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Abstract

The issue of trust is of growing importance as our communities become increasingly
interconnected. When resources are shared over an untrusted network, how are de-
cisions on which principals are authorized to perform particular actions determined?
SPKI/SDSI, a security infrastructure based on public-keys, is designed to facilitate
the development of scalable, secure, distributed computing systems. It provides fine-
grained access control, using a local name space hierarchy, and a simple, flexible,
trust policy model; these features allow for the ability to create groups and delegate
authorizations. Project Geronimo, named after the famous Native-American Apache
chief, explores the viability of SPKI/SDSI by using it to provide access control over
the Web. The infrastructure was integrated into the Netscape web client and Apache
web server, using a previously developed SPKI/SDSI C Library. This thesis focuses
on the server implementation. A SPKI/SDSI Apache module was designed and im-
plemented: its principle functions are to protect web objects using SPKI/SDSI ACLs,
and to determine whether HTTP client requests should be permitted to perform par-
ticular operations on protected objects. An administrative tool was developed to
enable ACLs to be created, and updated, securely. The thesis also describes the
algorithm for certificate chain discovery in SPKI/SDSI. Finally, the demonstration
developed for Project Geronimo is outlined. The demo was successfully shown to our
sponsors and various groups within the Laboratory for Computer Science.
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Chapter 1

Introduction

1.1 Motivation

The Internet has facilitated growth in the development of distributed computing

systems. As more people use the Internet, the information and resources stored on

networked computers become more valuable. This increases the need to develop

security schemes which are scalable, flexible, easy to understand, and easy to use.

One approach has been to develop security infrastructures based on public keys.

Today, the most common of these infrastructures is the X.509 Public-Key Infrastruc-

ture. This thesis describes SPKI/SDSI (Simple Public-Key Infrastructure/Simple

Distributed Security Infrastructure), an alternative public-key based security infras-

tructure. SPKI/SDSI is motivated by the perception that X.509 is too complex and

is incomplete. X.509’s complexity arises from a dependency on global name spaces

and its lack of flexibility. Its incompleteness can be immediately perceived if one tries

to define a security policy (such as write an Access Control List (ACL)).

SPKI/SDSI is designed to facilitate the development of scalable, secure, dis-

tributed computing systems. It provides fine-grained access control, using a local

name space hierarchy, and a simple, flexible, trust policy model. These features allow

for the ability to create groups and delegate authorizations.

This thesis explores the viability of SPKI/SDSI by using it to provide access

control over the Web. The infrastructure was integrated into the Netscape web client
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and the Apache web server, using a previously developed SPKI/SDSI C Library. After

some consideration, this project was named “Project Geronimo”, after the famous

Native-American Apache chief. This thesis focuses on the design and implementation

of the SPKI/SDSI web server, and the discovery of certificate chains in SPKI/SDSI.

The principle result of this research has been the demonstration that SPKI/SDSI

is a viable approach for providing security in distributed computing systems. The

prototype implementation and security protocol developed for Project Geronimo are

serving as the basis for some of the security schemes that will be used in the MIT

Laboratory for Computer Science’s “Project Oxygen”[34, 2].

1.2 Our Contribution

The first part of Project Geronimo that was developed was the protocol between the

client and the server. The protocol allows the server to make an access control decision

when a client requests access to a protected resource (resources on the server are either

public or protected by SPKI/SDSI ACLs). Our general protocol consists of four

messages, and is a typical challenge-response protocol. In the first message, the client

requests access to a resource. If the resource is public, the server honors the request;

if the resource is protected by an ACL, the server issues a challenge to the client

in the protocol’s second message. This challenge contains the requested resource’s

ACL. Because of SPKI/SDSI’s ability to define groups, ACLs can be very simple and

small, normally consisting of just one group. Using the server’s challenge, the client

generates a response consisting of a signed request and a certificate chain; the digital

signature provides proof that the request is authentic; the certificate chain provides

proof that the request is authorized. The client uses the SPKI/SDSI Certificate Chain

Discovery algorithm[3] to generate the certificate chain. A SPKI/SDSI certificate

chain is a chain of authorization, typically used to prove that a particular requestor

has been authorized to perform a particular request. The client sends its response to

the server’s challenge in the protocol’s third message. The server verifies this response

and honors the request if it verifies; otherwise it returns an error web page to the
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client. The requested resource, or the error page, is returned in the protocol’s fourth

message, from the server to the client.

The SPKI/SDSI HTTP client was designed and implemented by Andrew Maywah

for his Master’s thesis[33]. The client is implemented as a Netscape plugin, which

offers such benefits as portability, simplicity, and ease of development. The plugin

generates the responses to the server’s challenges. The other important feature of the

plugin is that it uses a small Java-based pop-up password box to prompt the user for

his password to unlock his private key, and starts a small session window if the key

is successfully unlocked. The session window maintains state between client requests

during the same Netscape session. It prevents the user from having to re-enter his

password every time he accesses a SPKI/SDSI protected document within the same

Netscape session. There are no shared secrets between the user and the server, and

the user’s password is never sent across the network.

This thesis discusses the design and implementation of the SPKI/SDSI HTTP

server. The server was implemented as an Apache module, utilizing Apache’s modu-

lar architecture and well-defined Application Programming Interface (API). Its prin-

ciple functions are to protect web objects using SPKI/SDSI ACLs, and to determine

whether HTTP client requests should be permitted to perform particular operations

on protected objects. A separate tool, using CGI (Common Gateway Interface), was

also developed to enable an administrator to create, view and update ACLs securely.

Web objects on the server are protected on a per-directory basis. To protect a

directory, a .htaccess file is created in it. The file contains the directive “SPKI/SDSI

on”, and pointers to the file with the SPKI/SDSI ACL and the error web page that

is returned if the user’s credentials do not grant him access. The error page is cus-

tomizable, and can be used to provide a user with feedback on why his request failed,

and information on how he may obtain valid certificates if he is a user who should be

authorized to access the protected resource.

To determine whether a request for a protected resource should be honored, the

server verifies the request’s “proof of authenticity” and “proof of authorization”. The

“proof of authenticity” is a signed request, and the “proof of authorization” is a
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sequence/chain of certificates. The principal that signed the request must be the

same principal that the chain of certificates authorizes.

The thesis also describes the new algorithm for Certificate Chain Discovery in

SPKI/SDSI. The certificate chain discovery algorithm takes as input an ACL, a re-

quest, a public key, a set of signed certificates, and a timestamp. If it exists, the

algorithm returns a certificate chain which provides proof, consisting of signed cer-

tificates, that the public key is authorized to perform the operation(s) specified in

the request on the object protected by the ACL, at the time specified in the times-

tamp. Previous work on Certificate Chain Discovery in SPKI/SDSI resulted in the

algorithm published in Jean-Emile Elien’s Masters thesis[7]. Jean-Emile represented

signed name and authorization certificates as rewrite rules, and derived new “unsigned

authorization certificates” by composing signed certificates. The rules under which

certificates were composed were explicitly stated in his thesis, and his algorithm had

a worst case running time of O(n4l) where “n” is the number of input certificates and

“l” is the length of the longest subject in those certificates.

Our revised algorithm takes advantage of a constraint on the SPKI/SDSI certifi-

cate structure. Specifically, a certificate that defines a name cannot have an autho-

rization tag: thus, a certificate can only define a name, or delegate an authorization,

but cannot do both at the same time. We were able to refine the earlier certificate

algorithm and separate the composition of name certificates from the reduction of

authorization certificates. The result was a simpler, more intuitive algorithm, with a

factor of O(n) improvement over the original algorithm. The worst case running time

of the new algorithm is O(n3l), and, in practice, we expect it to run in time linear

to the number of input certificates and length of the longest subject in those certifi-

cates. The new algorithm has been described in a journal paper, “Certificate Chain

Discovery in SPKI/SDSI”, which has been accepted for publication in the Journal of

Computer Security[3].

The principal goal of our work on Project Geronimo was to develop a demo il-

lustrating some of the capabilities and advantages of the SPKI/SDSI Infrastructure.

This demo was successfully implemented using the SPKI/SDSI web client and server.
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It featured a new user, Alice, who had already generated her SPKI/SDSI key-pair and

installed the plugin, going through the process of gaining authorization credentials

to view web pages to which she should be permitted to access. The demo featured

SPKI/SDSI groups and name certificates, ACL administration, the client-side pass-

word box and session window, the server-side customizable error page, certificate

chain discovery, and discretionary, fine-grained access control over an untrusted net-

work. The web medium used for the demo made it attractive and more interesting,

and it was successfully presented to several representatives from various groups in

the MIT Laboratory for Computer Science. This thesis outlines the schematics of the

demonstration.

1.3 Thesis Organization

This thesis is organized as follows:

• Chapter 2 gives a brief overview of the security concepts most relevant to this

thesis.

• Chapter 3 discusses the background to public-key infrastructures and SPKI/SDSI.

The chapter concludes with a table comparing SPKI/SDSI with X.509 and PGP,

another popular public-key security infrastructure.

• Chapter 4 describes the SPKI/SDSI Access Control Protocol, and compares it

to other client access control schemes.

