Strength Reduction of Integer Division and Modulo Operations

Saman Amarasinghe, Walter Lee, Ben Greenwald *
M.I.T. Laboratory for Computer Science
Cambridge, MA 02139, U.S.A.
{saman,walt,beng}@lcs.mit.edu
http://www.cag.lcs.mit.edu/raw

Abstract

Integer division, modulo, and remainder operations are expressive and useful operations. They are logical candidates to express many complex data accesses such as the wrap-around behavior in queues using ring buffers and array address calculations in data distribution and cache locality compiler-optimizations. Experienced application programmers, however, avoid them because they are slow. Furthermore, while advances in both hardware and software have improved the performance of many parts of a program, few are applicable to division and modulo operations. This trend makes these operations increasingly detrimental to program performance.

This paper describes a suite of optimizations for eliminating division, modulo, and remainder operations from programs. These techniques are analagous to strength reduction techiques used for multiplications. In addition to some algebraic simplifications, we present a set of optimization techniques which eliminates division and modulo operations that are functions of loop induction variables and loop constants. The optimizations rely on number theory, integer programming and loop transformations.

1 Introduction

This paper describes a suite of optimizations for eliminating division, modulo, and remainder operations from programs. In addition to some algebraic simplifications, we present a set of optimization techniques which eliminates division and modulo operations that are functions of loop induction variables and loop constants. These techniques are analagous to strength reduction techiques used for multiplications.

Integer division and modulo or remainder are expressive and useful operations. They are often the most intuitive way to represent many algorithmic concepts. For example, use of a modulo operation is the most straight-forward way of implementing queues with ring buffers. In addition, compiler optimizations have many opportunities to simplify code generation by using modulo and division instructions. Today, a few compiler optimizations use these operations for address calculation of transformed arrays. The SUIF parallelizing compiler [2, 5], the Maps compiler-managed memory system [7], the Hot Pages software caching system [20], and the C-CHARM memory system [14] all introduce these operations to express the array indexes after transformations.

However, the cost of using division and modulo operations are often prohibitive. Despite their appropriateness to represent various concepts, experienced application programmers avoid them when they care about performance. On the Mips R10000, for example, a divide operation takes 35 cycles, compared to six cycles for a multiply and one cycle for an add. Furthermore, unlike the multiply unit, the division unit has dismal throughput because it is not pipelined. In compiler optimizations which attempt to improve cache behavior or reduce memory traffic, the overhead from the use of modulo and division operations can potentially overwhelm any performance gained.

^{*}This research is funded by Darpa contract # DABT63-96-C-0036 and in part by an IBM Research Fellowship.

Advances in both hardware and software make optimizations on modulo and remainder operations more important today than ever. While modern processors have taken advantage of increasing silicon area by replacing iterative multipliers with faster, non-iterative structures such as Wallace multipliers, similar non-iterative division/modulo functional units have not materialized technologically. Thus, while the performance gap between an add and a multiply has narrowed, the gap between a divide and the other arithmetic operations has either widened or remained the same. Similarly, hardware advances such as caching and branch prediction help reduce the cost of memory accesses and branches relative to divisions. From the software side, better code generation, register allocation, and strength reduction of multiplies increase the relative execution time of portions of code which uses division and modulo operations. Thus, in accordance with Amdahl's law, the benefit of optimizing away these operations is ever increasing.

We believe that if the compiler is able to eliminate the overhead of division and modulo operations, their use will become prevalent. A good example of such a change in programmer behavior is the shift in the use of multiplication instructions in FORTRAN codes over time. Initially, compilers did not strength reduce multiplies [17, 18]. Thus many legacy FORTRAN codes were hand strength reduced by the programmer. Most modern FORTRAN programs, however, use multiplications extensively in address calculations, relying on the compiler to eliminate them. Today, programmers practice a similar laborious practice of hand strength reduction to eliminate division and modulo operations.

This paper introduces a suite of optimizations to strength reduce modulo and division operations. Most of these optimizations concentrate on eliminating these operations from loop nests where the numerator and the denominator are functions of loop induction variables and loop constants. The concept is similar to strength reduction of multiplications. However, a strength reducible multiplication in a loop creates a simple linear data pattern, while modulo and division instructions create complex saw-tooth and step patterns. We use number theory and loop iteration space analysis to identify and simplify these patterns. The elimination of division and modulo operations require complex loop transformations to break the patterns at their discrete points.

Previous work on eliminating division and modulo operations have focused on the case when the denominator is known [1, 12, 19]. We are not aware of any work on the strength reduction of these operations when the denomiator is not known.

The algorithms shown in this paper have been effective in eliminating most of the division and modulo instructions introduced by the SUIF parallelizing compiler, Maps, Hot Pages, and C-CHARM. In some cases, they improve the performance of applications that use the modulo and division operations by more than a factor of ten.

The result of the paper is organized as follows. Section 2 gives a motivational example. Section 3 describes the framework for our optimizations. Section 4 presents the optimizations. Section 5 presents results. Section 6 concludes.

2 Motivation

We illustrate by way of example the potential benefits from strength reducing integer division and modulo operations. Figure 1a shows a simple loop with an integer modulo operation. Figure 1b shows the result of applying our strength reduction techniques to the loop. Similarly, Figure 1c and Figure 1d show a loop with an integer divide operation before and after optimizations. Table 1 and Figure 2 shows the performance of these loops on a wide range of processors. The results show that the performance gain is universally significant, generally ranging from 4.5x to 45x.¹ The thousand-fold speedup for the division loop on the Alpha 21164 arises because, after the division has been strength reduced, the compiler is able to recognize that the inner loop is performing redundant stores. When the array is declared to be volatile, the redundant stores are not optimized away, and the speedup comes completely from the elimination of divisions. This example illustrates that, like any other optimizations, the benefit of div/mod strength reduction can be multiplicative when combined with other optimizations.

¹The speedup on the Alpha is more than twice that of the other architectures because its integer division is emulated in software.

Figure 1: Two sample loops before and after strength reduction optimizations. The run-time inputs are T=500, N=500, and NN=N*N.

