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Abstract

We introduce program shepherding, a method for moni-
toring control flow transfers during program execution to
enforce a security policy. Program shepherding provides
three techniques as building blocks for security policies.
First, shepherding can restrict execution privileges on
the basis of code origins. This distinction can ensure
that malicious code masquerading as data is never exe-
cuted, thwarting a large class of security attacks. Sec-
ond, shepherding can restrict control transfers based on
instruction class, source, and target. For example, shep-
herding can forbid execution of shared library code ex-
cept through declared entry points, and can ensure that a
return instruction only targets the instruction after a call.
Finally, shepherding guarantees that sandboxing checks
placed around any type of program operation will never
be bypassed. We have implemented these capabilities
efficiently in a runtime system with minimal or no per-
formance penalties. This system operates on unmodified
native binaries, requires no special hardware or operat-
ing system support, and runs on existing IA-32 machines
under both Linux and Windows.

1 Introduction

The goal of most security attacks is to gain unauthorized
access to a computer system by taking control of a vul-
nerable privileged program. This is done by exploiting
bugs that allow overwriting stored program addresses
with pointers to malicious code. Today’s most prevalent
attacks target buffer overflow and format string vulner-
abilities. However, it is very difficult to prevent all ex-
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ploits that allow address overwrites, as they are as varied
as program bugs themselves. It is also unreasonable to
try to stop malevolent writes to memory containing pro-
gram addresses, because addresses are stored in many
different places and are legitimately manipulated by the
application, compiler, linker, and loader.

Security attacks cannot be thwarted by simply inserting
checks around application code that may cause system-
wide changes. A malicious entity that gains control can
simply inject its own code to perform any operation that
the overall application has permission to do. Hijacking
trusted applications such as web servers, mail transfer
agents, and login servers, which are typically run with
many global permissions, gives full access to machine
resources.

Rather than attempt to stop a multitude of attack paths,
where the protection is only as powerful as the weakest
link, our approach is to prevent the execution of mali-
cious code. We present program shepherding — mon-
itoring control flow transfers to enforce a security pol-
icy. Program shepherding prevents execution of data
or modified code and ensures that libraries are entered
only through exported entry points. Instead of focusing
on preventing memory corruption, we prevent the final
step of an attack, the transfer of control to malevolent
code. This allows thwarting a broad range of security
exploits with a simple central system that can itself be
easily made secure. Program shepherding also provides
sandboxing that cannot be circumvented, allowing con-
struction of customized security policies.

Program shepherding requires verifying every branch in-
struction, which is not easily done via static instrumen-
tation due to the dynamism of shared libraries and in-
direct branches. Implementation in an interpreter is the
most straightforward solution. We reduce the overhead
of interpretation by performing security checks once and
placing the resulting trusted code in a cache, where it
can be executed overhead-free in the future. Our im-



plementation naturally fits within the RIO infrastructure,
a dynamic optimizer built on the IA-32 version [3] of
Dynamo [2]. The resulting system imposes minimal or
no performance overhead, operates on unmodified native
binaries, and requires no special hardware or operating
system support. Our shepherding implementation on top
of RIO is implemented for both Windows and Linux;
however, this paper mainly focuses on Linux.

In Section 2 we classify the types of security exploits
that we are aiming to prevent. Program shepherding’s
three techniques are described in Section 3, and Sec-
tion 4 shows how to combine them to produce potent
security policies. Section 5 discusses how we implement
program shepherding efficiently, and Section 6 describes
how to prevent attacks directed at our system itself. We
present experimental results and the performance of our
system in Section 7.

2 Security Exploits

This section provides some background on the types of
security exploits we are targeting. We classify security
exploits based on three characteristics: the program vul-
nerability being exploited, the stored program address
being overwritten, and the malicious code that is then
executed.

2.1 Program Vulnerabilities

The two most-exploited classes of program bugs involve
buffer overflows and format strings. Buffer overflow
vulnerabilities are present when a buffer with weak or
no bounds checking is populated with user supplied data.
A trivial example is unsafe use of the C library functions
strcpy or gets. This allows an attacker to corrupt
adjacent structures containing program addresses, most
often return addresses kept on the stack [7]. Buffer over-
flows affecting a regular data pointer can actually have
a more disastrous effect by allowing a memory write to
an arbitrary location on a subsequent use of that data
pointer. One particular attack corrupts the fields of a
double-linked free list kept in the headers of malloc
allocation units [16]. On a subsequent call to free, the
list update operation

this->prev->next = this->next;
will modify an arbitrary location with an arbitrary value.

Format string vulnerabilities also allow attackers to

modify arbitrary memory locations with arbitrary values
and often out-rank buffer overflows in recent security
bulletins [6, 19]. A format string vulnerability occurs if
the format string to a function from the printf family
(

�
,f,s,sn � printf, syslog) is provided or con-

structed from data from an outside source. The most
common case is when printf(str) is used instead
of printf("%s",str). The first problem is that at-
tackers may introduce conversion specifications to en-
able them to read the memory contents of the process.
The real danger, however, comes from the %n conver-
sion specification which directs the number of characters
printed so far to be written back. The location where the
number is stored and its value can easily be controlled
by an attacker with type and width specifications, and
more than one write of an arbitrary value to an arbitrary
address can be performed in a single attack.

In this paper we assume that attackers can exploit a vul-
nerability that gives them random write access to arbi-
trary addresses in the program address space. This abil-
ity can be used to overwrite any stored program address
to transfer control of the process to the attacker.

2.2 Stored Program Addresses

Many entities participate in transferring control in a pro-
gram execution. Compilers, linkers, loaders, runtime
systems, and hand-crafted assembly code all have legit-
imate reasons to transfer control. Program addresses are
credibly manipulated by most of these entities, e.g., dy-
namic loaders patch shared object functions; dynamic
linkers update relocation tables; and language runtime
systems modify dynamic dispatch tables. Generally,
these program addresses are intermingled with and in-
distinguishable from data. In such an environment, pre-
venting a control transfer to malicious code by stopping
illegitimate memory writes is next to impossible. It re-
quires the cooperation of numerous trusted and untrusted
entities that need to check many different conditions and
understand high-level semantics in a complex environ-
ment.

