
Parallelizing Applications into Silicon

Jonathan Babb, Martin Rinard, Csaba Andras Moritz, Walter Lee,

Matthew Frank, Rajeev Barua, and Saman Amarasinghe

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

jbabb@lcs.mit.edu

Abstract

The next decade of computing will be dominated by embed-
ded systems, information appliances and application-speci�c
computers. In order to build these systems, designers will
need high-level compilation and CAD tools that generate
architectures that e�ectively meet the needs of each appli-
cation. In this paper we present a novel compilation sys-
tem that allows sequential programs, written in C or FOR-
TRAN, to be compiled directly into custom silicon or re-
con�gurable architectures. This capability is also interesting
because trends in computer architecture are moving towards
more recon�gurable hardware-like substrates, such as FPGA
based systems. Our system works by successfully combining
two resource-e�cient computing disciplines: Small Memo-
ries and Virtual Wires.

For a given application, the compiler �rst analyzes the
memory access patterns of pointers and arrays in the pro-
gram and constructs a partitioned memory system made up
of many small memories. The computation is implemented
by active computing elements that are spatially distributed
within the memory array. A space-time scheduler assigns
instructions to the computing elements in a way that max-
imizes locality and minimizes physical communication dis-
tance. It also generates an e�cient static schedule for the
interconnect. Finally, specialized hardware for the result-
ing schedule of memory accesses, wires, and computation is
generated as a multi-process state machine in synthesizable
Verilog.

With this system, implemented as a set of SUIF compiler
passes, we have successfully compiled programs into hard-
ware and achieve specialization performance enhancements
by up to an order of magnitude versus a single general-
purpose processor. We also achieve additional paralleliza-
tion speedups similar to those obtainable using a tightly-
interconnected multiprocessor.

1 Introduction

When the performance, cost, or power requirements of an
application cannot be met with a commercial o�-the-shelf
processor, engineers typically turn to custom and/or recon-
�gurable hardware. Performance oriented hardware projects
have generated excellent results: IBM's Deep Blue chess
computer recently defeated Garry Kasparov, theWorld Chess
Champion; the Electronic Frontier Foundation's DES crack-
ing machine recently cracked the encryption standard of our

banking systems in less than a week. Low-power and low-
cost embedded applications in cars and hand-held devices
have indirectly become an everyday part of human existence.
Similarly, information appliances promise to be one of the
dominating applications of the next decade.

All of these hardware systems perform well, in part, be-
cause they exploit large amounts of concurrency and special-
ization. Currently, hardware architects exploit these aspects
by hand. But as more and more complex applications are
mapped into hardware, the di�culty of exploiting concur-
rency and specialization by hand makes it more and more
di�cult to design, develop and debug hardware. This pa-
per demonstrates a parallelizing compiler that automatically
maps applications directly into a hardware implementation.
We expect that the combination of such high-level design
tools with the added capability of recon�gurable hardware
substrates (e.g. FPGA-based systems), will enable hard-
ware designers to develop application-speci�c systems that
can achieve unprecedented price/performance and energy ef-
�ciency. This paper explains how such a high-level compi-
lation system works.

For this sytem to generated e�cient computing struc-
tures, we need to make two fundamental attitude changes:
1) A shift of focus from computation alone to also including
memory, and wires; and 2) A shift of focus from a low-level,
hardware-centric design process to a high-level, software-
based development process.

The �rst shift is driven by the key performance trend
in VLSI: the performance of basic arithmetic units, such
as adders and multipliers, is increasing much more rapidly
than the performance of memories and wires. Wire lengths
a�ect the performance in that the clock cycle time must be
long enough for signals to propagate the length of the longest
wire. As designers exploit feature size decreases to put more
functionality on a chip, the wire lengths become the limiting
factor in determining cycle time. It is therefore crucial to
deliver designs sensitive to wire length. We therefore choose
to organize the compiler to optimize the memories and wires,
as well as distributing the computation, in order to achieve
good overall performance.

The second shift is driven by both VLSI and the complex-
ity of applications we can now implement in hardware. In
the past decade, hardware design languages such as Verilog
and VHDL enabled a dramatic increase in the sophistica-
tion of the circuits that designers were able to build. But
these languages still require designers to specify the low-level
hardware components and schedule the operations in the
hardware on a cycle-by-cycle basis. We believe that these

languages present such low-level abstractions that they are
no longer adequate for the large, sophisticated systems that
are now possible to implement in hardware. We believe that
the next revolution in hardware design will come from com-
pilers that are capable of implementing programs written in
a high-level language, such as C, directly into hardware.

While these shifts may at �rst appear to require a rad-
ically di�erent approach, our results indicate that the solu-
tion lies in the extension of known techniques from parallel
computing and parallelizing compilers. Speci�cally, we be-
lieve that performance gains will be made possible by split-
ting large, relatively slow memories into arrays of small, fast
memories, and by statically scheduling the interconnection
between these memories. In this paper computation is im-
plemented by custom logic interspersed among these mem-
ories. However, our approach for managing memory and
wires is applicable whether the interspersed computation is
implemented in recon�gurable hardware, con�gurable arith-
metic arrays, or even small microprocessors.

The direct application of the research presented in this
paper will allow programmers to design complex distributed-
memory hardware which is correct-by-construction. That is,
if the applications can be successfully executed and tested
on a sequential processor, our compiler will generate func-
tionally correct hardware.

In the remainder of this paper we will show, step-by-
step, the basic compiler transformations needed to gener-
ate a distributed-memory hardware design from a sequential
program. This design will contain hardware and memory
structures carefully matched to the program requirements.
At the end, we will present initial favorable results from a
working compiler which automatically implements the set of
transformations we describe.

The organization is as follows. Section 2 motivates our
compilation strategy. Section 3 overviews the compilation
process and introduces a running example subsequently used
for illustration. Section 4 then outlines two analyses we use
for decomposing the application data into multiple clusters
of small memories. Next, Section 5 describes how applica-
tion instructions are assigned to memory clusters and how
a space-time scheduler creates virtual interconnections be-
tween clusters. Section 6 shows how we generate hardware
from the resulting schedule. Section 7 then presents both
specialization and parallelization results for several bench-
mark applications. Finally, Section 8 describes related work
in the �eld, and Section 9 makes concluding remarks.