	Clock	Inte	ger modulo lo	юр	Integer division loop			
Processor	Speed	No opt.	Opt.	Speedup	No opt.	Opt.	Speedup	
	(MHz)	Figure 1(a)	Figure 1(b)		Figure 1(c)	Figure 1(d)		
SUN Spare 2	70	198.58	41.87	4.74	194.37	40.50	4.80	
SUN Ultra II	270	34.76	2.04	17.03	31.21	1.54	20.27	
MIPS R3000	100	194.42	27.54	7.06	188.84	23.45	8.05	
MIPS R4600	133	42.06	8.53	4.93	43.90	6.65	6.60	
MIPS R4400	200	58.26	8.18	7.12	56.27	6.93	8.12	
MIPS R10000	250	10.79	1.17	9.22	11.51	1.04	11.07	
Intel Pentium	200	32.72	5.07	6.45	32.72	5.70	5.74	
Intel Pentium II	300	24.61	3.83	6.43	25.28	3.78	6.69	
Intel StrongARM SA110	233	48.24	4.27	11.30	43.99	2.67	16.48	
Compaq Alpha 21164	300	19.36	0.43	45.02	15.91	0.01	1591.0	
Compaq Alpha 21164 (volatile array)	300	19.36	0.43	45.02	15.91	0.44	36.16	

Table 1: Performance improvement obtained with the strength reduction of modulo and division operations on several machines. Results are measured in seconds.

Figure 2: Performance improvement obtained with the strength reduction of modulo and division operations on several machines.

3 Framework

To facilitate presentation, we make the following simplifications. First, we assume that both the numerator and denominator expressions are positive unless explicitly stated otherwise. The full compiler system has to check for all the cases and handle them correctly, but sometimes the compiler can deduce the sign of an expression from its context or its use, e.g. an array index expression. Second, we describe our optimizations for modulo operations, which are equivalent to remainder operations when both the numerators and the divisors are positive.

Most of the algorithms introduced in this paper strength reduce integer division and modulo operations by identifying their value pattern. For that, we need to obtain the value ranges of numerator and denominator expressions of the division and modulo operations. We concentrate our effort on loop nests by obtaining the value ranges of the induction variables, since many of the strength-reducible operations are found within loops, and optimizing modulo and division operations in loops have a much higher impact on performance. Finding the value ranges of induction variables is equivalent to finding the iteration space of the loop nests.

First, we need a representation for iteration spaces of the loop nests and the numerator and denominator expressions of the division and modulo operations. Representing arbitrary iteration spaces and expressions accurately and analyzing them is not practical in a compiler. Thus, we restrict our analysis to loop bounds and expressions that are affine functions of induction variables and loop constants. Within this domain, the iteration spaces can be viewed as multi-dimensional convex regions in an integer space [2, 3, 4]. In this paper, we use systems of inequalities to represent these multi-dimensional convex regions. In fact, the same representation is also used for representing the expressions. By using this powerful representation, we can perform many of the necessary analyses and strength reduction optimizations through mathematical manipulations of the systems of inequalities. There are many other representations developed over the years which might have been used [6, 13, 15, 16, 21, 22, 25, 26].

Definition 3.1 Assume a p-deep (not necessarily perfectly nested) loop nest of the form:

 $\begin{array}{l} \text{FOR } i_1 = \max(l_{1,1}..l_{1,m_1}) \text{ TO } \min(h_{1,1}..h_{1,n_1}) \text{ DO} \\ \text{FOR } i_2 = \max(l_{2,1}..l_{2,m_2}) \text{ TO } \min(h_{2,1}..h_{2,n_2}) \text{ DO} \\ & \dots \\ \\ \text{FOR } i_p = \max(l_{p,1}..l_{p,m_p}) \text{ TO } \min(h_{p,1}..h_{p,n_p}) \text{ DO} \\ & /* \text{ the loop body } */ \end{array}$

where $v_1, ..., v_q$ are symbolic constants in the loop nest (variables unchanged within the loop), and $l_{x,y}$ and $h_{x,y}$ are affine functions of the variables $v_1, ..., v_q, i_1, ..., i_{x-1}$. We define the context of the body of the k^{th} loop recursively:

$$\mathcal{F}_k = \mathcal{F}_{k-1} \land \left\{ i_k \mid \bigwedge_{j=1,\dots,m_k} i_k \ge l_{k,j} \land \bigwedge_{j=1,\dots,n_k} i_k \le h_{k,j} \right\}$$

The loop bounds in this definition contain max and min functions because many compiler-generated loops, including those generated in optimizations 10 and 11, produce such bounds.

Note that the symbolic constants $v_1, ..., v_q$ need not be defined within the context. If we are able to obtain information on their value ranges, we include them into the context. Even without a value range, the coefficients of these variables provide valuable information on the integer solutions to the system.

We perform loop normalization and induction variable detection analysis prior to strength reduction so that all the FOR loops are in the above form. Whenever possible, any variable defined within the loop nest is written as affine expressions of the induction variables.

Definition 3.2 Given context \mathcal{F} with symbolic constants $v_1, ..., v_q$ and loop index variables $i_1, ..., i_p$, an affine integer division (or modulo) expression within it is represented by a 3-tuple $\langle N, D, \mathcal{F} \rangle$ where N and D are defined by the affine functions: $N = n_0 + \sum_{1 \le j \le q} n_j v_q + \sum_{1 \le j \le p} n_{j+q} i_j$, $D = d_0 + \sum_{1 \le j \le q} d_j v_q$. The division expression is represented by N/D. The modulo expression is represented by N%D.

We restrict the denominator to be functions of only symbolic constants. We rely on this invariance property of the denominator to perform several loop level optimizations.

Using the integer programming technique of Fourier-Motzkin Elimination [8, 9, 10, 23, 27], we manipulate the systems of inequalities for both analysis and loop transformation purposes. In many analyses, we use this technique to identify if a system of inequalities is empty, i.e. no set of values for the variables will satisfy all the inequalities. Fourier-Motzkin elimination is also used to simplify a system of inequalities by eliminating redundant inequalities. For example, a system of inequalities $\{I \ge 5, I \ge a, I \ge b, a \ge 10, b \le 4\}$ can be simplified to $\{I \ge 10, I \ge a, a \ge 10, b \le 4\}$. In many optimizations discussed in this paper, we create a new context to represent a transformed iteration space that will result in elimination of modulo and division operations. We use Fourier-Motzkin projection to convert this system of inequalities into the corresponding loop nest. This process guarantees that the loop nest created has no empty iterations and loop bounds are the simplest and tightest [2, 3, 4].

