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Abstract

Commodity graphics hardware has become increasingly programmable over the last few years but has been limited
to fixed resource allocation. These architectures handle some workloads well, others poorly; load-balancing to
maximize graphics hardware performance has become a critical issue. In this paper, we explore one solution to
this problem using compile-time resource allocation. For our experiments, we implement a graphics pipeline on
Raw, a tile-based multicore processor. We express both the full graphics pipeline and the shaders using StreamIt,
a high-level language based on the stream programming model. The programmer specifies the number of tiles per
pipeline stage, and the StreamIt compiler maps the computation to the Raw architecture.
We evaluate our reconfigurable architecture using a mix of common rendering tasks with different workloads
and improve throughput by 55–157% over a static allocation. Although our early prototype cannot compete in
performance against commercial state-of-the-art graphics processors, we believe that this paper describes an
important first step in addressing the load-balancing challenge.

Categories and Subject Descriptors (according to ACM CCS): I.3.1 [Computer Graphics]: Hardware Architecture
- Graphics processors C.1.2 [Processor Architectures]: Multiple Data Stream Architectures - Single-instruction-
stream, multiple-data-stream processors (SIMD)

1. Introduction

“All processors aspire to be general-purpose.”

– Tim Van Hook, Graphics Hardware 2001

And so it has been with commodity graphics processing
units (GPUs) in the last few years. New features, such as
floating-point per-pixel operations and flow control, offer
new and exciting possibilities for shading as well as for
general-purpose non-graphics applications.

Despite significant gains in performance and pro-
grammable features, current GPU architectures have a key
limitation: a fixed resource allocation. For example, the
NVIDIA NV40 processor has 6 vertex pipelines, 16 frag-
ment pipelines, and a fixed set of other resources surround-
ing these programmable stages. The allocation is fixed at de-
sign time and remains the same for all software applications
that run on this chip.

Although GPU resource allocations are optimized for
common workloads, it is difficult for a fixed allocation to
work well on all possible scenarios. For instance, during

an expensive image-based special-effects rendering pass, the
vertex engines sit idle. Conversely, when the bottleneck lies
in the vertex shader because of complex deformations, the
pixel engines are idle. And when an application spends much
of its time rasterizing shadow volumes (e.g., in games such
as Doom 3), almost the entire chip is idle. These are com-
mon scenarios that suffer from load imbalance due to a fixed
resource allocation.

In this paper, we examine one approach for solving this
load-imbalance problem using compile-time resource allo-
cation. For our experiments, we have implemented a graph-
ics pipeline on Raw, a parallel tiled processor. We compare
a fixed resource allocation representative of current graph-
ics architecture against compile-time flexible resource allo-
cations on Raw. The flexible allocation takes into account
the complexity of the calculation for a given rendering pass
and the respective load on the various stages of the pipeline.
We take an extreme stance and explore the hypothesis where
all stages of the graphics pipeline are programmable. While
many will argue that GPUs will retain a level of specializa-
tion in the foreseeable future (in particular for rasterization),
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we show that our hypothesis allows us to explore a point in
the design space that permits efficient load balancing. We
hope that this work will inspire graphics hardware designs
that are reconfigurable and yield better resource utilization
through load-balancing.

1.1. Overview

The prototype implementation of our approach is made fea-
sible by two unique technologies: a multicore processor
with programmable communication networks and a pro-
gramming language that allows us to specify the topology of
the graphics pipeline using high-level language constructs.
Our rendering pipeline is executed on the Raw processor
[TKM∗02], which is a highly scalable architecture with pro-
grammable communication networks. The programmable
networks allow us to realize pipelines with different topolo-
gies; hence, we can allocate computation units to rendering
tasks based on the demands of the application. We program
Raw using StreamIt [GTK∗02], which is a high-level lan-
guage based on a stream abstraction. The stream program-
ming model of StreamIt facilitates the expression of par-
allelism with high-level language constructs. The StreamIt
compiler generates code to control Raw’s networks and re-
lieves the programmer of the burden of manually managing
data routing between processor tiles. On the compiler side,
our main challenge has been to extend StreamIt to handle the
variable data rates present in 3D rendering due to the vari-
able number of pixel outputs per triangle and shader lengths.

We should emphasize that our implementation is meant
as a proof of concept. Beyond the implementation of load-
balancing for 3D rendering in this particular environment,
the thesis of this article is that load-balancing and increased
programmability can be achieved through the following ap-
proach:

A multicore chip with exposed communication enables
general-purpose computation and resource reallocation
by rerouting data flow.

A stream-based programming model facilitates the ex-
pression of arbitrary computation.

A compiler approach to static load-balancing facilitates
the appropriate mapping of computing units for each
application phase. The programmer specifies the number
of computing units allocated to each stage of the pipeline.

