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Abstract

Integer division, modulo, and remainder operations are expressive and useful operations. They are logical
candidates to express many complex data accesses such as the wrap-around behavior in queues using ring buffers
and array address calculations in data distribution and cache locality compiler-optimizations. Experienced appli-
cation programmers, however, avoid them because they are slow. Furthermore, while advances in both hardware
and software have improved the performance of many parts of a program, few are applicable to division and
modulo operations. This trend makes these operations increasingly detrimental to program performance.

This paper describes a suite of optimizations for eliminating division, modulo, and remainder operations from
programs. These techniques are analagous to strength reduction techiques used for multiplications. In addition to
some algebraic simplifications, we present a set of optimization techniques which eliminates division and modulo
operations that are functions of loop induction variables and loop constants. The optimizations rely on number
theory, integer programming and loop transformations.

1 Introduction

This paper describes a suite of optimizations for eliminating division, modulo, and remainder operations from pro-
grams. In addition to some algebraic simplifications, we present a set of optimization techniques which eliminates
division and modulo operations that are functions of loop induction variables and loop constants. These techniques
are analagous to strength reduction techiques used for multiplications.

Integer division and modulo or remainder are expressive and useful operations. They are often the most intuitive
way to represent many algorithmic concepts. For example, use of a modulo operation is the most straight-forward
way of implementing queues with ring buffers. In addition, compiler optimizations have many opportunities to
simplify code generation by using modulo and division instructions. Today, a few compiler optimizations use
these operations for address calculation of transformed arrays. The SUIF parallelizing compiler [2, 5], the Maps
compiler-managed memory system [7], the Hot Pages software caching system [20], and the C-CHARM memory
system [14] all introduce these operations to express the array indexes after transformations.

However, the cost of using division and modulo operations are often prohibitive. Despite their appropriateness
to represent various concepts, experienced application programmers avoid them when they care about performance.
On the Mips R10000, for example, a divide operation takes 35 cycles, compared to six cycles for a multiply and
one cycle for an add. Furthermore, unlike the multiply unit, the division unit has dismal throughput because it is
not pipelined. In compiler optimizations which attempt to improve cache behavior or reduce memory traffic, the
overhead from the use of modulo and division operations can potentially overwhelm any performance gained.

�This research is funded by Darpa contract # DABT63-96-C-0036 and in part by an IBM Research Fellowship.
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Advances in both hardware and software make optimizations on modulo and remainder operations more im-
portant today than ever. While modern processors have taken advantage of increasing silicon area by replacing
iterative multipliers with faster, non-iterative structures such as Wallace multipliers, similar non-iterative divi-
sion/modulo functional units have not materialized technologically. Thus, while the performance gap between an
add and a multiply has narrowed, the gap between a divide and the other arithmetic operations has either widened
or remained the same. Similarly, hardware advances such as caching and branch prediction help reduce the cost
of memory accesses and branches relative to divisions. From the software side, better code generation, register
allocation, and strength reduction of multiplies increase the relative execution time of portions of code which uses
division and modulo operations. Thus, in accordance with Amdahl’s law, the benefit of optimizing away these
operations is ever increasing.

We believe that if the compiler is able to eliminate the overhead of division and modulo operations, their use
will become prevalent. A good example of such a change in programmer behavior is the shift in the use of multipli-
cation instructions in FORTRAN codes over time. Initially, compilers did not strength reduce multiplies [17, 18].
Thus many legacy FORTRAN codes were hand strength reduced by the programmer. Most modern FORTRAN
programs, however, use multiplications extensively in address calculations, relying on the compiler to eliminate
them. Today, programmers practice a similar laborious practice of hand strength reduction to eliminate division
and modulo operations.

This paper introduces a suite of optimizations to strength reduce modulo and division operations. Most of
these optimizations concentrate on eliminating these operations from loop nests where the numerator and the
denominator are functions of loop induction variables and loop constants. The concept is similar to strength
reduction of multiplications. However, a strength reducible multiplication in a loop creates a simple linear data
pattern, while modulo and division instructions create complex saw-tooth and step patterns. We use number theory
and loop iteration space analysis to identify and simplify these patterns. The elimination of division and modulo
operations require complex loop transformations to break the patterns at their discrete points.

Previous work on eliminating division and modulo operations have focused on the case when the denominator
is known [1, 12, 19]. We are not aware of any work on the strength reduction of these operations when the
denomiator is not known.

The algorithms shown in this paper have been effective in eliminating most of the division and modulo in-
structions introduced by the SUIF parallelizing compiler, Maps, Hot Pages, and C-CHARM. In some cases, they
improve the performance of applications that use the modulo and division operations by more than a factor of ten.

The result of the paper is organized as follows. Section 2 gives a motivational example. Section 3 describes
the framework for our optimizations. Section 4 presents the optimizations. Section 5 presents results. Section 6
concludes.