• Chapter 5 describes the design and implementation of the SPKI/SDSI HTTP

Server. It gives a brief overview of the SPKI/SDSI HTTP Client. The details

of the web client are in Andrew Maywah’s Master’s Thesis [33]. The chapter

also describes the demo that was designed and implemented for the project.

• Chapter 6 describes the algorithm for discovering certificate chains in SPKI/SDSI.

• Chapter 7 concludes the thesis.

19



20



Chapter 2

Security Overview

2.1 Designing Secure Distributed Systems

Designing secure, yet scalable and easy to use distributed computing systems is a

challenging problem. In most cases, the network connecting different computers is

untrusted, as it is assumed that adversaries can eavesdrop on communication chan-

nels, and surreptitiously modify messages sent from one computer to another. The

situation is further complicated by the fact that the adversary may not just be an

attacker trying to do harm to the system from outside on the network, but can be a

user who has valid access to some parts of the system and is trying to gain access to

other parts of the system. There are several security questions that should, poten-

tially, be addressed, and the following list summarizes some of them. This list is not

exhaustive, but is intended to illustrate the complexity of the problem.

1. What are the security goals of the system? What assumptions does the design

make, and are those assumptions explicitly and precisely stated and recorded?

What is the system’s trusted computing base (TCB)[38, 29], the parts of the

system that have to work correctly to make the system secure?

2. What are the principals1, and how are their messages authenticated?

1described in Section 2.4 and defined in Section 2.5
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3. How are authorizations specified? With what granularity can they be specified?

How should authorizations be granted to valid users? Can a previously-granted

authorization be revoked from a user, and, if so, how? Is revocation disruptive

to the system? Can an authorization be delegated, or do all users have to go

to the same person to be granted the authorization? Can a user pass on an

authorization he has received to other users without the knowledge/permission

of the person from whom he originally received the authorization?

4. How are access control lists (ACLs) stored, processed, and updated securely?

5. Can groups be created and used on ACLs? How are users added and deleted

from groups? How are groups audited?

6. If the system uses cryptographic keys, how are these keys protected, managed,

and distributed? What specific functions are these keys intended to perform,

and precisely what do the keys represent? Who generates these keys? How does

the system recover if a key is compromised, or lost?

7. Is the confidentiality of messages assured, or can an adversary learn sensitive

information as messages travel over the network? Is the integrity of messages

assured, or can an adversary modify messages as they are travelling over the

network (even if he may not be able to read them), and still have them be

accepted as authentic?

8. Can an adversary deny service to a valid user, even though the adversary himself

may not be able to access the protected resource?

9. What naming architecture does the system use? Is it user-friendly and in har-

mony with the security design?

10. Which information is logged? How are resources audited? Can users be held

accountable for their actions?

11. Is individual privacy protected by the system? If information is logged, who

is logging this information, and how are logs stored and protected? Does the
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system have mechanisms to prevent or discourage abuse? (Privacy and auditing

are competing goals.)

12. Is the integrity of devices assured? Can an adversary insert trojan devices into

the system, or discretely tamper with hardware in the system’s TCB?

13. Is the system scalable? Does the system scale well as more users and computers

are added?

14. Does the system detect intrusions and violations to its protection mechanisms,

such as viruses? How does the system react and recover?

15. How much damage can a disgruntled or treacherous user, or a malfunctioning

computer, do to the system?

16. Is the system user-friendly? How much does a typical user need to know and

understand to use the system in such a way that he/she does not cause security

breaches?

17. Who “owns” the system? Who is responsible for maintaining it? How easy is

it to support, upgrade and extend?

The goal of secure systems is to protect resources and information. Systems are

designed to allow access by authorized users, and prevent access by unauthorized

users. The latter requirement is a negative goal. It requires checking that all the ways

in which an adversary may try to access the resource or information are blocked.

Negative goals are difficult to achieve as they require careful reasoning and analysis

of all possible scenarios. Furthermore, it is difficult to ascertain if the system achieves

the negative goal in practice, as there may be no direct feedback: whereas a valid

user will let you know if he cannot access a resource, an adversary may not let you

know if he has been able to access the resource. To successfully design and implement

secure systems, a paranoid approach, in which the architects and engineers consider

everything that can go wrong, must be adopted. This approach, in which all possible
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scenarios are considered and paranoid decisions are made, is called the “safety net”2

approach.

There is no “silver bullet”, no established list of rules which, if adhered to, will

guarantee that the system is secure. Systems with security should have security

integrated into their designs, instead of being added on after most of the design is

completed. To aid in the development of secure systems, several design principles

have been established. Examples of these principles are described in detail in [38],

and are summarized below:

1. Keep the design as simple and as small as possible. This makes it easier to

check if the goals of the design have been accomplished.

2. Make all assumptions explicit. This encourages careful analysis of the protection

mechanisms in the system, and makes it easier to ascertain where the faults are

if the system fails.

3. The system should provide immediate feedback when assumptions are violated

or errors occur. Architects should then review their design, and reiterate the

design and implementation to fix the problems. The design process should

facilitate reiterations.

4. Design protection mechanisms to default to lack of access. Thus, if a situa-

tion which was not anticipated arises, the controls should deny access to the

user/adversary. The alternative philosophy of granting access to everyone, then

determining why a user should be denied access is the wrong approach and can

result in loopholes and backdoors in the system.

5. Every program and user should operate with the least set of privileges required

to do their job. This limits the damage that any particular user/program can

do. It also minimizes the violations, intended and unintended, that can result

from sharing between programs and users.

2Jerome H. Saltzer, M. Frans Kaashoek. Topics in the Engineering of Computer Systems. M.I.T.
6.033 class notes, draft release 1.10. 6 February 2001, page 6-13
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6. Minimize the number of mechanisms which are shared between programs and

users. Each shared mechanism represents a potential information path from

one user to another through which information can flow from a user who was

allowed to access the information to a user who was not allowed to access that

particular information.

7. Clearly define the requirements, and try to minimize and simplify the TCB. The

TCB, trusted computing base[38, 29], consists of the parts of the system that

have to work correctly to make the system secure. By clearly specifying the

TCB, designers will know the attacks their system is protected against, the

attacks it is vulnerable to, and whether their assumptions are reasonable. If

a component outside of the TCB fails, the system might deny access it should

have granted, but it must not grant access it should have denied. Using digitally

signed certificates is an example of minimizing the TCB. Certificates are tamper-

resistant documents and can be stored in untrusted places; if a certificate has

been tampered with, it will not verify, and will be ignored when access control3

decisions are made.

8. Completely mediate every request for access to a protected resource and check

it for authority. “It implies that a foolproof method of identifying the source of

every request must be devised. It also requires that proposals to gain perfor-

mance by remembering the result of an authority check be examined skeptically.

If a change in authority occurs, such remembered results must be systematically

updated.”4

9. Make the system easy for a typical user to use and understand. If the system

is complex to use and understand, users will make mistakes which could result

in security breaches.

10. The design should be open. The security of the design should not depend on

3described in Section 2.5
4Jerome H. Saltzer, M. Frans Kaashoek. Topics in the Engineering of Computer Systems. M.I.T.

6.033 class notes, draft release 1.10. 6 February 2001, page 6-15
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the secrecy of the design, and should depend only on the secrecy of keys and

passwords. It is much easier to keep keys and passwords secret than it is to keep

a design secret, especially if the implementation is going to have widespread use.

Furthermore, if the design is open, it is easier for many reviewers, and skeptical

users, to evaluate the design to determine if it meets its goals. An open design

is less susceptible to errors, as more people have the opportunity to analyze the

design and give feedback on it. Of course, the major problem with open designs

is that once an open design has been deemed to be secure, competitors can then

use it to secure their own resources. Thus, with rare exception, companies and

government agencies do not make the designs of their security systems public.

2.1.1 SPKI/SDSI Contribution

SPKI/SDSI is designed to facilitate the development of scalable, secure, distributed

computing systems. It provides fine-grained access control, using a local name space

architecture, and a simple, flexible, trust policy model. In particular, it addresses the

specific issues regarding:

1. specifying, granting, delegating and revoking authorizations

2. creating, maintaining and auditing groups

3. naming

4. facilitating scalability

5. designing simple, user-friendly systems.

2.2 Confidentiality

The problem of security usually requires the examination of the following three issues:

Authentication Verifying i) the sender of the message and, ii) whether the message

that was received is the same as the message that was sent (i.e. detecting
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whether the message has been altered as it travelled from the sender to the

recipient). In this publication , the sender of a message refers to the message’s

originator.

Authorization Determining if a particular principal is allowed to perform the op-

eration it is requesting to perform.

Confidentiality Sending messages sealed in such a way that only the intended re-

cipient, and sender, can read the messages.

Confidentiality is described in this section, and authentication and authorization

are described in the following two sections. It should be noted that, of the three, au-

thorization is the main focus of this thesis. Moreover, this thesis does not specifically

discuss methods and protocols for protecting privacy in a secure system. Privacy is

defined as the “ability of an individual (or organization) to decide whether, when,

and to whom personal (or organizational) information is released.”5

If two parties want to communicate privately over an untrusted network, they

can encrypt their messages before sending them, transforming plaintexts, which are

messages anyone can read, into ciphertexts, which are messages no one can read. The

intended recipients of the ciphertexts would then decrypt them back into plaintexts.