We focus on load balancing and the programming model
at the cost of the following points, which we plan to ad-
dress in future work. First, we do not emphasize the mem-
ory system, although we acknowledge its crucial influence
on graphics hardware performance. Second, we focus on the
high-level architecture of the chip and its resource alloca-
tion and do not address the design of individual process-
ing elements (in particular, vector computation capabilities
would likely improve our current performance). Third, we
only explore load balancing at compilation time, where dif-

ferent rendering passes can have different static configura-
tions. We leave dynamic load balancing, where the configu-
ration changes within a rendering pass, as an exciting topic
for future research. Finally, we push full programmability
quite far and do not use specialized units for rasterization,
the stage of the 3D pipeline that seems least likely to be-
come programmable in the near future for performance rea-
sons. Specializing triangle rasterizers to support other ren-
dering primitives (e.g., point sprites) is a promising part of
our ongoing research agenda.

Despite these limitations, and although the performance
obtained by our simulation cannot compete with state-of-
the-art graphics cards, we believe that this paper describes an
important first step in addressing the load-imbalance prob-
lem in current graphics architectures. Solving this problem
is important because doing so maximizes the use of available
GPU resources, which in turn implies a more efficient and
cost-effective rendering architecture. We hope to encourage
the design of reconfigurable graphics architectures in the fu-
ture.

Paper organization. The rest of this paper is organized as
follows: After reviewing related work in Section 1.2, we pro-
vide an overview of the Raw processor and the StreamIt
language in Section 2. We then discuss mapping a render-
ing pipeline to such a framework (Section 3), followed by a
series of case studies illustrating the improvements in pro-
cessor utilization that we achieve through flexible resource
allocation (Section 4).

1.2. Related Work

Parallelism is a key source of the immense computation
power of graphics processors. Recent studies have focused
on various aspects such as parallel interfaces [ISH98] or load
distribution and scalability with parallel pipelines [EIH00].
Both general-purpose processors [NK96] and PC clus-
ters [HHN∗02] have been used for parallel rendering. How-
ever, these systems do not apply compile-time load balanc-
ing for each application or rendering pass. Hence, they may
suffer from the same load imbalances as special purpose
hardware. In contrast, our system focuses on flexible re-
source allocation at a fine level of granularity.

Pioneering work in programmable and reconfigurable ar-
chitectures include PixelFlow [EMP∗97] and the Pixel Ma-
chine [PH89]. PixelFlow had programmable vertex and frag-
ment processing and the ability to balance the load between
the two on similar processing elements. The Pixel Machine
featured a programmable pipeline implementation and the
ability to map these algorithms onto its compute nodes.
These designs were workstation architectures and required
a large amount of hardware. With the increasing transis-
tor budget provided by modern manufacturing processes,
it has become more viable to add a certain level of pro-
grammability to various functional units in consumer GPUs,
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e.g., the vertex unit [LKM01]. Also, a number of high-
level languages and compilers are now available to program
these units [PMTH01,MGAK03,MQP02]. Hence, computer
graphics hardware has become more and more attractive for
general purpose, high-performance computing. In particu-
lar, the architecture of rendering pipelines closely matches
the concept of stream processing. For example, Buck et
al. [BFH∗04] presents a streaming language that permits the
implementation of streaming algorithms on a graphics pro-
cessor. We focus on expressing the rendering pipeline and
mapping it to a general-purpose processor.

Owens et al. [ODK∗00] characterizes rendering as a
stream operation and demonstrates the implementation of a
fixed-function pipeline on a data-parallel stream processor.
We use a tiled stream processor, the Raw machine, and we
make the pipeline completely programmable. The applica-
tion developer can compile several pipelines, and change the
graph topology at runtime, allowing for compile-time load
balancing.

Our approach is also related to the shader algebra
[MTP∗04] where shaders can be combined and code analy-
sis leads to efficient compilation and dead-code elimination.

In this paper, we start from the assumption that future
GPUs will contain a single type of general purpose pro-
cessing tile that can be assigned flexibly to different tasks
(the upcoming unified shaders are going in this direction
[Bly05]). Our goal is to study the implications and chal-
lenges that this scenario imposes on the “driver” of such a
processor. The driver will be of critical importance because
it allocates resources depending on the rendering task and
ensures that the processor is used efficiently. We build on
solutions in the stream compiler community to tackle this
challenge.

2. Background

In this section, we give an overview of the two main tech-
nologies that our system is built upon: the Raw processor
(Section 2.1) and the StreamIt language and compiler (Sec-
tion 2.2).

