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Abstract

Increasing focus on multimedia applications has prompted the ad-
dition of multimedia extensions to most existing general-purpose
microprocessors. This added functionality comes primarily in the
addition of short SIMD instructions. Unfortunately, access to these
instructions is limited to in-line assembly and library calls. Some
researchers have proposed using vector compilers as a means of
exploiting multimedia instructions. Although vectorization tech-
nology is well understood, it is inherently complex and fragile. In
addition, it is incapable of locating SIMD-style parallelism within
a basic block. In this paper we introduce the concept ofSuperword
Level Parallelism(SLP), a novel way of viewing parallelism in mul-
timedia applications. We believe SLP is fundamentally different
from the loop-level parallelism exploited by traditional vector pro-
cessing, and therefore warrants a different method for extracting
it. We have developed a simple and robust compiler technique for
detecting SLP that targets basic blocks rather than loop nests. As
with techniques designed to extract ILP, ours is able to exploit par-
allelism both across loop iterations and within basic blocks. The
result is an algorithm that provides excellent performance in sev-
eral application domains. Experiments on scientific and multime-
dia benchmarks have yielded average performance improvements
of 84%, and range as high as253%.

1 Introduction

The recent shift towards computation intensive multimedia work-
loads has resulted in a flourish of new multimedia extensions to cur-
rent microprocessors [12, 15, 20, 23, 25, 30]. Many new designs
are targeted specifically toward the multimedia domain [5, 13, 16].
This trend is likely to continue as it has been projected that mul-
timedia processing will soon become the main focus of micropro-
cessor design [14].

While different processors vary in the type and number of mul-
timedia instructions offered, at the core of each is a set of short
SIMD or superword operations. These instructions operate con-
currently on data that are packed in a single register or memory
location. In the past, such systems could accommodate only small
data types of 8 or 16 bits, making them suitable for a limited set of
applications. With the emergence of 128-bit superwords, SIMD in-
structions can operate on four 32-bit operands. By adding floating
point support as well, it is now possible to use these enhancements
to perform more general purpose computation.
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It is not surprising that SIMD execution units have appeared
in desktop microprocessors. Their simple control, replicated func-
tional units, and absence of multi-ported register files makes them
inherently simple and extremely amenable to scaling. As the num-
ber of available transistors increases with advances in semiconduc-
tor technology, datapaths are likely to grow even larger.

Use of multimedia extensions has been limited since applica-
tion writers are largely restricted to using in-line assembly routines
or specialized library calls. One solution to this inconvenience is to
employ vectorization techniques that have been used to parallelize
scientific code for vector machines [11, 18, 19]. Since many mul-
timedia applications are vectorizable, this approach promises good
results. However, many important multimedia applications are not
vectorizable. Furthermore, complicated loop transformation tech-
niques such as loop fission and scalar expansion are required to
parallelize loops that are only partially vectorizable [2, 3, 7, 21].
As a result, no commercial compilers implement this functional-
ity. This paper presents a simple and robust method for extracting
SIMD parallelism beyond vectorizable loops.

We believe that short SIMD operations are well suited to ex-
ploit a fundamentally different type of parallelism than the vector
parallelism associated with traditional vector supercomputers. We
denote this parallelismSuperword Level Parallelismsince paral-
lelism comes in the form of superwords containing packed data.
Note that SLP also differs from traditional large scale SIMD par-
allelism [6, 8, 28]. SIMD supercomputers require large amounts
of parallelism in order to achieve speedups, whereas SLP can be
profitable when such parallelism is scarce.

In some sense, superword level parallelism is actually a re-
stricted type of ILP. ILP techniques have been very successful in
the general purpose computing arena, partly because of their ability
to find small amounts of parallelism within basic blocks. Similarly,
the amount of parallelism needed to warrant the use of a multime-
dia operation is much less than the massive amounts of parallelism
needed by vector machines. From this perspective, we have been
able to develop a general algorithm for detecting SLP.

In the same way that loop unrolling translates loop-level par-
allelism into ILP, vectorizable loops can be transformed into SLP.
Consequently, our method is able to exploit vector parallelism as
well. There are many cases in which a vectorizer is unable to
take advantage of loop-level parallelism [10]. Vector compilers
typically use complicated loop transformation techniques to handle
loops that are only partially vectorizable. Our method, however, is
not dependent on any of these transformations. As we will demon-
strate in the next section, this allows us to easily parallelize loops
that present a challenge to vector compilers.

The rest of this paper is organized as follows: Section 2 de-
fines superword level parallelism. Section 3 describes the compiler
algorithm that we have implemented to extract superword level par-
allelism. Section 4 presents results on a variety of multimedia and
scientific benchmarks. Section 5 concludes and discusses future
directions.
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2 Superword Level Parallelism

This section elaborates on the notion of SLP and the means by
which it is detected. Throughout this section, we introduce ter-
minology that facilitates the discussion of our algorithm in the next
section.