3.1 Expression relation

Definition 3.3 *Given affine expressions* A *and* B *and a context* \mathcal{F} *describing the value ranges of the variables in the expressions, we define the following relations:*

- $Relation(A < B, \mathcal{F})$ is true iff the system of inequalities $\mathcal{F} \land \{A \ge B\}$ is empty.
- $Relation(A \leq B, \mathcal{F})$ is true iff the system of inequalities $\mathcal{F} \land \{A > B\}$ is empty.
- $Relation(A > B, \mathcal{F})$ is true iff the system of inequalities $\mathcal{F} \land \{A \leq B\}$ is empty.
- $Relation(A \ge B, \mathcal{F})$ is true iff the system of inequalities $\mathcal{F} \land \{A > B\}$ is empty.

3.2 Iteration count

Definition 3.4 Given a loop FOR i = L TO U DO with context \mathcal{F} , where $L = max(l_1, ..., l_n)$, $U = min(u_1, ..., u_m)$, the number of iterations niter can be expressed as follows:

 $niter(L, U, \mathcal{F}) = \min\{k | k = u_y - l_x + 1; x \in [1, n]; y \in [1, m]\}$

4 Optimization Suite

This section describes our suite of optimizations to eliminate integer division and modulo instructions.

4.1 Algebraic simplifications

First, we describe simple optimizations that do not require any knowledge about the value ranges of the source expressions.

4.1.1 Number theory axioms

Many number theory axioms can be used to simplify division and modulo operations [11]. Even if the simplification does not immediately eliminate operations, it is important because it can lead to further optimizations.

Optimization 1 Simplify the modulo and division expressions using the following algebraic simplification rules.

 f_1 and f_2 are expressions, g is a variable or a constant, and c, c_1 , c_2 and d are constants.

$$\begin{array}{rcl} (f_1g + f_2)\%g &\implies f_2\%g \\ (f_1g + f_2)/g &\implies f_1 + f_2/g \\ (c_1f_1 + c_2f_2)\%d &\implies ((c_1\%d)f_1 + (c_2\%d)f_2)\%d \\ (c_1f_1 + c_2f_2)/d &\implies ((c_1\%d)f_1 + (c_2\%d)f_2)/d + (c_1/d)f_1 + (c_2/d)f_2 \\ (cf_1g + f_2)\%(dg) &\implies ((c\%d)f_1g + f_2)\%(dg) \\ (cf_1g + f_2)/(dg) &\implies ((c\%d)f_1g + f_2)/(dg) + (c/d)f_1 \end{array}$$

4.1.2 Special case for power-of-two denominator

When the numerator expression is positive and the denominator expression is a power of two, the division or modulo expression can be strength reduced to a less expensive operation.

Optimization 2 Given a division and modulo expression $\langle N, D, \mathcal{F} \rangle$, if $D = 2^d$ for some constant positive integer *d*, then the division and modulo expression can be simplified to a right shift N >> d and bitwise and N&(D-1), respectively.

4.1.3 Reduction to conditionals

A broad range of modulo and division expressions can be strength reduced into a conditional statement. Since we prefer not to segment basic blocks because it inhibits other optimizations, we attempt this optimization as a last resort.

Optimization 3 Let $\langle N, D, \mathcal{F} \rangle$ be a modulo or division expression in a loop of the following form
--

 $\begin{array}{l} \mbox{FOR } i = L \mbox{ TO } U \mbox{ DO} \\ x = N\%D \\ y = N/D \\ \mbox{ENDFOR} \end{array}$

Let n be the coefficient of i in N, and let $N^- = N - n * i$. Then if n < D, the loop can be transformed to the following:

```
\begin{array}{l} \mathcal{M}dx = (n*L+N^{-})\% D\\ \mathcal{m}Dy = (n*L+N^{-})/D\\ \mathsf{FOR}\ i = L\ \mathsf{TO}\ U\ \mathsf{DO}\\ x = \mathcal{M}dx\\ y = \mathcal{m}Dy\\ \mathcal{M}dx + = n\\ \mathsf{IF}\ \mathcal{M}dx \geq D\ \mathsf{THEN}\\ \mathcal{M}dx = \mathcal{M}dx - D\\ \mathcal{m}Dy = \mathcal{m}Dy + 1\\ \mathsf{ENDIF}\\ \mathsf{ENDFR}\end{array}
```

Note that the statement x = x%D can be simplified to x = 0 when n = 1.

4.2 **Optimizations using value ranges**

The following optimizations not only use number theory axioms, they also take advantage of compiler knowledge about the value ranges of the variables associated with the modulo and division operations.

4.2.1 Elimination via simple continuous range

Suppose the context allows us to prove that the range of the numerator expression does not cross a multiple of the denominator expression. Then for a modulo expression, we know that there is no wrap-around. For a division expression, the result has to be a constant. In either case, the operation can be eliminated.

Optimization 4 Given a division or modulo expression $\langle N, D, \mathcal{F} \rangle$, if $Relation(N \ge 0 \land D \ge 0, \mathcal{F})$ and $Relation(kD \le N < (k+1)D, \mathcal{F})$ for some $k \in Z$, then the expressions reduce to k and N - kD respectively.

Optimization 5 Given a division or modulo expression $\langle N, D, \mathcal{F} \rangle$ if $Relation(N < 0 \land D \ge 0, \mathcal{F})$ and $Relation(kD < N \le (k-1)D, \mathcal{F})$ for some $k \in Z$, then the expressions reduce to k and N + kD, respectively.

4.2.2 Elimination via integral stride and continuous range

This optimization is predicated on identifying two conditions. First, the numerator must contain an index variable whose coefficient is a divisor of the denominator. Second, the numerator less this index variable term does not cross a multiple of the denominator expression. These conditions are common in the modulo and division expressions which are part of the address computations of compiler-transformed linearized multidimensional arrays.