2.1. The Raw Processor

The Raw processor [TKM∗02,TLM∗04] is a versatile archi-
tecture that achieves scalability by addressing the wire delay
problem. Raw also aims to be as efficient as an ASIC while
still running general purpose programs with reasonable per-
formance. Raw approaches these challenges by exposing its
rich on-chip resources, which include logic, wires, and pins,
through a new ISA to the software. In contrast to other ar-
chitectures, this allows Raw to more effectively exploit all
forms of parallelism, including instruction, data, and thread
level parallelism, as well as pipeline parallelism.

Tile-Based Processor Architecture. Raw is a parallel pro-
cessor with a 2-D array of identical, programmable tiles.
Each tile contains a compute processor as well as a switch
processor that manages four networks to neighboring tiles.
The compute processor is composed of an eight-stage
in-order single-issue MIPS-style processor, a four-stage
pipelined floating point unit, a 32kB data cache, and a 32kB
instruction cache. The current prototype is implemented in
an IBM 180nm ASIC process running at 425MHz; on one
chip, it contains 16 uniform tiles arranged in a square grid.
The theoretical peak performance of this prototype is 6.8
GFLOPS. In this paper, we gather results using btl, a cycle-
accurate simulator that can model multiple tile configura-
tions. We use a 64-tile configuration for our results. Though
the prototype chip contains only 16 tiles, a 64-tile fabric is
under construction.

On-Chip Communication Networks. The switch pro-
cessors control four 32-bit full-duplex on-chip networks.
The networks are register-mapped, blocking, and flow-
controlled, and they are integrated directly into the bypass
paths of the processor pipeline. As a key innovative feature
of Raw, these networks are exposed to the software through
the Raw ISA.

There are two static networks and two dynamic networks.
The static networks are used for communication patterns
that are known at compile time. To route a word from one
tile to another over a static network, it is the responsibility
of the compiler to insert a route instruction on every inter-
mediate switch processor. The static networks are ideal for
regular stream-based traffic and can also be used to exploit
instruction level parallelism [TLAA03]. The dynamic net-
works support patterns of communication that vary at run-
time. Items are transmitted in packets; a header encodes the
destination tile and packet length. Routing is done dynam-
ically by the hardware, rather than statically by the com-
piler. There are two dynamic networks: a memory network
for trusted clients (data caches, I/O, etc.) and a general net-
work for use by applications.

Memory System. On the boundaries of the chip, the net-
work channels are multiplexed onto the pins to form flexi-
ble I/O ports. Words routed off the side of the chip emerge
on the pins, and words put on the pins by external devices
appear on the networks. Raw’s memory system is built by
connecting these ports to external DRAMs. For the 16 tile
configuration, Raw supports a maximum of 14 ports, which
can be connected to as many as 14 full-duplex DRAM mem-
ory banks, leading to a memory bandwidth of 47.6GB per
second. While there are I/O ports only on the boundary of
the chip, any tile can access memory by routing requests and
data over the networks. Memory accesses from inner tiles
are almost as efficient as boundary tiles because the on-chip
network latency (1 cycle / hop) is negligible compared to the
off-chip memory latency.

c© The Eurographics Association 2005.



J. Chen & M. Gordon & W. Thies & M. Zwicker & K. Pulli & F. Durand / A Reconfigurable Architecture for Load-Balanced Rendering

Raw as Graphics Hardware. We believe the Raw architec-
ture is interesting for graphics hardware developers, because
its design goals share a number of similarities with current
GPUs. Raw is tailored to effectively execute a wide variety
of computations, from special purpose computations that are
often implemented using ASICs to conventional sequential
programs. GPUs exploit data parallelism (by replicating ren-
dering pipelines, using vector units), instruction level par-
allelism (in super-scalar fragment processors), and pipeline
parallelism (by executing all stages of the pipeline simulta-
neously). Raw, too, is capable of exploiting these three forms
of parallelism. In addition, Raw is scalable: it consists of uni-
form tiles with no centralized resources, no global buses, and
no structures that get larger as the tile count increases. In
contrast to GPUs, Raw’s computational units and commu-
nication channels are fully programmable, which opens up
almost unlimited flexibility in laying out a graphics pipeline
and optimizing its efficiency.

On the other hand, the computational power of the current
16 tile, prototype Raw processor is more than an order of
magnitude smaller than the power of current GPUs. The ob-
vious reason is that the number of parallel operations on Raw
is much smaller than on GPUs (Raw’s computation units do
not perform vector computation). In addition, Raw is a re-
search prototype implemented with a 180nm process; an in-
dustrial design with a modern 90nm process would achieve
higher clock frequencies.

Hence, in this paper we do not intend to compete with cur-
rent GPUs in terms of absolute performance, but we show
the benefits of a flexible and scalable architecture for effi-
cient resource utilization. The optimization of the Raw ar-
chitecture for graphics pipelines is an exciting direction for
future research.

