
1

Exploiting Coarse-Grained
Task, Data, and Pipeline Parallelism in

Stream Programs

Michael Gordon, William Thies, and
Saman Amarasinghe

Massachusetts Institute of Technology

ASPLOS
October 2006
San Jose, CA

http://cag.csail.mit.edu/streamit

2

Multicores Are Here!

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005 20??

of
cores

1

2

4

8

16

32

64

128
256

512

Athlon

Raw

Power4 Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Broadcom 1480 Opteron 4P
Xeon MP

Ambric
AM2045

3

Multicores Are Here!

For uniprocessors,
C was:
•Portable
•High Performance
•Composable
•Malleable
•Maintainable

Uniprocessors:
C is the common
machine language

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005

Raw

Power4 Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Broadcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Athlon

Ambric
AM2045

4

Multicores Are Here!

What is the common
machine language
for multicores?

1985 199019801970 1975 1995 2000

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2

2005

Raw

Power4 Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel
Tflops

Xbox360

Cavium
Octeon

Raza
XLR

PA-8800

Cisco
CSR-1

Picochip
PC102

Broadcom 1480

20??

of
cores

1

2

4

8

16

32

64

128
256

512

Opteron 4P
Xeon MP

Athlon

Ambric
AM2045

5

Common Machine Languages

Single memory image
Single flow of control
Common Properties
Uniprocessors:

ISA

Functional Units

Register File
Differences:

Register Allocation
Instruction Selection

Instruction Scheduling

Multiple local memories
Multiple flows of control
Common Properties
Multicores:

Communication Model

Synchronization Model

Number and capabilities of cores
Differences:

von-Neumann languages represent the
common properties and abstract away
the differences

Need common machine language(s)
for multicores

6

Streaming as a Common Machine Language

• Regular and repeating computation

• Independent filters
with explicit communication
– Segregated address spaces and

multiple program counters

• Natural expression of Parallelism:
– Producer / Consumer dependencies
– Enables powerful, whole-program

transformations Adder

Speaker

AtoD

FMDemod

LPF1

Scatter

Gather

LPF2 LPF3

HPF1 HPF2 HPF3

7

Types of Parallelism

Task Parallelism
– Parallelism explicit in algorithm
– Between filters without

producer/consumer relationship

Data Parallelism
– Peel iterations of filter, place within

scatter/gather pair (fission)
– parallelize filters with state

Pipeline Parallelism
– Between producers and consumers
– Stateful filters can be parallelized

Scatter

Gather

Task

8

Types of Parallelism

Task Parallelism
– Parallelism explicit in algorithm
– Between filters without

producer/consumer relationship

Data Parallelism
– Between iterations of a stateless filter
– Place within scatter/gather pair (fission)
– Can’t parallelize filters with state

Pipeline Parallelism
– Between producers and consumers
– Stateful filters can be parallelized

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

Data Parallel

9

Types of Parallelism

Traditionally:

Task Parallelism
– Thread (fork/join) parallelism

Data Parallelism
– Data parallel loop (forall)

Pipeline Parallelism
– Usually exploited in hardware

Scatter

Gather

Scatter

Gather

Task

P
ip

el
in

e

Data

10

Problem Statement

Given:
– Stream graph with compute and communication

estimate for each filter
– Computation and communication resources of

the target machine

Find:
– Schedule of execution for the filters that best

utilizes the available parallelism to fit the
machine resources

11

Our 3-Phase Solution

1. Coarsen: Fuse stateless sections of the graph
2. Data Parallelize: parallelize stateless filters
3. Software Pipeline: parallelize stateful filters

Compile to a 16 core architecture
– 11.2x mean throughput speedup over single core

Coarsen
Granularity

Data
Parallelize

Software
Pipeline

12

Outline

• StreamIt language overview
• Mapping to multicores

– Baseline techniques
– Our 3-phase solution

13

• Applications
– DES and Serpent [PLDI 05]
– MPEG-2 [IPDPS 06]
– SAR, DSP benchmarks, JPEG, …

• Programmability
– StreamIt Language (CC 02)
– Teleport Messaging (PPOPP 05)
– Programming Environment in Eclipse (P-PHEC 05)

• Domain Specific Optimizations
– Linear Analysis and Optimization (PLDI 03)
– Optimizations for bit streaming (PLDI 05)
– Linear State Space Analysis (CASES 05)

• Architecture Specific Optimizations
– Compiling for Communication-Exposed

Architectures (ASPLOS 02)
– Phased Scheduling (LCTES 03)
– Cache Aware Optimization (LCTES 05)
– Load-Balanced Rendering

(Graphics Hardware 05)

StreamIt Program

Front-end

Stream-Aware
Optimizations

Uniprocessor
backend

Cluster
backend

Raw
backend

IBM X10
backend

C/C++ C per tile +
msg code

Streaming
X10 runtime

Annotated Java

MPI-like
C/C++

Simulator
(Java Library)