2 Motivation

When compiling applications to hardware, we consider three
basic primitives: memory, wires, and logic. The following
sections describe and motivate our compilation approach for
each primitive.

2.1 Small Memories

Our e�cient memory architecture contains many small mem-
ories, with the computation distributed among the memo-
ries to maximize parallelism while minimizing the physical
communication distance. This organization has signi�cant
bene�ts when compared with a standard architecture, which
segregates the memory from the computation. First, a sys-
tem of small memories have shorter e�ective memory access
latencies. A small memory can produce a value quicker than

a large memory can; once the value is produced, it is closer
to the point where it will be consumed. Multiple small mem-
ories also have a higher aggregate memory bandwidth than
a single large memory, and each reference takes less power
because the wire capacitance in small memories is less than
the capacitance in a large memory.

Compiler technology is an important element in exploit-
ing the potential of small memories. If the compiler can
statically determine the memory location that will satisfy
each data reference, it can then generate more e�cient com-
putation structures. Also, the compiler can leverage the
correspondence between computation and memory to place
the computation close to the memory that it accesses. When
possible, static disambiguation also allows the compiler to
statically schedule the memory and communication wires,
eliminating the need to implement an expensive dynamic
interconnect capable of delivering data from any memory to
any piece of computation. Finally, static disambiguation al-
lows the compiler to simplify address calculations. The bits
in the address that would otherwise select the memory bank
disappear, replaced by directly wired connections.

In our hardware implementation of small memories,
we cluster one or more memories together into directly-
connected tiles arranged in a space-e�cient interconnect.
Roughly speaking, a tile is a hardware region within which
wire delay is less than one clock cycle. For simplicity, we
also choose to correlate tiles with sequencing control, with
one sequencer per tile.

Besides memory banks, each tile contains custom logic
as well as the ability to schedule communication between
neighbors. Unlike traditional memory banks, which serve
as sub-units of a centralized memory system, the memory
banks in each tile function autonomously and are directly
addressable by the custom logic, without going through a
layer of arbitration logic. This organization enables mem-
ory ports which scale with the hardware size. While we will
focus on custom hardware generation throughout this pa-
per, this approach is generally application to recon�gurable
systems as well.

2.2 Virtual Wires

Our architectures are designed speci�cally to keep all wire
lengths within a �xed small size. This mechanism allows the
compiler to tightly control the constraints that wire lengths
place on the clock cycle time. To maximize performance,
the compiler uses a spatially-aware partitioner that maps the
data and computation onto speci�c physical locations within
the memory array. The compiler heuristically minimizes the
wire length between communicating components.

Of course, applications also require communication be-
tween remote regions of the chip. The architecture imple-
ments such communications by implementing a long \virtual
wire" out of multiple short physical wires. Conceptually, a
virtual wire is a pipelined connection between the endpoints
of the wire. This connection takes several clock cycles to
traverse, but allows pipelined communication by occupying
only one short physical wire in each clock cycle.

Virtual wires are a key concept for a compiler that op-
timizes wire performance. Our compiler generates architec-
tures that connect the small memories using virtual wires;
short physical wires are statically scheduled for maximum
e�ciency and minimum hardware interconnect overhead.

C or Fortran Program

Custom Logic Generation

Traditional CAD Optimizations

Traditional Compiler Optimzations

Virtual Wires Scheduling

Small Memory Partitioning

Hardware

Figure 1: Compiler Flow

2.3 Custom Logic

To maximize the e�ciency of the �nal circuit, our compiler
implements the computation using custom logic. This logic
consists of a datapath and �nite state control. Because this
logic is customized for the speci�c computation at hand, it
can be smaller, consume less power, and execute faster than
more general purpose implementations. Examples of speci�c
optimizations include arithmetic units optimized for the spe-
ci�c operations in the program and reductions in datapath
widths for data items with small bitwidths. The use of a
small �nite state control eliminates the area, latency, and
power consumption of general-purpose hardware designed
to execute a stream of instructions.

Conceptually, the compiler generates hardware resources
such as adders for each instruction in the program. In prac-
tice, the compiler reuses resources across clock cycles: if
two instructions require the same set of resources but exe-
cute in di�erent cycles, the compiler uses the same resource
for both instructions. This approach preserves the bene�ts
of specialized hardware while generating e�cient circuits.

While generating custom logic provides the maximum
performance, our approach is also e�ective for other imple-
mentation technologies. Speci�cally, the compiler could also
map the computation e�ectively onto a platform with recon-
�gurable logic or programmable ALUs instead of custom
logic.

3 Compilation Overview

Our compilation system is responsible for translating an ap-
plication program into a parallel architecture specialized for
that application. To make this translation feasible, our com-
pilation system incorporates both the latest code optimiza-

tion and parallelization techniques as well as state-of-the-art
hardware synthesis technology. Figure 1 shows the overall
compiler ow. After reading in the program and performing
traditional compiler optimizations, the compiler performs
three major sets of transformations. Each set of transfor-
mations handles one class of primitives: memory, wires, or
logic. Following these transformation, traditional computer-
aided-design (CAD) optimization can be applied to generate
the �nal distributed-memory hardware.

Phase ordering is determined by the relative importance
of each primitive in determining overall application perfor-
mance. First, we analyze and partition program data into
memories, and assign computation to those memories to cre-
ate. We then schedule communication onto wires. Finally,
we generate custom logic to perform all the computation.
The following sections describe each component in turn.

Figure 2 introduces a running example which illustrates
the steps the smart memory compiler and synthesizer per-
form. Figure 2(a) shows the initial code and data fed to the
compiler. The code is a simple for loop containing a�ne
references to two arrays, A and B. Both the data arrays
are initially mapped to the same monolithic memory bank.
Subsequent sections will discuss how this program is trans-
formed by smart memory compilation, scheduling and hard-
ware generation.