Operations used for encrypting and decrypting use cryptographic keys. The results of

encrypting and decrypting are dependent on the input message and the key used. The

same plaintext encrypts to different ciphertext under different keys. A cryptographic

system (cryptosystem) in which the keys that are used for encryption and decryption

must be kept secret is called a symmetric-key cryptosystem. A cryptosystem in which

the key that is used for decryption must be kept secret, but the key that is used

for encryption can be public, is called a public-key cryptosystem or asymmetric-key

cryptosystem.

Symmetric-key cryptosystems are the conventional cryptographic systems. The

message’s sender and recipient use the same key which both keep secret. The message

5Jerome H. Saltzer, M. Frans Kaashoek. Topics in the Engineering of Computer Systems. M.I.T.
6.033 class notes, draft release 1.10. 6 February 2001, page 6-8
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is encrypted with the key, the ciphertext is sent over an untrusted network to the

recipient, and the recipient decrypts the ciphertext with the same key to retrieve the

original message.

Public-key cryptosystems were invented in the late 1970s. In these cryptosystems,

each person generates two keys: a public key and a private key. These keys have the

following properties:

1. Each user generates his own, distinct pair of keys. One of these keys, KE, say, is

a “public” key, which would be distributed to other users. The other key, KD,

say, is a “private” key, which the user keeps secret, and which only he would

use. The user that generates the public-private key pair is referred to as the

keyholder of those keys.

2. KE is used to encrypt a message. KD is used to decrypt the corresponding

ciphertext. Anyone can encrypt a message. Since only the keyholder has access

to KD, only the keyholder can decrypt the corresponding ciphertext.

3. KD is used to digitally sign a message. KE is used to verify the corresponding

digital signature. Only the keyholder can form a specific digital signature using

KD. Anyone can verify the signature.

4. Given KE, it is very difficult to determine KD. Thus, KE, the public key, can

be distributed without fear of compromise of KD, the private key.

To send an encrypted message to a user, Alice, say, one would obtain a copy of

her public key, KEA
, say, encrypt the message with it, and send it to her. Anyone

can obtain a copy of Alice’s public key, thus, anyone can send an encrypted message

to Alice. As Alice possesses the only key that can decrypt the message, KDA
(her

private key), she is the only one who will be able to decode it. Anyone else who tries

to read or decrypt the message will get something unintelligible.
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2.3 Authentication

The problem of authentication over untrusted networks has two parts:

i. Authenticating the sender (originator) of the message: is the person who is

claiming to have sent the message actually the person who sent it?

ii. Authenticating the integrity of the contents of the message (data integrity): is

the message that was received the same as the message that was sent?

To authenticate messages, the sender computes an authentication tag on the mes-

sage, and appends it onto the message. This authentication tag must be both depen-

dent on the key that was used to create it, and the message from which it was formed.

If the tag is not dependent on the sender’s key, it cannot be used to authenticate the

sender of the message. If the tag is not dependent on the message, it cannot be used

to verify the integrity of the message: an adversary can take the tag on one message,

and append it to another message.

In symmetric-key cryptosystems, the message’s tag is computed using the sender’s

symmetric key. As the recipient shares the same key, the recipient recomputes the

tag using the message and the recipient’s key, then compares the tag on the message

he received with the recomputed tag. If the two tags are the same, the message is

authentic; otherwise, the message is not authentic. An authentication tag computed

with a symmetric key is called a message authentication code or MAC.

In public-key cryptosystems, the message’s tag is computed using the sender’s

private key. The recipient does not have a copy of the private key, and thus cannot

recompute the tag. Instead, the recipient uses a copy of the sender’s public key

to check the authenticity of the message. He runs a verification procedure on the

message, the appended tag, and the sender’s public key. If the procedure returns

true, the message is authentic; otherwise, it is not authentic. An authentication tag

computed with a private key is called a digital signature.

Digital signatures can be checked by anyone, as the verification key, the sender’s

public key, is publicly available. MACs can only be checked by a person who has
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a copy of the sender’s symmetric, secret key: only the message’s sender and the

recipient are supposed to have copies of this key. Assuming no one but the sender

controls his private key, the sender of a message authenticated with a digital signature

cannot repudiate (disown) the message, because only he controls the key that created

the signature: digital signatures provide non-repudiation. On the other hand, the

sender of a message authenticated with a MAC can repudiate message, and claim

that it originated from the receiving party, who also has a copy of the secret key that

created the MAC.

2.3.1 Confidentiality vs. Authentication

Confidentiality and authentication are orthogonal. Confidentiality ensures the pri-

vacy of the message’s contents. Authentication verifies the message’s sender and the

integrity of the message’s contents. In practice, people either send messages that are

both encrypted and authenticated, or just authenticated if privacy of the message’s

contents is not a priority. There are several examples where the authenticity of the

message is important, but its confidentiality is not. For example, if I get an email

from my class’s professor stating that the test that I have tomorrow has been can-

celled, I especially care about the authenticity of the email, but may not care if others

are able to read it. Confidentiality without authentication is not really useful: it does

not really matter if no one was able to read the message if one cannot really be sure

of the authenticity of the message.

If a user wants to send an authentic, private message, typically, he would first

compute the authentication tag on the message, append it onto the plaintext message,

then encrypt the message and appended tag. The result of the encryption is then

transmitted over the wire. (This is akin to a person signing a paper letter, then

putting it into a thick paper envelope, and mailing this to the letter’s recipient). If

he did the cryptographic operations in the other order, and encrypted the message

first, then computed the authentication tag on the ciphertext and appended it onto

the ciphertext, anyone would be able to verify the signature on the message (and, of

course, only the person with the appropriate key would be able to decrypt and read
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the message).

Note that the techniques used to ensure confidentiality and the techniques used to

ensure authentication have different requirements, and rely on different assumptions.

For example, for a particular public-key cryptosystem:

i. the requirements on the operations used to encrypt and decrypt could be:

a. Given a message, its ciphertext, and the public key, it is difficult to find the

private key

b. Given a ciphertext, and the public key, it is difficult to find any part of the

original message.

ii. the requirements on the operations used for signing and verifying could be:

a. Given a message, its authentication tag, and the public key, it is difficult to

find the private key

b. Given a message and the public key, it is difficult to construct an authen-

tication tag such that the verification procedure returns true.

These requirements are necessary for any public-key cryptosystem, but are not

sufficient for every public-key cryptosystem6. Now, consider the following proposal

for an authentication scheme:

1. Alice wants to send an authenticated message to Bob. She begins the message

with the phrase ‘Hi Bob’, and encrypts the message with her private key. She

sends the encrypted message to Bob.

2. Bob verifies the authenticity of the message he receives by decrypting the mes-

sage with an authentic copy of Alice’s public key, and checking to see if the result

of the decryption begins with ‘Hi Bob’. If it does, the message is authentic. If

it does not, it is not authentic.

6There are stricter notions of security, such as semantic security, described in [25].
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This scheme does not work. The problem with it is that an adversary who knows

the design of this authentication scheme, and knows the design of the cryptosystem,

may be able to alter one or more bits of the ciphertext such that the result of the

decryption still begins with ‘Hi Bob’, but is not the same message that Alice origi-

nally sent. Depending on the cryptosystem, the adversary may simply have to flip

bits beyond the beginning of the message to successfully attack the authentication

scheme. When Bob decrypts the message, it will still begin with ‘Hi Bob’ and thus

‘authenticate’, but the message Bob receives is not the same message Alice sent. From

the requirements stated previously, the operations used for encrypting and decrypting

do not guarantee that, if any bit in the transmitted bits is altered, the message will

not authenticate. However, this is a requirement of the signing/verifying operations

(it is part of requirement ii.b), and thus, if those operations had been used, the attack

would not have worked.

2.4 Authorization

The protection model that SPKI/SDSI provides is called the list-oriented guard

model [38, 29, 30]. In the basic guard model, there is an impenetrable room with

a single door. The room contains the object (i.e. information or resource) that is

being protected. There is a guardian at the door which checks the credentials of each

principal requesting access to the object. The guardian is responsible for protecting

the object and allows a principal to enter the room only if it has determined that the

principal’s particular request to access the object should be honored.

Authorization addresses the question “is this principal allowed to perform the op-

eration it is requesting to perform?” To answer this question, the guardian compares

some token of information that it has with information that the requestor has or

knows. There are three key aspects to authorization: i) granting authorization to

a principal, ii) revoking a previously-issued authorization from a principal, and iii)

checking whether a principal has valid authorization when it requests access to the

object.
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Continuing with the list-oriented guard model (list model), in this model, each

principal has a distinct token. The guardian maintains a list of tokens of those who

are allowed to enter the room. This list is called an access control list (ACL), and

is usually attached to the object. When a principal requests access to the object,

it presents its token to the guardian. The guardian checks that the token is on the

object’s ACL, and, if it is, allows the principal to enter the room. If the token is

not on the ACL, the principal’s request is rejected. Revocation is done by the guard

removing the relevant principal’s token from the ACL. Groups consisting of multiple

principals can also be formed, and specified on ACLs. If a group appears on an ACL,

all principals who are members of that group are allowed to access the object. When

groups are used, revoking a principal’s authorization entails removing the principal

from the group. The list-oriented guard model is illustrated in Figure 2-1 on page 34.