The StreamIt Project

14

Model of Computation

• Synchronous Dataflow [Lee ‘92]
– Graph of autonomous filters
– Communicate via FIFO channels

• Static I/O rates
– Compiler decides on an order

of execution (schedule)
– Static estimation of

computation

A/D

Duplicate

LED

Detect

Band Pass

LED

Detect

LED

Detect

LED

Detect

15

Example StreamIt Filter
0 1 2 3 4 5 6 7 8 9 10 11 input

output

FIR
0 1

float→float filter FIR (int N, float[N] weights) {

work push 1 pop 1 peek N {
float result = 0;

for (int i = 0; i < N; i++) {
result += weights[i] ∗ peek(i);

}
pop();
push(result);

}
}

Stateless

16

Example StreamIt Filter

float→float filter FIR (int N,) {

work push 1 pop 1 peek N {
float result = 0;

for (int i = 0; i < N; i++) {
result += weights[i] ∗ peek(i);

}
pop();
push(result);

}
}

0 1 2 3 4 5 6 7 8 9 10 11 input

output

FIR
0 1

weights = adaptChannel(weights);

float[N] weights
;

(int N) {

Stateful

17

parallel computation

StreamIt Language Overview
• StreamIt is a novel

language for streaming
– Exposes parallelism and

communication
– Architecture independent
– Modular and composable

– Simple structures
composed to creates
complex graphs

– Malleable
– Change program behavior

with small modifications

may be
any StreamIt
language construct

joinersplitter

pipeline

feedback loop

joiner splitter

splitjoin

filter

18

Outline

• StreamIt language overview
• Mapping to multicores

– Baseline techniques
– Our 3-phase solution

19

Baseline 1: Task Parallelism

Adder

Splitter

Joiner

Compress

BandPass

Expand

Process

BandStop

Compress

BandPass

Expand

Process

BandStop

• Inherent task parallelism between
two processing pipelines

• Task Parallel Model:
– Only parallelize explicit task

parallelism
– Fork/join parallelism

• Execute this on a 2 core machine
~2x speedup over single core

• What about 4, 16, 1024, … cores?

20

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Bito
nic

Sor
t

Cha
nn

elV
oc

od
er

DCT

DES

FFT

Filte
rba

nk

FMRad
io

Ser
pe

nt

TDE
MPEG2D

ec
od

er

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Evaluation: Task Parallelism
Raw Microprocessor

16 inorder, single-issue cores with D$ and I$
16 memory banks, each bank with DMA

Cycle accurate simulator

Parallelism: Not matched to target!
Synchronization: Not matched to target!

21

Baseline 2: Fine-Grained
Data Parallelism

Adder

Splitter

Joiner

• Each of the filters in the
example are stateless

• Fine-grained Data Parallel
Model:
– Fiss each stateless filter N

ways (N is number of cores)
– Remove scatter/gather if

possible

• We can introduce data
parallelism
– Example: 4 cores

• Each fission group occupies
entire machineBandStopBandStopBandStopAdder

Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner

ExpandExpandExpand

ProcessProcessProcess

Joiner

BandPassBandPassBandPass

CompressCompressCompress

BandStopBandStopBandStop

Expand

BandStop

Splitter

Joiner

Splitter

Process

BandPass

Compress

Splitter

Joiner

Splitter

Joiner

Splitter

Joiner

22

Evaluation:
Fine-Grained Data Parallelism

0

1

2

3
4

5

6

7

8

9
10

11

12

13

14

15
16

17

18

19

Bito
nic

Sort
Cha

nne
lVoc

od
er

DCT

DES

FFT

Filte
rban

k

FMRad
io

Serp
en

t

TDE
MPEG2Deco

der

Voc
od

er

Rad
ar

Geo
metr

ic
Mea

n
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task
Fine-Grained Data

Good Parallelism!
Too Much Synchronization!

23

Outline

• StreamIt language overview
• Mapping to multicores

– Baseline techniques
– Our 3-phase solution

24

Phase 1: Coarsen the Stream Graph
Splitter

Joiner

Expand

BandStop

Process

BandPass

Compress

Expand

BandStop

Process

BandPass

Compress

• Before data-parallelism is
exploited

• Fuse stateless pipelines as
much as possible without
introducing state
– Don’t fuse stateless with

stateful
– Don’t fuse a peeking filter with

anything upstreamPeek Peek

PeekPeek

Adder

25

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Adder

• Before data-parallelism is
exploited

• Fuse stateless pipelines as
much as possible without
introducing state
– Don’t fuse stateless with

stateful
– Don’t fuse a peeking filter with

anything upstream

• Benefits:
– Reduces global communication

and synchronization
– Exposes inter-node

optimization opportunities

Phase 1: Coarsen the Stream Graph

26

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Fiss 4 ways, to occupy entire chip