Security exploits can attack program addresses stored in
many different places. Buffer overflow attacks target
addresses adjacent to the vulnerable buffer. The clas-
sic return address attacks and local function pointer at-
tacks exploit overflows of stack allocated buffers. Global
data and heap buffer overflows also allow global func-
tion pointer attacks and setjmp structure attacks. Data
pointer buffer overflows, malloc overflow attacks, and
%n format string attacks are able to modify any stored



program address in the vulnerable application — in ad-
dition to the aforementioned addresses, these attacks
target entries in the atexit list, .dtors destructor
routines, and in the Global Offset Table (GOT) [12] of
shared object entries.

2.3 Malicious Code

An attacker can cause damage with injection of new ma-
licious code or by malicious reuse of already present
code. Usually the first approach is taken and the attack
code is implemented as new native code that is injected
in the program address space as data [20]. New code can
be injected into various areas of the address space: in a
stack buffer, static data segment, near or far heap buffer,
or even the Global Offset Table. Since normally there
is no distinction between read and execute privileges for
memory pages (this is the case for IA-32), the only re-
quirement is that the pages are writable during the in-
jection phase. Modifying any stored program address to
point to the beginning of the introduced code will trigger
intrusion when that address is used for control transfer.

It is also possible to reuse existing code by changing a
stored program address and constructing an activation
record with suitable arguments. A simple but power-
ful attack reuses existing code by changing a function
pointer to the C library function system, and arranges
the first argument to be an arbitrary shell command to
be run. Also note that reuse of existing code can in-
clude jumping into the middle of a sandboxed operation,
bypassing the sandboxing checks and executing the op-
eration that was intended to be protected. In addition, a
jump into the middle of an instruction (on IA-32 instruc-
tions are variable-sized and unaligned) could cause exe-
cution of an unintended and possibly malicious instruc-
tion stream; however, such an attack is very unlikely.

An attacker may be able to form higher-level malicious
code by introducing data carefully arranged as a chain
of activation records, so that on return from each func-
tion execution continues in the next function of the
chain [18]. The prepared activation record return ad-
dress points to the code in a function epilogue that shifts
the stack pointer to the following activation record and
continues execution in the next function. Overwriting a
suitable sequence of function pointers may also produce
higher-level malicious code.

3 Program Shepherding

The program shepherding approach to preventing exe-
cution of malicious code is to monitor all control trans-
fers to ensure that each satisfies a given security policy.
This allows us to ignore the complexities of various vul-
nerabilities and the difficulties in preventing illegitimate
writes to stored program addresses. Instead, we catch a
large class of security attacks by preventing execution of
malevolent code. We do this by employing three tech-
niques: restricted code origins, restricted control trans-
fers, and un-circumventable sandboxing. This section
describes these techniques, while Section 4 discusses
how to build security policies using these techniques.

3.1 Restricted Code Origins

In monitoring all code that is executed, each instruc-
tion’s origins are checked against a security policy to
see if it should be given execute privileges. Code ori-
gins are classified into these categories: from the orig-
inal image on disk and unmodified, dynamically gener-
ated but unmodified since generation, and code that has
been modified. Finer distinctions could also be made.
We describe in Section 5.3 how to distinguish original
code from modified and possibly malicious code.

A hardware execute flag for memory pages can provide
similar features to our restricted code origins. How-
ever, it cannot by itself duplicate program shepherd-
ing’s features because it cannot stop inadvertent or mali-
cious changes to protection flags. Program shepherding
uses un-circumventable sandboxing, described in Sec-
tion 3.3, to prevent this from happening. Furthermore,
program shepherding provides more than one bit of priv-
ilege information: it distinguishes different types of exe-
cute privileges for which different security policies may
be specified.

3.2 Restricted Control Transfers

Program shepherding allows arbitrary restrictions to be
placed on control transfers in an efficient manner. These
restrictions can be based on both the source and destina-
tion of a transfer as well as the type of transfer (direct or
indirect call, return, jump, etc.). For example, the calling
convention could be enforced by requiring that a return
instruction only target the instruction after a call. An-
other example is forbidding execution of shared library
code except through declared entry points.



3.3 Un-Circumventable Sandboxing

Program shepherding provides direct support for re-
stricting code origins and control transfers. Execution
can be restricted in other ways by adding sandboxing
checks on other types of operations. With the ability to
monitor all transfers of control, program shepherding is
able to guarantee that these sandboxing checks cannot be
bypassed. Sandboxing without this guarantee can never
provide true security — if an attack can gain control of
the execution, it can jump straight to the sandboxed op-
eration, bypassing the checks. In addition to allowing
construction of arbitrary security policies, this guaran-
tee is used to enforce the other two program shepherding
techniques by protecting the shepherding system itself
(see Section 6).

4 Security Policies

Program shepherding’s three techniques can be used to
provide powerful security guarantees. They allow us to
strictly enforce a safe subset of the instruction set ar-
chitecture and the operating system interface. There are
tradeoffs between program freedom and security: if re-
strictions are too strict, many false alarms will result
when there is no actual intrusion. This section discusses
the potential design space of security policies that pro-
vide significant protection for reasonable restrictions of
program freedom. We envision a system with customiz-
able policy settings; however, our current system imple-
ments a single security policy, which is described later
in this section.

Table 1 lists sample policy decisions that can be imple-
mented with program shepherding. Consider the policy
decision in the upper right of the table: allowing unre-
stricted execution of code only if it is from the original
application or library image on disk and is unmodified.
Such a policy will allow the vast majority of programs
to execute normally. Yet the policy can stop all secu-
rity exploits that inject code masquerading as data into
a program. This covers a majority of currently deployed
security attacks, including the classic stack buffer over-
flow attack.