2.1 Detection of Superword Level Parallelism

Superword level parallelism is defined as short SIMD parallelism in
which the operands and results of SIMD operations are packed in a
storage location. Detection is done through a short, simple analysis
in which independent isomorphic statements are located within a
basic block. Isomorphic statements are those that contain the same
operations in the same order. Such statements can be computed
in parallel by a technique we callstatement packing, an example
of which is shown in Figure 1. Here, operands in corresponding
positions have been packed into registers and the addition and mul-
tiplication operators have been replaced by their SIMD equivalents
(shown as+SIMD and�SIMD). The results of the computation
are themselves packed and may require unpacking depending on
how they are used in later computations. The performance bene-
fit of statement packing is determined by the speedup gained from
parallelization minus the cost of packing and unpacking.

a = b + c * z[i+0]
d = e + f * z[i+1]
r = s + t * z[i+2]
w = x + y * z[i+3]

a
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r
w
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s
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y

z[i+0]
z[i+1]
z[i+2]
z[i+3]

* SIMD+SIMD=

Figure 1: Isomorphic statements that can be packed and operated
upon in parallel.

Depending on what operations an architecture provides to fa-
cilitate general packing and unpacking, this technique can actually
result in a performance degradation if packing and unpacking costs
are high relative to ALU operations. One of the main objectives of
our SLP detection technique is to minimize packing and unpacking
by locating cases in which packed data produced as a result of one
computation can be used directly in another computation.

Packed statements that contain adjacent memory references
among corresponding operands are particularly well suited for SLP
execution. This is because operands are effectively pre-packed in
memory and require no reshuffling within a register. In addition,
an address calculation followed by a load or store need only be
executed once instead of individually for each element1. The com-
bined effect can lead to a significant performance increase. This
is not surprising since vector machines have been successful at ex-
ploiting the same phenomenon. In our experiments, instructions
eliminated from operating on adjacent memory locations had the
greatest impact on speedup. For this reason, locating adjacent
memory references forms the basis of our algorithm, discussed in
Section 3.

1This requires addresses to be aligned on superword boundaries or architectural
support for unaligned memory accesses.

2.2 Comparison with Other Forms of Parallelism

2.2.1 Vector Parallelism

The compiler community has generally assumed that exploiting
multimedia instructions requires vector parallelization. To provide
evidence to the contrary we present two examples, shown in Fig-
ures 2 and 3. Although the first example can be made vectorizable
after a series of transformations, we know of no vector compilers
that can be used to vectorize the second. Furthermore, the trans-
formations required in the first example are unnecessarily complex
and may not work in more complicated circumstances. In general,
a vector compiler must employ a repertoire of tools in order to par-
allelize loops on a case by case basis. In comparison, our method
is simple and robust, yet still capable of detecting the available par-
allelism.

for (i=0; i<16; i++) {
localdiff = ref[i] - curr[i];
diff += absval(localdiff);

}
(a) Original loop.

for (i=0; i<16; i++) {
T[i] = ref[i] - curr[i];

}

for (i=0; i<16; i++) {
diff += absval(T[i]);

}

(b) After scalar expansion and loop fission.

for (i=0; i<16; i+=4) {
localdiff0 = ref[i+0] - curr[i+0];
localdiff1 = ref[i+1] - curr[i+1];
localdiff2 = ref[i+2] - curr[i+2];
localdiff3 = ref[i+3] - curr[i+3];

diff += absval(localdiff0);
diff += absval(localdiff1);
diff += absval(localdiff2);
diff += absval(localdiff3);

}

(c) Superword level parallelism exposed after unrolling.

Figure 2: A comparison between parrallelization techniques.

Figure 2(a) presents the inner loop of the motion estimation al-
gorithm used for MPEG encoding. Vectorization is inhibited by the
presence of a loop carried dependence and a function call within the
loop body. To overcome this, a vector compiler can perform a se-
ries of transformations in order to mold the loop into a vectorizable
form. The first is scalar expansion, which allocates a new element
in a temporary array for each iteration of the loop [7]. Loop fission2

is then used to divide the statements into separate loops [17]. The
result of these transformations is shown in Figure 2(b). The first
loop is vectorizable, but the second must be executed sequentially.

Figure 2(c) shows the loop from the perspective of SLP. The
loop has been unrolled and isomorphic statements have been
grouped together. This code rearrangement is legal since it does
not violate any dependences (once scalar renaming is performed).
Note that SLP analysis is not reliant on any explicit instruction
movement, and is shown here only to emphasize the SIMD par-
allel statements. It is worth mentioning however, that SLP trans-
formations implicitly have an instruction reordering effect when
statements are grouped together. As we will explain later, our al-
gorithm only packs statements that can be scheduled to execute in
parallel. In the example, the first four statements in the loop body

2Also called loop distribution or loop splitting.
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can be packed and executed in parallel. Their results are then un-
packed so they can be used in the sequential computation of the
final statements. In the end, this method has the same effect as the
transformations used for vector compilation, while only requiring
loop unrolling and scalar renaming.

while (1) {
dst[0] = (src1[0] + src2[0]) >> 1;
dst[1] = (src1[1] + src2[1]) >> 1;
dst[2] = (src1[2] + src2[2]) >> 1;
dst[3] = (src1[3] + src2[3]) >> 1;

dst += 4;
src1 += 4;
src2 += 4;

if (dst == end) break;
}

Figure 3: An example of a hand-optimized matrix operation that
proves unvectorizable.

Figure 3 shows a code segment that averages the elements of
two 16x16 matrices. As is the case with many multimedia kernels,
our example has been hand-optimized for a sequential machine.
In order to vectorize this loop, a vector compiler would need to
reverse the programmer applied optimizations. Were such methods
available, they would involve constructing a “for” loop, restoring
the induction variable, and re-rolling the loop body. In contrast,
locating SLP within the loop body is simple. Since the optimized
code is amenable to SLP analysis, hand-optimization has had no
detrimental effects on our ability to detect the available parallelism.