Data Parallelize for 4 cores

27

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandStop BandStop

Splitter

Joiner

Task parallelism!
Each fused filter does equal work
Fiss each filter 2 times to occupy entire chip

Data Parallelize for 4 cores

28

BandStop BandStop

Phase 2: Data Parallelize

AdderAdderAdder

Splitter

Joiner

Adder

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

BandPass
Compress
Process
Expand

Splitter

Joiner

BandPass
Compress
Process
Expand

Splitter

Joiner

BandStop

Splitter

Joiner

BandStop

Splitter

Joiner

Task parallelism, each filter does equal work
Fiss each filter 2 times to occupy entire chip

• Task-conscious data
parallelization
– Preserve task parallelism

• Benefits:
– Reduces global communication

and synchronization

Data Parallelize for 4 cores

29

Evaluation:
Coarse-Grained Data Parallelism

0
1
2

3
4
5
6
7

8
9

10
11

12
13
14
15
16

17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic

Mean

Th
ro

ug
hp

ut
 N

or
m

al
iz

ed
 to

 S
in

gl
e

C
or

e
St

re
am

It

Task
Fine-Grained Data
Coarse-Grained Task + Data

Good Parallelism!
Low Synchronization!

30

Simplified Vocoder

RectPolar

Splitter

Joiner

AdaptDFT AdaptDFT

Splitter

Splitter

Amplify

Diff

UnWrap

Accum

Amplify

Diff

Unwrap

Accum

Joiner

Joiner

PolarRect

66

20

2

1

1

1

2

1

1

1

20 Data Parallel

Data Parallel

Target a 4 core machine

Data Parallel, but too little work!

31

Data Parallelize

RectPolarRectPolarRectPolar

Splitter

Joiner

AdaptDFT AdaptDFT

Splitter

Splitter

Amplify

Diff

UnWrap

Accum

Amplify

Diff

Unwrap

Accum

Joiner

RectPolar

Splitter

Joiner

RectPolarRectPolarRectPolarPolarRect

Splitter

Joiner

Joiner

66

20

2

1

1

1

2

1

1

1

20

5

5

Target a 4 core machine

32

Data + Task Parallel Execution

Time

Cores

21

Target 4 core machine

Splitter

Joiner

Splitter

Splitter

Joiner

Splitter

Joiner

RectPolar
Splitter

Joiner

Joiner

66

2

1

1

1

2

1

1

1

5

5

33

We Can Do Better!

Time

Cores

Target 4 core machine

Splitter

Joiner

Splitter

Splitter

Joiner

Splitter

Joiner

RectPolar
Splitter

Joiner

Joiner

66

2

1

1

1

2

1

1

1

5

5

16

34

Phase 3: Coarse-Grained
Software Pipelining

RectPolar

RectPolar

RectPolar

RectPolar

Prologue

New
Steady

State

• New steady-state is free of
dependencies

• Schedule new steady-state
using a greedy partitioning

35

Greedy Partitioning

Target 4 core machine

Time 16

CoresTo Schedule:

36

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

Bito
nic

Sort
Cha

nnelVoco
der

DCT

DES

FFT

Filte
rba

nk

FMRadio

Serpent

TDE
MPEG2Dec

oder

Voco
der

Rad
ar

Geometr
ic

Mean
Th

ro
ug

hp
ut

 N
or

m
al

iz
ed

 to
 S

in
gl

e
C

or
e

St
re

am
It

Task Fine-Grained Data
Coarse-Grained Task + Data Coarse-Grained Task + Data + Software Pipeline

Evaluation: Coarse-Grained
Task + Data + Software Pipelining

Best Parallelism!
Lowest Synchronization!

37

Generalizing to Other Multicores

• Architectural requirements:
– Compiler controlled local memories with DMA
– Efficient implementation of scatter/gather

• To port to other architectures, consider:
– Local memory capacities
– Communication to computation tradeoff

• Did not use processor-to-processor
communication on Raw

38

Related Work

• Streaming languages:
– Brook [Buck et al. ’04]
– StreamC/KernelC [Kapasi ’03, Das et al. ’06]
– Cg [Mark et al. ‘03]
– SPUR [Zhang et al. ‘05]

• Streaming for Multicores:
– Brook [Liao et al., ’06]

• Ptolemy [Lee ’95]
• Explicit parallelism:

– OpenMP, MPI, & HPF

39

Conclusions

• Good speedups across varied benchmark suite
• Algorithms should be applicable across multicores

Low

Good

Coarse-Grained
Task + Data

High

Good

Fine-Grained
Data

LowestNot
matched Synchronization

Best Not
matchedParallelism

Coarse-Grained
Task + Data +

Software Pipeline
Task

• Streaming model naturally exposes task, data, and
pipeline parallelism

• This parallelism must be exploited at the correct
granularity and combined correctly