2.2. The StreamIt Programming Language

StreamIt [TKA02, GTK∗02] is a high-level stream language
that aims to be portable across communication-exposed ar-
chitectures such as Raw. The language exposes the paral-
lelism and communication of streaming programs without
depending on the topology or granularity of the underlying
architecture. The StreamIt programming model is based on a
structured stream abstraction: all stream graphs are built out
of a hierarchical composition of filters, pipelines, split-joins,
and feedback-loops (described below).

As we will describe in more detail in Section 3, the struc-
tured stream graph abstraction provided by StreamIt lends
itself to expressing data parallelism and pipeline parallelism
that appear in graphics pipelines. In particular, we will show
how to use StreamIt for high-level specification of rendering
pipelines with different topologies. As previously published,
StreamIt permits only fixed data rates. In order to implement
a graphics system that allows different triangle sizes, sup-
port for variable data rates is necessary. In this work, we add
variable data rates to the StreamIt language and compiler.

Language Constructs. The basic unit of computation in
StreamIt is the filter. A filter is a single-input, single-output
block with a user-defined procedure for translating input
items to output items. Filters send and receive data to
and from other filters through FIFO queues with compiler-
checked data types. StreamIt distinguishes between filters
with static and variable data rates. A static data rate filter
reads a fixed number of input items and writes a fixed num-
ber of output items each time it fires, whereas a variable data
rate filter may read or write a varying number of items.

In addition to the filter, StreamIt provides three language
constructs to compose stream graphs: pipeline, split-join,
and feedback-loop. We call each of these constructs, includ-
ing a filter, a stream. In a pipeline, streams are connected in
a linear chain so that the outputs of one stream are the inputs
to the next stream. In a split-join configuration, the output
from a stream is split and sent to multiple (not necessarily
identical) streams that have the same input data type. The
data can be either duplicated or placed in a weighted round-
robin scheduling policy. The parallel streams must either be
joined somewhere downstream or the split-join must serve
as the sink for the entire stream graph. The programmer can
specify data-parallelism by varying the width of the split-
join. The feedback-loop enables a stream to receive input
from downstream, for applications such as MPEG.

2.3. Compiling StreamIt to Raw

A compiler for mapping static data rate StreamIt to Raw
has been described in previous work [GTK∗02]. Compi-
lation involves four stages: dividing the stream graph into
load-balanced partitions, laying out the partitions on the
chip, scheduling communication between the partitions, and
generating code. In this paper, automatic load-balancing is
disabled: as we assume that the programmer has domain-
specific knowledge about the work requirements, each fil-
ter in the program is directly mapped to a single tile. We
summarize the operation of the layout and communication
scheduling stages below and describe how to extend them to
variable data rates in Section 3.3.

Layout The layout stage assigns each filter in the stream
graph to a Raw tile while minimizing communication and
synchronization. Since an exhaustive search for the optimal
layout is computationally intractable, we use a simulated an-
nealing algorithm that incrementally adjusts the layout to op-
timize a cost function. The cost function measures the mem-
ory latency and communication overhead for a given layout,
as well as the synchronization imposed when independent
communication channels are mapped to intersecting routes
on the chip. For example, placing memory intensive filters
closer to the boundary will reduce the memory latency com-
ponent of the cost function. If there are fewer filters than
tiles, certain tiles will remain unmapped; unmapped tiles
will be utilized for routing. For all layouts used in our ex-
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periments, the simulated annealing algorithm ran in under 5
minutes on a Pentium Xeon 2.8 GHz machine.

Communication Scheduling Communication scheduling
maps the abstract communication channels of the stream
graph to Raw’s static network, maximizing throughput while
avoiding deadlock. As multiple logical channels from the
stream graph might be multiplexed over a single physical
network link, routing operations are sequenced to minimize
the amount of time that a given tile is idle waiting for an-
other pair of tiles to communicate. This static communica-
tion schedule is calculated by simulating the firing of filters
in the stream graph and recording the communication pattern
for each switch processor.

3. Flexible Graphics Pipelines Using StreamIt

To address the load-balancing problem, we designed a flexi-
ble graphics pipeline using general purpose hardware, where
the allocation of resources to tasks can be changed to adapt
to the input. We first describe how we express the graphics
pipeline using StreamIt, before presenting our extension of
the compiler to enable variable data rates.