An important issue in designing secure systems is determining how principals

are granted their authorizations. In SPKI/SDSI, each principal’s authorization to

access an object originates directly from the guardian of the object. The principal is

granted authorizations on the basis of its qualities, such as being a bona fide member

of a particular group. The infrastructure’s authorization model also features a clean

model for delegation of authority, in which one principal can delegate to another

some authority that the first principal has. With delegation, the principal, or set of

principals, most suitable for determining if a principal should be authorized to access

a particular protected object can be easily, and securely, granted the right to do so.

For the sake of comparison with the list model, the ticket-oriented guard model

(ticket model)[38], will be briefly described. In the ticket model, each guard has one

token (ticket/capability). Each principal has a list of tickets, a ticket for each different

object it is authorized to access. To determine if a principal’s request to access the

protected object should be honored, the guard checks that the ticket the principal

presents is the same as the ticket it has. If it is, the principal is allowed to enter the

room; if it is not, the principal’s request is rejected.

Compared to the list model, the access check in the ticket model is easier and

faster, as the guardian does not have to iterate through a list of tokens. However,

33



PRINCIPAL B

PRINCIPAL A

ACL

OBJECT GUARDIAN

Principal A is authorized to access the object.
Principal B is not authorized to access the object.

Figure 2-1: List-oriented Guard Model

revocation is more difficult. To revoke a principal’s authorization in the ticket model,

the system must either hunt down the principal and take away his ticket, or change

the guard’s ticket and reissue new tickets to all the principals who are still authorized.

Both methods are disruptive. Common examples of systems that use the ticket model

are locked doors that open with specific keys, and the access control system at movie

theaters. The ticket-oriented guard model is illustrated in Figure 2-2 on page 35.

There are other protection models besides the list and tickets models, and some of

the more commons ones are described in the course notes by Prof. Saltzer and Prof.

Kaashoek [38].

2.5 Access Control

In the protection models described in the previous section, it is the responsibility of

the guardian to provide access control to the object it is protecting. The guardian is
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TICKET

OBJECT A

OBJECT B

PRINCIPAL

The principal is authorized to access object A,
but is not authorized to access object B.

Figure 2-2: Ticket-oriented Guard Model

supposed to completely mediate every request before honoring it. This entails first

authenticating the principal, then determining if the principal making the request is

authorized to perform the requested action. The two operations are linked in that

the principal used in the authorization decision must be the same principal that

is adjudged to have made the request. In SPKI/SDSI, principals are public keys,

and they are authenticated via digital signatures. SPKI/SDSI signatures contain the

public key corresponding to the private key that created the signature. Client requests

are signed and are accompanied with SPKI/SDSI certificate chains. SPKI/SDSI

ACLs are kept on the objects they are protecting. The guardian first determines the

authenticity of the request by verifying the signature on the request, then determines
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if the certificate chain provides a valid proof of authorization from the guardian, via

the particular object’s ACL, to the public key (principal) that was used to verify

the request’s signature (the object’s ACL could have the public key directly on it, in

which case, a certificate chain need not be presented).

2.6 Definitions

Terminology used in this thesis, that has not yet been defined, is defined in this

section:

• user : a physical human; the actual user

• client : the computer/software from which the user generates requests.

• principal : the unit of accountability in a computer system. A principal is a

participant in a protocol, and is the entity to which authorizations are granted.

Principals are often referred to as “Alice”, “Bob”, “Carol”, etc. In theoretical

protocol analyses, a principal is usually an abstraction for both a user and the

computer the user is using.

• secure communication channel: A user meeting another user face-to-face, and

giving him a floppy disk with sensitive data is an example of one user commu-

nicating with another over a secure channel. A secure communication channel

between two users is a channel which provides confidentiality and authenti-

cation, and over which there is protection from impersonation attacks, replay

attacks, and other attacks against security protocols.

• “public key that signs ...”: Public keys are not used to create digital signatures.

This phrase is shorthand for “public key corresponding to the private key that

signs ... ”.

• {M}KD
: refers to signing the message M with private key KD. (This notation

is used in Figure 4-1 on page 88.)
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Chapter 3

Background

3.1 Public-Key Cryptography

3.1.1 Whitfield Diffie and Martin Hellman

In 1976, Whitfield Diffie and Martin Hellman, a researcher and a professor at Stanford

respectively, developed the theory of the public-key cryptosystem[6]. This develop-

ment was significant, as it facilitated secure communication across insecure, untrusted,

computer-controlled networks.

Before public-key cryptography, for two parties, Alice and Bob, say, to communi-

cate securely, they had to exchange a secret key in advance via some trusted secure

communication channel. Typically, the two parties would meet in person to exchange

the key, or use a trusted courier to transfer the secret key from one party to an-

other. Alice and Bob would both use this key to encrypt, decrypt, MAC, and verify

MACs on transmissions between them. These systems are described as symmetric-key

cryptosystems, as the two parties share a single key (symmetric key) for their secure

communication.

The problems with using symmetric-key cryptosystems to secure transmissions

in computer networks are severe enough to render the model impractical for such

systems. One major problem is that of securely distributing the symmetric keys. In

order to communicate privately and authentically, two parties must establish a secret
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key between them, which can be difficult and inconvenient if the distance between

them is significant.

Another major problem in symmetric-key cryptosystems is that proving the true

authenticity of a message may be impossible. If both Alice and Bob share the same

symmetric key, KAB, say, then messages received MAC’d with KAB could have orig-

inated either from Alice or Bob. The authenticity of the messages is bilateral, and

the threat of dispute exists. When Alice sends a message MAC’d with KAB, Alice

could deny that the message originated from her and claim that it is Bob’s message.

Bob could forge a MAC’d message and claim it originated from Alice. Also, if Alice

wants to protect the authenticity and privacy of her messages to Bob, she has to

be concerned about the threat of key compromise on her system, as well as Bob’s

system, over which she has no control. The secret key which Alice uses to secure her

communication with Bob is kept on two computers, and thus, there are two points

from which an adversary can attack the secret key. If Bob’s system is surreptitiously

compromised by a malicious player, Mallory, say, Mallory can send messages to Bob

pretending to be Alice. Of course, Bob has similar issues if he is using MACs to

authenticate his messages to Alice. The fundamental issue is that, even though Alice

may be able to convince herself that a particular message originated from Bob, she is

not able to prove to a third party, like a judge, that the message is Bob’s message, and

that she did not forge it herself. These problems render symmetric-key cryptosystems

undesirable for use in systems using legally-binding documents such as contracts, bills

and receipts. Such systems require digital authentication mechanisms that can pro-

duce unforgeable, message-dependent signatures. It must be easy for anyone to verify

that a signature is authentic, but computationally infeasible for anyone other than

the legitimate signer to produce it. Since bits can be copied precisely, digital signa-

tures must be message-dependent, otherwise one could take a user’s signature on one

message and claim that it is the signature on a different message. Finally, MACs can

only be verified by a user who has a copy of the sender’s symmetric, secret key: only

two users, the message’s sender and the message’s recipient, are supposed to have

copies of this key. To provide a model which is scalable, the authentication scheme
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should facilitate the verification of a message’s authenticity by anyone.

In 1976, Diffie and Hellman proposed the idea of developing a cryptosystem which

used a pair of keys, instead of one key, to encrypt, decrypt and authenticate messages.

These keys would have the following properties:

1. Each user would generate his own, distinct pair of keys. One of these keys, KE,

say, would be a “public” key, and this would be distributed to other users. The

other key, KD, say, would be a “private” key, which the user would keep secret,

and which only he would use. The user that generates the public-private key

pair is referred to as the keyholder of those keys.

2. KE is used to encrypt a message. KD is used to decrypt the corresponding

ciphertext. Anyone can encrypt a message. Since only the keyholder has access

to KD, only the keyholder can decrypt the corresponding ciphertext.

3. KD is used to digitally sign a message. KE is used to verify the corresponding

digital signature. Only the keyholder can form a specific digital signature using

KD. Anyone can verify the signature.

4. Given KE, it is very difficult to determine KD.

Because of the 4th property, KE, the public key can be distributed without fear of

compromise of KD, the private key. For example, a user could publish his public key

in his public directory on his filesystem, with world-readable read permissions and

user-only write permissions; anyone will be able to read the public key, but not be

able to modify it. The private key would be kept in a separate directory that can be

accessed by only the user. Because each user uses a pair of keys, a public one and a

private one, these systems are described as asymmetric or public-key cryptosystems.

To send an encrypted message to user Alice, one would obtain a copy of her public

key, KEA
, say, encrypt the message with it, and send it to her. Anyone can obtain a

copy of Alice’s public key, thus, anyone can send an encrypted message to Alice. As

Alice possesses the only key that can decrypt the message, KDA
(her private key),

39



she is the only one who will be able to decode it. Anyone else who tries to read or

decrypt the message will get something unintelligible.