2.2.2 Loop Level Parallelism

Vector parallelism is a subset of loop level parallelism. Methods for
detecting this type of parallelism operate at the level of loop nests.
In many cases, complex control flow and loop-carried dependences
inhibit vectorization. However, as detailed in the previous subsec-
tion, SLP methods can extract parallelism by analyzing an unrolled
loop body.

General loop-level parallelism is exploited by multiprocessors.
In many cases, parallel loops may not yield any performance gains
because of fine-grain synchronization or loop-carried communica-
tion. It is therefore necessary to find coarse-grain parallel loops
when compiling for MIMD machines. Traditionally, a MIMD ma-
chine is composed of multiple microprocessors. It is therefore
conceivable that loop level parallelism could be exploited orthogo-
nally to superword level parallelism within each processor. Since
large amounts of coarse-grain parallelism are required to get good
MIMD performance, extracting a small amount of SLP would not
detract from existing MIMD parallel performance.

2.2.3 SIMD Parallelism

SIMD parallelism came into prominence with the advent of mas-
sively parallel supercomputers such as the Thinking Machines CM-
1 and CM-2 [28, 29] and Maspar MP-1 [6, 8]. The association of
the term “SIMD” with these types of computers is what led us to
utilize the term Superword Level Parallelism when discussing short
SIMD parallelism.

These supercomputers were implemented using thousands of
small processors which worked synchronously on a single instruc-
tion stream. While the cost of massive SIMD parallel execu-
tion and near-neighbor communication was cheap, distribution of

data to these processors was expensive. For this reason, auto-
matic SIMD parallelization centered on solving the data distribu-
tion problem [1]. In the end, the class of applications for which
these compilers were successful was even more restrictive than that
of vector and MIMD machines.

2.2.4 Instruction Level Parallelism

Superword level parallelism is closely related to ILP. In fact, SLP
can be viewed as a subset of instruction level parallelism. Most
processors that support SLP also support ILP in the form of super-
scalar or VLIW execution. Because of their similarities, methods
for locating SLP and ILP may extract the same information. Under
circumstances where these types of parallelism completely overlap,
SLP execution is preferred because it provides a more inexpensive
and energy efficient solution.

In practice, the majority of ILP is found in the presence of loop-
level parallelism. As a result, unrolling the loop multiple times
should provide enough parallelism to satisfy both ILP and SLP pro-
cessor utilization. Therefore, ILP performance should not notice-
ably degrade after SLP is extracted from a program.

2.3 Key to General Acceptance of SLP

Many of the techniques developed by compiler researchers are not
generally accepted in mainstream computing. A good example is
the work on loop-level parallelization and vectorization that has
continued for more than three decades. However, in a very short
period of time ILP compilers have become universal. We believe
the following characteristics are critical to the general acceptance
of a compiler optimization:

� Robustness:If simple source code modifications drastically
alter program performance, success becomes dependent on
the user’s understanding of compiler intricacies. Techniques
to uncover loop-level parallelism, for example, are prone to
wide fluctuations in performance. A change in one statement
of the loop body may result in a vector compiler’s sequential-
ization of the entire loop. In the case of ILP and SLP, failure
to parallelize a few statements will not significantly impact
aggregate performance. This makes methods for their extrac-
tion much more robust.

� Scalability: Compiler techniques must be able to handle
large programs if they are to gain acceptance in real appli-
cations. Some analyses required by loop optimizations do
not scale well to large code sizes because of dependence
on global program analysis. Since global analysis is not re-
quired in ILP and SLP, their complexity grows linearly with
program size. This results in smooth scaling to larger appli-
cations.

� Simplicity: Complex compiler transformations are more
prone to bugs than simple analyses. Problems are likely to
appear only under very specific conditions, making them dif-
ficult to detect. Many time critical projects are compiled
without optimizations in order to avoid possible compiler er-
rors. Coarse-grain parallelization and vectorization require
involved analyses that are more likely to exhibit this behav-
ior [4]. However, most ILP techniques as well as the SLP
techniques presented in Section 3 are extremely simple to
understand, implement, and validate. In addition, it is often
the case that simplicity leads to faster compilation.

� Portability: Optimizations that are dependent on particu-
lar features of a source language or programming style will
not become universal. Techniques for extracting loop-level
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parallelism are limited because they only apply to programs
written with loops and arrays. On the other hand, ILP and
SLP techniques are applied at the level of basic blocks, mak-
ing them less dependent on source code characteristics.

� Effectiveness:No compiler technique will be used if it does
not substantially improve program performance. In Sec-
tion 4, we will show that our algorithm for detecting SLP
is effective in providing remarkable speedups.

We believe SLP compiler techniques have the potential of be-
coming universally accepted as viable and effective means of ex-
tracting SIMD parallelism. As a result, we expect future architec-
tures to place increasing importance on SLP operations.

2.4 Architectural Support for SLP

The compiler algorithm presented in Section 3 was inspired by the
multimedia extensions in modern processors. However, several
limitations make it difficult to fully realize the potential provided
by SLP analysis. We list some of these below:

� Many multimedia instructions are designed for a specific
high-level operation. For example, HP’s MAX-2 extensions
offer matrix transform instructions [20] and SUN’s VIS ex-
tensions include instructions to compute pixel distances [23].
The complex CISC-like semantics of these instructions make
automatic code generation difficult.