The StreamIt philosophy is to implement filters as inter-
changeable components. In the flexible pipeline, the differ-
ent stages are implemented as StreamIt filters and allocated
to Raw by the StreamIt compiler. The programmer is free to
vary the pipeline topology by rearranging the filters and re-
compiling. The flexible pipeline has several advantages over
a fixed pipeline on the GPU. First, any filter (i.e., stage) in
the pipeline can be changed. For example, in the first two
passes of shadow volume rendering, texture mapping is not
used, and we can perform dead-code elimination. The entire
pipeline is changed so that texture coordinates are neither in-
terpolated nor part of the dataflow, and the pixel shader stage
is removed. For the third pass, these functions are restored.
Second, the topology does not even need to conform to any
traditional pipeline configuration. In our image processing
case study (Section 4.3), the current GPU method would ren-
der the scene to a texture and use a complex pixel shader to
perform image filtering. We simply reconfigure Raw to act
as a extremely parallel image processor.

In our case studies (Section 4) we compare the perfor-
mance of a flexible pipeline against a fixed-allocation ref-
erence pipeline. The reference pipeline models the same de-
sign tradeoff as made in GPUs in fixing the ratio of fragment
to vertex units. We demonstrate that a flexible pipeline better
balances the load across the available resources and achieves
up to a 157% increase in throughput.

3.1. Pipeline Implementation

The reference pipeline is implemented using StreamIt and
emulates most of the functionality of a programmable GPU.
It is manually laid out on Raw (Figure 1). The pipeline stages
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Figure 1: Reference pipeline layout on an 8×8 Raw config-
uration. Squares represent Raw tiles. Data arrives from an
I/O port off the edge of the chip, and data is written to off-
chip memory by tiles assigned to frame buffer operations.
Unallocated tiles have been removed to clarify the routing.

include Input, Programmable Vertex Processing, Triangle
Setup, Rasterization, Programmable Pixel Shading (includ-
ing texture mapping), and Reconfigurable Raster Operations
that write to the frame buffer. Some tiles are empty to im-
prove routing of data items.

The pipeline is a sort-middle architecture [MCEF94]. The
input stage is connected to off-chip memory through an I/O
port. Six tiles are assigned to programmable vertex process-
ing, and they are synchronized through one synchronization
tile. The synchronizer consumes output of the vertex shaders
using a round-robin strategy and pushes the data to the trian-
gle setup tile. We use homogeneous rasterization to avoid
the overhead of clipping operations [OG97]. The triangle
setup stage computes the vertex matrix and its inverse, the
screenspace bounding box, triangle facing, and the param-
eter vectors needed for interpolation. It distributes data to
the 15 pixel pipelines. The pixel pipelines are screen locked
and interleaved. Each pipeline is assigned to every 15th col-
umn. The pixel pipelines each consist of three tiles, a raster-
izer that outputs the visible fragments of the triangle, a pro-
grammable pixel processor, and a frame buffer operations
tile, which communicates with off-chip memory through an
I/O port to perform Z-buffering, blending and stencil buffer
operations. In StreamIt, filters are independent and have in-
dependent address spaces. Hence, for efficient random ac-
cess to textures, texture memory is replicated to all pixel
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processors. In contrast, the frame buffer is not replicated; it
is distributed across multiple memory banks. Since the pixel
pipelines are screen locked, frame buffer accesses are inde-
pendent.

We implement data-level parallelism using StreamIt’s
split-joins at the vertex and pixel level. Our reference
pipeline corresponds to the design strategy of current graph-
ics hardware: at design time, a hypothesis is made on the rel-
ative usage of the various stages of the pipeline, and a fixed
resource allocation is decided to optimize for the situation.
As mentioned above, split-joins are used to provide 6 vertex
and 15 pixel pipelines.

In contrast, our reconfigurable pipeline builds on the same
filters as the reference pipeline, but the programmer varies
the topology depending on the rendering pass of the applica-
tion. It leverages the StreamIt compiler to automatically lay
out the stream graph on Raw. The main parameters are the
width of the split-joins at the vertex and pixel stages. Where
the computation permits, the depth of the pipeline for a cer-
tain stage (such as triangle setup or pixel shading) can also
be changed. In some cases, the programmer can also omit
some of the filters when they are not needed. Together, flex-
ible resource allocation and dead-code elimination greatly
improve performance.

While the automatic assignment of filters to tiles by the
compiler provides great flexibility, the layout is not neces-
sarily optimal. Automatic layout can act as a good first ap-
proximation so the programmer can iterate on pipeline con-
figurations without having to manually configure the tiles,
after which the programmer is free to tweak the layout. In
our benchmarks, we use the automatic layouts without mod-
ification.