4 Small Memory Formation

The �rst phase of our compilation system is small memory
formation. This phase consists of two main steps. First,
the total memory required per application is decomposed
into smaller memories based on the application's data ac-
cess pattern. Second, the computation is assigned to the
appropriate memories partitions.

4.1 Memory decomposition

The goal of memory decomposition is to partition the pro-
gram data across many small memories, but yet enforce the
attribute that each program data reference can refer to only
a single memory bank. Such decomposition enables high ag-
gregrate memory bandwidth, keeps the access logic simple,
and enables locality between a memory and the computa-
tions which access it.

Our memory decomposition problem is similar to that
for Raw architectures [20]. The Raw compiler uses static
promotion techniques to divide the program data across the
tile in such a way that the location of the data for each ac-
cess is known at compile time [2, 3]. Our memory compiler
leverages the same techqniues. At the coarse level, di�er-
ent objects may be allocated to di�erent memories through
equivalence class uni�cation. At the �ne level, each array is
potentially distributed across several memories through the
aid of modulo unrolling. We overview each technique below.

Equivalence Class Uni�cation Equivalence class uni-
�cation [2] is a static promotion technique which uses the
pointer analysis to collect groups of objects, each of which
has to be mapped to a single memory. The compiler uses
SPAN [15], a sophisticated ow-sensitive, context-sensitive
interprocedural pointer analysis package. Pointer analysis is
used to provide location set lists for every pointer in the pro-
gram, where every location set corresponds to an abstract
data object in the program. A pointer's location set list

t= i’+1
tmp3=ldB (t)
t2=ldA (i’)

A [] B []
0 0

A [] B []
1 1

A [] B []
2 2

A [] B []
3 3

A [] B []
0 0

1:

A [] B []
2 2

1:

2:
3:
4:
5:

send(tmp1)
tmp2=rcv()
t3=t2*tmp2

A [] B []
3 3

1:

A [] B []
1 1

1:

2:
3:
4:
5:

send(tmp0)
tmp1=rcv()
t3=t2*tmp1

tmp3=B [i’+1]
A [i’]=A [i’]*tmp0

tmp0=B [i’]
A [i’]=A [i’]*tmp1

tmp1=B [i’]
A [i’]=A [i’]*tmp2

tmp2=B [i’]
A [i’]=A [i’]*tmp3

0

2

3

1

3 3

2

2

10

0

3:
4:
5:

tmp0=rcv()
t3=t2*tmp0

2: send(tmp3)

2:
3:
4:
5:

send(tmp2)
tmp3=rcv()
t3=t2*tmp3

tmp0=ldB (i’)
t2=ldA (i’)

tmp1=ldB (i’)
t2=ldA (i’)

stA (i’)
stA (i’)

tmp2=ldB (i’)
t2=ldA (i’)

stA (i’) stA (i’)

1

1

0

2

3

3

3

2

2

1

1

0

0

0

switch(pc)
{
 case 1:
 t=i’+1
 tmp3=ldB (t)
 t2=ldA (i’)
 pc=2
 break
 case 2:
 send(tmp3)
 pc=3
 break
 case 3:
 tmp0=rcv()
 pc=4
 break

 }

(a)

A[] B[]

for(i=0;i<100;i++)
 A[i]=A[i]*B[i+1] 0

i’=0;
for(i=0;i<100;i+=4) {
 A [i’]=A [i’]*B [i’]
 A [i’]=A [i’]*B [i’]
 A [i’}=A [i’]*B [i’}
 A [i’}=A [i’]*B [i’+1]
 i’ = i’ + 1
}

0

0 1

2 3

33

11

2

2

A [] B []
0 0

A [] B [] A [] B []

A [] B []
1 1

2 2 3 3

for(i=0;i<100;i+=4) {
 A[i]=A[i]*B[i+1]
 A[i+1]=A[i+1]*B[i+2]
 A[i+2}=A[i+2]*B[i+3}
 A[i+3}=A[i+3]*B[i+4]
}

A [] B []
0 0

A [] B [] A [] B []

A [] B []
1 1

2 2 3 3

(b) (c) (d)

(e) (f)

(g)

Data
A[]

B[]

for(i=0;i<100;i++)
 A[i]=A[i]*B[i+1]

...

...

A[] B[]

+

*

Static handshakes

State

Logic

Control FSM

i’ 1

(h)

...

Code

Figure 2: Example. (a) initial program; (b) after equivalence class specialization; (c) after modulo unrolling step 1; (d)
after modulo unrolling step 2; (e) after migration of computation to memories; (f) after scheduling of interconnect between
memories; (g) after state machine generation; (h) resulting hardware architecture.

is a list of abstract data objects to which it can reference.
We use this information to derive alias equivalence classes,
which are groups of pointers related through their location
set lists. 1 Pointers in the same alias equivalence class can
potentially alias to the same object, while pointers in di�er-
ent equivalence classes can never reference the same object.

Once the alias equivalence classes are determined, equiv-
alence class uni�cation places all objects for an alias class
onto a single memory. This placement ensures that all point-
ers to that alias class refer to one memory. By mapping
objects for every alias equivalence class in such a manner,
all memory references can be constrained to addressing a
single memory bank. By mapping di�erent alias equiva-
lence classes to di�erent banks, memory parallelism can be
attained.

Figure 2(b) shows the results of equivalence class uni�-
cation on the initial code in Figure 2(a). Since no static ref-
erence in the program can address both A[] and B[], pointer
analysis determines that A[] and B[] are in di�erent alias
equivalence class. This analysis allows the two arrays to
be mapped to di�erent memories, while ensuring that each
memory reference only addresses a single memory.

Modulo Unrolling The major limitation of equivalence
class uni�cation is that arrays are treated as single objects
that belong to a single alias equivalence class. Mapping
an entire array to a single memory sequentializes accesses
to that array and destroys the parallelism found in many
loops. Therefore, we use a more advanced strategy called
modulo unrolling [3] to allow arrays to be distributed across
di�erent memories.