Furthermore, Alice can also digitally sign a message to authenticate it as coming

from her alone. She would create a digital signature using KDA
and the message,

and transmit the original message, with the digital signature appended, to her corre-

spondent, Bob, say. (She can further encrypt this message-signature pair with Bob’s

public key, KEB
, if she wanted to keep the message private.) Bob can verify that

the message originated from Alice by obtaining a copy of her public key, (decrypting

the message with KDB
if it was encrypted) and verifying the attached signature with

KEA
. If the signature successfully verifies, and Bob is sure that he used the correct

public key, he can be sure that the message originated from Alice. Furthermore, he

can convince a third party of this as well. Alice is the only principal who possesses

the private key that created the digital signature. If the message was not authentic,

and had been forged or originated from someone else, when the signature is verified

with Alice’s public key, the verification procedure would fail. If Bob, or anyone else,

wanted to forge a message from Alice, they would have to somehow obtain a copy

of her private key, to which only she has access. Thus, a digital signature provides

non-repudiation, assuming no one but Alice controls Alice’s private key. Also, Alice’s

digital signatures could be checked by anyone, as anyone can obtain an authentic copy

of Alice’s public key. If Alice and Bob were using a symmetric-key cryptosystem, only

Bob could check the authenticity of Alice’s messages, and vice-versa.

Note that in a symmetric-key cryptosystem, if n people wanted to establish pair-

wise confidential communication channels,
(

n
2

)
= (n2 − n)/2 distinct keys would be

needed. In a public-key cryptosystem, n distinct key-pairs would be needed for n

people to establish pairwise confidential and authentic communication channels. (If

the n people exchange their keys by meeting face-to-face, say,
(

n
2

)
meetings would

need to take place, irrespective of whether the people are using symmetric keys or

public keys.)

Public-key cryptosystems addressed the key-distribution problem. Each user

would generate his/her own key-pair and distribute the public key. No separate
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private, authentic communication is needed to distribute the keys: they can be dis-

tributed over public, authentic communication channels. The channels still need to

be authentic as, before Alice can begin communicating securely with Bob, she needs

to be sure that she has obtained and is using the public key belonging to Bob (thus,

instead of trusted couriers with leather briefcases being used to distribute keys, as is

the case in symmetric-key cryptography, in public-key cryptography trusted couriers

with clear plastic briefcases can be used to distribute keys). Public-key cryptosystems

also addressed the authentication problem. It was possible, theoretically, to prove and

verify the source of messages. The system also scales well: each user has to generate

only one key-pair which enables several other users to encrypt/authenticate his mes-

sages: if n people want to communicate privately, n key-pairs need to be generated.

Finally, assuming each user only keeps one copy of his private key, which he should,

there is only one point (computer) from which a user’s secret key may be attacked.

Diffie and Hellman made a ground-breaking contribution with their proposal of

the concept of a public-key cryptosystem. In their paper, they also proposed an

elegant algorithm, based on the difficulty of calculating discrete logarithms in a finite

field, that could be used for key agreement (two parties could use it to establish

a secret key). However, it could not be used to encrypt/decrypt or authenticate

messages, and their paper left implementing a complete public-key cryptosystem as

an open problem. The algorithm they presented is referred to as the Diffie-Hellman

Key-Exchange Algorithm.

3.1.2 RSA Algorithm

In 1977, Ron Rivest, Adi Shamir, and Len Adleman, professors at MIT, developed the

RSA public-key cryptosystem[43]. They were motivated by the Diffie-Hellman paper,

and wanted to develop a complete public-key cryptosystem that achieved the goals

of being able to securely distribute keys, encrypt/decrypt messages, and authenticate

messages. Their cryptosystem is based on the assumption that finding large prime

numbers is easy, while factoring the product of two large primes is very difficult. The

RSA algorithm is also very simple and elegant, and is the most popular public-key
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cryptosystem in use today.1

The RSA cryptosystem is conjectured to be a “trap-door one-way permutation”.

It is a bijection, i.e. a function that is both “one-to-one” and “onto”. The system

is called “one-way” because it is easy to compute in the forward direction, but very

difficult to invert. It is called “trap-door” as inverting the function is actually easy

to do once, and only when, certain private “trap-door” information is known; with-

out this information, the function remains difficult to invert. The “trap-door” and

“one-way” properties are necessary for encryption. If Bob wanted to send a private

message to Alice, he would use Alice’s ‘function’ to encrypt the message by comput-

ing the function on the message; only Alice would be able to read the message as

only she would possess the “trap-door” information needed to decrypt the ciphertext.

Furthermore, Alice’s ‘function’ can be publicly distributed without fear of compro-

mise of her private trap-door information. The RSA system is a permutation as a

message can be encrypted with a public key then decrypted with a private key to re-

trieve the original message, and vice-versa: “every message is the ciphertext for some

other message and every ciphertext is itself a permissible message.”2 The permuta-

tion property is useful to also be able to use the cryptosystem for authentication. In

practice, RSA cannot be used by itself to guarantee confidentiality or authentication.

It is augmented with other operations to produce procedures that can be used to

achieve either confidentiality or authentication.

One common use of a public-key cryptosystem is to bootstrap into a symmetric-key

cryptosystem. The public-key cryptosystem is used to set up a secure communication

channel over which symmetric keys can be established. The shared symmetric-key is

then used for future communications between the two parties. This is useful because,

whereas key distribution and authentication are simpler with public-key systems, en-

cryption and decryption with symmetric-key systems are much faster than encryption

1[8, 22] contain good anecdotes of the history behind and the development of RSA.
2R. L. Rivest, A. Shamir, and L. Adleman. A Method For Obtaining Digital Signatures and

Public-Key Cryptosystems. Communications of the ACM, 21(2), Feb. 1978, page 121. See
http://theory.lcs.mit.edu/~rivest/rsapaper.pdf. Last visited 08/07/2001.
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and decryption with public-key systems3.

3.2 Digital Certificates

In 1978, Loren Kohnfelder, an MIT student supervised by Len Adleman, published

his bachelor’s thesis entitled “Towards a Practical Public-Key Cryptosystem”[27]. He

studied approaches that could be used to effectively adopt a public-key cryptosystem,

in particular, the RSA cryptosystem. One problem he focused on was that public keys

must be obtained authentically before secure communication can begin. When Bob

sends Alice his public key over a potentially insecure channel, how can Alice trust

that the public key that she receives is actually Bob’s? Mallory, acting as a person-in-

the-middle4, could have intercepted this transaction, and replaced Bob’s public key

with her own. This problem, theoretically, did not exist in traditional cryptography

because, in traditional cryptography, keys are transmitted over private, authentic

channels. Thus, though in public-key cryptography “the enemy may eavesdrop on the

key transmission channel, the key must be sent via a channel in such a way that the

originator of the transmission is reliably known.”5 Since, in public-key cryptography,

“keys are typically transmitted over public channels (if secure channels were available,

traditional cryptography methods could be used), the origin of key transmission is

often questionable.”6 Symmetric keys need to be distributed in a way that is both

secret and authentic; public keys need to be distributed in a way that is authentic,

and do not need to be kept secret.

Diffie and Hellman approached the problem of authenticating public keys by

proposing a “Public File”. The Public File would act as a trusted third party, a

central authority that would serve as a dynamic directory for all public keys in a

given system. When a new user is added to the system, he would register once, se-

curely, with the Public File before beginning communications within the system. As

3Symmetric-key encryption is about 1,000 times faster than public-key encryption[36].
4defined in Section 4.2
5Loren M Kohnfelder. Towards a Practical Public-key Cryptosystem. Bachelor’s thesis, EECS

Dept., Massachusetts Institute of Technology, May, 1978, page 15
6Ibid., page 39
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an example, a new user could be required to register in person with a ‘central registry

service’, bringing with him some form of trusted identification, before he could begin

communicating with other users in the system. The new user would give the Public

File his name and public key. In return, and at the time of registration, the user would

receive the Public File’s public key, which he would use to authenticate transmissions

from the Public File. When Alice, say, would like to communicate with Bob, say,

she would send a request, possibly signed, to the Public File, asking for Bob’s public

key. The Public File would return, in a signed reply, the requested information. This

information can easily be authenticated, as Alice would have a copy of the Public

File’s public key, which was reliably obtained.

A central Public File attempts to solve the key authentication problem, but, as

Kohnfelder noted, “it is a great potential threat to system security.”7 An adversary

that somehow learns the Public File’s private key can do damage by authoritatively

passing out bogus public keys. Even if an enemy cannot access the File’s private key,

damage can be done by tampering with the File’s records, which may be easier to

break into. A Public File would be a large, expensive, complex system to implement

in applications where the rate of updates, requests and responses is very large. The

File could well end up being the performance bottleneck in such applications. A

Public File would also not work in very high security applications, since it may not

be trusted: “Consider a Public File coordinating all diplomatic communications in

the world; who could reliably operate such an authority?”8

Kohnfelder proposed an alternative approach to dealing with the problem of reli-

ably authenticating public keys. He developed the concept of a digital certificate, a file

that would be issued by a trusted third party, like the Public File, that would certify

public keys. A certificate would essentially be a signed message from the trusted third

party that would bind the name of the user to a particular public key. It would be an

ordered triple containing the public key, a plaintext name, and an “authenticator”.