A relaxation of this policy allows dynamically generated
code, but requires that it contain no system calls. Le-
gitimate dynamically-generated code is usually used for
performance; for example, many high-level languages
employ just-in-time compilation [1, 11] to generate op-

timized pieces of code that will be executed natively
rather than interpreted. This code almost never con-
tains system calls or other potentially dangerous oper-
ations. For this reason, imposing a strict security pol-
icy on dynamically-generated code is a reasonable ap-
proach. Shared libraries that are explicitly loaded (i.e.,
with dlopen or LoadLibrary) and dynamically se-
lected based on user input should also be considered po-
tentially unsafe. Similarly, self-modifying code should
usually be disallowed, but may be explicitly allowed for
certain applications.

Direct control transfers that satisfy the code origin poli-
cies can always be allowed within a segment. Calls and
jumps that transition from one executable segment to an-
other, e.g., from application code to a shared library, or
from one shared library to another, can be restricted to
enforce library interfaces. Targets of inter-segment calls
and jumps can be verified against the export list of the
target library and the import list of the source segment,
in order to prevent malevolent jumps into the middle of
library routines.

Indirect control transfers can be carefully limited. The
calling convention can be enforced by preventing return
instructions from targeting non-call sites, and limiting
direct call sites to be the target of at most one return
site. Controlling return targets severely restricts exploits
that overwrite return addresses, as well as opportunities
for stitching together fragments of existing code in an
attack.

Indirect calls can be completely disallowed in many ap-
plications. Less restrictive general policies are needed,
but they require higher-level information and/or com-
piler support. For C++ code it is possible to keep read-
only virtual method tables and allow indirect calls using
targets from these areas only. However, further relax-
ations are needed to allow callback routines in C pro-
grams. A policy that provides a general solution re-
quires compiler support, profiling runs, or other exter-
nal sources of information to determine all valid indirect
call targets. A more relaxed policy restricts indirect calls
from libraries no more than direct calls are restricted (if
between segments they can only target import and export
entries), while calls within the application text segment
can target only intra-segment function entry points. The
requirement of function entry points beyond a simple
intra-segment requirement prevents indirect calls from
targeting direct calls or indirect jumps that validly cross
executable segment points and thus avoid the restric-
tion. It is possible to extract the valid user program en-
try points from the symbol tables of unstripped binaries.
Unfortunately, stripped binaries do not keep that infor-



Restricting Least restrictive Most restrictive

Code origins Any Dynamically writ-
ten code, if self-
contained and no
system calls

Only code from disk,
can be dynamically
loaded

Only code from
disk, originally
loaded

Function
returns

Any Only to after
calls

Direct call targeted
by only one return

Random xor as in
StackGhost [14]

Return only from
called function

Intra-segment
call or jump

Any Only to function entry points (if have
symbol table)

Only to bindings
given in an interface
list

Inter-segment
call or jump

Any Only to export of tar-
get segment

Only to import of
source segment

Only to bindings
given in an interface
list

Indirect calls Any Only to address
stored in read-only
memory

Only within user
segment or from
library

None

execve Any Static arguments Only if the operation
can be validated not
to cause a problem

None

open Any Disallow writes to
specific files (e.g.,
/etc/passwd)

Only to a subregion
of the file system

None

Table 1: Sample list of policies built using program shepherding. Each row shows a continuum of choices ranging
from most restrictive on the right to least restrictive on the left for how to control the action in the left-hand column.
Bold entries indicate the policy choices that we implemented for our experimental system.

mation.

Indirect jumps are used in the implementation of
switch statements and dynamically shared libraries.
The first use can easily be allowed when targets are val-
idated to be coming from read-only memory and are
hence trusted. The second use, shared library calls,
should be allowed, but such inter-segment indirect jumps
can be restricted to library entry points. These restric-
tions will not allow an indirect jump instruction that is
used as a function return in place of an actual return in-
struction. However, we have yet to see such code. It will
certainly not be generated by compilers since it breaks
important hardware optimizations in modern IA-32 pro-
cessors [21].

Sandboxing can provide detection of attacks that get past
other barriers. For example, an attack that overwrites
the argument passed to the system routine may not be
stopped by any aforementioned policy. Program shep-
herding’s guaranteed sandboxing can be used for intru-
sion detection for this and other attacks. The security

policy must decide what to check for (for example, sus-
picious calls to system calls like execve) and what to
do when an intrusion is actually detected. These issues
are beyond the scope of this paper, but have been dis-
cussed elsewhere [15, 17].

Sandboxing with checks around every load and store
could be used to ensure that only certain memory re-
gions are accessed during execution of untrusted code
segments. This would provide significant security but at
great expense in performance.

We now turn our attention to a specific security policy
made up of the bold entries in Table 1. We implemented
this policy in our prototype system. For this security pol-
icy, Figure 1 summarizes the contribution of each pro-
gram shepherding technique toward stopping the types
of attacks described in Section 2. The following sections
describe in detail which policy components are sufficient
to stop each attack type.



Injected Code Existing Code

Single Calls Chained Calls Multiple Calls

Return Indirect 
Jump or

Call

ImportedNot
Imported

Attack Type

Return Indirect
Jump or

Call

ImportedNot
Imported

No
Information

With Information
(e.g., Symbol

Table)

Restricted code origins

Restricted control transfers

Un-circumventable sandboxing

Figure 1: Capabilities of program shepherding’s three components toward stopping different attack types, for the
security policy indicated in bold in Table 1. The three boxes represent the three components. A filled-in box indicates
that that component can completely stop the attack type above. Stripes indicate that the attack can be stopped only
in some cases. The vertical order of the techniques indicates the preferred order for stopping attacks. If a higher
box completely stops an attack, we do not invoke techniques below it (e.g., sandboxing is capable of stopping some
attacks of every type, but we only use it when the other techniques do not provide full protection).