2 Motivation

We illustrate by way of example the potential benefits from strength reducing integer division and modulo oper-
ations. Figure 1a shows a simple loop with an integer modulo operation. Figure 1b shows the result of applying
our strength reduction techniques to the loop. Similarly, Figure 1c and Figure 1d show a loop with an integer
divide operation before and after optimizations. Table 1 and Figure 2 shows the performance of these loops on a
wide range of processors. The results show that the performance gain is universally significant, generally ranging
from 4.5x to 45x.1 The thousand-fold speedup for the division loop on the Alpha 21164 arises because, after the
division has been strength reduced, the compiler is able to recognize that the inner loop is performing redundant
stores. When the array is declared to be volatile, the redundant stores are not optimized away, and the speedup
comes completely from the elimination of divisions. This example illustrates that, like any other optimizations, the
benefit of div/mod strength reduction can be multiplicative when combined with other optimizations.

1The speedup on the Alpha is more than twice that of the other architectures because its integer division is emulated in software.
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for(t = 0; t < T; t++)
for(i = 0; i < NN; i++)
A[i%N] = 0;

(a) Loop with an integer modulo operation

_invt = (NN-1)/N;
for(t = 0; t <= T-1; t++) {

for(_Mdi = 0; _Mdi <= _invt; _Mdi++) {
_peeli = 0;
for(i = N*_Mdi; i <= min(N*_Mdi+N-1,NN-1); i++) {
A[_peeli] = 0;
_peeli = _peeli + 1;

}
}

}

(b) Modulo loop after strength reduction optimization

for(t = 0; t < T; t++)
for(i = 0; i < NN; i++)
A[i/N] = 0;

(c) Loop with an integer division operation

_invt = (NN-1)/N;
for(t = 0; t <= T-1; t++) {

for(_mDi = 0; _mDi <= _invt; _mDi++) {
for(i = N*_mDi; i <= min(N*_mDi+N-1,NN-1); i++) {
A[_mDi] = 0;

}
}

}

(d) Division loop after strength reduction optimization

Figure 1: Two sample loops before and after strength reduction optimizations. The run-time inputs are T=500,
N=500, and NN=N*N.

Clock Integer modulo loop Integer division loop
Processor Speed No opt. Opt. Speedup No opt. Opt. Speedup

(MHz) Figure 1(a) Figure 1(b) Figure 1(c) Figure 1(d)

SUN Sparc 2 70 198.58 41.87 4.74 194.37 40.50 4.80
SUN Ultra II 270 34.76 2.04 17.03 31.21 1.54 20.27
MIPS R3000 100 194.42 27.54 7.06 188.84 23.45 8.05
MIPS R4600 133 42.06 8.53 4.93 43.90 6.65 6.60
MIPS R4400 200 58.26 8.18 7.12 56.27 6.93 8.12
MIPS R10000 250 10.79 1.17 9.22 11.51 1.04 11.07
Intel Pentium 200 32.72 5.07 6.45 32.72 5.70 5.74
Intel Pentium II 300 24.61 3.83 6.43 25.28 3.78 6.69
Intel StrongARM SA110 233 48.24 4.27 11.30 43.99 2.67 16.48
Compaq Alpha 21164 300 19.36 0.43 45.02 15.91 0.01 1591.0
Compaq Alpha 21164
(volatile array)

300 19.36 0.43 45.02 15.91 0.44 36.16

Table 1: Performance improvement obtained with the strength reduction of modulo and division operations on
several machines. Results are measured in seconds.
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3 Framework

To facilitate presentation, we make the following simplifications. First, we assume that both the numerator and
denominator expressions are positive unless explicitly stated otherwise. The full compiler system has to check for
all the cases and handle them correctly, but sometimes the compiler can deduce the sign of an expression from its
context or its use, e.g. an array index expression. Second, we describe our optimizations for modulo operations,
which are equivalent to remainder operations when both the numerators and the divisors are positive.

Most of the algorithms introduced in this paper strength reduce integer division and modulo operations by iden-
tifying their value pattern. For that, we need to obtain the value ranges of numerator and denominator expressions
of the division and modulo operations. We concentrate our effort on loop nests by obtaining the value ranges of
the induction variables, since many of the strength-reducible operations are found within loops, and optimizing
modulo and division operations in loops have a much higher impact on performance. Finding the value ranges of
induction variables is equivalent to finding the iteration space of the loop nests.