Optimization 6 Given modulo or division expression $\langle N, D, \mathcal{F} \rangle$, let i be an index variable in \mathcal{F} , n be the coefficient of i in N, and $N^- = N - n * i$. If n%D = 0 and there exist an integer k such that $kD \leq N^- < (k+1)D$, then the modulo and division expressions can be simplified to $N^- - kD$ and (n/D)i + k, respectively.

4.2.3 Elimination through absence of discontinuity in the iteration space

Many modulo and division expressions do not create discontinuities within the iteration space. If this can be guaranteed, then the expressions can be simplified. Figure 3(a) shows an example of such an expression with no discontinuity in the iteration space.

Optimization 7 Let $\langle N, D, \mathcal{F} \rangle$ be a modulo or division expression in a loop of the following form:

FOR i = L TO U STEP S DO x = N%D y = N/DENDFOR

Let n be the coefficient of i in N, $N^- = N - n * i$, and $(n * L + N^-)\% D = k$. Then if $Relation(niter(L, U, \mathcal{F}) < D/n + k, \mathcal{F})$, the loop can be transformed into the following:

 $\begin{array}{l} _mDy = (n*L+N^-)/D \\ _Mdx = k \\ \text{FOR } i = L \text{ TO } U \text{ DO } \\ x = _Mdx \\ y = _mDy \\ _Mdx = _Mdx + n \\ \text{ENDFOR} \end{array}$

4.2.4 Optimization for non-unit loop steps

If a loop has a step size which is a multiple of the coefficient of the loop index in the numerator expression, the modulo expression is constant within the loop and the division expression is linear. Figure 3(b) provides an example of such an expression.

Optimization 8 Let $\langle N, D, \mathcal{F} \rangle$ be a modulo or division expression in a loop of the following form:

FOR i = L TO U STEP S DO x = N%D y = N/DENDFOR

Let n be the coefficient of i in N and $N^- = N - n * i$. Then if D%(S * n) = 0, the loop can be transformed to the following:

Figure 3: Original and optimized code segments for several modulo and division expressions. The x-axes are the iteration spaces. The y-axes are numeric values. The solid diamonds are values of the modulo expression. The open squares are the values of the division expression. The solid lines represent the original iteration space boundaries. The dash lines represent the boundaries of the transformed loops.

 $\begin{array}{l} _Mdx = (n*L+N^-)\% D\\ _mDy = (n*L+N^-)/D\\ \text{FOR } i = L \ \text{TO } U \ \text{STEP } S \ \text{DO} \\ x = _Mdx\\ y = _mDy\\ _mDy = _mDy + (S/n)\\ \text{ENDFOR} \end{array}$

4.3 Optimizations using Loop Transformations

The next set of optimizations perform loop transformations to create new iteration spaces which have no discontinuity. For each loop, we first analyze all its expressions to collect a list of necessary transformations. We then eliminate any redundant transformations.

4.3.1 Loop partitioning to remove a single discontinuity

For some modulo and division expressions, the number of iterations in the loop will be less than the distance between discontinuities. But a discontinuity may still occur in the iteration space if it is not aligned to the iteration boundaries. When this occurs, we can either split the loop or peel the iterations. We prefer peeling iterations if the discontinuity is close to the iteration boundaries. This optimization is also paramount when a loop contains multiple modulo and division expressions, each with the same denominator and whose numerators are in the same uniformly generated set [13, 29]. In this case, one of the expressions can have an aligned discontinuity while others may not. Thus, it is necessary to split the loop to optimize all the modulo and division expressions. Figure 3(c) shows an example where loop partitioning eliminates a single discontinuity.

Optimization 9 Let $\langle N, D, \mathcal{F} \rangle$ be a modulo or division expression in a loop of the following form:

 $\begin{array}{l} \mbox{FOR } i = L \mbox{ TO } U \mbox{ DO} \\ x = N\%D \\ y = N/D \\ \mbox{ENDFOR} \end{array}$

Let *n* be the coefficient of *i* in *N* and $N^- = N - n * i$. Then if D%n = 0 and $Relation(niter(L, U, \mathcal{F}) < n * D, \mathcal{F})$ and $(n * L + N^-)\%D = k$, the loop can be transformed to the following:

```
\begin{array}{l} \lrcorner kx = (n*L+N^-)\% D\\ \lrcorner Mdx = \lrcorner kx\\ \lrcorner mDy = (n*L+N^-)/D\\ \lrcorner cut = min((D-k+n-1)/n+L,U)\\ {\sf FOR}\ i = L\ {\sf TO}\ \_cut - 1\ {\sf DO}\\ x = \_Mdx\\ y = \_mDy\\ \_Mdx = \lrcorner Mdx + 1\\ {\sf ENDFOR}\\ \lrcorner Mdx = \lrcorner kx\\ \lrcorner mDy = \_mDy + 1\\ {\sf FOR}\ i = \_cut\ {\sf TO}\ U\ {\sf DO}\\ x = \_Mdx\\ y = \_mDy\\ \_Mdx = \lrcorner Mdx + 1\\ {\sf ENDFOR}\\ \end{array}
```

4.3.2 Loop tiling to eliminate discontinuities within the iteration space

In many cases, the value range identified still leads to discontinuities in the division and modulo expressions. This section explains how to strength reduce these expressions by performing loops transformations such that the resulting loop nest will move the discontinuities to the boundaries of the iteration space. Thus, modulo and division optimizations can be completely eliminated or propagated out of the inner loops. Figure 3(d) shows an example requiring this optimization.

When the iteration space has a pattern with a large number of discontinuities repeating themselves, breaking a loop into two loops such that the discontinuities occur at the boundaries of the second loop will let us optimize the modulo and division operations. Optimization 10 adds an additional restriction to the lower bound so that no preamble is needed. Optimization 11 eliminates that restriction.