4.1 Injected Code Attacks

The code origin policy disallows execution from ad-
dress ranges other than the text pages of the binary and
mapped shared libraries. This stops all exploits that in-
troduce external code, which covers a majority of cur-
rently deployed security attacks. However, code origin
checks are insufficient to thwart attacks that change a tar-
get address pointer to point to existing code in the pro-
gram address space.

4.2 Existing Code Attacks

Most vulnerable programs are unlikely to have code that
could be maliciously used by an attacker. However, all
of them have the standard C library mapped into their
address space. The restrictions on inter-segment control
transfers limit the available code that can be attacked to

that explicitly declared for use by the application. Still,
many of the large programs import the library routines
a simple attack needs. For this reason, restricting inter-
segment transitions to imported entry points would stop
only a few attacks.

Return address attacks, however, are severely limited:
they may only target code following previously executed
call instructions. A further restriction can easily be pro-
vided by using restricted control transfers to emulate a
technique proposed in StackGhost [14]. A random num-
ber can be xor-ed with the return address stored on the
stack after a call and before a return. Any modification
of the return address will result with very high probabil-
ity in a request for an invalid target. In a threat model
in which attackers can only write to memory, this tech-
nique renders execution of the attacker’s intended code
very unlikely. This protection comes at the low cost of
two extra instructions per function call, but its additional
value is hard to determine due to the already limited ap-
plicability of this kind of exploit. Furthermore, an at-



tacker able to exploit a vulnerability that provides ran-
dom read rights will not be stopped by this policy. Thus,
we currently do not impose it.

4.2.1 Single Calls

By single call attack we mean an attack that overwrites
only a single program address (perhaps overwriting non-
address data as well), thus resulting in a single malicious
control transfer. We consider the readily available ex-
ecve system call to be the most vulnerable point in a
single-call attack. However, it is possible to construct an
intrusion detection predicate [17] to distinguish attacks
from valid execve calls, and either terminate the ap-
plication or drop privileges to limit the exposure. Since
only a single call can be executed, system calls that need
to be used in combination for an intrusion do not need
to be sandboxed. Sandboxing execve also prevents in-
trusion by an argument overwrite attack.

Nevertheless, sandboxing alone does not provide protec-
tion against sequences of operations that an application
is allowed to do and can be controlled by an attacker. For
example, an exploit that emulates the normal behavior
of sshd, i.e., listens on a network socket, accepts a con-
nection, reads the password file for authentication, but at
the end writes the password file contents to the network,
cannot be stopped by simple sandboxing. Therefore, re-
strictions on control transfers are crucial to prevent con-
struction of such higher-level code from primitives, and
hence to limiting possible attacks only to data attacks
targeting unlikely sequences of existing code.

4.2.2 Chained Calls

An attacker may be able to execute a malicious code se-
quence by carefully constructing a chain of activation
records, so that on return from each function execution
continues in the next one [18]. Requiring that return in-
structions target only call sites is sufficient to thwart the
chained call attack, even when the needed functions are
explicitly imported and allowed by inter-segment restric-
tions. The chaining technique is countered because of its
reliance on return instructions: once to gain control at
the end of each existing function, and once in the code
to shift to the activation record for the next function call.

4.2.3 Multiple Calls

We were able to construct applications that were open
to an exploit that forms higher-level malicious code by
changing the targets of a sequence of function calls as
well as their arguments. Multiple sequential intrusions
may also allow execution of higher-level malicious code.
Higher-level semantic information is needed to thwart
these attacks’ intrusion method by limiting the valid in-
direct call targets. The policy that is able to stop such
attacks in general, and without any false alarms, requires
knowing in advance a list of bindings built on a previous
run or otherwise generated.

It is also possible to extract the valid user program en-
try points from the symbol tables of unstripped binaries.
Allowing indirect calls to target only valid entry points
within the executable and within the shared libraries lim-
its the targets for higher-level code construction. If there
are no simple wrappers in the executable that allow ar-
bitrary arguments to be passed to the lower level library
functions, the possibility of successful attack of this type
will be minimal.

Nevertheless, interpreters that are too permissive are still
going to be vulnerable to data attacks that may be used
to form higher-level malicious code that will not be rec-
ognized as a threat by these techniques.

5 Efficient Implementation of Program
Shepherding

In order for a security system to be viable, it must be ef-
ficient. And to be widely and easily adoptable, it must
be transparent. Transparency includes whether a tar-
get application must be recompiled or instrumented and
whether the security system requires special hardware
or operating system support. We examined possible im-
plementations of program shepherding in terms of these
two requirements of efficiency and transparency.

One possible method of monitoring control flow is in-
strumentation of application and library code prior to
execution to add security checks around every branch
instruction. Beyond the difficulties of statically han-
dling indirect branches and dynamically loaded libraries,
the introduced checks impose significant performance
penalties. Furthermore, an attacker aware of the instru-
mentation could design an attack to overwrite or bypass
the checks. Instrumentation is neither very viable nor
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Figure 2: Flow chart of the RIO system infrastructure. Dark shading indicates application code. Note that the context
switch is simply between the code cache and RIO; application code and RIO code all runs in the same process and
address space. Dotted lines indicate the performance-critical cases where control must leave the code cache and
return to RIO.

applicable.

Another possibility is to use an interpreter. Interpretation
is a natural way to monitor program execution because
every application operation is carried out by a central
system in which security checks can be placed. How-
ever, interpretation via emulation is slow, especially on
an architecture like IA-32 with a complex instruction set,
as shown in Table 2.