Modulo unrolling applies for array accesses whose indices
are a�ne functions of enclosing loop induction variables.
First, arrays are partitioned into smaller memories through
low-order interleaving. In this scheme, consecutive elements
of the array are interleaved in a round-robin manner across
memory banks on successive tiles. Next, modulo unrolling
shows that it is always possible to unroll loops by certain
factors such that in the resulting code all a�ne accesses go
to only one of the smaller memories. In certain cases, ad-
ditional transformations may be required. One feature of
modulo unrolling is that it does not a�ect the disambigua-
tion of accesses to any other equivalence class. Details on
determining the symbolic derivations of the minimum unroll
factors required, and the code generation techniques needed,
are given in [3].

Figure 2(c) shows the result of low-order interleaving
and unrolling phases of modulo unrolling on the code in
Figure 2(b) when the number of desired memories is four.
Low order interleaving splits each array into four sub-arrays
whose sizes are a quarter of the original. Modulo unrolling
uses symbolic formulas to predict that the unroll factor re-
quired for static dissambiguation is four. Now we can see
that each reference always goes to one tile. Speci�cally, the
A[i], A[i+1], A[i+2] and A[i+3] references access sub-arrays
0, 1, 2 and 3. The B[i+1], B[i+2], B[i+3] and B[i+4] refer-
ences access sub-arrays 1, 2, 3 and 0. Figure 2(d) shows the
code after the code generation required by modulo unrolling.
The array references have been converted to references to the
partitioned sub-arrays, with appropriate updated indices.

1More formally, alias equivalence classes are the connected com-
ponents of a graph whose nodes are pointers and whose edges are
between nodes whose location set lists have at least one common
element.

4.2 Computation Assignment

The previous memory partitioning phase has decomposed
program data structures into separate memories, with
groups of memories clustered together into tiles. We next
locate computation close to the most appropriate memory.
The load and store instructions that access a memory are
always assigned to the tile containing that memory. The
remaining computation can be assigned to any tile; its ac-
tual assignment is selected based on two factors: minimize
communication between tiles and minimizing the latency of
the critical path.

Our algorithm for assigning computation to memory
tiles directly leverages the non-uniform resource architecure
(NURA) algorithms developed for the Raw Machine [11].
In this algorithm, instruction-level parallelism within a ba-
sic block is orchestrated across multiple tiles. This work
is in turn an extension of the original MIT Virtual Wires
Project [1] work, in which only circuit-level, or combina-
tional, parallelism with a clock cycle was orchestrated across
multiple tiles.

The compiler performs computation assignment in three
steps: clustering, merging, and placement. Clustering
groups together instructions, such that instructions within
a cluster have no parallelism that can pro�tably be ex-
ploited across tiles given the cost of communication. Merg-
ing merges the cluster to reduce the number of clusters down
to the number of tiles. Placement performs a bijective map-
ping from the merged clusters to tiles, taking into account
the topology of the interconnect.

Figure 2(e) shows the results of computation assignment
in our example. As we described in the previous section,
each tile contains two memories, one for each array. Com-
putation is assigned directly into the small memory array.
In the �gure, each tile has been assigned a subset of the
original instructions.

5 Virtual Wires Scheduling

While the previous phase of the compiler produces the small
memories, this next phase of the compiler is responsible for
managing inter-tile communication. We term this phrase
Virtual Wires Scheduling.

Although moving program instruction into the memory
system eliminates long memory communication latencies in
comparison to monolithic processor design, new inter-tile
communication paths will now be required for the program
to execute correctly. Namely, there are data dependencies
between the instructions assigned to each tile.

In Figure 2(e) the data dependences between tiles are ex-
plicitly shown as temporary variables introduced in the code.
For example, tmp0 needs to be communicated between the
upper-left tile and the upper-right tile. Besides data de-
pendencies, there are also control dependencies introduced.
However, this control ow between basic blocks is explicitly
orchestrated by the compiler through asynchronous global
branching [11], an asynchronous mechanism for implement-
ing branching across all the tiles using static communication
and individual branches on each tile. Thus control depen-
dencies will be turned into data dependencies as well.

In the same manner as the original virtual wires schedul-
ing algorithm for logic emulation [1], our static scheduler
will multiplex logical communications such as tmp0 with
other communications between the same source and desti-

nation, sharing the same physical channel. The multiplexing
of this physical channel will be directly synthesized in the
target hardware technology by a following hardware gen-
eration phase. Note that communication required between
non-neighbor tiles must be routed through an intermediate
tile.

In contrast to the Raw space-time scheduler, which tar-
gets a simple processor and static switch in each tile, our
compilation target is more exible, allowing multiple in-
structions to be executed in parallel, with the only constraint
being that each memory bank within each tile can be ac-
cessed at most once per cycle. This additional exibility is
possible because we are targeting custom hardware instead
of a �xed processing unit.

In constrast to compilation for a VLIW, which also in-
volves statically scheduling multiple instructions, we are not
constrained by an initial set of function units, register �les,
and busses. Our scheduler minimizes the execution latency
of the program by scheduling to virtual function units as
dictated by the application.

As a �nal note, during scheduling we have essentially re-
laxed the resource allocation problem for both registers and
function units, while retaining the constraints for memory
accesses and inter-tile wires. This strategy is similar to vir-
tual register allocation strategies for sequential processors,
except that we relax all computation resource constraints.
Because we are parallelizing sequential code and thus pre-
dominately limited by memory and communication costs,
this relaxation is feasible. Resource allocation is delayed
until the later custom logic generation phase.

Figure 2(f) shows the results of communication schedul-
ing. The send instruction in each tile represents multiplexed
communications across the inter-tile channels. The following
custom logic generation phase will convert these instructions
to pipeline registers and multiplexers controlled by bits in
the state machine in each tile.

6 Custom Logic Generation

By the time the custom logic generation phase executes, the
previous phases have mapped the data onto the memories,
extracted the concurrency, and generated a parallel thread
of instructions for each tile. They have also scheduled the ex-
ecution: each memory access, communication operation and
instruction has been mapped to a speci�c execution cycle.
Finally, the space-time scheduler has mapped the compu-
tation and communication to a speci�c location within the
memory array.