First, we need a representation for iteration spaces of the loop nests and the numerator and denominator expres-
sions of the division and modulo operations. Representing arbitrary iteration spaces and expressions accurately and
analyzing them is not practical in a compiler. Thus, we restrict our analysis to loop bounds and expressions that are
affine functions of induction variables and loop constants. Within this domain, the iteration spaces can be viewed
as multi-dimensional convex regions in an integer space [2, 3, 4]. In this paper, we use systems of inequalities to
represent these multi-dimensional convex regions. In fact, the same representation is also used for representing the
expressions. By using this powerful representation, we can perform many of the necessary analyses and strength
reduction optimizations through mathematical manipulations of the systems of inequalities. There are many other
representations developed over the years which might have been used [6, 13, 15, 16, 21, 22, 25, 26].

Definition 3.1 Assume a p-deep (not necessarily perfectly nested) loop nest of the form:
FOR i1 = max(l1;1::l1;m1

) TO min(h1;1::h1;n1) DO
FOR i2 = max(l2;1::l2;m2

) TO min(h2;1::h2;n2) DO
::::

FOR ip = max(lp;1::lp;mp
) TO min(hp;1::hp;np) DO

/* the loop body */

where v1; :::; vq are symbolic constants in the loop nest (variables unchanged within the loop), and l x;y and
hx;y are affine functions of the variables v1; :::; vq ; i1; :::; ix�1. We define the context of the body of the k th loop
recursively:

Fk = Fk�1 ^
�
ik
�
� V

j=1;:::;mk
ik � lk;j ^

V
j=1;:::;nk

ik � hk;j
	

The loop bounds in this definition contain max and min functions because many compiler-generated loops,
including those generated in optimizations 10 and 11, produce such bounds.

Note that the symbolic constants v1; :::; vq need not be defined within the context. If we are able to obtain
information on their value ranges, we include them into the context. Even without a value range, the coefficients
of these variables provide valuable information on the integer solutions to the system.

We perform loop normalization and induction variable detection analysis prior to strength reduction so that all
the FOR loops are in the above form. Whenever possible, any variable defined within the loop nest is written as
affine expressions of the induction variables.

Definition 3.2 Given context F with symbolic constants v1; :::; vq and loop index variables i1; :::; ip, an affine
integer division (or modulo) expression within it is represented by a 3-tuple hN;D;Fi where N and D are defined
by the affine functions: N = n0 +

P
1�j�q njvq +

P
1�j�p nj+qij , D = d0 +

P
1�j�q djvq . The division

expression is represented by N=D. The modulo expression is represented by N%D.

We restrict the denominator to be functions of only symbolic constants. We rely on this invariance property of
the denominator to perform several loop level optimizations.
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Using the integer programming technique of Fourier-Motzkin Elimination [8, 9, 10, 23, 27], we manipulate
the systems of inequalities for both analysis and loop transformation purposes. In many analyses, we use this
technique to identify if a system of inequalities is empty, i.e. no set of values for the variables will satisfy all the
inequalities. Fourier-Motzkin elimination is also used to simplify a system of inequalities by eliminating redundant
inequalities. For example, a system of inequalities fI � 5; I � a; I � b; a � 10; b � 4g can be simplified to
fI � 10; I � a; a � 10; b � 4g. In many optimizations discussed in this paper, we create a new context to
represent a transformed iteration space that will result in elimination of modulo and division operations. We use
Fourier-Motzkin projection to convert this system of inequalities into the corresponding loop nest. This process
guarantees that the loop nest created has no empty iterations and loop bounds are the simplest and tightest [2, 3, 4].

3.1 Expression relation

Definition 3.3 Given affine expressions A and B and a context F describing the value ranges of the variables in
the expressions, we define the following relations:

� Relation(A < B;F) is true iff the system of inequalities F ^ fA � Bg is empty.

� Relation(A � B;F) is true iff the system of inequalities F ^ fA > Bg is empty.

� Relation(A > B;F) is true iff the system of inequalities F ^ fA � Bg is empty.

� Relation(A � B;F) is true iff the system of inequalities F ^ fA > Bg is empty.

3.2 Iteration count

Definition 3.4 Given a loop FOR i = L TO U DO with context F , where L = max(l1; :::; ln), U =
min(u1; :::; um), the number of iterations niter can be expressed as follows:

niter(L;U;F) = minfkjk = uy � lx + 1;x 2 [1; n]; y 2 [1;m]g

4 Optimization Suite

This section describes our suite of optimizations to eliminate integer division and modulo instructions.

4.1 Algebraic simplifications

First, we describe simple optimizations that do not require any knowledge about the value ranges of the source
expressions.

4.1.1 Number theory axioms

Many number theory axioms can be used to simplify division and modulo operations [11]. Even if the simplifica-
tion does not immediately eliminate operations, it is important because it can lead to further optimizations.

Optimization 1 Simplify the modulo and division expressions using the following algebraic simplification rules.
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f1 and f2 are expressions, g is a variable or a constant, and c, c1, c2 and d are constants.