Optimization 10 Let $\langle N, D, \mathcal{F} \rangle$ be a modulo or division expression in a loop of the following form:

 $\begin{array}{l} \mbox{FOR } i=L \mbox{ TO } U \mbox{ DO} \\ x=N\%D \\ y=N/D \\ \mbox{ENDFOR} \end{array}$

Let n be the coefficient of i in N and $N^- = N - n * i$. Then if D%n = 0 and $(n * L + N^-) = 0$, the loop can be transformed to the following:

$$\begin{array}{l} -mDy = (n*L+N^{-})/D\\ \text{FOR } ii = L/(D/n) \text{ TO } (U+D/n-1)/(D/n) \text{ DO}\\ _Mdx = 0\\ \text{FOR } i = max(ii*(D/n), L) \text{ TO } min(ii*(D/n)+D/n-1, U) \text{ DO}\\ x = _Mdx\\ y = _mDy\\ _Mdx = _Mdx + n\\ \text{ENDFOR}\\ _mDy = _mDy + 1\\ \text{ENDFOR} \end{array}$$

Optimization 11 For the loop nest and the modulo and division statements described in optimization 10, if D%n = 0 then the above loop nest is transformed to the following form:

```
\_brklb = min((D/n) * ((n * L + N^{-})/D + 1) - N/n, U)
\_Mdu = (n * L + N^{-})\%D
mDv = (n * L + N^{-})/D
FOR i = L TO \_brklb - 1 DO
 u = \_M du
 v = \_mDv
  -Mdu = -Mdu + 1
ENDFOR
\_stu = (n \ast \_brklb + N^-)\%D
FOR ii = brklb/(D/n) TÓ (U + D/n - 1)/(D/n) DO
 _M du = \_stu
  mDv = mDv + 1
 FOR i = brklb TO min(ii * D/n + D/n - 1, U) DO
   u = \_M du
   v = \_mDv
    -Mdu = -Mdu + 1
  ENDFOR
ENDFOR
```

4.3.3 General loop transformation for loop access of single class

It is possible to transform a loop to eliminate discontinuities with very little knowlegth about the iteration space and value ranges. The following transformation can be applied to any loop containing a single arbitrary instance of affine modulo/division expressions.

Optimization 12 Let $\langle N, D, \mathcal{F} \rangle$ be a modulo or division expression in a loop of the following form:

FOR
$$i = L$$
 TO U DO
 $x = N\%D$
 $y = N/D$
ENDFOR

Let n be the coefficient of i in N and $N^- = N - n * i$. Then the loop can be transformed to the following:

```
\mathsf{IF} \ modval \geq D \ \mathsf{THEN}
\mathsf{SUB}\ FindNiceL(L, D, coeff, N^{-})
                                                                    modval - = D
  \begin{array}{l} \mathsf{IF} \ coeff = 0 \ \mathsf{THEN} \\ \mathsf{RETURN} \ L \end{array} 
                                                                    divval + = 1
                                                                  ENDIF
  ELSE
                                                                ENDFOR
    VLden = ((L * coeff + N^{-} - 1)/D) * D
    VLbase = L * coeff + N^{-} - VLden
NiceL = L + (D - VLbase + coeff - 1)/coeff
                                                                \mathsf{DO} \: \mathsf{WHILE} \: i < niceU
                                                                  FOR i2 = 1 TO perIter
    RETURN NiceL
                                                                    x = modval
  ENDIE
                                                                    y = divval
ENDSUB
                                                                    modval + = r
                                                                    divval + = k
k\,=\,coeff/D
                                                                    i + +
r = coeff - k * D
                                                                  ENDFOR
                                                                  \mathsf{IF} \ modval < D \ \mathsf{THEN}
IF R! = 0 THEN
                                                                   x = modval
 perIter = D/r
                                                                    y = divval
                                                                    modval + = r
  niceL = FindNiceL(L, D, r, N^{-})
                                                                    divval + = k
  niceNden = (U - niceL + 1)/D
                                                                    i + +
 niceU = niceL + niceNden * D
                                                                  ENDIF
ELSE
                                                                  \mathsf{IF} modval! = 0 \mathsf{THEN}
 perIter = U - L
                                                                    modval - = D
                                                                    divval + = 1
  niceL = L
                                                                  ENDIF
  niceU = U + 1
                                                                ENDDO
ENDIF
                                                                FOR i2 = niceU TO U
modval = (coeff * L + N^{-})\%D
                                                                  x = modval
divval = (coeff * L + N^-)/D
                                                                  y = divval
i = L
                                                                  modval + = r
                                                                  divval + = k
FOR i2 = L TO niceL - 1
                                                                  i + +
 x = modval
                                                                  \mathsf{IF} \ modval \geq D \ \mathsf{THEN}
  y = divval
                                                                    modval = D
  modval + = r
                                                                    divval + = 1
  divval + = k
                                                                  ENDIF
  i + +
                                                                ENDFOR
```

4.3.4 General loop transformation for arbitrary loop accesses

Finally, the following tranformation can be used for loops with arbitrarily many affine accesses. Note, however, that in extreme cases the tranformation may lead to slowdown due to more complex control.

Optimization 13 Given a loop with affine modulo or division expressions:

```
FOR i = L TO U DO
                                                                          x_1 = a_1 * iop_1 d_1
                                                                          x_2 = a_2 * iop_2 d_2
                                                                          ...
                                                                          x_n = a_n * iop_n d_n
                                                                        ENDFOR
where op_i is either mod or div, the loop can be transformed into:
                  \mathsf{SUB}\ FindBreak(L, U, den, coeff, const)
                     \mathsf{IF} \ coeff = 0 \ \mathsf{THEN}
                                                                                            i - L
                       RETURN U + 1
                                                                                            DO WHILE i \leq U
                     ELSE
                                                                                               Break = \overline{min}(U+1, break_j | j \in [1, n])
                                                                                              FOR i = i TO Break
                        VLden = ((L*coeff+konst)/den)*den
                       \label{eq:VLbase} \begin{split} VLbase &= \overset{\frown}{L} * coeff + konst - VLden \\ Break &= L + (den - VLbase + coeff - 1)/coeff \end{split}
                                                                                                 x_1 = val_1[op_j]
                                                                                                 val_1[mod] + = r_1
                                                                                                 val_1[div] \dot{+} = k_1
                       \mathsf{RETURN}\ B\,rea\,k
                                                                                                 x_2 = val_2[op_j]
                     ENDIF
                                                                                                 val_2[mod] + = r_2
                  ENDSUB
                                                                                                 val_2[div] + = k_2
                                                                                              ENDFOR
                  FOR j = 1 TO n
                     k_{j} = a_{j}/d_{j}
                     r_j = a_j - k_j - d_j
                                                                                              FOR j = 1 TO n
                                                                                                \mathsf{IF} Break = break_j \mathsf{THEN}
                     val_j[mod] = (a_j * L + b_j)\%d_j
                                                                                                   val_j[mod] - = d_j
                     val_j[div] = (a_j * L + b_j)/d_j
                                                                                                   val_j[div] + = 1
                                                                                                   break_{i} = findBreak(i+1, U, d_{i}, r_{i}, b_{i})
                  break_{j} = FindBreak(L, U, d_{j}, r_{j}, b_{j}) \\ \mathsf{ENDFOR}
                                                                                                 ENDIF
                                                                                              ENDFOR
                                                                                            ENDDO
```