� Multimedia hardware has typically been viewed as a copro-
cessor and has not been designed for general purpose com-
putation [25]. Floating point capabilities, for example, have
only recently been added to some architectures. Because
only a small portion of the processor die area has been ded-
icated to SLP hardware, fully optimizing a section of code
for SLP will leave most of the processor unused, resulting in
poor resource utilization.

� Most current multimedia instruction sets were designed with
the assumption that data are pre-packed in memory. As a
result, data packing and unpacking operations are not well
supported. In fact, none of the architectures we have inves-
tigated are able to pack four operands into a register in less
than three cycles. Data rearrangement is an important opera-
tion in our system and with better support SLP performance
can be further increased.

Although current architectures were not designed specifically
to address superword level parallelism, we believe more support
will materialize once the compiler community shows an ability to
exploit it. With the introduction of even wider datapaths, SLP will
become an important component in the future performance of gen-
eral purpose computing.

3 SLP Compiler Implementation

Our analysis was implemented with the SUIF compiler infrastruc-
ture [32]. The algorithm can be neatly divided into several distinct
phases. The following subsections describe these phases in detail.
In many situations, simple schemes have been favored over those
which might provide better performance. This allows us to develop
an extremely simple “proof of concept” that still delivers excel-
lent speedups. Figure 5 presents a running example of the various
phases of our algorithm, and Figure 6 lists the pseudo code. Both
will be referenced throughout this section.

3.1 Pre-optimization

Several standard transformations are applied to an input program
before SLP analysis. The first of these flattens expressions into a
slightly modified version of three address form. Since the original
structure of arrays is needed in order to identify adjacent references,
arrays are not disassembled into address calculations.

Next we apply a series of standard optimizations including con-
stant propagation, copy propagation, dead code elimination, com-
mon sub-expression elimination, loop-invariant code motion, and
redundant load/store elimination. As discussed earlier, loop un-
rolling is performed to expose parallelism in vectorizable loops.
As a final step, scalar renaming is performed to remove output and
anti-dependences since they can inhibit parallelization.

3.2 Loop Unrolling

Loop unrolling is effective in aiding traditional methods for uncov-
ering ILP by exposing more parallelism to the compiler or under-
lying hardware. It is, in essence, a technique that transforms loop-
level parallelism into instruction level parallelism. In the context of
superword level parallelism, unrolling translates vectorizable loops
into basic blocks with SIMD-parallel statements.

for (i=0; i<8; i++) {
a[i] = b[i] + c[i];

}
(a) Before loop unrolling.

for (i=0; i<8; i+=4) {
a[i+0] = b[i+0] + c[i+0];
a[i+1] = b[i+1] + c[i+1];
a[i+2] = b[i+2] + c[i+2];
a[i+3] = b[i+3] + c[i+3];

}

(b) After loop unrolling.

Figure 4: A simple vectorizable loop before and after loop un-
rolling.

Figure 4(a) shows a simple vectorizable loop. The unrolled ver-
sion shown in Figure 4(b) has four isomorphic statements with ad-
jacent memory references. These statements can be packed and op-
erated upon in parallel. Loop unrolling greatly simplifies our anal-
ysis since one simple method which identifies parallelism within a
basic block is still able to reap the benefits of traditional vectoriza-
tion.

3.3 Identifying Adjacent Memory References

In general, statements that contain adjacent memory references are
automatic candidates for packing. Exceptions occur when true de-
pendences prevent parallelization or high packing costs make it un-
profitable. Experiments with realistic packing costs have suggested
that statements with adjacent memory references provide the most
potential for speedup. As such, our analysis begins by locating
these statements, combining them, and adding them to thepacklist.

Definition 3.1 Pack = ha1; :::; ani wherea1; :::; an are indepen-
dent isomorphic statements in a basic block.

Definition 3.2 PackList =fp1; :::; png wherep1; :::; pn 2 Pack.

In this phase of the algorithm, only groups of two statements
are constructed. In a later phase, our algorithm merges these groups
into larger conglomerates. We will refer to groups of size two as
pairs with a left and right statement.
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Definition 3.3 Pair = haleft; arighti wherealeft; aright are inde-
pendent isomorphic statements in a basic block.

Any statement in the original program can occupy at most one
left and one right position in thepacklist. Enforcing this discipline
enables later phases to combine pairs such that each statement be-
longs to a maximum of one packed group. This ensures every state-
ment will be executed only once.

In Figure 5(a), an example sequence of statements is presented.
Figure 5(b) shows the results of adjacent memory identification in
which two pairs have been added to thepacklist. Discussion of the
wishlist, which is also shown in Figure 5(b), is deferred until later.

The pseudo-code for this phase is shown in Figure 6 as
find adj refs.

3.4 Extending the Packlist

Once thepacklist has been seeded with an initial set of packed
statements, more groups can be added. This is done by finding
new candidates which can profitably use the current set of packed
result data. Def-use chains are followed for each group in thepack-
list. If they lead to fresh packable statements, a new group is cre-
ated and added to thepacklist. This process is defined in Figure 6
asextend packlist, and is shown in the example in parts (c)
and (d). In part (c), the def-use chains of the two packed groups
are followed to discover new packable statements. For example,
statements (2) and (5) can be packed profitably because the result
produced by the first group can be used directly as an operand.