(f1g + f2)%g =) f2%g
(f1g + f2)=g =) f1 + f2=g

(c1f1 + c2f2)%d =) ((c1%d)f1 + (c2%d)f2)%d
(c1f1 + c2f2)=d =) ((c1%d)f1 + (c2%d)f2)=d+ (c1=d)f1 + (c2=d)f2

(cf1g + f2)%(dg) =) ((c%d)f1g + f2)%(dg)
(cf1g + f2)=(dg) =) ((c%d)f1g + f2)=(dg) + (c=d)f1

4.1.2 Special case for power-of-two denominator

When the numerator expression is positive and the denominator expression is a power of two, the division or
modulo expression can be strength reduced to a less expensive operation.

Optimization 2 Given a division and modulo expression hN;D;Fi, if D = 2d for some constant positive integer
d, then the division and modulo expression can be simplified to a right shift N >> d and bitwise and N&(D� 1),
respectively.

4.1.3 Reduction to conditionals

A broad range of modulo and division expressions can be strength reduced into a conditional statement. Since we
prefer not to segment basic blocks because it inhibits other optimizations, we attempt this optimization as a last
resort.

Optimization 3 Let hN;D;Fi be a modulo or division expression in a loop of the following form:
FOR i = L TO U DO
x = N%D
y = N=D

ENDFOR

Let n be the coefficient of i in N, and let N� = N � n � i. Then if n < D, the loop can be transformed to the
following:

Mdx = (n � L+N�)%D
mDy = (n � L+ N�)=D

FOR i = L TO U DO
x = Mdx
y = mDy
Mdx+ = n

IF Mdx � D THEN
Mdx = Mdx�D
mDy = mDy + 1

ENDIF
ENDFOR

Note that the statement x = x%D can be simplified to x = 0 when n = 1.

4.2 Optimizations using value ranges

The following optimizations not only use number theory axioms, they also take advantage of compiler knowledge
about the value ranges of the variables associated with the modulo and division operations.

4.2.1 Elimination via simple continuous range

Suppose the context allows us to prove that the range of the numerator expression does not cross a multiple of
the denominator expression. Then for a modulo expression, we know that there is no wrap-around. For a division
expression, the result has to be a constant. In either case, the operation can be eliminated.
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Optimization 4 Given a division or modulo expression hN;D;Fi, if Relation(N � 0 ^ D � 0;F) and
Relation(kD � N < (k + 1)D;F) for some k 2 Z, then the expressions reduce to k and N � kD respec-
tively.

Optimization 5 Given a division or modulo expression hN;D;Fi if Relation(N < 0 ^ D � 0;F) and
Relation(kD < N � (k � 1)D;F) for some k 2 Z, then the expressions reduce to k and N + kD, respectively.

4.2.2 Elimination via integral stride and continuous range

This optimization is predicated on identifying two conditions. First, the numerator must contain an index variable
whose coefficient is a divisor of the denominator. Second, the numerator less this index variable term does not cross
a multiple of the denominator expression. These conditions are common in the modulo and division expressions
which are part of the address computations of compiler-transformed linearized multidimensional arrays.

Optimization 6 Given modulo or division expression hN;D;Fi, let i be an index variable in F , n be the coeffi-
cient of i in N, and N� = N � n � i. If n%D = 0 and there exist an integer k such that kD � N� < (k + 1)D,
then the modulo and division expressions can be simplified to N � � kD and (n=D)i+ k, respectively.

4.2.3 Elimination through absence of discontinuity in the iteration space

Many modulo and division expressions do not create discontinuities within the iteration space. If this can be
guaranteed, then the expressions can be simplified. Figure 3(a) shows an example of such an expression with no
discontinuity in the iteration space.

Optimization 7 Let hN;D;Fi be a modulo or division expression in a loop of the following form:
FOR i = L TO U STEP S DO
x = N%D
y = N=D

ENDFOR

Let n be the coefficient of i in N, N� = N �n� i, and (n�L+N�)%D = k. Then if Relation(niter(L;U;F) <
D=n+ k;F), the loop can be transformed into the following:

mDy = (n � L+ N�)=D
Mdx = k

FOR i = L TO U DO
x = Mdx
y = mDy
Mdx = Mdx+ n

ENDFOR

4.2.4 Optimization for non-unit loop steps

If a loop has a step size which is a multiple of the coefficient of the loop index in the numerator expression,
the modulo expression is constant within the loop and the division expression is linear. Figure 3(b) provides an
example of such an expression.