4.4 Min/Max Optimizations

Some loop transformations, such as those in Section 4.3, produce minimum and maximum operations. This section describes methods for eliminating them.

4.4.1 Min/Max elimination by evaluation

If we have sufficient information in the context to prove that one of the operand expressions is greater (smaller) than the rest of the operands, we can use that fact to get rid of the max (min) operation from the expression.

Optimization 14 Given a min expression $min(N_1, ..., N_m)$ with a context \mathcal{F} , if there exists k such that for all $0 \le i \le m$, $Relation(N_k \le N_i, \mathcal{F})$, then $min(N_1, ..., N_m)$ can be reduced to N_k .

Optimization 15 Given a max expression $max(N_1, ..., N_m)$ with a context \mathcal{F} , if there exists k such that for all $0 \le i \le m$, $Relation(N_k \ge N_i, \mathcal{F})$, then $max(N_1, ..., N_m)$ can be reduced to N_k .

4.4.2 Min/Max simplification by evaluation

Even if we are able to prove few relationships between pairs of operands, it can result in a min/max operation with fewer number of operands.

Optimization 16 Given a min expression $min(N_1,...,N_m)$ with a contxt \mathcal{F} , if there exists i, k such that $0 \leq i, k \leq m, i \neq k$, $Relation(N_i \leq N_k, \mathcal{F})$ is valid, then $min(N_1,...,N_m)$ can be reduced to $min(N_1,...,N_{k-1},N_{k+1},...,N_m)$.

Optimization 17 Given a max expression $max(N_1, ..., N_m)$ with a context \mathcal{F} , if there exists i, k such that $0 \leq i, k \leq m, i \neq k$, $Relation(N_k \geq N_i, \mathcal{F})$, then $min(N_1, ..., N_m)$ can be reduced to $max(N_1, ..., N_{k-1}, N_{k+1}, ..., N_m)$.

4.4.3 Division folding

The arithmetic properties of division allow us to fold a division instruction into a min/max operation. This folding can create simpler division expressions that can be further optimized. However, if further optimizations do not eliminate these division operations, the division folding should be un-done to remove potential negative impact on performance.

Optimization 18 Given an integer division expression with a min/max operation $\langle min(N_1,...,N_m), D, \mathcal{F} \rangle$ or $\langle max(N_1,...,N_m), D, \mathcal{F} \rangle$, if Relation $(D > 0, \mathcal{F})$ holds, rewrite min and max as $min(\langle N_1, D, \mathcal{F} \rangle, ..., \langle N_m, D, \mathcal{F} \rangle)$ and $max(\langle N_1, D, \mathcal{F} \rangle, ..., \langle N_m, D, \mathcal{F} \rangle)$ respectively.

Optimization 19 Given an integer division expression with a min/max operation $\langle min(N_1,...,N_m), D, \mathcal{F} \rangle$ or $\langle max(N_1,...,N_m), D, \mathcal{F} \rangle$, if Relation $(D < 0, \mathcal{F})$ holds, rewrite min and max as $max(\langle N_1, D, \mathcal{F} \rangle, ..., \langle N_m, D, \mathcal{F} \rangle)$ and $min(\langle N_1, D, \mathcal{F} \rangle, ..., \langle N_m, D, \mathcal{F} \rangle)$ respectively.

4.4.4 Min/Max elimination in modulo equivalence

Note that $a \le b$ does not lead to $a\%c \le b\%c$. Thus there is no general method for folding modulo operations. However, if we can prove that the results of taking the modulo of each of the min/max operands are the same, we can eliminate the min/max operation. **Optimization 20** Given an integer modulo expression with a min/max operation $\langle min(N_1, ..., N_m), D, \mathcal{F} \rangle$ or $\langle min(N_1, ..., N_m), D, \mathcal{F} \rangle$, if $\langle N_1, D, \mathcal{F} \rangle \equiv ... \equiv \langle N_m, D, \mathcal{F} \rangle$, then we can rewrite the modulo expression as $\langle N_1, D, \mathcal{F} \rangle$.

Note that all $\langle N_k, D, \mathcal{F} \rangle$ $(1 \leq k \leq m)$ are equivalent, thus we can choose any one of them as the resulting expression.

4.4.5 Min/Max expansion

Normally min/max operations are converted into conditionals late in the compiler during code generation. However, if any of the previous optimizations are unable to eliminate the div/mod instructions, lowering the min/max will simplify the modulo and division expressions, possibly leading to further optimizations. To simplify the explanation, we describe Optimizations 21 and 22 with only two operands in the respective min and max expressions.

