and extensible, we have based its instructions

on the extension created for the ROCC Interface [15], that

uses the opcode space set aside for non-standard extensions

in the RISCV ISA manual [9]. As an example, to perform a

64 bits load from the memory, it is necessary to specify the

pointer of the variable using 40 bits, the destination PE, the

destination register inside the PE and the type of the register.

It can be shared, private or global. It is possible to use the

ROCC instruction format to define the operations on the user-

defined ALUs. In SALSA, we have designed 3 application

specific ALUs to perform sequence alignment. We have ALUs

to perform the Smith-Waterman Algorithm, the Needleman-

Wunsch, and an affine version of the Smith-Waterman. These

ALUs differs from the general purpose one as they solve a

specific problem and are able to perform multiple operations

within the clock cycle. To add specific ALUs, the user needs

to specify which are the inputs and outputs of the ALU (see

Figure 2) and specify the operations performed, that can be

single, or multi-cycle, and the operation will be repeated in

parallel by each PE in a lock-step way. Every time the new

ALU has valid data, it will have to store it to the specific

register and assert the valid signal, the architecture will take

care of the rest. In this way, the users can define new algorithm

exploiting the existing architecture and new instructions that

exploit a combination of both specific and general purpose

ALUs. For testing purposes, the ALUs are all physically

implemented in SALSA. In the future we plan in making them

dynamically reconfigurable.

IV. EXPERIMENTAL SETTINGS AND RESULTS

A. Experimental Settings

SALSA has been designed using Chisel HDL [8]. To test

the architecture, we have integrated SALSA with Rocket [16]

an open source RISCV core. SALSA can be integrated in other

systems, or adapted to be used as a standalone architecture.

Rocket has been taped out in different commercial processes,

reaching frequency over 1.65 GHz in IBM 45nm SOI [15].

Rocket infrastructure limits SALSA transaction to be at most

64 bits with no memory burst. This is limiting factor for

memory bound applications, notice however that this is not

a limitation of SALSA, but the testing infrastructure. SALSA

has been generated with 160 PEs. 16 32-bits Global registers,

the fifo that inputs the value to the first PE is capable of hosting

128 64-bits values. Each PE features 20, 32-bits Private
registers, and the last 5 are reserved for the outputs, and 6

32-bits registers serving as Shared output ones. The synthesis

and implementation of SALSA have been done with Firesim

[17] 1.5 testing the designs on a single AWS EC2 F1 instance.

The target frequency have been set to 200 MHz. We have

compared the same applications using SALSA and Rocket on

4 examples, namely Smith-Waterman with constant and affine

gap penalty, Needleman-Wunsch and MaxScore. All these

algorithms benefit from a hardware implementation based on

SA sharing a similar computational pattern, however, they can

suffer from being memory bound. The maxScore, is instead

compute bound as it just requires to store a singular value as

output, and is a valid benchmark for SALSA real capabilities.

The performance of SALSA has been also compared to an

Intel Xeon E3 with a maximum frequency of 3.70GHz and

power consumption of 90W [18]. As a software baseline, we

used SeqAn 2.4 [19], a C++ optimized library, considered to be

state of the art in sequence alignment. The power consumption

for the system composed of SALSA and Rocket on Firesim,

has been benchmarked using a specific API provided by AWS

and is 11W considering the full FPGA board. The power

efficiency has been obtained dividing the performance in

GCUPS (Giga Cell Update per Seconds) by the power value

described above. GCUPS is calculated as in [3].

B. Results

Table I provides a comparison in terms of performance of

SALSA, Rocket and an Intel Xeon E3 processor in executing

the 4 applications presented above. The first column reports

the name of the algorithm and the second one the dataset size

of the two sequences (No. of characters). The execution time

of SALSA is reported in column three. We have considered

that Rocket, can be synthesized at a frequency of more than

1 GHz, as expressed in [16]. Hence, in columns 4 and

5, we have reported the speedups of SALSA compared to

Rocket, estimating for Rocket a frequency of 1 and 3 GHz

respectively. The last column shows the speedup of SALSA

against SeqAn running on an Intel Xeon E3, with a peak

frequency of 3.7 GHz. The comparison shows how SALSA is

faster than Rocket, in all the applications benchmarked, with

the maximum performance speedup in the Smith Waterman

Affine and the MaxScore algorithms. Note that the benchmark

not only takes into consideration the computation time but also

the time needed to store the results back to cache. Table I

shows also how SALSA outperforms the CPU in terms of

performance, even with these small datasets. To understand

the benefits of SALSA compared to state of the art software

implementations, consider that our implementation, as config-

ured here and considering the short inputs provided, reaches

performance up to 8 GCUPS in the max score example.