The custom logic generation phase is responsible for gen-
erating a hardware implementation of the communication
and computation schedules. First the system generates a
�nite state machine that produces the cycle-by-cycle con-
trols for all the functional units, registers and memories that
make up the tile. Then the �nite state machine is synthe-
sized into a technology independent register-transfer-level
speci�cation of the �nal circuit. We discuss each of these
activities below.

6.1 Finite State Machine

As shown in Figure 2(g), the �nite state machine (FSM)
generator takes the thread of scheduled instructions that has
been generated for each tile, and produces a state machine
for each thread. This state machine contains a state register,

called pc, which serves a function similar to the program
counter in a conventional processor. Each state of the FSM
corresponds to the work that will be done in a single cycle
in the resulting hardware. The resulting FSM will generate
both the proper control to calculate the next state, including
any calculation to generate branch destinations, and also the
proper control signals to the virtual functional units that will
be generated in the next phase.

Each state of the FSM contains a set of possibly depen-
dent operations. The FSM generator turns the set of oper-
ations in each state into combinational logic. Any depen-
dences between operations in the same state are connected
by specifying wires between the dependent functions. For
any data values that are live between states (produced in
one state and consumed in a di�erent state), the FSM gen-
erator allocates a register to hold that value.

6.2 Register Transfer Level

The �nal phase of compilation involves generating a Register
Transfer Level (RTL) model from the �nite state machine.
The resulting RTL speci�cation for each tile is technology-
independent and application-speci�c. Each tile contains a
datapath of inter-connected functional units, several memo-
ries, and control elements. Figure 2(h) shows a logic diagram
for the circuit that would be generated from the FSM. The
datapath is synthesized out of registers (represented by solid
black bars in the �gure), higher order functional units (such
as adders and multipliers) and multiplexers. A controller is
speci�ed in RTL to control the actions of the datapath and
the inter-processor I/O.

The next step synthesizes logic for the address, data,
and enable signals for each memory reference in the FSM.
For example the address signals are shown as arrows going
into the A[] and B[] memories in Figure 2(h). Whenever a
reference has been statically mapped to a speci�c memory,
the address calculation is specialized to eliminate the bits
that select that memory as the target, as described further
in Section 6.3. This specialization simpli�es the address
calculation hardware, so it consumes less power and less
area.

The compiler-generated architecture must include com-
munication channels between each FSM for inter-tile com-
munication. The communication synthesis step creates these
channels from the inter-tile communication dependencies
and synthesizes the appropriate control logic into the FSM.
This logic is shown as the multiplexors on the bottom and
right hand side of Figure 2(h). In addition, the control
logic includes static handshaking signals between each pair
of communicating FSMs as shown in the upper left corner
of Figure 2(h).

Finally, the compiler outputs technology independent
Verilog RTL. This step is a modi�cation of the Stanford
VeriSUIF Verilog output passes. SUIF data structures are
�rst converted into Verilog data structures and then written
as Verilog RTL to an output �le. The output fully describes
the cycle-level behavior of the circuit, including all state
transitions and actions to be take every cycle.

We have described the steps that are required to compile
a program into hardware. In the next section we describe
some of the additional optimization opportunities that are
available when producing hardware.

i

j

A

data

address

Figure 3: Example of address specialization. The address
calculation for the array reference A[i][j] can be entirely
eliminated. Instead, the values of i and j are placed on the
corresponding address wires.

6.3 Other Custom Logic

Along with the parallelism that is available in custom logic,
an additional advantage is that when the bit-level opera-
tions are exposed to the compiler, the compiler can perform
additional optimizations beyond those found by traditional
software optimizers. These include the possibility of folding
constants directly into the circuitry and using other compile-
time knowledge to completely eliminate gates.

Address Calculation. The primary example of hard-
ware specialization involves simpli�cation of address cal-
culation. As an example, consider what would happen if
the code in Figure 2 had referenced a two dimensional ar-
ray, like A[i][j]. The naive code for this address calcula-
tion would be A + (i * Y DIM + j) * 4. In the case that
Y DIM was a power of 2, most compilers would strength
reduce the multiplication operations to shifts to produce
A + (i << LOG2 Y DIM + j) << 2.

In most software systems this is the minimal calculation
to reference a two dimensional array. In hardware systems,
on the other hand, we can specialize even further. First,
since we perform equivalence class uni�cation, as described
in Section 4.1, the A array will live in its own private memory.
Then every reference will lie at an o�set from location 0 of
the memory for array A, so the �rst addition operation can
be eliminated. Furthermore, the memory for A can be built
to be of the same width as the data word, so that the �nal
multiplication by 4 can be completely eliminated, leaving
(i << LOG2 Y DIM + j).

While in a conventional RISC processor logical opera-
tions require the same number of cycles as an addition op-
eration, in hardware a logical or operation is both faster
and smaller than an adder. Our compiler performs bit-width
optimization to transform these add operations into or op-
erations. The compiler calculates the maximum bit-width
of j, and �nds that since j < Y DIM, the maximum value of
j never consumes more than LOG Y DIM bits, so the bits of j
and the bits of (i << LOG2 Y DIM) never overlap. The ad-
dition in this expression can then be optimized away to pro-
duce (i << LOG Y DIM | j). Finally, since oring anything
with 0 produces that value, the or gates can be eliminated,
and replaced with wires. The result is that the two values, i
and j, can be concatenated to form the �nal address. This
�nal transformation is shown in Figure 3.

Floating Point. For each oating point operation in the
program the compiler replaces the operation with a set of

simpler integer and bit level micro-operations using a tech-
nique similar to [4]. These resulting micro-operations can
then be optimized and scheduled by the datapath genera-
tor. Because the constituent exponent and mantissa micro-
operations are exposed to the compiler, the compiler can
exploit the parallelism both inside individual oating point
operations and also between di�erent oating point opera-
tions.

As an example of the specialization that can occur, con-
sider dividing a oating point number with a constant that
can be written as a factor of two, e.g. y = x=2:0. Exe-
cuting this division operation would take many cycles on a
traditional oating-point execution unit.