Optimization 8 Let hN;D;Fi be a modulo or division expression in a loop of the following form:
FOR i = L TO U STEP S DO
x = N%D
y = N=D

ENDFOR

Let n be the coefficient of i in N and N� = N � n � i. Then if D%(S �n) = 0, the loop can be transformed to the
following:
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FOR i = 0 TO 6 DO
FOR j = 0 TO 6 DO

u = (100*i + 2*j) % 25
v = (100*i + 2*j) / 25

FOR i = 0 TO 6 DO
FOR j = 0 TO 6 DO

u = 3*j
v = 4*i
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Figure 3: Original and optimized code segments for several modulo and division expressions. The x-axes are the iteration
spaces. The y-axes are numeric values. The solid diamonds are values of the modulo expression. The open squares are the
values of the division expression. The solid lines represent the original iteration space boundaries. The dash lines represent the
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Mdx = (n � L+N�)%D
mDy = (n � L+ N�)=D

FOR i = L TO U STEP S DO
x = Mdx
y = mDy
mDy = mDy + (S=n)

ENDFOR

4.3 Optimizations using Loop Transformations

The next set of optimizations perform loop transformations to create new iteration spaces which have no discon-
tinuity. For each loop, we first analyze all its expressions to collect a list of necessary transformations. We then
eliminate any redundant transformations.

4.3.1 Loop partitioning to remove a single discontinuity

For some modulo and division expressions, the number of iterations in the loop will be less than the distance
between discontinuities. But a discontinuity may still occur in the iteration space if it is not aligned to the iteration
boundaries. When this occurs, we can either split the loop or peel the iterations. We prefer peeling iterations if
the discontinuity is close to the iteration boundaries. This optimization is also paramount when a loop contains
multiple modulo and division expressions, each with the same denominator and whose numerators are in the same
uniformly generated set [13, 29]. In this case, one of the expressions can have an aligned discontinuity while others
may not. Thus, it is necessary to split the loop to optimize all the modulo and division expressions. Figure 3(c)
shows an example where loop partitioning eliminates a single discontinuity.

Optimization 9 Let hN;D;Fi be a modulo or division expression in a loop of the following form:
FOR i = L TO U DO
x = N%D
y = N=D

ENDFOR

Let n be the coefficient of i in N andN� = N�n�i. Then if D%n = 0 andRelation(niter(L;U;F) < n�D;F)
and (n � L+N�)%D = k, the loop can be transformed to the following:

kx = (n � L+N�)%D
Mdx = kx
mDy = (n � L+ N�)=D
cut = min((D � k + n� 1)=n + L;U)

FOR i = L TO cut� 1 DO
x = Mdx
y = mDy
Mdx = Mdx+ 1

ENDFOR
Mdx = kx
mDy = mDy + 1

FOR i = cut TO U DO
x = Mdx
y = mDy
Mdx = Mdx+ 1

ENDFOR

4.3.2 Loop tiling to eliminate discontinuities within the iteration space

In many cases, the value range identified still leads to discontinuities in the division and modulo expressions.
This section explains how to strength reduce these expressions by performing loops transformations such that the
resulting loop nest will move the discontinuities to the boundaries of the iteration space. Thus, modulo and division
optimizations can be completely eliminated or propagated out of the inner loops. Figure 3(d) shows an example
requiring this optimization.

When the iteration space has a pattern with a large number of discontinuities repeating themselves, breaking
a loop into two loops such that the discontinuities occur at the boundaries of the second loop will let us optimize
the modulo and division operations. Optimization 10 adds an additional restriction to the lower bound so that no
preamble is needed. Optimization 11 eliminates that restriction.
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Optimization 10 Let hN;D;Fi be a modulo or division expression in a loop of the following form:
FOR i = L TO U DO
x = N%D
y = N=D

ENDFOR

Let n be the coefficient of i in N and N� = N � n � i. Then if D%n = 0 and (n � L+N�) = 0, the loop can be
transformed to the following:

mDy = (n � L+ N�)=D
FOR ii = L=(D=n) TO (U +D=n� 1)=(D=n) DO

Mdx = 0
FOR i = max(ii � (D=n); L) TO min(ii � (D=n) +D=n� 1; U) DO
x = Mdx
y = mDy
Mdx = Mdx+ n

ENDFOR
mDy = mDy + 1

ENDFOR

Optimization 11 For the loop nest and the modulo and division statements described in optimization 10, if
D%n = 0 then the above loop nest is transformed to the following form:

brklb = min((D=n) � ((n � L+N�)=D + 1)�N=n;U)
Mdu = (n � L+N�)%D
mDv = (n � L+N�)=D

FOR i = L TO brklb � 1 DO
u = Mdu
v = mDv
Mdu = Mdu + 1

ENDFOR
stu = (n � brklb +N�)%D

FOR ii = brklb=(D=n) TO (U +D=n � 1)=(D=n) DO
Mdu = stu
mDv = mDv + 1

FOR i = brklb TO min(ii �D=n+D=n � 1; U) DO
u = Mdu
v = mDv
Mdu = Mdu + 1

ENDFOR
ENDFOR

4.3.3 General loop transformation for loop access of single class

It is possible to transform a loop to eliminate discontinuities with very little knowlegth about the iteration space
and value ranges. The following transformation can be applied to any loop containing a single arbitrary instance
of affine modulo/division expressions.

