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Multicores Are Here!
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Multicores Are Here!

For uniprocessors,
C was:
•Portable
•High Performance
•Composable
•Malleable
•Maintainable 

Uniprocessors:
C is the common
machine language
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Multicores Are Here!

What is the common
machine language
for multicores?
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Common Machine Languages

Single memory image
Single flow of control
Common Properties
Uniprocessors:

ISA

Functional Units

Register File
Differences:

Register Allocation
Instruction Selection

Instruction Scheduling

Multiple local memories
Multiple flows of control
Common Properties
Multicores:

Communication Model

Synchronization Model

Number and capabilities of cores
Differences:

von-Neumann languages represent the 
common properties and abstract away 
the differences

Need common machine language(s) 
for multicores
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Streaming as a Common Machine Language

• Regular and repeating computation

• Independent filters 
with explicit communication
– Segregated address spaces and 

multiple program counters

• Natural expression of Parallelism:
– Producer / Consumer dependencies
– Enables powerful, whole-program 

transformations Adder

Speaker

AtoD

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3

HPF1 HPF2 HPF3
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Types of Parallelism

Task Parallelism
– Parallelism explicit in algorithm
– Between filters without

producer/consumer relationship

Data Parallelism
– Peel iterations of filter, place within 

scatter/gather pair (fission)
– parallelize filters with state

Pipeline Parallelism
– Between producers and consumers
– Stateful filters can be parallelized

Scatter

Gather

Task



8

Types of Parallelism

Task Parallelism
– Parallelism explicit in algorithm
– Between filters without

producer/consumer relationship

Data Parallelism
– Between iterations of a stateless filter 
– Place within scatter/gather pair (fission)
– Can’t parallelize filters with state

Pipeline Parallelism
– Between producers and consumers
– Stateful filters can be parallelized

Scatter

Gather

Scatter

Gather

Task
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ip

el
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e

Data

Data Parallel
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Types of Parallelism

Traditionally:

Task Parallelism
– Thread (fork/join) parallelism

Data Parallelism
– Data parallel loop (forall)

Pipeline Parallelism
– Usually exploited in hardware

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data
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Problem Statement

Given: 
– Stream graph with compute and communication 

estimate for each filter
– Computation and communication resources of 

the target machine

Find:
– Schedule of execution for the filters that best 

utilizes the available parallelism to fit the 
machine resources
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Our 3-Phase Solution

1. Coarsen: Fuse stateless sections of the graph
2. Data Parallelize: parallelize stateless filters
3. Software Pipeline: parallelize stateful filters

Compile to a 16 core architecture
– 11.2x mean throughput speedup over single core 

Coarsen 
Granularity

Data 
Parallelize

Software 
Pipeline 
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Outline

• StreamIt language overview
• Mapping to multicores

– Baseline techniques
– Our 3-phase solution
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• Applications
– DES and Serpent [PLDI 05]
– MPEG-2 [IPDPS 06]
– SAR, DSP benchmarks, JPEG, …

• Programmability
– StreamIt Language (CC 02) 
– Teleport Messaging (PPOPP 05)
– Programming Environment in Eclipse (P-PHEC 05)

• Domain Specific Optimizations
– Linear Analysis and Optimization (PLDI 03)
– Optimizations for bit streaming (PLDI 05)
– Linear State Space Analysis (CASES 05)

• Architecture Specific Optimizations
– Compiling for Communication-Exposed 

Architectures (ASPLOS 02)
– Phased Scheduling (LCTES 03)
– Cache Aware Optimization (LCTES 05)
– Load-Balanced Rendering 

(Graphics Hardware 05)

StreamIt Program

Front-end

Stream-Aware
Optimizations

Uniprocessor
backend

Cluster
backend

Raw
backend

IBM X10
backend

C/C++ C per tile +
msg code

Streaming
X10 runtime

Annotated Java

MPI-like
C/C++

Simulator
(Java Library)

The StreamIt Project  
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Model of Computation

• Synchronous Dataflow [Lee ‘92]
– Graph of autonomous filters
– Communicate via FIFO channels

• Static I/O rates
– Compiler decides on an order

of execution (schedule)
– Static estimation of 

computation

A/D

Duplicate

LED

Detect

Band Pass

LED

Detect

LED

Detect

LED

Detect
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Example StreamIt Filter
0 1 2 3 4 5 6 7 8 9 10 11 input

output

FIR
0 1

float→float filter FIR (int N, float[N] weights) { 

work push 1 pop 1 peek N {
float result = 0;

for (int i = 0; i < N; i++) {
result += weights[i] ∗ peek(i);

}
pop();
push(result);

}
}

Stateless
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Example StreamIt Filter

float→float filter FIR (int N,                         ) { 

work push 1 pop 1 peek N {
float result = 0;

for (int i = 0; i < N; i++) {
result += weights[i] ∗ peek(i);

}
pop();
push(result);

}
}

0 1 2 3 4 5 6 7 8 9 10 11 input

output

FIR
0 1

weights = adaptChannel(weights);

float[N] weights
;

(int N) {

Stateful
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parallel computation

StreamIt Language Overview
• StreamIt is a novel 

language for streaming
– Exposes parallelism and 

communication
– Architecture independent
– Modular and composable

– Simple structures 
composed to creates 
complex graphs

– Malleable
– Change program behavior 

with small modifications

may be 
any StreamIt 
language construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter
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Outline

• StreamIt language overview
• Mapping to multicores

– Baseline techniques
– Our 3-phase solution
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Baseline 1: Task Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

• Inherent task parallelism between 
two processing pipelines

• Task Parallel Model:
– Only parallelize explicit task 

parallelism 
– Fork/join parallelism

• Execute this on a 2 core machine 
~2x speedup over single core

• What about 4, 16, 1024, … cores?