3.2. Switching Between Configurations

We only consider static load balancing, where it is assumed
that the programmer has a priori knowledge of the upcoming
frame, rendering pass, or even part of a frame. This scenario
is realistic for a wide range of applications where the pro-
grammer has already profiled the application. Static load bal-
ancing is achieved via user-specified “context switches” be-
tween pre-compiled stream graphs when the load is expected
to change. Switching between configurations involves flush-
ing the pipeline and having each tile jump to the code for
its new task. These context switches may or may not incur
some cost. Consider the case of a multi-pass rendering al-
gorithm such as shadow volume rendering. Each pass places
the load on a different part of the pipeline and we would
like to switch configurations between them. In this case, a
pipeline flush occurs between passes anyway, so the over-
head of the branch (and possible instruction cache miss) is
negligible. The other case is a configuration switch within a
frame. An example of this would be rendering a scene with
a detailed character (vertex limited) over a background com-
posed of large triangles (fragment limited). Normally, a flush

would not occur; the programmer must profile the applica-
tion and decide if the overhead from the flush is greater than
the performance increase of the new configuration.

3.3. Variable Data Rates in StreamIt

Variable data rates are essential for graphics rendering. Be-
cause the number of pixels corresponding to a given trian-
gle depends on the positions of the vertices for that triangle,
the input/output ratio of a rasterizer filter cannot be fixed at
compile time. This contrasts with traditional applications of
stream-based programming such as digital signal process-
ing that exhibit a fixed ratio of output to input and can be
implemented using synchronous dataflow models. In partic-
ular, the original version of StreamIt relies on the static data
rate assumption.

We augmented the StreamIt language and compiler to
support variable data rates between filters. The language ex-
tension is simple, allowing the programmer to specify a data
rate as variable. On the compiler side, variable data rates are
supported by dividing the stream graph into static-rate sub-
graphs. Each subgraph represents a stream in which child
filters have static data rates for internal communication. A
variable data rate can appear only between subgraphs. The
phases of the StreamIt to Raw mapping are described below.

Partitioning with Variable Data Rates In this paper, we
rely on manual partitioning. Because the programmer might
have application-specific knowledge about the relative load
between different subgraphs, she should write the applica-
tion to have the appropriate number of filters in each stage.
The compiler maps each filter to a single tile. The program-
mer can easily adjust the number of filters allocated to a
given task using StreamIt’s parameterized split-joins.

Layout with Variable Data Rates Variable data rates im-
pose two new layout constraints. First, a switch processor
must not interleave routing operations for distinct static sub-
graphs. Because the relative execution rates of subgraphs
are unknown at compile time, it is impossible to generate
a static schedule that interleaves operations from two sub-
graphs without risking deadlock. Second, there is a con-
straint on the links between subgraphs: variable-rate com-
munication channels that are running in parallel and have
downstream synchronization must not cross on the chip.
Even when such channels are mapped to the dynamic net-
work, deadlock can result if such channels share a junction,
since a high-traffic channel can block another. However, this
constraint is only needed in the general case; our bench-
marks do not contain synchronization between variable-rate
streams. In our implementation, these constraints are incor-
porated into the cost function in the form of large penalties
for illegal layouts.

Communication Scheduling with Variable Data Rates
Communication scheduling requires a simple extension:
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Figure 2: Output Images. Case studies 1 through 4, left to right. Original Resolution: 600×600.

channels with variable data rates are mapped to Raw’s gen-
eral dynamic network (rather than the static network, which
requires a fixed communication pattern). Within each sub-
graph, the static network is still used. Our implementation
avoids the cost of constructing the dynamic network header
for every packet; instead, we construct the header once at
initialization time. Even though the rate of communication
is variable, the endpoints of each communication channel
are determined at compile time.

4. Case Studies

We study a number of rendering scenarios to demonstrate
the load imbalance present on a fixed hardware allocation.
We also show how the imbalance can be alleviated and per-
formance improved by reallocating resources appropriately.

In the following case studies, we list performance num-
bers in terms of triangles per second and percent utilization.
The screen resolution is fixed at 600× 600 pixels. See Fig-
ure 2 for output images. Pipeline stage utilization is com-
puted as the number of instructions completed by all tiles
assigned to that stage divided by the number of instruction
slots for all the tiles of the stage. Note that this metric for pro-
cessor utilization is unlikely to reach 100% in any scenario,
even in highly parallel computations such as image filtering
(Section 4.3). While each tile is fully pipelined, it is unlikely
to achieve 1 instruction per clock cycle. Floating point oper-
ations incur a 4-cycle latency, local memory accesses have
a 3-cycle latency, and there are likely to be data hazards in
the computation. Also, Raw’s in-order, single-issue compute
processor uses static branch prediction with a mis-prediction
penalty of 3 cycles.

4.1. Case Study 1: Phong Shading

Consider the case of rendering a coarsely tessellated polyhe-
dron composed of large triangles with per pixel Phong shad-
ing. In the vertex shader, the vertex’s world space position
and normal are bound as texture coordinates. The rasterizer
interpolates the texture coordinates across each triangle and
the pixel shader computes the lighting direction and the dif-
fuse and specular contributions. Most of the load is expected
to be on the fragment processor.