5.1 Dynamic Optimization Framework

Recent advances in dynamic optimization have fo-
cused on low-overhead methods for examining execu-
tion traces for the purpose of optimization. This infras-
tructure provides the exact functionality needed for ef-
ficient program shepherding. Dynamic optimizers be-
gin with an interpretation engine. To reduce the emula-
tion overhead, native translations of frequently executed
code are cached so they can be directly executed in the
future. For a security system, caching means that many
security checks need be performed only once, when the
code is copied to the cache. If the code cache is pro-
tected from malicious modification, future executions of
the trusted cached code proceed with no security or em-
ulation overhead.

We decided to build our program shepherding system as
an extension to a dynamic optimizer called RIO. RIO

is built on top of the IA-32 version [3] of Dynamo [2].
RIO’s optimizations are still under development. How-
ever, this is not a hindrance for our security purposes, as
its performance is already reasonable (see Section 7.2).
RIO is implemented for both IA-32 Windows and Linux,
and is capable of running large desktop applications.

A flow chart showing the operation of RIO is presented
in Figure 2. The figure concentrates on the flow of con-
trol in and out of the code cache, which is the bottom
portion of the figure. The copied application code looks
just like the original code with the exception of its con-
trol transfer instructions, which are shown with arrows
in the figure.

Below we give an overview of RIO’s operation, focus-
ing on the aspects that are relevant to our implementa-
tion of program shepherding. The techniques of program
shepherding fit naturally within the RIO infrastructure.
Most monitoring operations only need to be performed
once, allowing us to achieve good performance in the
steady-state of the program. In our implementation, a
performance-critical inner loop will execute without a
single additional instruction beyond the original appli-
cation code.



5.2 RIO: Runtime Introspection and Opti-
mization

RIO copies basic blocks (sequences of instructions end-
ing with a single control transfer instruction) into a code
cache and executes them natively. At the end of each
block the application’s machine state must be saved and
control returned to RIO (a context switch) to copy the
next basic block. If a target basic block is already present
in the code cache, and is targeted via a direct branch,
RIO links the two blocks together with a direct jump.
This avoids the cost of a subsequent context switch.

Indirect branches cannot be linked in the same way be-
cause their targets may vary. To maintain transparency,
original program addresses must be used wherever the
application stores indirect branch targets (for example,
return addresses for function calls). These addresses
must be translated into their corresponding code cache
addresses in order to jump to the target code. This trans-
lation is performed as a fast hashtable lookup.

To improve the efficiency of indirect branches, and to
achieve better code layout, basic blocks that are fre-
quently executed in sequence are stitched together into
a unit called a trace. When connecting beyond a basic
block that ends in an indirect branch, a check is inserted
to ensure that the actual target of the branch will keep ex-
ecution on the trace. This check is much faster than the
hashtable lookup, but if the check fails the full lookup
must be performed. The superior code layout of traces
goes a long way toward amortizing the overhead of cre-
ating them and often speeds up the program [2, 24].

Table 2 shows the typical performance improvement
of each enhancement to the basic interpreter design.
Caching is a dramatic performance improvement, and
adding direct links is nearly as dramatic. The final steps
of adding a fast in-cache lookup for indirect branches
and building traces improve the performance signifi-
cantly as well.

The Windows operating system directly invokes applica-
tion code or changes the program counter for callbacks,
exceptions, asynchronous procedure calls, setjmp, and
the SetThreadContext API routine. These types of
control flow are intercepted in order to ensure that all
application code is executed under RIO [3]. Signals on
Linux must be similarly intercepted.

Normalized
System Type Execution Time

crafty vpr
Emulation ˜ 300.0 ˜ 300.0
+ Basic block cache 26.1 26.0
+ Link direct branches 5.1 3.0
+ Link indirect branches 2.0 1.2
+ Traces 1.7 1.1

Table 2: Performance achieved when various features
are added to an interpreter, measured on two of the
SPEC2000 benchmarks [25], crafty and vpr. Pure em-
ulation results in a slowdown factor of several hundred.
Successively adding caching, linking, and traces brings
the performance down dramatically.

5.3 Restricted Code Origins

Restricting execution to trusted code is accomplished by
adding checks at the point where the system copies a
basic block into the code cache. These checks need be
executed only once for each basic block.

Code origin checking requires that RIO know whether
code has been modified from its original image on disk,
or whether it is dynamically generated. This is done by
write-protecting all pages that are declared as contain-
ing code on program start-up. In normal ELF [12] bi-
naries, code pages are separate from data pages and are
write-protected by default. Dynamically generated code
is easily detected when the application tries to execute
code from a writable page, while self-modifying code is
detected by monitoring calls that unprotect code pages.

If code and data are allowed to share a page, we make
a copy of the page, which we write-protect, and then
unprotect the original page. The copy is then used as
the source for basic blocks, while the original page’s
data can be freely modified. A more complex scheme
must be used if self-modifying code is allowed. Here
RIO must keep track of the origins of every block in
the code cache, invalidating a block when its source
page is modified. The original page must be kept write-
protected to detect every modification to it. The perfor-
mance overhead of this depends on how often writes are
made to code pages, but we expect self-modifying code
to be rare. Extensive evaluation of applications under
both Linux and Windows has yet to reveal a use of self-
modifying code.



5.4 Restricted Control Transfers

The dynamic optimization infrastructure makes moni-
toring control flow transfers very simple. For direct
branches, the desired security checks are performed at
the point of basic block linking. If a transition between
two blocks is disallowed by the security policy, they are
not linked together. Instead, the direct branch is linked
to a routine that announces or handles the security vio-
lation. These checks need only be performed once for
each potential link. A link that is allowed becomes a
direct jump with no overhead.