Optimization 12 Let hN;D;Fi be a modulo or division expression in a loop of the following form:

FOR i = L TO U DO
x = N%D
y = N=D

ENDFOR

Let n be the coefficient of i in N and N� = N � n � i. Then the loop can be transformed to the following:
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SUB FindNiceL(L;D; coeff;N�)
IF coeff = 0 THEN

RETURN L
ELSE
V Lden = ((L � coeff +N� � 1)=D) �D
V Lbase = L � coeff +N� � V Lden
NiceL = L+ (D � V Lbase+ coeff � 1)=coeff
RETURN NiceL

ENDIF
ENDSUB

k = coeff=D
r = coeff � k �D

IF R! = 0 THEN
perIter = D=r

niceL = FindNiceL(L;D; r;N�)
niceNden = (U � niceL + 1)=D
niceU = niceL + niceNden �D

ELSE
perIter = U � L

niceL = L
niceU = U + 1

ENDIF

modval = (coeff � L+ N�)%D
divval = (coeff � L+N�)=D
i = L

FOR i2 = L TO niceL� 1
x = modval
y = divval
modval+ = r
divval+ = k
i ++

IF modval � D THEN
modval� = D
divval+ = 1

ENDIF
ENDFOR

DO WHILE i < niceU
FOR i2 = 1 TO perIter
x = modval
y = divval
modval+ = r
divval+ = k
i ++

ENDFOR
IF modval < D THEN
x = modval
y = divval
modval+ = r
divval+ = k
i ++

ENDIF
IF modval! = 0 THEN
modval� = D
divval+ = 1

ENDIF
ENDDO

FOR i2 = niceU TO U
x = modval
y = divval
modval+ = r
divval+ = k
i ++
IF modval � D THEN
modval� = D
divval+ = 1

ENDIF
ENDFOR

4.3.4 General loop transformation for arbitrary loop accesses

Finally, the following tranformation can be used for loops with arbitrarily many affine accesses. Note, however,
that in extreme cases the tranformation may lead to slowdown due to more complex control.

Optimization 13 Given a loop with affine modulo or division expressions:

FOR i = L TO U DO
x1 = a1 � iop1d1
x2 = a2 � iop2d2
...
xn = an � iopndn

ENDFOR

where opj is either mod or div, the loop can be transformed into:
SUB FindBreak(L; U; den; coeff; const)

IF coeff = 0 THEN
RETURN U + 1

ELSE
V Lden = ((L � coeff + konst)=den) � den
V Lbase = L � coeff + konst � V Lden
Break = L+ (den� V Lbase + coeff � 1)=coeff

RETURN Break
ENDIF

ENDSUB

FOR j = 1 TO n
kj = aj=dj
rj = aj � kj � dj

valj [mod] = (aj � L+ bj)%dj
valj [div] = (aj � L+ bj)=dj

breakj = FindBreak(L; U; dj ; rj; bj)
ENDFOR

i = L
DO WHILE i � U
Break = min(U + 1; breakj jj 2 [1; n])
FOR i = i TO Break
x1 = val1[opj ]
val1[mod]+ = r1
val1[div]+ = k1
x2 = val2[opj ]
val2[mod]+ = r2
val2[div]+ = k2
...

ENDFOR

FOR j = 1 TO n
IF Break = breakj THEN
valj [mod]� = dj
valj [div]+ = 1
breakj = findBreak(i + 1; U; dj; rj ; bj )

ENDIF
ENDFOR

ENDDO
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4.4 Min/Max Optimizations

Some loop transformations, such as those in Section 4.3, produce minimum and maximum operations. This section
describes methods for eliminating them.

4.4.1 Min/Max elimination by evaluation

If we have sufficient information in the context to prove that one of the operand expressions is greater (smaller)
than the rest of the operands, we can use that fact to get rid of the max (min) operation from the expression.

Optimization 14 Given a min expression min(N1; :::; Nm) with a context F , if there exists k such that for all
0 � i � m, Relation(Nk � Ni;F), then min(N1; :::; Nm) can be reduced to Nk.

Optimization 15 Given a max expression max(N1; :::; Nm) with a context F , if there exists k such that for all
0 � i � m, Relation(Nk � Ni;F), then max(N1; :::; Nm) can be reduced to Nk.

4.4.2 Min/Max simplification by evaluation

Even if we are able to prove few relationships between pairs of operands, it can result in a min/max operation with
fewer number of operands.