Case

Study

Instructions

Removed

Throughput

Improvement

Case 1: Phong Shading -1% 55%

Case 2: Shadow Volumes 46% 62%

   pass 1 62% 126%

   pass 2 63% 126%

   pass 3 24% 13%

Case 4: Particle System 13% 157%

Table 1: Fraction of dynamic instructions removed and
throughput improvement when using a flexible resource al-
location rather than a fixed resource allocation.

Reference Pipeline As expected, the reference pipeline suf-
fers from an extreme load imbalance. The fragment proces-
sor is at 68% utilization, the rasterizer is at 17%, while the
other units are virtually idle (< 1%) (Figure 5). Throughput
is 4060 triangles per second.

Flexible Pipeline We tried several different allocations for
this scenario. We varied the ratio between vertex and frag-
ment processors as well as the depth of the pixel pipelines.
We discovered that the largest gain in performance came
when we pipelined the pixel shader onto two tiles; the layout
is shown in Figure 3.

In this allocation, the first pixel processor is at 74% uti-
lization, and the second at 60%. The rasterization stage’s
utilization increases to 31%. The load-balance has improved
significantly. This allocation achieves a throughput of 6280
triangles per second, a 55% increase over the fixed allocation
(Table 1).

4.2. Case Study 2: Multi-Pass Rendering—Shadow
Volumes

To demonstrate the utility of a flexible pipeline, we bench-
marked shadow volume rendering, a popular technique for
generating real-time hard shadows. In this algorithm, the
load shifts significantly over the three passes. In the first
pass, the depth buffer is initialized with the depth values of
the scene geometry. In our scene, the triangles are relatively
large and the computation is rasterization bound. In the sec-
ond pass, the shadow volume itself is rendered. This incurs a
significant load on the rasterizer which has to rasterize large
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Figure 3: Compiler generated allocation for case study #1.
It has 1 vertex processor and 12 pixel pipelines, with 2 frag-
ment processors per pixel pipeline.

shadow volume polygons, and the frame buffer operations,
which must perform a depth test and update the stencil
buffer. In the final pass, the fragment shader is used to texture
map the geometry and the computation is fragment-limited.

Reference Pipeline In the first pass, as expected, the ras-
terization stage is the bottleneck at 69% utilization. It takes
approximately 55 floating point operations for the software
rasterizer to output each fragment. The pixels are output in
screen-aligned order and memory access is very regular for
the large triangles. The frame buffer updates only achieve
a 7% utilization. The other units in the pipeline are virtu-
ally idle, with the exception of the pixel shader use at 6%;
it simply forwards rasterized fragments to the frame buffer
operations unit. Throughput is 933 triangles / second.

On the second pass, the results are virtually identical, with
a slight increase in utilization at the frame buffer operations
stage where the Z-Fail algorithm updates the stencil buffer
based on triangle orientation. Throughput is 752 triangles /
second.

In the final pass, the pixel processor retrieves four samples
from memory per fragment to perform texturing with bilin-
ear filtering. This causes a number of cache misses and also
stalls the rasterizer upstream. Rasterizer utilization drops to
50% and the pixel shader utilization is 42% due to the num-
ber of cache misses. Throughput is 651 triangles per second.

Flexible Pipeline The first two passes are rasterization
bound, so the allocation is changed to use only 1 tile for ver-
tex processing. Neither pass requires pixel shading, so the
stage is removed completely and the tiles are reallocated to
increase the number of pixel pipelines to 20 (Figure 4). Since
the input vertices do not contain any attributes other than
position, we can safely remove interpolation and parameter
vector calculation for the other attributes from the rasteriza-
tion and triangle setup stages. As shown in Table 1, a total
of 46% fewer dynamic instructions are fired compared to the
reference pipeline.

We achieve more than a 100% increase in throughput over
the reference pipeline for both the first and second passes. In
the first pass, throughput improves 126% to 2110 triangles
/ second, and in the second pass, throughput also improves
126% to 1700 triangles / second. It is interesting to note that
although load balancing between stages improves (Figure 5),
the utilization in the rasterization stage actually decreases
from 71% down to 49%.

The final pass is fragment processing limited due to the
expensive texture memory accesses, so we pipeline that
stage. We use only 1 tile for vertex processing, and allocate
12 pixel pipelines, with two tiles (pipelined) for the pixel
shader: the first tile retrieves the samples, the second per-
forms the interpolation. Using this configuration, through-
put increases 13% to 736 triangles / second. Utilization of
the rasterizer, first pixel shader, and second pixel shader are
34%, 31%, and 32%, respectively.