7Loren M Kohnfelder. Towards a Practical Public-key Cryptosystem. Bachelor’s thesis, EECS
Dept., Massachusetts Institute of Technology, May, 1978, page 16

8Ibid., page 16
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The “authenticator” is essentially the trusted third party’s signature on all of the

other information in the certificate. Only the Public File could create authenticators

as only it controlled the private key to do so; any principal could verify authenticators

as everyone had a copy of the Public File’s public key.

Thus, the Public File had a new role. In its original design, the File was contacted

during registration of a new user, and before communication could be initiated be-

tween two parties who had never communicated before. Now, only the first contact

was necessary. During registration, the user would present his public key and name,

and, after verifying that the name was unique within the system, the Public File would

create a certificate for the user, and give it to him. (Certificates are tamper-resistant,

and do not have to be distributed securely; a new user could register with the Public

File one day, and receive his certificate the next day via email; he would verify his

certificate himself, before using it.) During registration, the new user would still be

given a copy of the Public File’s public key. After registration, no other communica-

tion between a user and the Public File was ever necessary. Before communication,

two parties would exchange their certificates over public, unauthenticated channels.

They would verify each others certificates using the Public File’s public key, then

secure their transmissions using the keys in the certificates. Certificates need not be

stored in a secure location, nor be securely distributed: if the certificate is a forgery,

it would not verify with the Public File’s public key. In this system, users are trusting

the Public File, the trusted third party, to reliably authenticate public keys before

issuing certificates.

Kohnfelder noted that, though using certificates does not introduce any new weak-

nesses into the system, one disadvantage is that it is more difficult to recover when

a user’s private key is compromised, that is, discovered by an adversary. When a

Public File alone is being used, as soon as a user-key compromise is discovered, the

File can be contacted and prevented from distributing that key. Users who had a

copy of the key would have to be contacted and told that they should stop using it.

This could be facilitated if the Public File kept track of all the users to whom it had

distributed the key. In a certificate-based system, certificates are public information,
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and can be copied and distributed freely from one user to another. Tracking down

all instances of a certificate can be difficult. Noting that no public-key system can,

in any sense, recover well, from key compromise, Kohnfelder presented three propos-

als to deal with the problem when certificates are being used. In one solution, all

the users in the system are informed when a particular key is compromised. This is

adequate for a system which is not too large, as compromised private keys should,

in general, be very rare. A second solution is to put expiration dates on certificates.

The expiration date must also be included in the information which is signed by the

trusted third party. Using expiration dates would mean that new certificates would

have to be issued periodically by the Public File, increasing the amount of commu-

nication with the Public File. In the third approach, an online check is facilitated

as part of the certificate verification process. When a user discovers that his key has

been compromised, he immediately notifies the Public File. The Public File would

maintain a list of all the certificates which have been cancelled due to security leaks.

In the case of suspicious communication, the Public File could be consulted to check

if the associated certificate had been revoked. (An alternative to this approach is for

the Public File to periodically issue signed copies of this list to users, reducing their

communication with the File. These periodically issued lists are called Certificate

Revocation Lists (CRLs).)

3.3 Public-Key Infrastructures

Public-key infrastructures (PKIs) consist of the services that are needed to deploy and

support technologies based on public keys. They address issues related to certificate

authorities, certificate formats, the revocation of certificates, and the security policies

under which a public key may be trusted. A fundamental point to note when designing

technologies that use public-key cryptography is that the security of private keys is

vital, and currently, users typically do not protect their private keys as securely as

they should. Private keys are capable of being compromised, and the weakest link in

most secure systems is usually between the user and his key. Keys are usually stored
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on computers and there are several security vulnerabilities to which computers are

susceptible, including trojan horses, covert channels, viruses, and account violations.

Decisions on whether to trust a particular public key, and whether to trust that

a particular public key is authorized to perform the operation it is requesting to

perform, should involve the guardian of the protected resource, the entity responsible

for protecting the resource.

The claim that digital signatures provide non-repudiation differs in practice from

in theory. A common misunderstanding is that a message signed with a private key,

accompanied by a certificate binding the corresponding public key to the name Alice,

say, provides the assurance that ‘Alice signed this message’. This assumption may

not necessarily be true, however. In particular, the signed message and certificate

provide no assurance about whether:

• the private key invocation that gave rise to the signed message was performed

by Alice. The message could have been signed by Mallory who compromised

Alice’s key.

• the private key invocation that gave rise to the signed message was performed

with Alice’s free and informed consent.[4]

In addition, depending on the issuer’s guidelines and procedures for issuing cer-

tificates, the verifier of the signature and certificate must also take care to ensure that

the ‘Alice’ referred to in the certificate is the name of the user that it thinks of as

Alice.

In practice, a digital signature and a certificate do not undeniably prove that

the certificate’s subject (Alice) signed and sent the message. They only attest that,

assuming that neither the private key of ‘Alice’ nor the private key of the certificate’s

issuer has been compromised, the original message was signed by the private key of

a user, the issuer of the certificate in the past, at the time the certificate was issued,

had reason for believing had the name ‘Alice’. There are four reasons that the general

statement ‘that the message originated from Alice’ may not be true:
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• The certificate has expired, and thus, is no longer valid. This is the most

common case, and usually, Alice simply has to contact the issuer again to renew

the certificate.

• The issuer of the certificate incorrectly issued the certificate to a user other

than Alice. This can occur if the issuer’s methods for issuing certificates are

flawed and the adversary successfully convinces the issuer that he/she is Alice.

(Certificates can also be used for other reasons besides binding a person’s name

to his key. For example, as will be seen later, certificates can also be used to

define groups, and grant authorizations. With these certificates, it may be the

case that a certificate was issued correctly by the issuer, but that information

in it suddenly becomes invalid, for example, if Alice’s membership in the group

has suddenly been revoked, or Alice’s employment at a company has suddenly

been terminated.)

• The private key of the message’s sender, Alice, may have been compromised or

lost. This case, and the next, are the most serious. In this case, it means that

a guardian will not be able to trust any of the certificates that have ever been

issued to Alice. Carl Ellison summarizes the issue precisely when he states

“if the bond between key and person is broken, no layer of certificates will

strengthen it. On the contrary, in this case certificates merely provide a false

sense of security to the [recipient]”9.

• The private key of the issuer may have been compromised or lost. Similar to

the previous case, this means that a guardian will not be able to trust any of

the certificates that have ever been issued by the issuer.

On the positive side, public-key infrastructures are of value in applications where

the cost of attacking a user’s private key is much more than the value obtained

by compromising that key. Similarly, the cost of impersonating another user with

9Carl Ellison. Establishing Identity Without Certification Authorities. 6th USENIX Security
Symposium, July 1996. See http://world.std.com/~cme/usenix.html. Last visited 08/07/2001.
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the intent of being issued a false certificate should be much more than the value

obtained by a successful impersonation. For example, certificates issued by typical

PC users who protect their private keys by encrypting them with high-entropy (hard-

to-guess) passphrases and storing them in private directories on their machines, and

who certify users face-to-face, may be useful in providing low-value access control in

small communities.

Because of the possibility of key compromise, digital signatures achieve non-

repudiation in theory, but may not achieve it in practice.

“Non-repudiation may be impossible, with current hardware and envi-

ronments and is likely to remain so into the future. The loss of non-

repudiation may rob certificates of their value as evidence against a key-

holder but not of their value in granting access. That is, a private key

and the certificate that empowers it may be viewed as a brass house key.

That brass key might allow Joe Smith to enter a building, but knowing

that the key was given to Joe Smith does not mean that only Joe Smith

could have used it. That brass key has value to Joe and not to someone

accusing Joe.”10

It is important to understand that “certificates aren’t like some magic security

elixir, where you can just add a drop to your system and it will become secure.

Certificates must be used properly if you want security.”11

3.3.1 X.509

X.509[26] is the conventional Public-Key Infrastructure. It is an ISO (International

Organization for Standardization) standard and has evolved through 3 different ver-

sions, with the first version developed in the late 80s. It has a hierarchical global

10Carl Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
RFC 2693: SPKI Certificate Theory. The Internet Society. September 1999. See
ftp://ftp.isi.edu/in-notes/rfc2693.txt. Last visited 08/07/2001.

11C. Ellison and B. Schneier. Ten Risks of PKI: What You’re Not Being Told About Public Key
Infrastructure. See http://www.counterpane.com/pki-risks.pdf. Last visited 08/07/2001.
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namespace. Each name must be globally unique, and the names are referred to as

distinguished names. A distinguished name (DN) is assigned logically using a tree

structure called the Directory Information Tree (DIT). The DIT has a single root.