20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bito
nic

Sor
t

Cha
nn

elV
oc

od
er

DCT

DES

FFT

Filte
rba

nk

FMRad
io

Ser
pe

nt

TDE
MPEG2D

ec
od

er

Voc
od

er

Rad
ar

Geo
metr

ic 
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e 
C

or
e 

St
re

am
It

Evaluation: Task Parallelism
Raw Microprocessor

16 inorder, single-issue cores with D$ and I$
16 memory banks, each bank with DMA

Cycle accurate simulator

Parallelism: Not matched to target!
Synchronization: Not matched to target! 
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Baseline 2: Fine-Grained 
Data Parallelism

Adder

Splitter

Joiner

• Each of the filters in the 
example are stateless

• Fine-grained Data Parallel 
Model:
– Fiss each stateless filter N

ways (N is number of cores)
– Remove scatter/gather if 

possible

• We can introduce data 
parallelism
– Example: 4 cores

• Each fission group occupies 
entire machineBandStopBandStopBandStopAdder

Splitter
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ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand
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Evaluation:
Fine-Grained Data Parallelism
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Task
Fine-Grained Data

Good Parallelism!
Too Much Synchronization!
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Outline

• StreamIt language overview
• Mapping to multicores

– Baseline techniques
– Our 3-phase solution
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Phase 1: Coarsen the Stream Graph
Splitter

Joiner

Expand

BandStop

Process

BandPass

Compress

Expand

BandStop

Process

BandPass

Compress

• Before data-parallelism is 
exploited

• Fuse stateless pipelines as 
much as possible without 
introducing state
– Don’t fuse stateless with 

stateful
– Don’t fuse a peeking filter with 

anything upstreamPeek Peek

PeekPeek

Adder
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Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Adder

• Before data-parallelism is 
exploited

• Fuse stateless pipelines as 
much as possible without 
introducing state
– Don’t fuse stateless with 

stateful
– Don’t fuse a peeking filter with 

anything upstream

• Benefits:
– Reduces global communication 

and synchronization
– Exposes inter-node 

optimization opportunities

Phase 1: Coarsen the Stream Graph
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Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Fiss 4 ways, to occupy entire chip

Data Parallelize for 4 cores
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Phase 2: Data Parallelize

AdderAdderAdder
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Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Task parallelism!
Each fused filter does equal work
Fiss each filter 2 times to occupy entire chip

Data Parallelize for 4 cores
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BandStop BandStop

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

Splitter

Joiner

BandStop

Splitter

Joiner

BandStop

Splitter

Joiner

Task parallelism, each filter does equal work
Fiss each filter 2 times to occupy entire chip

• Task-conscious data 
parallelization
– Preserve task parallelism

• Benefits:
– Reduces global communication 

and synchronization

Data Parallelize for 4 cores
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Evaluation: 
Coarse-Grained Data Parallelism
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Good Parallelism!
Low Synchronization!
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Simplified Vocoder
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Data Parallel, but too little work!



31

Data Parallelize
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Data + Task Parallel Execution
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We Can Do Better!

Time

Cores

Target 4 core machine
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Phase 3: Coarse-Grained 
Software Pipelining

RectPolar

RectPolar

RectPolar

RectPolar

Prologue

New 
Steady

State

• New steady-state is free of 
dependencies

• Schedule new steady-state 
using a greedy partitioning
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Greedy Partitioning

Target 4 core machine

Time 16

CoresTo Schedule:
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Evaluation: Coarse-Grained 
Task + Data + Software Pipelining

Best Parallelism!
Lowest Synchronization!
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Generalizing to Other Multicores

• Architectural requirements:
– Compiler controlled local memories with DMA
– Efficient implementation of scatter/gather

• To port to other architectures, consider:
– Local memory capacities 
– Communication to computation tradeoff

• Did not use processor-to-processor 
communication on Raw
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Related Work

• Streaming languages:
– Brook [Buck et al. ’04]
– StreamC/KernelC [Kapasi ’03, Das et al. ’06]
– Cg [Mark et al. ‘03]
– SPUR [Zhang et al. ‘05]

• Streaming for Multicores:
– Brook [Liao et al., ’06]

• Ptolemy [Lee ’95]
• Explicit parallelism:

– OpenMP, MPI, & HPF  
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Conclusions

• Good speedups across varied benchmark suite
• Algorithms should be applicable across multicores

Low

Good

Coarse-Grained 
Task + Data

High

Good

Fine-Grained 
Data

LowestNot 
matched Synchronization

Best Not 
matchedParallelism

Coarse-Grained 
Task + Data + 

Software Pipeline
Task

• Streaming model naturally exposes task, data, and 
pipeline parallelism

• This parallelism must be exploited at the correct 
granularity and combined correctly