SeqAn can obtain around 0.05 GCUPS with a single core.

Under the assumption of independent sequences and a 40-

cores machine, SeqAn would obtain 2 GCUPS. Except for the

MaxScore algorithm that does not suffer from the memory

badwidth limitation, and where SALSA is able to process

data at the rate of around 8 GCUPS, the limiting factor is

the cache size offered by Firesim, limiting the storage size

to 64 bits per transaction and forcing SALSA to stall the

computation. In these regards, as SALSA is configurable, is

enough to change a parameter to obtain a wider channel to

massively store the results. The tests performed with Firesim

and Rocket are to demonstrate that even in a scenario with
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TABLE I
PERFORMANCE AND POWER EFFICIENCY OF 4 APPLICATIONS EXECUTED ON SALSA, ROCKET AND USING SEQAN ON AN INTEL XEON E3 V2

Algorithm Dataset SALSA exec. time Salsa Performance Improvement Power Eddiciency[GCUPS/W]
@ 200Mhz [μs] w.r.t. Rocket @ 1 GHz w.r.t. Rocket @ 3 GHz w.r.t. CPU @ 3.7 GHz SALSA CPU Improvement

MaxScore 32x64 0.8 101.66x 33.89x 47.64x 231.28 0.59 389.8x
MaxScore 64x128 1.045 350.07x 116.69x 96.74x 712.66 0.9 791.5x

SmithWaterman 32x64 16.84 4.99x 1.66x 2.38x 11.06 0.56 19.5x
SmithWaterman 64x128 37.01 9.86x 3.28x 3.31x 20.12 0.74 27.13x

NeedlemanWunsch 32x64 16.71 4.85x 1.62x 1.99x 11.14 0.68 16.34x
NeedlemanWunsch 64x128 37.00 9.56x 3.19x 2.76x 20.13 0.89 22.61x

SmithWatermanAffine 32x64 17.8 8.62x 2.87x 2.55x 10.45 0.5 20.93x
SmithWatermanAffine 64x128 39.48 17.45x 5.82x 4.04x 18.86 0.57 33.09x

such limitation, SALSA is capable of outperforming CPUs

both in performance and power efficiency. Observing the end

of Table I, in fact it is clear how SALSA is always more power

efficient than the Intel processor with improvements up to 791

times in the MaxScore example demonstrating as a DSA like

SALSA is beneficial not onl by means of performance, but also

power efficiency. SALSA would benefit from an architecture

different from Rocket. It could be used in a datacenter as a

coprocessor, attached to the main processor with PCIe and

with direct access with the main memory.

V. CONCLUSIONS

This paper presented the design and evaluation of SALSA, a

DSA for sequence alignment. SALSA provides a good tradeoff

between performance, power consumption and programmabil-

ity. The Instruction Set Architecture (ISA) is based on RISC-V,

the architecture has been designed using Chisel HDL and it is

highly extensible, parametrizable and customizable, with the

possibility to modify the microarchitecture by design specific

ALUs and instructions. Comparisons in applications coming

from the genomic domain, with a real-world processor called

Rocket and SeqAn, run on an Intel Xeon E3 demonstrated how

SALSA is up to 790 times more power efficient and up to 60

times more performant. We are confident that increasing the

sizes of the input variables and filling the systolic array, the

performance of SALSA would increase considerably, however,

due to the limitation imposed by Rocket cache size, in this test

we kept the input sizes relatively small being well aware of

the memory limitations. Although SALSA is presented here as

a DSA for sequence alignment, its architecture based on SA

can be efficiently tuned to work well in other scenarios such

as, for example, Neural Network (NN). Furthermore, thanks

to its customizability, SALSA can be configured to be used in

SoCs, on the Edge or even in data centers for HPC workloads.
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