Each vertex (except the root) has a distinguished name which is constructed by joining

the distinguished name of its parent in the tree with the entry’s relative distinguished

name (RDN), a name which distinguishes it uniquely from other entries with the

same parent vertex. X.509 certificates natively bind distinguished names to public

keys. Assuming each user has a single public-private key pair, the name-to-key bind-

ing is a single-valued function: each name is bound to exactly one key. A key may

be bound to more than one name if the keyholder is issued more than one certificate

by different certificate authorities. As a distinguished name is intended to identify

a single user, X.509 certificates are commonly referred to as “identity certificates”.

This term, however, is misleading: an X.509 certificate does not bind a user’s identity

to a key; it binds a user’s name to a key.

X.509 originated from X.500, another ISO standard. X.500 was a global, online,

distributed directory service for certificates. Carl Ellison describes the history of

X.509 this way: “the X.500 proposal was published [in the late 1980s]. It was to be a

global directory of named entities. To tie a public key to some node or sub-directory of

that structure, the X.509 certificate was defined. The Subject of such a certificate was

a path indicating a node in the X.500 database - a so-called ‘Distinguished Name’.

The X.500 dream has effectively died but the X.509 certificate has lived on. The

distinguished name took the place of a person’s name and the certificate was called

an ‘identity certificate’, assumed to bind an identity to a public key.”12

One issue with global namespaces is that they are inherently unscalable: as the

communities get larger, there may be more than one user that could possibly be

assigned the same global name; care must be taken to ensure that each user’s name is

globally unique, and this increases the risk that a user referred to by a particular name

12What do you need to know about the person with whom you are doing business? House Science
and Technology Subcommittee. Hearing of 28 October 1997: Signatures in a Digital Age. Writ-
ten testimony of Carl M. Ellison. See http://world.std.com/~cme/html/congress1.html. Last
visited 08/07/2001.
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is not the same user you believe was assigned the name. The user assigned the name

‘John Robinson’ may be different from the user I associate with ‘John Robinson’. If

I put the name ‘John Robinson’ on an ACL, the wrong user is given access to the

resource I am trying to protect. Names are defined for human convenience, and, in

global name spaces, the requirement that each name must be unique leads to assigning

names that eventually end up complex and hard for humans to recognize. This has

serious security implications. There are also political and social issues in trying to

assign everyone a unique global name.

X.509 certificates are issued by Certificate Authorities (CAs). The certificate

authority controls the key-pair that signs the certificate, and is referred to as the

certificate’s issuer. The public key being bound in the certificate is called the cer-

tificate’s subject. X.509 CAs usually have strict business rules, documented in their

Certification Practices Statements (CPS). Each CA may have a different CPS, stating

its legal responsibilities, and the rules under which various certificates are issued.

A standard X.509 certificate includes:

• a public key

• a distinguished name to be associated with the key

• the validity period of the certificate, which indicates when the certificate will

expire

• the digital signature of the issuer of the certificate. In the case that this cer-

tificate belongs to a top-level CA, i.e. the key specified in the certificate is the

CA’s key, the issuer signs its own certificate.

• the distinguished name of the issuer of the certificate

The X.509 trust model is hierarchical. X.509 communities are built from the top-

down, with trust extending from “root” CA keys. The model essentially relies on

certificates providing a chain/flow of authentication from a trusted CA’s key to a

user’s public key. For example, if Alice receives two valid certificates, one issued by a
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trusted CA binding the name Bob to key k1, and the other issued by k1 binding the

name Carol to key k2, she trusts that k2 is an authentic copy of Carol’s key.

Besides binding names to keys, X.509 certificates can also be used to convey au-

thorization information about the certificate subjects. In Version 3 of the X.509

certificate format, an additional extensions field was added to help address some of

the problems with deploying Version 1 and 2 of the X.509 standard on a significant

scale. The extensions field provides for the addition of any number of optional fields

into the certificate. Each field is a triple with the extension type, whether the exten-

sion is critical or not, and the value of the extension. The ISO has developed a set

of standard extensions, and users may also incorporate their own non-standard ex-

tensions. Authorization information can be specified using these fields. For example,

the Subject Directory Attributes, a standard extension, is used to convey additional

information about the subject, such as the subject’s position in an organization, to

assist a guardian in making a policy decision whether to allow or deny access to the

certificate’s subject. However, there are reasons why caution should be taken in using

X.509 certificates to convey authorization information. If authorization information

is specified in an X.509 certificate, the certificate would simultaneously be binding a

name to a public key, and conveying authorization information about that key. Often,

the entity who is most appropriate for certifying the identity of a keyholder is not

appropriate, and is not responsible, for certifying if the keyholder should be autho-

rized to access a particular resource or perform a particular action. “For example,

the corporate security department may be the appropriate authority for certifying

the identities of persons holding public keys, but the corporate finance office may be

the only appropriate authority for certifying permission to sign on behalf of the cor-

poration.”13 Furthermore, the dynamics of the two types of certification may not be

compatible. Whereas a user may require only one certificate binding his name to his

key, he may be required to be granted a number of different, separate authorizations.

Authorization information may only be valid for a short period, like a few months,

13Warwick Ford, and Michael S. Baum. Secure Electronic Commerce: Building the Infrastructure
for Digital Signatures and Encryption. Prentice Hall PTR, 1997, page 251.

52



or a few days, or even shorter. The name-to-key binding is typically valid for much

longer.

The X.509 standard also describes the concept of Certificate Revocation Lists

(CRLs), for invalidating/revoking certificates prior to their expiration dates. This

may be a useful feature in the case of key compromise. It is also useful in the case

where the information regarding the subject of the certificate is suddenly invalid, for

example, when the subject’s employment at a company has suddenly been terminated.

A revoked certificate is much more suspect than an expired one as it carries the threat

of key compromise. Only a certificate’s issuer (CA) can revoke an X.509 certificate.

A CA’s CRL is a periodically-issued, time-stamped, digitally-signed list of revoked,

unexpired certificates that have been issued by that CA. The CRL also specifies when

the next CRL will be issued. (Once certificates expire, they are removed from the

next CRL.) Like certificates, CRLs may be distributed over public channels, as they

are signed. CRLs unfortunately do not solve the problems they were designed to

solve. There may be considerable, variable, delay between a CA being notified that a

certificate needs to be revoked, and the reflection of this need in clients and servers.

In any case, the major X.509 security application today, SSL/TLS[42], does not check

revocation lists – thus, in actuality, CRLs are near to useless[24].

Perhaps the most patent problem with X.509 is that the standard is difficult to

understand and adopt. The data formats are not human-readable, and are expressed

in the notation called Abstract Syntax Notation One (ASN.1), an Open Systems

Interconnection (OSI) standard. ASN.1 is very powerful, but also very complex. The

X.509 PKI is thus, complex to use.

3.3.2 PGP

Pretty Good Privacy (PGP)[35] was developed and first released by Phil Zimmermann

in the early 1990s. PGP has two parts: certification and encryption. This discussion

will focus exclusively on the certification aspects of PGP.

PGP has the following characteristics:
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• It has an egalitarian design. Each public key can issue certificates on the same

basis as any other public key. There is no mandatory hierarchical infrastructure,

as in X.509, as every public key is a certificate authority.

• PGP implements a fault tolerance mechanism, called the Web of Trust, that is

designed to compensate for the fact that issuers are not specially protected nor

professional.

PGP certificates also bind global names to keys. Assuming each user has a single

public-private key pair, the name-to-key binding is a single-valued function: each

name is bound to exactly one key. A PGP certificate includes:

• a PGP public key

• a name to be associated with the key. The PGP name space is global, with

names generally consisting of users’ email addresses.

• the validity period of the certificate, which indicates when the certificate will

expire

• the digital signatures of one or more PGP public keys, attesting to the authen-

ticity of the key-user id binding. The first signature on the certificate is that of

the private key corresponding to the public key in the certificate. Thus, the user

controlling the public key in the certificate first creates and self-signs his own

certificate; he is referred to as the certificate’s owner. Different keys belonging

to other users may sign the certificate. Each user that signs the certificate at-

tests that the public key in the certificate belongs to and is controlled by the

user with the name in the certificate (the certificate owner). In summary, PGP

certificates are always self-signed and may have more than one signature.

(To be more precise, a PGP certificate can specify multiple names/user ids to be

bound to a single key, with each of these bindings having its own set of signatures

attesting to its validity. Examples of names/user ids include email addresses, official

names, and photographs.)
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Instead of relying on authentication paths that must end in a trusted CA, PGP

users can build authentication paths arbitrarily through the entire worldwide com-

munity of PGP users. If Alice decides that she has an authentic copy of Bob’s public

key, and that she trusts Bob to authenticate other public keys, then, from the set

of certificates Bob issues, Alice can increase the number of PGP users with whom

she can securely communicate. Similarly, users who have an authentic copy of Alice’s

key, and trust her to authenticate other public keys can use certificates she has signed

to build their individual communities. PGP communities are, thus, built from the

bottom-up, in a distributed manner. This trust model is called the web of trust.

As certificates are not issued by CAs that have strict business rules and legal

responsibilities, and, instead are issued by normal people, they could be more fallible

than certificates issued by a professional CA. Under the web of trust, multiple different

keyholders sign each certificate. The assumption is that these different keyholders are

independent so that even if one of them makes a bad judgement, they won’t all do

so.