Indirect control transfer policies add no performance
overhead in the steady state, since no checks are re-
quired when execution continues on the same trace. Oth-
erwise, the hashtable lookup routine translates the tar-
get program address into a basic block entry address.
A separate hashtable is used for different types of in-
direct branch (return instruction, indirect calls, and indi-
rect branches) to enable type specific restrictions without
sacrificing any performance. Security checks for indi-
rect transfers that only examine their targets have little
performance overhead, since we place in the hashtable
only targets that are allowed by the security policy.
Targets of indirect branches are matched against entry
points of PLT-defined [12] and dynamically resolved
symbols to enforce restrictions on inter-segment transi-
tions, and targets of returns are checked to ensure they
target only instructions after call sites. Security checks
on both the source and the target of a transfer will have
a slightly slower hashtable lookup routine. We have not
yet implemented any policies that examine the source
and the target, or apply transformations to the target, and
so we do not have experimental results to show the ac-
tual performance impact of such schemes.

Finally, we must handle non-explicit control flow such
as signals and Windows-specific events such as call-
backs and exceptions [3]. We place security checks at
our interception points, similarly to indirect branches.
These abnormal control transfers are rare and so extra
checks upon their interception do not affect overall per-
formance.

5.5 Un-Circumventable Sandboxing

When required by the security policy, RIO inserts sand-
boxing into a basic block when it is copied to the code
cache. In normal sandboxing, an attacker can jump to
the middle of a block and bypass the inserted checks.

RIO only allows control flow transfers to the top of ba-
sic blocks or traces in the code cache, preventing this.

An indirect branch that targets the middle of an existing
block will miss in the indirect branch hashtable lookup,
go back to RIO, and end up copying a new basic block
into the code cache that will duplicate the bottom half of
the existing block. The necessary checks will be added
to the new block, and the block will only be entered from
the top, ensuring that we follow the security policy.

When sandboxing system calls, if the system call num-
ber is determined statically, we avoid the sandboxing
checks for system calls we are not interested in. This
is important for providing performance on applications
that perform many system calls.

Restricted code cache entry points are crucial not
just for building custom security policies with un-
circumventable sandboxing, but also for enforcing the
other shepherding features by protecting RIO itself. This
is discussed in the next section.

6 Protecting RIO

Program shepherding could be defeated by attacking
RIO’s own data structures, including the code cache,
which are in the same address space as the application.
This section discusses how to prevent attacks on RIO.
Since the core of RIO is a relatively small piece of code,
and RIO does not rely on any other component of the
system, we believe we can secure it and leave no loop-
holes for exploitation.

6.1 Memory Protection

We divide execution into two modes: RIO mode and
application mode. RIO mode corresponds to the top
half of Figure 2. Application mode corresponds to the
bottom half of Figure 2, including the code cache and
the RIO routines that are executed without performing a
context switch back to RIO. For the two modes, we give
each type of memory page the privileges shown in Ta-
ble 3. RIO data includes the indirect branch hashtable
and other data structures.

All application and RIO code pages are write-protected
in both modes. Application data is of course writable
in application mode, and there is no reason to protect it



Page Type RIO mode Application mode
Application code R R
Application data RW RW
RIO code cache RW R (E)
RIO code R (E) R
RIO data RW R

Table 3: Privileges of each type of memory page belong-
ing to the application process. R stands for Read, W for
Write, and E for Execute. We separate execute privi-
leges here to make it clear what code is allowed by RIO
to execute.

from RIO, so it remains writable in RIO mode. RIO’s
data and the code cache can be written to by RIO itself,
but they must be protected during application mode to
prevent inadvertent or malicious modification by the ap-
plication.

If a basic block copied to the code cache contains a
system call that may change page privileges, the call
is sandboxed to prevent changes that violate Table 3.
Program shepherding’s un-circumventable sandboxing
guarantees that these system call checks are executed.
Because the RIO data pages and the code cache pages
are write-protected when in application mode, and we do
not allow application code to change these protections,
we guarantee that RIO’s state cannot be corrupted.

We should also protect RIO’s Global Offset Table
(GOT) [12] by binding all symbols on program startup
and then write-protecting the GOT, although our proto-
type implementation does not yet do this.

6.2 Multiple Application Threads

RIO’s data structures and code cache are thread-private.
Each thread has its own unique code cache and data
structures. System calls that modify page privileges are
checked against the data pages of all threads. When
a thread enters RIO mode, only that thread’s RIO data
pages and code cache pages are unprotected.

A potential attack could occur while one thread is in RIO
mode and another thread in application mode modifies
the first thread’s RIO data pages. We could solve this
problem by forcing all threads to exit application mode
when any one thread enters RIO mode. We have not
yet implemented this solution, but its performance cost
would be minimal on a single processor or on a multi-
processor when every thread is spending most of its time
executing in the code cache. However, the performance

cost would be unreasonable on a multiprocessor when
threads are continuously context switching. We are in-
vestigating alternative solutions.

On Windows, we also need to prevent the API routine
SetThreadContext from setting register values in
other threads. RIO’s hashtable lookup routine uses a reg-
ister as temporary storage for the indirect branch target.
If that register were overwritten, RIO could lose control
of the application. Our interception of this API routine
has not interfered with the execution of any of the large
applications we have been running [3]. In fact, we have
yet to observe any calls to it.

7 Experimental Results

Our program shepherding implementation is able to de-
tect and prevent a wide range of known security attacks.
This section presents our test suite of vulnerable pro-
grams, shows the effectiveness of our system on this test
suite, and then evaluates the performance of our system
on the SPEC2000 benchmarks [25].