However, by exposing the micro-operations required to
do the oating-point computation in terms of operations on
the exponent and mantissa and generating specialized hard-
ware for the computation, the cycle count of this operation
can be optimized by an order of magnitude. The required
micro-operation to perform such a division is to subtract 1
from the exponent of x. The time to execute the oating-
point division operation reduces to the latency of a single
�xed-point subtraction.

7 Experimental Results

We have implemented a compiler that is capable of accepting
a sequential application, written in either C or Fortran, and
automatically generating a specialized architecture for that
application. The compiler contains all of the functionality
described in the previous sections of this paper.

This section presents experimental results for an initial
set of applications that we have compiled to hardware. For
each application, our compiler produces an architecture de-
scription in RTL Verilog. We further synthesize this archi-
tecture to logical gates with a commercial CAD tool. The
current target technology in which we report gate counts
is the reference technology provided with the IKOS Virtua-
Logic System [9]. This system is a logic emulator that can
be used to validate designs of up to one million gates, as
well as additional custom memories.

Our current timing model, enforced during scheduling,
limits the amount of computation that may be assigned to
any one clock cycle to be less than the equivalent delay of
a 32-bit addition or the latency of a small memory access.
The exact clock period of each circuit will be technology-
dependent, but due to this constraint will be similar to that
of a simple processor implemented in the same technology.
We report execution times as total cycle counts for each
application.

Table 1 gives the characteristics of the benchmarks used
for the evaluation. These applications include one tradi-
tional scienti�c program and three multimedia applications.
The input programs are all sequential. Jacobi is an integer
version of a iterative relaxation algorithm. Adpcm-encode
is the compression part of the compression/decompression
pair in Adpcm. MPEG-kernel is the portion of MPEG which
takes up 70% of the total run-time. SHA implements a se-
cure hash algorithm.

For reference, we also compare our results with previ-
ously published simulation results from a parallel Raw ma-
chine with one to 16 processors. Because our compiler is
based on the same frontend infrastructure for parallelization
as the Raw compiler, this comparison allows us to isolate the
e�ect of customizing the tile for an application.

Benchmark Type Source Lines Seq. RT Primary Description
of code (cycles) Array size

Jacobi Dense Mat. Rawbench 59 2.38M 32�32 Jacobi Relaxation
Adpcm-encode Multimedia Mediabench 133 7.1M 1000 Speech compression
MPEG-kernel Multimedia UC Berkeley 86 14.6K 32�32 MPEG-1 Video Software Encoder kernel
SHA Multimedia Perl Oasis 608 1.0M 512�16 Secure Hash Algorithm

Table 1: Benchmark characteristics. Column Seq. RT shows the run-time for the uniprocessor code generated by the Machsuif MIPS
compiler.

0

4

8

12

16

S
p

ee
d

u
p

mips R2000

customized

Adpcm-encode Jacobi MPEG-kernel SHA

Figure 4: Base comparison

7.1 Base Comparison

Figure 4 presents execution times for each application in
comparison with execution time on a single MIPS R2000
processor (the basic component of one Raw tile). Roughly
speaking, customization results in an order of magnitude
fewer clock cycles (5 to 10) required to perform the same
computation. As we expect the clock cycles to be similar,
this reduction will translate directly into proportional per-
formance increases for custom hardware.

Table 2 presents the gate counts for the single tile compi-
lation. We assume that one gate is approximately equivalent
to one byte of memory for SRAM comparisons. Note that
the logic and register gate counts for each application except
SHA are smaller than the size of a simple processor (about
20K gates).

7.2 Parallelized Comparison

For the parallelized case, we report results for two compila-
tion strategies: a hardwired system and a virtual wired sys-
tem. The hardwired system allows direct, dedicated wires
between arbitrary memories and assumes that signals can
propagate the full length of each wire in one clock cycle.
The total cycle count is always smaller for the hardwired
system because there are no cycles dedicated to schedul-
ing the wires. Additionally, the hardwired systems do have
additional hardware synthesized for multiplexing the inter-
connect. It therefore provides a good comparison point that
allows us to isolate the costs of virtual wire scheduling. Bear
in mind, however, that for large circuits the hardwired sys-
tem would contain long wires with large propagation delays.
These delays slow down the clock, degrading the overall per-
formance of the application. The scaling factors in future
VLSI system will only exacerbate this phenomenon, making
virtual wires scheduling a necessity.

Figure 5 presents the resulting speedups for Jacobi and
MPEG, the two application which are parallelizable, as we
increase the number of tiles. Note that for both cases each
tile already has multiple memory banks and takes advan-

Benchmark Logic Registers Memory Total

Jacobi 3830 5064 65536 74430
Adpcm-encode 3786 3704 3210 10700
MPEG-kernel 1833 2312 3584 7729
SHA 35100 12680 16384 64164

Table 2: Gate counts for one tile.

tage of ILP even for the single tile case. For both the hard-
wired and the virtual wired case, performance continues to
increase as we add more hardware. The virtual wired case
must pay the penalty of communication costs, but neverthe-
less, absolute performance remains well above even a 16 pro-
cessor Raw machine. Raw achieves better scalability for Ja-
cobi because of it does not take advantage of initial amount
of instruction-level parallelism in the one processor case.

Figure 6 reports the increase in hardware area, includ-
ing memory, as the number of tiles are increased. Note that
for the virtual wires case, the hardware areas grow more
rapidly because of the increasing amount of communication
logic that is required. In Figure 7, we show the hardware
composition, in percentages, of each architecture. Notice
how the memory starts out taking a fairly large percentage
of the area, but as we decrease the granularity of the mem-
ory system by adding more tiles, the system becomes more
balanced. As we totally dominate the memory area with
additional hardware, the speedup curves tail o�.

Implications for Con�gurable Hardware

Note that while we have not directly considered recon�g-
urable hardware, such as an FPGA-based system described
in the related work, if a recon�gurable system were to imple-
ment virtual wires and small memories directly in the fabric,
we believe similar performance gains might be achievable.
However, we should note that in recon�gurable logic-based
architectures the potential clock speeds will most likely not
be on an equal basis and an appropriate speed penalty for
the custom logic will need to be taken into account.