4.3. Case Study 3: Image Processing—Poisson
Depth-of-Field

Image processing requires a quite different pipeline architec-
ture than 3D rendering. Since we are using a general purpose
architecture, we do not need to map the computation onto a
traditional graphics pipeline. Consider the Poisson-disc fake
depth-of-field algorithm by ATI [Sch04]. In a GPU imple-
mentation, the final pass of the algorithm would require ren-
dering a large screen-aligned quadrilateral and performing
the filtering in the pixel shader. The operation is extremely
fragment bound since the scene contains only 2 triangles and
the pixel shader must perform many texture accesses per out-
put pixel.

In the flexible pipeline, each tile is allocated as an image
filtering unit. We express the tile configuration using a 62-
way StreamIt split-join. We use 62 tiles because the input
requires one tile and incorporation of the split-join requires
one tile. The color and depth buffers are split into 62 blocks.
At 600× 600 resolution, the blocks fit in the data cache of
a tile. The tiles achieve a 38% utilization and a throughput
of 122 frames per second. Due to the memory-intensive na-
ture of the operation, 100% utilization is not reached—each
cache hit incurs a 3-cycle latency.
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Figure 4: Compiler generated layout for case study #2.

4.4. Case Study 4: Particle System

In our fourth experiment, we consider automatic tessella-
tion and procedural deformation of geometric primitives. We
modify the vertex shaders to receive a triangle as input and
output 4 complete triangles. Each vertex is given a small ran-
dom perturbation. Since the input triangles require no shad-
ing and occupy only a small area on the screen, we expect
this scene to be vertex-limited on the reference pipeline.

Reference Pipeline It turns out, however, that the bottle-
neck lies in the triangle setup stage. Triangle setup has a
49% utilization, the rasterizer is at 22%, and the other units
are stalled (< 4%) (Figure 5). In retrospect, this is unsurpris-
ing; our sort-middle architecture requires output vertices to
be synchronized and contains only one triangle setup stage.
Since the triangles are small, setup takes a proportionally
large amount of computation relative to rasterization.

Flexible Pipeline Noticing that triangle setup is a bottle-
neck, we pipeline it by dividing the work onto two tiles and
forwarding the necessary data. We also adjust the pipeline to
remove unnecessary computation, such as texture coordinate
interpolation in the rasterizer and computation of parame-
ter vectors in triangle-setup. As shown in Table 1, 13% of
the dynamic instructions are removed and the pipelined ver-
sion obtains a performance increase of 157% over the refer-
ence pipeline. Even though we originally misjudged where
the bottleneck would be, this case still illustrates the benefit

of a flexible architecture: we can improve performance by
transferring a tile from an idle stage to a busy one.

4.5. Discussion

In the above experiments, we have compared triangle
throughput achieved by a fixed and a flexible resource al-
location under several rendering scenarios. We have shown
that flexible resource allocation can increase throughput up
to 157%. We believe these results are indicative of the
speedups that could be obtained by designing more flexi-
ble GPU architectures. However, the absolute performance
obtained by Raw is orders of magnitude lower than current
GPUs. As technology improves, this can be addressed by
integrating more tiles on the Raw chip: Raw has a homoge-
neous and scalable design that is free of global communica-
tion structures. Combining the specialized computational re-
sources of GPUs (e.g., the rasterizers) with the flexible com-
munications infrastructure of Raw seems to be a promising
research challenge.

5. Conclusions and Future Work

We have presented a graphics hardware architecture based
on a multicore processor, where load balancing is achieved
at compile-time, by reconfiguring the resource allocation.
Both the 3D rendering pipeline and shaders are expressed
in the same stream-based language, allowing for full pro-
grammability and load-balancing. Although our prototype
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cannot compete with state-of-the-art GPUs, we believe it is
an important first step in addressing the load-balancing chal-
lenge in graphics architecture.

We are working on alleviating the current limitations of
our approach. We are studying the replacement of certain
computation tiles by specialized rasterizers since this is the
stage of the graphics pipeline that benefits most from spe-
cialization. We are also studying the memory hierarchy for
optimal graphics performance, in particular the prefetching
of textures. With prefetching, texture mapping performance
can be greatly improved. Dynamic load balancing is the most
exciting avenue of future work. A first intermediate step
might exploit the statistics from the previous frame to refine
resource allocation or switch between different pre-compiled
versions of the pipeline. In the future, we expect that graph-
ics hardware will be introspective and will be able to switch
resource allocation within a frame or rendering pass depend-
ing on the relative load of computation units and on the oc-
cupancy of its buffers. Achieving the proper granularity for
such changes and the appropriate state maintenance are the
biggest challenges.
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Figure 5: Steady-state utilization graph.
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