Optimization 16 Given a min expression min(N1; :::; Nm) with a contxt F , if there exists i; k such that
0 � i; k � m, i 6= k, Relation(Ni � Nk;F) is valid, then min(N1; :::; Nm) can be reduced to
min(N1; :::; Nk�1; Nk+1; :::; Nm).

Optimization 17 Given a max expression max(N1; :::; Nm) with a context F , if there exists i; k such
that 0 � i; k � m, i 6= k, Relation(Nk � Ni;F), then min(N1; :::; Nm) can be reduced to
max(N1; :::; Nk�1; Nk+1; :::; Nm).

4.4.3 Division folding

The arithmetic properties of division allow us to fold a division instruction into a min/max operation. This folding
can create simpler division expressions that can be further optimized. However, if further optimizations do not
eliminate these division operations, the division folding should be un-done to remove potential negative impact on
performance.

Optimization 18 Given an integer division expression with a min/max operation hmin(N 1; :::; Nm); D;Fi
or hmax(N1; :::; Nm); D;Fi, if Relation(D > 0;F) holds, rewrite min and max as min(hN1; D;Fi; :::;
hNm; D;Fi) and max(hN1; D;Fi; :::; hNm; D;Fi) respectively.

Optimization 19 Given an integer division expression with a min/max operation hmin(N 1; :::; Nm); D;Fi
or hmax(N1; :::; Nm); D;Fi, if Relation(D < 0;F) holds, rewrite min and max as max(hN1; D;Fi; :::;
hNm; D;Fi) and min(hN1; D;Fi; :::; hNm; D;Fi) respectively.

4.4.4 Min/Max elimination in modulo equivalence

Note that a � b does not lead to a%c � b%c. Thus there is no general method for folding modulo operations.
However, if we can prove that the results of taking the modulo of each of the min/max operands are the same, we
can eliminate the min/max operation.
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Optimization 20 Given an integer modulo expression with a min/max operation hmin(N 1; :::; Nm); D;Fi or
hmin(N1; :::; Nm); D;Fi, if hN1; D;Fi � ::: � hNm; D;Fi, then we can rewrite the modulo expression as
hN1; D;Fi.

Note that all hNk; D;Fi (1 � k � m) are equivalent, thus we can choose any one of them as the resulting
expression.

4.4.5 Min/Max expansion

Normally min/max operations are converted into conditionals late in the compiler during code generation. How-
ever, if any of the previous optimizations are unable to eliminate the div/mod instructions, lowering the min/max
will simplify the modulo and division expressions, possibly leading to further optimizations. To simplify the ex-
planation, we describe Optimizations 21 and 22 with only two operands in the respective min and max expressions.

Optimization 21 A mod/div statement with a min operation, res = hmin(N1; N2); D;Fi, gets lowered to
IF N1 < N2 THEN
res = hN1; D;F ^ fN1 < N2gi

ELSE
res = hN2; D;F ^ fN1 � N2gi

ENDIF

Optimization 22 A mod/div statement with a max operation, res = hmax(N1; N2); D;Fi, gets lowered to
IF N1 > N2 THEN
res = hN1; D;F ^ fN1 > N2gi

ELSE
res = hN2; D;F ^ fN1 � N2gi

ENDIF

5 Results

We have implemented the optimizations described in this paper as a compiler pass in SUIF [28] called Mdopt. This
pass has been used as part of several compiler systems: the SUIF parallelizing compiler [2], the Maps compiler-
managed memory system in Rawcc, the Raw parallelizing compiler [7], the Hot Pages software caching sys-
tem [20], and the C-CHARM memory system [14]. All those systems introduce modulo and division operations
when they manipulate array address computations during array transformations. This section presents some of the
performance gain when applying Mdopt to code generated by those systems.

5.1 C-CHARM Memory Localization System

The C-CHARM memory localization compiler system [14] attempts to do much of the work traditionally done by
hardware caches. The goal of the system is to generate code for an exposed memory hierarchy. Data is moved
explicitly from global or off-chip memory to local memory before it is needed and vice versa when the compiler
determines it can no longer hold the value locally.

C-CHARM analyses the reuse behavior of programs to determine how long a value should be held in local
memory. Once a value is evicted, its local memory location can be reused. This local storage equivalence for
global memory values is implemented with a circular buffer. The references which share memory values are
mapped into the same circular buffer, and their address calculations are rewritten with modulo operations. It is
these modulo operations which map two different global addresses to the same local address. It is these operations
we have sought to remove with Mdopt.

Table 2 shows the speedup from applying modulo/division optimizations on C-CHARM generated code run-
ning on a single processor machine.
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Benchmarks Speedup

convolution 15.6
jacobi 17.0
median-filter 2.8
sor 8.0

Table 2: Speedup from applying mdopt to C-CHARM generated code run on an Ultra 5 Workstation.