8 Related Work

Silicon compilation has existed in one form or another since
the early days of designing chips. Even before schematic
capture, designers wrote programs which directly generated
the geometry and layout for a particular design. In the
past twenty years various research has proposed to compile
PASCAL, FORTRAN, C, and Scheme into hardware. We
must be careful to distinguish between compiling a program
into hardware, and describing hardware with a higher-level

� Custom-hard-wires
 Custom-virtual-wires

 Raw

|

0
|

4
|

8
|

12
|

16

|0

|1

|2

|4

|8

|16

|32

|64

|128

 Speedup scalability for jacobi

 Ntiles

 S
pe

ed
up

�

�

�

�

�

� Custom-hard-wires
 Custom-virtual-wires

 Raw

|

0
|

4
|

8
|

12
|

16
|0

|1

|2

|4

|8

|16

|32

|64

 Speedup scalability for mpeg

 Ntiles

 S
pe

ed
up

�

�

�

�
�

Figure 5: Speedup for jacobi and mpeg.

 Custom-virtual-wires
� Custom-hard-wires

|

0
|

4
|

8
|

12
|

16

|0

|60000

|120000

|180000

|240000

|300000

 Gate count for jacobi

 Ntiles

 G
at

es

� �
�

�

�

 Custom-virtual-wires
� Custom-hard-wires

|

0
|

4
|

8
|

12
|

16

|0

|20000

|40000

|60000

|80000

|100000

 Gate count for mpeg

 Ntiles

 G
at

es

�
�

�

�

�

Figure 6: Hardware Size

Jacobi

0

20

40

60

80

100
Logic

Registers

Memory

Virtual wires

1 2 4 8 16

Hardwires

1 2 4 8 16

Mpeg

0

20

40

60

80

100
Logic

Registers

Memory

Virtual wires

1 2 4 8 16

Hardwires

1 2 4 8 16

Figure 7: Hardware composition.

language { they are not the same. In our work, we compile
sequential programs that describe an algorithm in a manner
easy for the programmer to understand.

Recent work in RTL and behavioral synthesis [18] in-
volves synthesizing higher-level algorithms into hardware.
Where possible, we leverage this work in our compilation
process. For example, we leave resource allocation to be
performed during the following synthesis pass. However, to
our knowledge this is the �rst system which can manage
memory, multiplex wires, and transform general high-level
programming languages directly into custom hardware.

We continue by discussing two additional areas of re-
lated work: parallel architectures and recon�gurable archi-
tectures.

8.1 Parallel Architectures

Other researchers have parallelized some of the benchmarks
in this paper. Automatic parallelization has been demon-
strated to work well for dense matrix scienti�c codes [8].
In contrast to this work, our approach to generating paral-
lelism stems from an ability to exploit �ne-grain ILP, rather
than the coarse-grain parallelism targeted by [8]. Multi-
processors are mostly restricted to such coarse-grain par-
allelism because of their high costs of communication and
synchronization. Unfortunately, �nding such coarse grain
parallelism often requires whole program analysis by the
compiler, which works well only in restricted domains. In
a custom architecture, we can successfully exploit ILP be-
cause of the register and wire-level latencies in hardware.
Of course, hardware can exploit coarse-grain parallelism as
well.

Software distributed shared memory schemes on multi-
processors (DSMs) [16] [5] are similar in spirit to our ap-
proach for managing memory. They emulate in software the
task of cache coherence, one which is traditionally performed
by complex hardware. In contrast, this work turns sequen-
tial accesses from a single memory image into decentralized
accesses across multiple small memories. This technique en-
ables the parallelization of sequential programs into a high
bandwidth memory array.

Both the Berkeley IRAM research project [10] and Stan-
ford's new Smart Memories Project [12] focus on building
future-generation computing system that are more tightly
coupled with memory. The IRAM's approach is to improve
performance of the memory system by �tting more data on a
chip. They achieve this goal by using high-density dynamic
RAM (DRAM) memory instead of lower-density SRAM
caches and treating the on-chip DRAMmemory as the main
memory instead of a redundant copy. The Smart Memo-
ries Project's stated purpose is to build a future-generation
computing system that provides e�ciency, generality, and
programmability in a single system.

8.1.1 Recon�gurable Architectures

A recon�gurable computing system, comprised of an array of
interconnected Field Programmable Gate Array (FPGA) de-
vices are common hardware targets for application-speci�c
computing. Splash [6] and PAM [19] are the �rst substan-
tial recon�gurable computing systems. As part of the Splash
project, a team lead by Maya Gokhale ported data-parallel
C [14] to the Splash recon�gurable architecture. This e�ort
was one of the �rst to actually compile programs, rather

than design hardware, for a recon�gurable architecture. De-
signs reported to take months to design could be written in a
day. While data-parallel C extended the language to handle
bit-level operations and systolic communication, all control
ow is managed by the host. Hardware compilation was only
concerned with basic blocks of parallel instructions. This
approach has been ported to National Semiconductors new
processor/FPGA chip based on the CLAy architecture [13].

Programmable Active Memories [19], designed at Com-
paq Paris Research Lab, interfaces to a host processor via
memory-mapped I/O. The programming model is to treat
the recon�gurable logic as a memory capable of perform-
ing computation. The actual design of the con�guration for
each PAM application was speci�ed in a C-syntax hardware
description language.

In the PRISM project [17], functions derived from a sub-
set of C are compiled into an FPGA. The PRISM-I subset
included if-then-else as well as for loops of �xed count. The
PRISM-II subset included variable length for loops, while,
do-while, switch-case, break, and continue.

Other projects include compilation of Ruby [7] - a lan-
guage of functions and relations, and compilation of vec-
torizable loops in Modula-2 for recon�gurable architec-
tures [21].

9 Conclusion

In this paper we have described and evaluated a novel com-
pilation system that allows sequential programs written in C
and Fortran to be compiled directly into application-speci�c
hardware substrates.