7.1 Effectiveness

We constructed several programs exhibiting a full spec-
trum of buffer overflow and format string vulnerabilities.
Our experiments also included the SPEC2000 bench-
mark applications [25] and the following applications
with recently reported security vulnerabilities:

stunnel-3.21 CAN-2002-0002 [8] A format string vul-
nerability in stunnel (SSL tunnel) allows remote
malicious servers to execute arbitrary code because
several fdprintf (a custom file descriptor wrap-
per of fprintf) calls have no format argument.

groff-1.16 CAN-2002-0003 [8] The preprocessor of the
groff formatting system has an exploitable buffer
overflow which allows remote attackers to gain
privileges via lpd in the LPRng printing system.
The pic picture compiler from the groff pack-
age also has a format string vulnerability [22].

ssh-1.2.31 CVE-2001-0144 [8] An integer-overflow
bug in the CRC32 compensation attack detection
code causes the SSH daemon (typically run as root)
to create a hashtable with size zero in response to
long input. Later attempts to write values into the



hashtable provide attackers with random write ac-
cess to memory.

sudo-1.6.1 CVE-2001-0279 [8] sudo (superuser do)
allows local users to gain root privileges. A vul-
nerability caused by an out-of-bound access due to
incomplete end of loop condition is triggered by
long command line arguments. An exploit based
on malloc corruption has been published [16].

Attack code is usually used to immediately give the at-
tacker a root shell or to prepare the system for easy
takeover by modifying system files. Hence, the exploits
in our tests tried to either start a shell with the privi-
lege of the running process, typically root, or to add a
root entry into the /etc/passwd file. We based our
exploits on several “cookbook” and proof-of-concept
works [4, 27, 16, 22] to inject new code [20], reuse exist-
ing code in a single call, or reuse code in a chain of mul-
tiple calls [18]. Existing code attacks used only standard
C library functions.

When run natively, our test suite exploits were able to
get control by modifying a wide variety of code point-
ers including return addresses; local and global function
pointers; setjmp structures; and atexit, .dtors,
and GOT [12] entries. We investigated attacks against
RIO itself, e.g., overwriting RIO’s GOT entry to allow
malicious code to run in RIO mode, but could not come
up with an attack that could bypass the protection mech-
anisms presented in Section 6.

All vulnerable programs were successfully exploited
when run on a standard RedHat 7.2 Linux installation.
Execution of the vulnerable binaries under RIO with all
security checks disabled also allowed successful intru-
sions. Although RIO interfered with a few of the ex-
ploits due to changed addresses in the targets, it was
trivial to modify the exploits to work under our system.
Execution of the vulnerable binaries under RIO enforc-
ing the policies shown in bold on Table 1, effectively
blocked all attack types. All intrusion attempts that
would have led to successfully exploitable conditions
were detected. Nevertheless, the vulnerable applications
were able to execute normally when presented with be-
nign input. The SPEC2000 benchmarks also gave no
false alarms on the reference data set.

7.2 Performance

Figure 3 and Figure 4 show the performance of our sys-
tem on Linux and Windows, respectively. Each fig-

ure shows normalized execution time for the SPEC2000
benchmarks [25], compiled with full optimization and
run with unlimited code cache space. (Note that we
do not have a FORTRAN 90 compiler on Linux or any
FORTRAN compiler on Windows.) The first bar gives
the performance of RIO by itself. RIO breaks even on
many benchmarks, even though it is not performing any
optimizations beyond code layout in creating traces. The
second bar shows the performance of program shepherd-
ing enforcing the policies shown in bold in Table 1. The
results show that the overhead of program shepherding
is negligible.

The final bar gives the overhead of protecting RIO it-
self. This overhead is again minimal, within the noise in
our measurements for most benchmarks. On Linux, only
gcc has significant slowdown due to page protection,
because it consists of several short runs with little code
re-use. On Windows, however, several benchmarks have
serious slowdowns, especially gcc. Our only explana-
tion at this point for the difference between the Linux
and Windows protection slowdowns is that Windows
is much less efficient at changing privileges on mem-
ory pages than Linux is. We are working on improving
our page protection scheme by lazily unprotecting only
those pages that are needed on each return to RIO mode.

The memory usage of our security system is shown in
Table 4. All sizes shown are in KB. The left half of
the table shows the total size of text sections of each
benchmark and all shared libraries it uses compared to
the amount of code actually executed. The third column
gives the percentage of the total static code that is exe-
cuted. By operating dynamically our system is able to
focus on the small portion of code that is run, whereas a
static approach would have to examine the text sections
in their entirety.

The right half of Table 4 shows the memory overhead
of RIO compared to the memory usage of each bench-
mark. For most benchmarks the memory used by RIO is
a small fraction of the total memory used natively.

8 Related Work

Reflecting the significance and popularity of buffer over-
flow and format string attacks, there have been several
other efforts to provide automatic protection and detec-
tion of these vulnerabilities. We summarize the more
successful ones.
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Figure 3: Normalized program execution time for our system (the ratio of our execution time to native execution
time) on the SPEC2000 benchmarks [25] (excluding all FORTRAN 90 benchmarks) on Linux. They were compiled
using gcc -O3. The final set of bars is the harmonic mean. The first bar is for RIO by itself; the middle bar shows
the overhead of program shepherding (with the security policy of Table 1); and the final bar shows the overhead of
the page protection calls to prevent attacks against the system itself.
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Figure 4: Normalized program execution time for our system (the ratio of our execution time to native execution time)
on the SPEC2000 benchmarks [25] (excluding all FORTRAN benchmarks) on Windows 2000. They were compiled
using cl /Ox. The final set of bars is the harmonic mean. The first bar is for RIO by itself; the middle bar shows
the overhead of program shepherding (with the security policy of Table 1); and the final bar shows the overhead of
the page protection calls to prevent attacks against the system itself.