The example does not illustrate the fact that several different
statement combinations may be possible. This occurs when a re-
sult is used in two or more isomorphic statements. Under these
circumstances, the most profitable possibility is chosen first. Af-
ter that, any other groups are assembled in order of their potential
savings. This entire process is repeated until nothing new can be
added to thepacklist.

Whenever a pair of packed statements is inserted into thepack-
list, its operands may be produced in the proper packed configura-
tion by other members of thepacklist. If this is the case, then the
savings in packing cost is taken into account. Otherwise, we record
the fact that packed operandscould be used effectively were they
to be produced. Thewishlist, which we have thus far neglected to
explain, is the data structure responsible for capturing this informa-
tion. It is useful in cases where several groups of packed statements
use the same packed operands.

Definition 3.4 Wish = hha1; a2i; ni wherea1; a2 are independent
isomorphic statements in a basic block, andn is the number of
groups able to useha1; a2i as an operand.

Definition 3.5 WishList =fw1; :::; wng wherew1; :::; wn 2 Wish.

In Figure 5, we have shownwishlistentries as packed operands
with a reference count. Entries are added to thewishlist if they are
not already produced by a group in thepacklist. When awishlist
entry is referenced a sufficient number of times (twice in our exam-
ple), it can be moved to thepacklist. This process has been folded
into the transition from parts (d) to (e) in Figure 5.packlist and
wishlist insertion are handled by the functionsadd to packlist

andadd to wishlist.

3.5 Combination

Once all profitable pairs have been chosen, they can be combined
into larger groups. Two pairs can be combined when the left state-
ment of one is the same as the right statement of the other. In
general, any two groups of arbitrary size can be combined when

they share the same statement on an edge. In fact, groupsmust
be combined in this fashion in order to prevent a statement from
appearing in more than one group. This process, provided by the
combine packs function, checks all groups against one another,
and repeats until all possible combinations have been made. Fig-
ure 5(e) shows the result of our example after combination.

It is possible for two groups to contain identical statements in
positions other than their edges. In this case, it may be difficult or
even impossible to combine them in any sensible fashion. When
this scenario arises, the less profitable of the two groups is simply
discarded. Since this occurs rarely in practice, dropping one of the
groups has little impact on performance.

3.6 Datapath Matching

After completion of the combination phase, we have constructed
a list of SLP statements that could be packed profitably. Un-
fortunately, the number of bits needed to represent any particu-
lar group may exceed the superword size of the underlying hard-
ware. As a result, large groups must be broken into a size consis-
tent with the capabilities of the architecture. The simple approach
we take is to iteratively separate the firstn statements whose cu-
mulative width is less than or equal to the datapath of the ma-
chine. This process is repeated until all groups are of an acceptable
size. Any resulting groups of size one are eliminated. The function
match datapath provides this functionality. In Figure 5(f), we
have assumed that the (unspecified) types of each statement allow
packing of at most two statements.

The reader might notice that this procedure could break groups
at sub-optimal points. It is possible that packed data used efficiently
as operands before datapath matching are separated in such a way
as to make them useless. We have not seen any of this pathologi-
cal behavior in our experiments thus far, but plan to develop better
separation techniques that would overcome this deficiency should
the need arise.

3.7 Cycle Checking

Dependence analysis before packing ensures that statements within
a group can be executed safely in parallel. However, it may be the
case that executing two groups produces a dependence violation.
An example of this is shown in Figure 7. Here, dependence edges
are drawn between groups if a statement in one group is dependent
on a statement in the other. As long as there are no cycles in this de-
pendence graph, all groups can be scheduled such that no violations
occur. However, a cycle indicates that the set of chosen groups is
invalid. In general, cycles of arbitrary size can exist.

x = a[i+0] + k1
y = a[i+1] + k2

z = a[i+2] + s

q = b[i+0] + y
r = b[i+1] + k3
s = b[i+2] + k4

x = a[i+0] + k1
y = a[i+1] + k2
z = a[i+2] + s

q = b[i+0] + y
r = b[i+1] + k3
s = b[i+2] + k4

Figure 7: Example of a dependence between groups of packed
statements.

To ensure correctness, our algorithm eliminates any groups be-
longing to a cycle. To detect these cycles, we use Tarjan’s algo-
rithm for strongly connected components [27]. This algorithm is
well documented elsewhere, so its reproduction is omitted from
our pseudo-code.
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(1) a = w[i+0] + q
(2) d = a * q
(3) x = a - m

(4) b = w[i+1] + r
(5) e = b * r
(6) y = b - n

(7) c = w[i+2] + s
(8) f = c * s
(9) z = c - p

a = w[i+0] + q
b = w[i+1] + r

b = w[i+1] + r
c = w[i+2] + s

a = w[i+0] + q
b = w[i+1] + r

b = w[i+1] + r
c = w[i+2] + s

(2) d = a * q

(3) x = a - m

(5) e = b * r

(6) y = b - n

(8) f = c * s

(9) z = c - p

a = w[i+0] + q
b = w[i+1] + r

b = w[i+1] + r
c = w[i+2] + s

d = a * q

x = a * m

e = b * r

y = b * n

f = c * s

z = c * p

(2) d = a * q
(3) x = a - m

(5) e = b * r
(6) y = b - n

e = b * r

y = b * n

(8) f = c * s
(9) z = c - p
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I = Instructions not packed