Optimization 21 A mod/div statement with a min operation, $res = \langle min(N_1, N_2), D, \mathcal{F} \rangle$, gets lowered to

 $\begin{array}{l} \mbox{IF } N_1 < N_2 \mbox{ THEN} \\ res = \langle N_1, D, \mathcal{F} \wedge \{N_1 < N_2\} \rangle \\ \mbox{ELSE} \\ res = \langle N_2, D, \mathcal{F} \wedge \{N_1 \geq N_2\} \rangle \\ \mbox{ENDIF} \end{array}$

Optimization 22 A mod/div statement with a max operation, $res = \langle max(N_1, N_2), D, \mathcal{F} \rangle$, gets lowered to

$$\begin{split} & \text{IF } N_1 > N_2 \text{ THEN} \\ & res = \langle N_1, D, \mathcal{F} \land \{N_1 > N_2\} \rangle \\ & \text{ELSE} \\ & res = \langle N_2, D, \mathcal{F} \land \{N_1 \leq N_2\} \rangle \\ & \text{ENDIF} \end{split}$$

5 Results

We have implemented the optimizations described in this paper as a compiler pass in SUIF [28] called Mdopt. This pass has been used as part of several compiler systems: the SUIF parallelizing compiler [2], the Maps compiler managed memory system in Rawcc, the Raw parallelizing compiler [7], the Hot Pages software caching system [20], and the C-CHARM memory system [14]. All those systems introduce modulo and division operations when they manipulate array address computations during array transformations. This section presents some of the performance gain when applying Mdopt to code generated by those systems.

5.1 C-CHARM Memory Localization System

The C-CHARM memory localization compiler system [14] attempts to do much of the work traditionally done by hardware caches. The goal of the system is to generate code for an exposed memory hierarchy. Data is moved explicitly from global or off-chip memory to local memory before it is needed and vice versa when the compiler determines it can no longer hold the value locally.

C-CHARM analyses the reuse behavior of programs to determine how long a value should be held in local memory. Once a value is evicted, its local memory location can be reused. This local storage equivalence for global memory values is implemented with a circular buffer. The references which share memory values are mapped into the same circular buffer, and their address calculations are rewritten with modulo operations. It is these modulo operations which map two different global addresses to the same local address. It is these operations we have sought to remove with Mdopt.

Table 2 shows the speedup from applying modulo/division optimizations on C-CHARM generated code running on a single processor machine.

Benchmarks	Speedup
convolution	15.6
jacobi	17.0
median-filter	2.8
sor	8.0

Table 2: Speedup from applying mdopt to C-CHARM generated code run on an Ultra 5 Workstation.

5.2 Maps Compiler Managed Memory System

Benchmark	N=1	N=2	N=4	N=8	N=16	N=32
life	0.98	0.31	0.35	0.26	0.35	0.28
jacobi	1.00	0.21	0.12	0.10	0.10	0.03
cholesky	1.00	0.28	0.23	0.20	0.18	0.09
vpenta	1.00	0.72	0.52	0.40	*	*
btrix	1.00	0.34	0.29	0.74	0.80	0.78
tomcatv	1.14	0.32	0.24	0.17	0.14	*
ocean	1.00	0.73	0.59	0.71	0.41	0.34
swim	1.00	1.00	0.94	1.00	1.00	1.00
adpcm	0.91	0.91	0.89	0.91	0.91	0.94
moldyn	1.00	1.01	1.01	1.00	0.94	0.88

Table 3: Slowdown from divs and mods introduced by array transformations on Maps. * indicates missing entries because gcc runs out of memory.

Benchmark	N=1	N=2	N=4	N=8	N=16	N=32
life	1.00	2.20	2.17	6.03	19.42	17.64
jacobi	1.00	4.22	6.51	3.33	2.52	6.44
cholesky	1.00	3.62	4.12	3.41	2.54	1.85
vpenta	1.00	1.18	1.48	1.98	*	*
btrix	1.00	3.19	2.26	1.00	1.00	0.96
tomcatv	1.00	2.81	3.19	7.49	6.86	*
ocean	1.00	1.60	1.70	2.00	2.33	3.82
swim	1.00	1.00	1.00	1.00	1.00	0.95
adpcm	1.00	1.00	1.00	1.00	1.00	1.00
moldyn	1.03	1.00	1.03	1.00	1.00	0.97

Table 4: Speedup from applying mdopt to array transformed code.

Maps is the memory management front end of the Rawcc parallelizing compiler [7], which targets the MIT Raw architecture [24]. It distributes the data in an input sequential program across the individual memories of the Raw tiles. The system low-order interleaves arrays whose accesses are affine functions of enclosing loop induction variables. That is, for an N-tile Raw machine, the k^{th} element of an "affine" array A becomes the $(k/N)^{th}$ element of partial array A on tile k% N. Mdopt is used to simplify the tile number into a constant, as well as to eliminate the divide operations in the resultant address computations.

Figures 3- 5 show the impact of the transformations. Because Mdopt plays an essential correctness role in the Rawcc compiler (Rawcc relies on Mdopt to reduce the tile number expressions to constants), it is not possible to directly compare performance on the Raw machine with and without the optimization. Instead, we compile the C sources before and after the optimization on an Ultrasparc workstation, and we use that as the basis for comparison.

Figure 3 shows the performance after the initial low-order interleaving data transformation. This transformation

Benchmark	N=1	N=2	N=4	N=8	N=16	N=32
life	0.98	0.67	0.75	0.95	2.56	2.71
jacobi	1.00	0.95	0.82	0.34	0.23	0.20
cholesky	1.00	1.00	0.95	0.68	0.50	0.23
vpenta	1.00	0.78	0.77	0.78	*	*
btrix	0.97	0.98	0.64	0.63	0.79	0.77
tomcatv	1.16	0.95	0.82	0.82	0.53	*
ocean	1.00	0.99	0.84	1.10	1.11	0.99
swim	1.00	1.00	0.94	1.00	0.95	1.00
adpcm	0.91	0.91	0.89	0.88	0.91	0.91
moldyn	1.00	1.01	1.01	1.00	0.93	0.87

Table 5: Overall performance gain from array transformations.

introduces division and modulo operations and leads to dramatically slower code, as much as 33 times slowdown for 32-way interleaved jacobi. Figure 4 shows the performance gain of running Mdopt on the low-order interleaved code. The speedup attained is as dramatic as the previous slowdown, as much as 18 times speedup for 32-way interleaved life. Finally, Table 5 shows the overall performance gain. In many cases the Mdopt is able to recover most of the performance lost due to the interleaving transformation. This recovery, in turn, helps make it possible for the compiler to attain overall speedup by parallelizing the application.