5.2 Maps Compiler Managed Memory System

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

life 0.98 0.31 0.35 0.26 0.35 0.28
jacobi 1.00 0.21 0.12 0.10 0.10 0.03
cholesky 1.00 0.28 0.23 0.20 0.18 0.09
vpenta 1.00 0.72 0.52 0.40 * *
btrix 1.00 0.34 0.29 0.74 0.80 0.78
tomcatv 1.14 0.32 0.24 0.17 0.14 *
ocean 1.00 0.73 0.59 0.71 0.41 0.34
swim 1.00 1.00 0.94 1.00 1.00 1.00
adpcm 0.91 0.91 0.89 0.91 0.91 0.94
moldyn 1.00 1.01 1.01 1.00 0.94 0.88

Table 3: Slowdown from divs and mods introduced by array transformations on Maps. * indicates missing entries because gcc
runs out of memory.

Benchmark N=1 N=2 N=4 N=8 N=16 N=32

life 1.00 2.20 2.17 6.03 19.42 17.64
jacobi 1.00 4.22 6.51 3.33 2.52 6.44
cholesky 1.00 3.62 4.12 3.41 2.54 1.85
vpenta 1.00 1.18 1.48 1.98 * *
btrix 1.00 3.19 2.26 1.00 1.00 0.96
tomcatv 1.00 2.81 3.19 7.49 6.86 *
ocean 1.00 1.60 1.70 2.00 2.33 3.82
swim 1.00 1.00 1.00 1.00 1.00 0.95
adpcm 1.00 1.00 1.00 1.00 1.00 1.00
moldyn 1.03 1.00 1.03 1.00 1.00 0.97

Table 4: Speedup from applying mdopt to array transformed code.

Maps is the memory management front end of the Rawcc parallelizing compiler [7], which targets the MIT
Raw architecture [24]. It distributes the data in an input sequential program across the individiual memories of the
Raw tiles. The system low-order interleaves arrays whose accesses are affine functions of enclosing loop induction
variables. That is, for an N-tile Raw machine, the k th element of an “affine” array A becomes the (k=N)th element
of partial array A on tile k%N . Mdopt is used to simplify the tile number into a constant, as well as to eliminate
the divide operations in the resultant address computations.

Figures 3- 5 show the impact of the transformations. Because Mdopt plays an essential correctness role in the
Rawcc compiler (Rawcc relies on Mdopt to reduce the tile number expressions to constants), it is not possible to
directly compare performance on the Raw machine with and without the optimization. Instead, we compile the C
sources before and after the optimization on an Ultrasparc workstation, and we use that as the basis for comparison.

Figure 3 shows the performance after the initial low-order interleaving data transformation. This transformation
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Benchmark N=1 N=2 N=4 N=8 N=16 N=32

life 0.98 0.67 0.75 0.95 2.56 2.71
jacobi 1.00 0.95 0.82 0.34 0.23 0.20
cholesky 1.00 1.00 0.95 0.68 0.50 0.23
vpenta 1.00 0.78 0.77 0.78 * *
btrix 0.97 0.98 0.64 0.63 0.79 0.77
tomcatv 1.16 0.95 0.82 0.82 0.53 *
ocean 1.00 0.99 0.84 1.10 1.11 0.99
swim 1.00 1.00 0.94 1.00 0.95 1.00
adpcm 0.91 0.91 0.89 0.88 0.91 0.91
moldyn 1.00 1.01 1.01 1.00 0.93 0.87

Table 5: Overall performance gain from array transformations.

introduces division and modulo operations and leads to dramatically slower code, as much as 33 times slowdown
for 32-way interleaved jacobi. Figure 4 shows the performance gain of running Mdopt on the low-order interleaved
code. The speedup attained is as dramatic as the previous slowdown, as much as 18 times speedup for 32-way
interleaved life. Finally, Table 5 shows the overall performance gain. In many cases the Mdopt is able to recover
most of the performance lost due to the interleaving transformation. This recovery, in turn, helps make it possible
for the compiler to attain overall speedup by parallelizng the application.

6 Conclusion

This paper introduces a suite of techniques for eliminating division, modulo, and remainder operations. The tech-
niques are based on number theory, integer programming, and strength-reduction loop transformation techniques.
To our knowledge this is the first work which provide modulo and division optimizations for expressions whose
denominators are non-constants.

We have implemented our suite of optimizations in a SUIF compiler pass. The compiler pass has proven to
be useful across a wide variety compiler optimizations which does data transformations and manipulate address
computations. For some benchmarks with high data to computation ratio, an order of magnitude speedup can be
achieved.

We believe that the availabilty of these techniques will make divisions and modulo operations more useful to
programmers. Programmers will no longer need to make the painful tradeoff between expressiveness and perfor-
mance when deciding whether to use these operators.
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