P = PackList

W = WishList
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1

2

2
1

1

Figure 5: Various phases of our algorithm. (a) Initial sequence of instructions. (b) After statements with adjacent memory references have
been packed. (c) Searching of def-use chains. (d) Packed statements resulting frompacklistextension. (e) After combination. (f) After
datapath matching to an architecture with two-way parallelism.
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globalBasicBlockK
globalWishListW
globalPackListP
globalPackListD

SIMD parallelize:
FIND ADJ REFS()
EXTEND PACKLIST()
COMBINE PACKS()
MATCH DATAPATH()
CALC FINAL PROFIT()

�nd adj refs:
foreachStmta 2 K do

foreachStmtb 2 K wherea 6= b do
if STMTS CAN PACK(a; b) then

if HAVE ADJ REFS(a; b) then
ADD TO PACKLIST(a; b)

stmts can pack: Stmt a� Stmt b! boolean
if ha; ci 62 P wherec 2 K then

if hd; bi 62 P whered 2 K then
if ISOMORPHIC(a; b) then

if not DEPENDENT(a; b) then
return true

return false

add to packlist: Stmt a� Stmt b where
a = [ ::: = f(x1; :::; xm) ] ;
b = [ ::: = f(y1; :::; ym) ]

if hha; bi; ni 2W wheren 2 Int then
W  W � hha; bi; ni

P  P [ ha; bi
for j 1 to m do

Stmtc [ xj = g(:::) ]
Stmtd [ yj = h(:::) ]
if c 6= � ^ d 6= � then

if STMTS CAN PACK(c; d) then
ADD TO WISHLIST(c; d)

add to wishlist: Stmt a � Stmt b
if hha; bi; ni 2W wheren 2 Int then
W  W � hha; bi; ni [ hha; bi; n+ 1i
n n+ 1

else
W  W [ hha; bi; 1i
n 1

if CALC PROFIT(ha; :::; bi; n; P ) � 0 then
W  W � hha; bi; ni
ADD TO PACKLIST(ha; bi)

calc �nal pro�t:! Int
Int profit = 0
foreachPackA 2 D do
profit profit+ CALC PROFIT(A; 0; D)

returnprofit

extend packlist:
repeat
PackListPprev  P
foreachPackha; bi 2 P where

a = [ x0 = f(:::) ] ;
b = [ y0 = f(:::) ] do

repeat
profit 0
foreachStmtc [ ::: = g(:::; x0; :::) ] 2 K do

foreachStmtd [ ::: = h(:::; y0; :::) ] 2 K do
if STMTS CAN PACK(c; d) then

if CALC PROFIT(hc; di; 0; P ) > profit then
profit CALC PROFIT(hc; di; 0; P )
lbest  c
rbest  d

if profit � 0 then
ADD TO PACKLIST(lbest ; rbest)

until profit � 0
until P � Pprev

combine packs:
repeat
PackListPprev  P
foreachPackA ha1; :::; ani 2 P do

foreachPackB  hb1; :::; bmi 2 P do
if A 6= B then

if a1 � bm ^ ai 6= bj where1 < i � n; 1 � j < m then
P  P � A� B [ hb1; :::; bm; a2; :::; ani

else ifai � bj where1 � i � n; 1 � j � m then
if CALC PROFIT(A; 0; P ) > CALC PROFIT(B; 0; P ) then
P  P � B

else
P  P � A

until P � Pprev

match datapath:
foreachPackha1; :::; ani 2 P do
sum 0
i 1
for j  1 to n do

if sum+ DATA WIDTH(aj ) > maxdw then
if i < j � 1 then
D  D [ hai; :::; aj�1i

sum  0
i  j

sum sum+ DATA WIDTH(aj )
if i < j then
D  D [ hai; :::; ani

calc pro�t: Pack ha1; :::; ani � Intw � PackListL! Int where

a1 =
�
::: = f(x11; :::; x

1
m)
�
; :::;

an = [ ::: = f(xn1; :::; x
n
m) ]

Int profit = (NUM OPS(a1) � (n� 1)) + (w� PACK COST(n))
for j  1 to m

if ARE ADJ REFS(x1j ; :::; x
n
j ) then

profit profit+ ADJ PROFIT(x1j ; :::; x
n
j )

else ifhx1j ; :::; x
n
j i 62 L then

profit profit� PACK COST(n)
returnprofit

Figure 6: Pseudo code for the SLP extraction algorithm.
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3.8 Savings Calculation

With the completion of cycle checking, a set of valid packable
groups has been chosen. This phase completes by calculating the
estimated speedup based on the packed statements and their pack-
ing/unpacking costs. This step is used solely as a method to gauge
our success on a given benchmark, and has no effect on the results
themselves.calc final profit is responsible for computing the
speedup from statement packing.

3.9 Discussion

Below we discuss some of the choices made in developing our al-
gorithm. These ideas were omitted earlier in order to focus on the
details of our method.

� One approach to locating isomorphic statements is to com-
pare them based on the structure inherited from the source
code, where statements can be arbitrarily long. This method
is attractive because implicit temporaries are always in the
proper packed configuration and never require packing or
unpacking. A major drawback, however, is that statements
must match exactly at the source code level in order to be
considered for packing. This behavior is unacceptable since
statements that are close in structure may still benefit from
parallelization. Using three address form overcomes this dis-
advantage. In addition, it is more amenable to traditional
compiler optimizations, allowing us to perform SLP analysis
on an optimized representation.