Our approach extends known techniques from paral-
lelizing compilers, such as memory disambiguation, static
scheduling and data partitioning. We focus on memory and
wires �rst, and then computation. We start by partitioning
the data structures in the program into and array of small,
fast memories. In our model, computation is performed by
custom logic computing elements interspersed among these
memories. The compiler leverages the correspondence be-
tween memory and computation to place the computation
close to the memory that it accesses, such that communi-
cation costs are minimized. Similarly, a static schedule is
generated for the interconnect that optimizes wire utiliza-
tion and minimizes interconnect latency. Finally, the spe-
cialized hardware for smart memories, virtual wires, and
other custom logic is compiled to hardware in the form of a
multi-process state machine in synthesizable Verilog.

With this compilation system we have obtained special-
ization performance improvements by up to an order of mag-
nitude versus a single general purpose processor and addi-
tional parallelization speedups similar to those obtainable
using a tightly interconnected multiprocessor.

References

[1] J. Babb, R. Tessier, M. Dahl, S. Hanono, D. Hoki, and
A. Agarwal. Logic Emulation with Virtual Wires. IEEE
Transactions on Computer Aided Design, 16(6):609{
626, June 1997.

[2] Rajeev Barua, Walter Lee, Saman Amarasinghe,
and Anant Agarwal. Maps: A Compiler-Managed
Memory System for Raw Machines. Technical

report, M.I.T. LCS-TM-583, July 1998. Also
http://www.cag.lcs.mit.edu/raw/.

[3] Rajeev Barua, Walter Lee, Saman Amarasinghe, and
Anant Agarwal. Memory Bank Disambiguation us-
ing Modulo Unrolling for Raw Machines. In Pro-
ceedings of the ACM/IEEE Fifth Int'l Conference on
High Performance Computing(HIPC), Dec 1998. Also
http://www.cag.lcs.mit.edu/raw/.

[4] William J. Dally. Micro-optimization of oating-
point operations. In Proceedings of the Third Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pages
283{289, Boston, Massachusetts, April 3{6, 1989.

[5] Sandhya Dwarkadas, Alan L. Cox, and Willy
Zwaenepoel. An integrated compile-time/run-time soft-
ware distributed shared memory system. In Proceed-
ings of the Seventh International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, pages 186{197, Cambridge, Mas-
sachusetts, October 1{5, 1996.

[6] Maya Gokhale, William Holmes, Andrew Kopser, Sara
Lucas, Ronald Minnich, Douglas Sweeney, and Daniel
Lopresti. Building and using a highly parallel pro-
grammable logic array. Computer, 24(1), January 1991.

[7] Shaori Guo and Wayne Luk. Compiling Ruby into FP-
GAs. In Field Programmable Logic and Applications,
August 1995.

[8] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R.
Murphy, S.-W. Liao, E. Bugnion, and M. S. Lam. Max-
imizing multiprocessor performance with the suif com-
piler. COMPUTER, 29(12):84{89, December 1996.

[9] IKOS Systems, Inc. VirtuaLogic Emulation System
Documentation, 1996. Version 1.2.

[10] Christoforos E. Kozyrakis, Stylianos Perissakis, David
Patterson, Thomas Anderson, Krste Asanovic, Neal
Cardwell, Richard Fromm, Jason Golbus, Benjamin
Gribstad, Kimberly Keeton, Randi Thomas, Noah
Treuhaft, and Katherine Yelick. Scalable processors in
the billion transistors era: IRAM. IEEE Computer,
pages 75{78, September 1997.

[11] Walter Lee, Rajeev Barua, Matthew Frank, Dev-
abhatuni Srikrishna, Jonathan Babb, Vivek Sarkar,
and Saman Amarasinghe. Space-Time Scheduling of
Instruction-Level Parallelism on a Raw Machine. In
Proceedings of the Eighth ACM Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems, pages 46{57, San Jose, CA, October
1998.

[12] Mark Horowitz, personal communications.
Stanford University Smart Memories Project.
http://velox.stanford.edu/smart memories.

[13] Maya B. Gokhale, Janice M. Stone, Matthew Frank,
Sarno� Corporation. NAPA C: Compiling for a Hybrid
RISC/FPGA Architecture. In FCCM98, Napa Valley,
California, April 1998.

[14] Maya Gokhale and Brian Schott. Data-Parallel C on a
Recon�gurable Logic Array. Journal of Supercomput-
ing, September 1995.

[15] Radu Rugina and Martin Rinard. Span: A shape and
pointer analysis package. Technical report, M.I.T. LCS-
TM-581, June 1998.

[16] Daniel J. Scales, Kourosh Gharachorloo, and Chan-
dramohan A. Thekkath. Shasta: A low overhead,
software-only approach for supporting �ne-grain shared
memory. In Proceedings of the Seventh International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 174{185,
Cambridge, Massachusetts, October 1{5, 1996.

[17] A. Smith, M. Wazlowski, L. Agarwal, T. Lee, E. Lam,
P. Athans, H. Silverman, and S. Ghosh. PRISM II Com-
piler and Architecture. In Proceedings IEEE Workshop
on FPGA-based Custom Computing Machines, pages
9{16, Napa, CA, April 1993. IEEE.

[18] Synopsys, Inc. Behavioral Compiler User Guide, V
1997.08, August 1997.

[19] J.E. Vuillemin, P. Bertin, D. Roncin, M. Shand, H. H.
Touati, and P. Boucard. Programmable Active Mem-
ories: Recon�gurable Systems Come of Age. IEEE
Transactions on VLSI Systems, 4(1), March 1996.

[20] Elliot Waingold, Michael Taylor, Devabhaktuni Srikr-
ishna, Vivek Sarkar, Walter Lee, Victor Lee, Jang Kim,
Matthew Frank, Peter Finch, Rajeev Barua, Jonathan
Babb, Saman Amarasinghe, and Anant Agarwal. Bar-
ing It All to Software: Raw Machines. IEEE Computer,
30(9):86{93, September 1997. Also available as MIT-
LCS-TR-709.

[21] M. Weinhardt. Compilation and Pipeline Synthesis for
Recon�gurable Architectures - High Performance by
Con�gware. In Recon�gurable Architecture Workshop,
1997.