benchmark static code executed code % executed native total RIO extra % RIO extra

ammp 1515 52 3.4% 14893 1696 11.4%
applu 1597 181 11.3% 195715 2720 1.4%
apsi 1639 179 10.9% 197016 2208 1.1%
art 1424 22 1.5% 4612 928 20.1%
bzip2 1317 30 2.3% 190767 928 0.5%
crafty 1467 169 11.5% 3418 3232 94.6%
eon 2114 269 12.7% 2721 2208 81.1%
equake 1428 39 2.7% 34255 928 2.7%
gap 1713 167 9.7% 198916 4256 2.1%
gcc 2518 729 29.0% 145547 14496 10.0%
gzip 1323 27 2.0% 186374 928 0.5%
mcf 1289 24 1.9% 98516 928 0.9%
mesa 1885 63 3.3% 22812 1696 7.4%
mgrid 1475 63 4.3% 58233 1184 2.0%
parser 1390 114 8.2% 32407 3232 10.0%
perlbmk 1878 286 15.2% 76272 6304 8.3%
sixtrack 2812 347 12.3% 60786 4256 7.0%
swim 1452 44 3.0% 196433 928 0.5%
twolf 1591 124 7.8% 4256 3232 75.9%
vortex 1890 395 20.9% 50390 6304 12.5%
vpr 1540 114 7.4% 40425 2208 5.5%
wupwise 1477 67 4.5% 181527 1696 0.9%

arithmetic mean 1670 159 8.5% 90741 3023 16.2%
harmonic mean 1604 66 4.5% 15410 1747 1.8%

Table 4: Memory usage of the SPEC2000 benchmarks [25], in KB, on Linux. For benchmarks with multiple data sets,
the run with the maximum memory usage is shown. Static code is the total size of the text sections of the benchmark
and all shared libraries it uses. Executed code is the total size of all instructions processed by RIO when running
the benchmark. RIO total is the total memory used by RIO itself when running the benchmark. Native total is total
memory used by the benchmark when run natively (outside of RIO).

StackGuard [7] is a compiler patch that modifies func-
tion prologues to place “canaries” adjacent to the return
address pointer. A stack buffer overflow will modify
the “canary” while overwriting the return pointer, and
a check in the function epilogue can detect that condi-
tion. This technique is successful only against sequential
overwrites and protects only the return address.

StackGhost [14] is an example of hardware-facilitated
return address pointer protection. It is a kernel modifi-
cation of OpenBSD that uses a Sparc architecture trap
when a register window has to be written to or read from
the stack, so it performs transparent xor operations on
the return address before it is written to the stack on
function entry and before it is used for control transfer
on function exit. Return address corruption results in a
transfer unintended by the attacker, and thus attacks can
be foiled.

Techniques for stack smashing protection by keeping
copies of the actual return addresses in an area inac-

cessible to the application are also proposed in Stack-
Ghost [14] and in the compiler patch StackShield [26].
Both proposals suffer from various complications in the
presence of multi-threading or deviations from a strict
calling convention by setjmp() or exceptions. Un-
less the memory areas are unreadable by the application,
there is no hard guarantee that an attack targeted against
a given protection scheme can be foiled. On the other
hand, if the return stack copy is protected for the du-
ration of a function execution, it has to be unprotected
on each call, and that can be prohibitively expensive
(mprotect on Linux on IA-32 is 60–70 times more
expensive than an empty function call). Techniques for
write-protection of stack pages [7] have also shown sig-
nificant performance penalties.

FormatGuard [6] is a library patch for eliminating for-
mat string vulnerabilities. It provides wrappers for the
printf functions that count the number of arguments
and match them to the specifiers. It is applicable only to
functions that use the standard library functions directly,



and it requires recompilation.

Enforcing non-executable permissions on IA-32 via ker-
nel patches has been done for stack pages [10] and for
data pages in PaX [23]. Our system provides execution
protection from user mode and achieves better steady
state performance. Randomized placement of position
independent code was also proposed in PaX as a tech-
nique for protection against attacks using existing code;
however, it is open to attacks that are able to read process
addresses and thus determine the program layout.

Our system infrastructure itself is a dynamic optimiza-
tion system based on the IA-32 version [3] of Dy-
namo [2]. Other software dynamic optimizers are Wig-
gins/Redstone [9], which employs program counter sam-
pling to form traces that are specialized for the particular
Alpha machine they are running on, and Mojo [5], which
targets Windows NT running on IA-32. None of these
has been used for anything other than optimization.

9 Conclusions

This paper introduces program shepherding, which em-
ploys the techniques of restricted code origins, restricted
control transfers, and un-circumventable sandboxing to
provide strong security guarantees. We have imple-
mented program shepherding in the RIO runtime sys-
tem, which does not rely on hardware, operating sys-
tem, or compiler support, and operates on unmodified
binaries on both generic Linux and Windows IA-32 plat-
forms. We have shown that our implementation success-
fully prevents a wide range of security attacks efficiently.

Program shepherding does not prevent exploits that
overwrite sensitive data. However, if assertions about
such data are verified in all functions that use it, these
verifications cannot be bypassed if they are the only de-
clared entry points.

We have discussed the potential design space of secu-
rity policies that can be built using program shepherd-
ing. Our system currently implements one set of policy
settings, but we are expanding the set of security poli-
cies that our system can provide without loss of perfor-
mance. Future expansions include using semantic infor-
mation provided by compilers to specify permissible op-
erations on a fine-grained level, and performing explicit
protection and monitoring of known program addresses
to prevent corruption. For example, protecting the ap-
plication’s GOT [12] and allowing updates only by the

dynamic resolver can easily be implemented in a secure
and efficient fashion.

A potential application of program shepherding is to al-
low operating system services to be moved to more ef-
ficient user-level libraries. For example, in the exoker-
nel [13] operating system, the usual operating system
abstractions are provided by unprivileged libraries, giv-
ing efficient control of system resources to user code.
Program shepherding can enforce unique entry points in
these libraries, enabling the exokernel to provide better
performance without sacrificing security.

We believe that program shepherding will be an inte-
gral part of future security systems. It is relatively sim-
ple to implement, has little or no performance penalty,
and can coexist with existing operating systems, appli-
cations, and hardware. Many other security components
can be built on top of the un-circumventable sandboxing
provided by program shepherding. Program shepherd-
ing provides useful security guarantees that drastically
reduce the potential damage from attacks.
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