� Once source code has been flattened into a low-level rep-
resentation, a large basic block could contain an inordinate
number of isomorphic statements. Searching the space for
the best arrangement becomes difficult. This gives rise to our
motivation for seeding the analysis with statements contain-
ing adjacent memory references. After performing redundant
load/store elimination, statements have few packing options
and our task is greatly simplified.

� When cycles are detected among packed statements, our so-
lution is to discard all groups involved in the cycle. A better
solution would be to discard only enough groups to break the
cycle. Since our experiments show this situation to be rare,
we decided not to focus our attention on developing an opti-
mal cycle breaking algorithm. If our current method shows
a performance degradation in later tests, we will improve the
cycle checking phase.

� A final point concerns the scope over which our analysis
operates. As discussed, our algorithm matches statements
within a basic block. One of the attractive aspects of super-
word level parallelism is that it can be uncovered on a local
scale. Nonetheless, one can imagine more complicated ap-
proaches that search for isomorphic statements over a greater
range of the program. In fact, SLP could be used as a form of
predication in which data could simply be discarded if they
were to become invalid due to control flow. We use loop un-
rolling as a method of increasing basic block size, but for the
most part we have chosen the simplest approach.

4 Results

4.1 Experimental Methodology

Of the popular multimedia instruction sets available in commer-
cial microprocessors, we believe the AltiVec instruction set best
matches the compilation technique described in this paper [30].

AltiVec defines 128-bit floating point and fixed point SIMD op-
erations and provides a complementary set of 32 general purpose
registers. It also defines load and store instructions capable of mov-
ing a full 128 bits of data. In addition, AltiVec offers a powerful
vector permute instruction in which packed elements of two input
sources can be arbitrarily permuted into a destination register. The
use of this instruction in conjunction with a few dedicated registers
to hold common permute masks can provide a relatively inexpen-
sive packing and unpacking mechanism.

At the time of this writing, the G4 processor from Motorola
has just become available. As such, we have been unable to test
our compiler’s performance on a real machine. This is currently
work in progress and we expect to be running hardware based per-
formance tests in the near future. For now, we are limited to less
accurate approximations.

Our algorithm requires knowledge of packing and unpacking
costs in order to determine which groups of packed statements can
execute more efficiently than their sequential versions. We are cur-
rently categorizing these costs in terms of the number of instruc-
tions required to perform a given pack or unpack operation. On a
processor supporting AltiVec, packingn values into a single reg-
ister requiresn-1 instructions if the necessary permute masks are
stored in dedicated registers. We use this formula to compute costs.

Results are reported as the percentage of dynamic instructions
eliminated from the original source program after parallelization.
To the extent that execution time is directly proportional to dynamic
instruction count, speedup can be computed from this percentage.
We have provided both perspectives in our graphs. The perfor-
mance calculations require two pieces of information, the first be-
ing static instruction count. Since we are unable to generate na-
tive machine code at this time, counting the instructions in the in-
termediate format is a good approximation. The second piece of
information needed is the number of times each basic block is ex-
ecuted. Our system includes functionality to automatically instru-
ment source code so that this information can be easily determined.

The speedups we report are ignorant of instruction latencies,
cache performance, register pressure, and any other nuances en-
countered when executing on a real machine. In some of these
cases, SLP parallelization may provide further benefits that are not
reflected in our results. For example, packing data into registers
effectively provides more registers. Since register storage is bet-
ter utilized, SLP parallelization may result in fewer costly memory
spills.

It should be emphasized that we are not measuring any effects
of traditional superscalar execution such as instruction reordering
and branch speculation. For this reason, our speedup numbers es-
sentially compare a single issue, in-order processor against one
with a wider SLP datapath. As we discussed earlier, ILP execu-
tion units may or may not provide cumulative speedups.

It is important to note that the reduction in dynamic instruc-
tion count has direct impact on instruction cache performance and
energy consumption. Reduced instruction count is recognized as
a major benefit of vector and SIMD computers. SLP processors
provide a similar feature.

4.2 Benchmarks

We measure our success on two benchmark suites, the first being
the SPEC95fp benchmarks [9]. Most of the applications in this
suite are either vectorizable or partially vectorizable. Our results
show that our SLP algorithm is indeed able to exploit vector paral-
lelism.

The second benchmark suite for which we present results is the
UTDSP benchmark kernels [22]. These kernels represent core op-
erations common to many multimedia applications. The UTDSP
suite offers two problem sizes for each kernel. In all cases, we
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Data path size
Benchmarks 256 bits 128 bits 64 bits

bench %saved speedup %saved speedup %saved speedup
swim 71.66% 3.529 68.96% 3.222 48.73% 1.950
tomcatv 66.41% 2.977 47.12% 1.891 10.60% 1.119
mgrid 59.22% 2.452 41.70% 1.715 1.91% 1.019
su2cor 44.57% 1.804 34.68% 1.531 10.80% 1.121
hydro2d 25.65% 1.345 19.21% 1.238 5.10% 1.054
apsi 25.44% 1.341 21.52% 1.274 7.06% 1.076
wave5 23.54% 1.308 19.30% 1.237 5.56% 1.059
applu 21.87% 1.280 16.26% 1.194 6.36% 1.068
turb3d 21.46% 1.273 17.14% 1.207 2.75% 1.028
fpppp* 15.53% 1.184 10.24% 1.114 0.00% 1.000

fir 58.08% 2.385 50.88% 2.036 39.82% 1.662
lmsfir 52.99% 2.127 49.58% 1.983 38.90% 1.637
latnrm 49.96% 1.998 49.80% 1.992 37.55% 1.601
fft 40.90% 1.692 40.90% 1.692 32.32% 1.478
iir 33.09% 1.495 33.09% 1.495 29.12% 1.411
mult 20.71% 1.261 19.19% 1.237 14.07% 1.164