6 Conclusion

This paper introduces a suite of techniques for eliminating division, modulo, and remainder operations. The techniques are based on number theory, integer programming, and strength-reduction loop transformation techniques. To our knowledge this is the first work which provide modulo and division optimizations for expressions whose denominators are non-constants.

We have implemented our suite of optimizations in a SUIF compiler pass. The compiler pass has proven to be useful across a wide variety compiler optimizations which does data transformations and manipulate address computations. For some benchmarks with high data to computation ratio, an order of magnitude speedup can be achieved.

We believe that the availability of these techniques will make divisions and modulo operations more useful to programmers. Programmers will no longer need to make the painful tradeoff between expressiveness and performance when deciding whether to use these operators.

Acknowledgments

The idea of a general modulo/division optimizer was inspired from joint work with Monica Lam and Jennifer Anderson on data transformations for caches. Chris Wilson suggested the reduction of conditionals optimization. Rajeev Barua integrated the mdopt into the Raw compiler, while Andras Moritz integrated the pass into Hot Pages.

References

- [1] R. Alverson. Integer division using reciprocals. In *Proceedings of the Tenth Symposium on Computer Arithmetic*, Grenoble, France, June 1991.
- [2] S. Amarasinghe. Parallelizing Compiler Techniques Based on Linear Inequalities. In *Ph.D Thesis, Stanford University*. *Also appears as Techical Report CSL-TR-97-714*, Jan 1997.

- [3] C. Ancourt and F. Irigoin. Scanning polyhedra with do loops. In *Proceedings of the Third ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming*, pages 39–50, Williamsburg, VA, Apr. 1991.
- [4] M. Ancourt. Génération Automatique de Codes de Transfert pour Multiprocesseurs à Mémoires Locales. PhD thesis, Université Paris VI, Mar. 1991.
- [5] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data and computation transformations for multiprocessors. In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pages 166– 178, Santa Barbara, CA, July 1995.
- [6] V. Balasundaram and K. Kennedy. A technique for summarizing data access and its use in parallelism enhancing transformations. In *Proceedings of the SIGPLAN '89 Conference on Programming Language Design and Implementation*, Portland, OR, June 1989.
- [7] R. Barua, W. Lee, S. Amarasinghe, and A. Agarwal. Maps: A Compiler-Managed Memory System for Raw Machines. In Proceedings of the 26th International Symposium on Computer Architecture, Atlanta, GA, May 1999.
- [8] G. Dantzig. Linear Programming and Extensions. Princeton University Press, Princeton, NJ, 1963.
- [9] G. Dantzig and B. Eaves. Fourier-Motzkin elimination and its dual. Journal of Combinatorial Theory (A), 14:288–297, 1973.
- [10] R. Duffin. On Fourier's analysis of linear inequality systems. In *Mathematical Programming Study 1*, pages 71–95. North-Holland, 1974.
- [11] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, Reading, MA, 1989.
- [12] T. Granlund and P. Montgomery. Division by invariant integers using multiplication. In Proceedings of the SIGPLAN '94 Conference on Programming Language Design and Implementation, Orlando, FL, June 1994.
- [13] E. D. Granston and A. Veidenbaum. Detecting redundant accesses to array data. In *Proceedings of Supercomputing '91*, Albuquerque, NM, Nov. 1991.
- [14] B. Greenwald. A Technique for Compilation to Exposed Memory Hierarchy. Master's thesis, M.I.T., Department of Electrical Engineering and Computer Science, September 1999.
- [15] T. Gross and P. Steenkiste. Structured dataflow analysis for arrays and its use in an optimizing compiler. Software— Practice and Experience, 20(2):133–155, Feb. 1990.
- [16] P. Havlak and K. Kennedy. An implementation of interprocedural bounded regular section analysis. *IEEE Transactions on Parallel and Distributed Systems*, 2(3):350–360, July 1991.
- [17] S. M. Joshi and D. M. Dhamdhere. A composite hoisting-strength reduction transformation for global program optimization (part I). *Internat. J. Computer Math*, 11:21–41, 1982.
- [18] S. M. Joshi and D. M. Dhamdhere. A composite hoisting-strength reduction transformation for global program optimization (part II). *Internat. J. Computer Math*, 11:111–126, 1982.
- [19] D. Magenheimer, L. Peters, K. Peters, and D. Zuras. Integer multiplication and division on the hp precision architecture. *IEEE Transactions on Computers*, 37:980–990, Aug. 1988.
- [20] C. A. Moritz, M. Frank, W. Lee, and S. Amarasinghe. Hot pages: Software caching for raw microprocessors. (LCS-TM-599), Sept 1999.
- [21] W. Pugh. A practical algorithm for exact array dependence analysis. *Communications of the ACM*, 35(8):102–114, Aug. 1992.
- [22] C. Rosene. Incremental Dependence Analysis. PhD thesis, Dept. of Computer Science, Rice University, Mar. 1990.
- [23] A. Schrijver. Theory of Linear and Integer Programming. John Wiley and Sons, Chichester, Great Britain, 1986.
- [24] M. B. Taylor. Design Decisions in the Implementation of a Raw Architecture Workstation. Master's thesis, Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science, September 1999.
- [25] R. Triolet, F. Irigoin, and P. Feautrier. Direct parallelization of CALL statements. In Proceedings of the SIGPLAN '86 Symposium on Compiler Construction, Palo Alto, CA, June 1986.
- [26] P. Tu. Automatic Array Privatization and Demand-Driven Symbolic Analysis. PhD thesis, Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1995.
- [27] H. Williams. Fourier-Motzkin elimination extension to integer programming problems. *Journal of Combinatorial Theory*, 21:118–123, 1976.

- [28] R. Wilson, R. French, C. Wilson, S. Amarasinghe, J. Anderson, S. Tjiang, S.-W. Liao, C.-W. Tseng, M. Hall, M. Lam, and J. Hennessy. SUIF: An Infrastructure for Research on Parallelizing and Optimizing Compilers. ACM SIGPLAN Notices, 29(12), Dec. 1996.
- [29] M. E. Wolf. *Improving Locality and Parallelism in Nested Loops*. PhD thesis, Dept. of Computer Science, Stanford University, Aug. 1992.