Table 1: Instruction savings and speedup for the SPEC95fp benchmark suite and UTDSP kernels. Note that the current heuristics required
compiler directives to seed the analysis for fpppp.

have reported numbers for the larger configuration. Since the ker-
nels have been written in the C source language, we have added
declarations indicating that all arrays are non-overlapping. This is
necessary because array aliasing can inhibit parallelization since
dependence analysis must be overly conservative. In the future, we
plan to incorporate pointer analysis in order to alleviate this neces-
sity.

4.3 Experimental Results
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Figure 8: Percentage of instructions eliminated with superword
level parallelism.

Table 1 presents our results on a variety of datapath widths.
Figures 8 and 9 present these numbers graphically in the form of
instructions eliminated and speedup, respectively. For simplicity,
we have assumed that all datapaths are able to perform both dou-
ble and single precision floating point operations. The SPEC95fp
benchmarks perform poorly at a data width of 64 bits since all but
swim require 64-bit data types. With a 128-bit datapath, it is possi-
ble to pack two operands and therefore provide a significant perfor-
mance improvement. Extending the datapath to 256 bits provides
even better results when extra parallelism is available. On this dat-

apath, the SPECratio improvement for the entire SPEC95fp suite is
1.71.

fpppp is the worst performing benchmark since the dominat-
ing loop contains very few array references. As a result, our algo-
rithm is unable to find a good starting point from which to grow
thepacklist. However, careful inspection of the loop body reveals a
moderate amount of superword level parallelism. In order to detect
the available parallelism, we have added compiler hints in order to
provide our analysis with a starting point. We are currently work-
ing on methods of seeding besides adjacent memory references so
that we are able to automatically detect SLP in purely scalar code.
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Figure 9: Speedup obtained by superword level parallelism.

The UTDSP benchmarks employ 32-bit data types and there-
fore perform well on a 64-bit datapath. Several of these bench-
marks benefit from pairs of adjacent memory references within the
loop body. Unrolling yields no extra parallelism and provides lim-
ited improvement when extending the datapath to 128 and 256 bits.

Figure 10 contrasts a standard 256-bit machine with one that
can pack and unpack with no cost. The small performance differ-
ences indicate that almost no packing and unpacking operations are
performed. The savings in instruction count is due largely to op-
erating on adjacent memory locations. Any operation on scalars
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Figure 10: SLP with packing/unpacking costs consistent with Al-
tiVec vs. zero packing/unpacking cost.

requires little packing since most operands are produced in the
proper packed configuration by earlier operations.fpppp is the
only benchmark with ample superword level parallelism in the form
of scalars. As seen by the graph, it would greatly benefit from in-
expensive packing and unpacking operations.

5 Conclusion

In this paper we introduced superword level parallelism, the idea of
viewing parallelism from the perspective of partitioned operations
on packed superwords. We compared this view with more tradi-
tional vector parallelism and argued that SLP is needed to effec-
tively exploit the capabilities of multimedia instruction sets. This
led to a simple and robust compiler implementation that was able to
exhibit excellent performance on a number of benchmarks. In the
best case we achieved a speedup of 3.53 for a 256-bit architecture
executingswim. The entire SPEC95fp benchmark suite showed a
SPECratio improvement of 1.71.

Our compiler implementation for the algorithm described in
Section 3 is still in its infancy. We plan to make many improve-
ments in the near future. For example, extending the scope of our
analysis beyond basic blocks provides packing opportunities across
branches. SLP can also offer a form of predication, in which spec-
ulated computation can simply be discarded if it is invalidated due
to control flow.

Currently, we use program information to determine the data
size needed for each SLP operation. Recent research shows that
compiler analysis can significantly reduce the size of data types
needed to store program variables [26]. Incorporating this analy-
sis has the potential of drastically improving SLP performance by
increasing the number of operands that can be packed in a register.

An SLP-aware register allocator can operate after packing de-
cisions are made, effectively creating a larger register file and re-
ducing costly memory spills. Similarly, calling conventions that
pass packed data as arguments will reduce the number of stack op-
erations. Memory allocation schemes that align data in a manner
consistent with the needs of an SLP compiler lead to the possibility
of more parallel loads and stores.

We are optimistic that superword level parallelism techniques
will boost performance in next generation microprocessors. Cur-
rent superscalar techniques are providing diminishing returns since
they are unable to scale with the amount of available silicon. New
architectures are emerging in an attempt to address this issue.

Examples include chip multiprocessors [24] and RAW architec-
tures [31]. It will take time for these architectures and their asso-
ciated compiler technology to mature. SLP execution, on the other
hand, has already begun to appear in general purpose microproces-
sors. With the ability to automatically exploit this parallelism, such
processors are well equipped to provide increasing performance.

SLP architectures offer the potential for large speedups and sig-
nificant power savings. Their simple replicated designs, coupled
with the absence of multi-ported register files, means they will scale
well with future technologies. It is now the responsibility of the
compiler community to demonstrate the benefits of automatically
extracting SLP from general purpose programs. This paper takes
an important first step in that direction.
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