A PGP user stores his public key and the public keys of others in a file on his

disk; this file is referred to as his public keyring. Stored with each public key are two

variables indicating:

• whether the user considers the key to be authentic

• the level of trust that the user places in that particular key for the purpose

authenticating other public keys, that is, to act as a “trusted introducer”[36].

If the user labels a new key as unauthentic, it is automatically not trusted to act as a

trusted introducer. If the user decides that the new key is authentic and labels it as

such, he then makes a separate decision as to the level of trust he places in the key

to act as a trusted introducer.

To specify the level of trust the user places in a key to act as a trusted introducer,

a variable specifying the following four levels is used:

• Yes: PGP will automatically accept and use a certificate that is signed by this

public key. The public key in the certificate, the one being authenticated, is
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placed on the public keyring and is automatically assigned the specifier indi-

cating that it is authentic. When adding this new key to the keyring, the PGP

software prompts the user to specify the level of trust he places in the key to

act as a trusted introducer.

• Don’t know : the PGP software will prompt the user each time it needs to use

this key to authenticate another public key.

• No: The PGP software will not use this key to authenticate another public key.

• Usually : The user ‘marginally’ trusts this key to authenticate other keys. The

PGP software defaults to requiring two marginally-trusted signatures to au-

thenticate another key.

The PGP web of trust model allows any user to act as a certification authority, and

issue certificates for any other user. Whether the recipient of the certificate accepts

it depends on the level of trust he has in the signing key.

A chain of PGP certificates may be presented to authenticate a key, and, as

certificates may be signed by multiple keys, there may be multiple certification paths

within the certificate chain via which the particular key may be authenticated. X.509

uses similar authentication chains, but, as each X.509 certificate has one signer, a

chain of certificates typically represents one certification path from the CA’s key to

the key in question.

PGP certificates are revoked when private keys are compromised (or users forget

the passwords locking their private keys). In X.509, only the certificate’s issuer can

revoke a certificate. In PGP, “only the certificate’s owner (the holder of its corre-

sponding private key) or someone whom the certificate’s owner has designated as a

revoker can revoke a PGP certificate. (Designating a revoker is a useful practice,

as it’s often the loss of the passphrase for the certificate’s corresponding private key

that leads a PGP user to revoke his or her certificate - a task that is only possible

if one has access to the private key.)”14 As PGP does not use commercial CAs, the

14Network Associates, Inc. and its Affiliated Companies. How PGP works. See
http://www.pgpi.org/doc/pgpintro/. Last visited 08/07/2001.
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PKI does not use CRLs for revocation. Typically, to communicate that a certificate

has been revoked, a signed note, called a key revocation certificate, is posted on PGP

certificate servers, and widely distributed to people who have the key on their public

keyrings. People wishing to communicate with the affected user, or use the affected

key to authenticate other keys, are warned about the hazards of using that public

key.

“The web of trust model works well for loosely-interacting communities, such as

individuals seeking to protect their Internet personal email communications. However,

it suffers from the problem of requiring too many individuals to make important

decisions regarding trust, leading to a high risk of bad decisions being made in haste

or without proper understanding of the consequences.”15 Also, if multiple signatures

are required to authenticate one particular key, one should take steps to check the

independence of the signers. The different private keys could be controlled by the

same user.

3.3.3 SPKI/SDSI

The Simple Distributed Security Infrastructure (SDSI)[46], designed in 1996 by MIT

Professors Ron Rivest and Butler Lampson, is a security infrastructure whose princi-

pal goal is to facilitate the building of secure, scalable, distributed computing systems.

Around the same time, Carl Ellison led an effort to design an infrastructure with a

simple, well-defined, flexible authorization model. This infrastructure was named

the Simple Public-Key Infrastructure (SPKI)[11, 13]. In 1998, the two designs were

merged, and the names joined, to form SPKI/SDSI.

SPKI/SDSI has an egalitarian design. The principals16 are the public keys and

each public key is a certificate authority. Each principal can issue certificates on

the same basis as any other principal. There is no hierarchical global infrastructure.

SPKI/SDSI communities can be built from the bottom-up, in a distributed manner,

15Warwick Ford, and Michael S. Baum. Secure Electronic Commerce: Building the Infrastructure
for Digital Signatures and Encryption. Prentice Hall PTR, 1997. page 277.

16described in Section 2.4 and defined in Section 2.5
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and do not require a trusted “root”. There are two types of certificates in SPKI/SDSI:

name certificates and authorization certificates. A name certificate defines a local

name in the certificate issuer’s local name space, and an authorization certificate

grants a specific authorization from the certificate’s issuer to the certificate’s subject.

To help keep the infrastructure simple, a single certificate cannot both define a name

and grant an authorization: i.e. each certificate is either strictly a name certificate

or an authorization certificate.

Naming

A name certificate consists of four fields: the issuer’s key, an identifier, the certificate’s

subject, and a validity specification. An identifier is a single word over some standard

alphabet, such as Alice, Bob, Friends, A, B. In this document, identifiers will be

specified in typewriter font. Following are descriptions of these certificate fields:

issuer the public key that signs the certificate.

identifier the identifier determines the local name that is being defined. The name

being defined consists of the issuer’s key and this identifier. A name certificate,

thus, defines a name that consists of a single key followed by a single word. A

name consisting of a single key followed by exactly one identifier is referred to

as a “local name”[3]. Because a name certificate can only define a local name,

each principal can only define names within its own name space.

subject the new meaning of the local name being defined. A subject can be a

public key or a name consisting of a single public key followed by one or more

identifiers. The public key in the subject does not have to be the issuer’s key.

(If the subject does not explicitly begin with a key, it is implicit that it is a

name in the issuer’s name space, and thus begins with the issuer’s key.)

validity specification usually, the validity specification is a time period during

which a certificate is valid, assuming the signature verifies. Beyond this period,

the certificate has expired, and should be renewed. The validity specification
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takes the form (t1, t2), specifying that the certificate is valid from time t1 to

time t2, inclusive. The validity specification can also take the form of an on-line

check17 that is performed to determine if the certificate is valid.

Examples of SPKI/SDSI name certificates are given in the appendix and in the

SPKI/SDSI IETF drafts and RFCs[11, 12]. SPKI/SDSI name certificates bind local

names to public keys. Assuming each user has a single public-private key pair, the

name-to-key binding is a multi-valued function: each name is bound to zero, one or

more keys. A single name certificate can define a name in the issuer’s local name space

to be a public key, another name in his/her local name space, or a name in another

principal’s local name space. A name certificate that defines the local name “K A”,

where K is the issuer’s key, to be the subject, “S”, can be denoted as “K A −→ S”.

As each principal can issue name certificates, each principal has its own local name

space, consisting of the names it defines. SPKI/SDSI, thus, has a local name space

architecture, which helps to make the infrastructure scalable: a user does not have

to ensure that the names he defines are unique in a global name space; he can define

names which are meaningful to him, which he can easily remember and recognize.

Local name spaces are linked when a principal defines a certificate binding a

name in his name space to a name in another principal’s name space. Figure 3-1 on

page 60 gives an example of linking name spaces. In the example, Bob’s mother is

named Mary Smith and Ms. Smith’s key is KMARY SMITH . Bob issues a certificate

defining the name “KB Mother” in his name space to be his mother’s public key

(certificate 3.1). Alice links her name space with Bob’s by issuing a certificate defining

the name “Mary Smith” in her name space to be a name which consists of Bob’s key

and the identifier “Mother” (certificate 3.2). “KA Mary Smith” is now indirectly

bound to KMARY SMITH . One advantage of being able to link name spaces is that, if

Bob were to change his definition of ‘Mother’ (because his mother changed her key-

pair, say), the principal Alice refers to as Mary Smith in her name space would also

automatically change. Thus, a SPKI/SDSI name provides a layer of indirection. If

17described in the discussion on the SPKI/SDSI Certificate Guarantee on page 76
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Mary Smith were to change her key-pair, the certificates that refer to the local name

“KB Mother” (such as certificate 3.2) do not have to be reissued; only certificates

that specify Mary Smith’s actual public key, KMARY SMITH , (such as certificate 3.1)

need to be reissued.

KB Mother −→ KMARY SMITH(3.1)

KA Mary Smith −→ KB Mother(3.2)

Figure 3-1: An example of linking local name spaces

A SPKI/SDSI group is typically a set of principals. Each group has a name and a

set of members. The name is local to some principal, who is the “owner” of the group,

and the group owner is the only one who can change the definition of the group. A

group definition may explicitly reference the members of the group, or reference other

groups (which may even belong to someone else.) To define a group, a group owner

simply issues, to each group member, a name certificate defining the local name of

the group in the owner’s name space to be that member’s key or name. A group

owner can also add any principal’s group to his group by issuing name certificates

binding the name of his group to the name of the group being added. Figure 3-2

on page 61 gives an example of a SPKI/SDSI group. In the example, Alice’s friends

include Bob (KB), Carol (KC), and Derek (KD); she can add them to her group

‘friends’ by issuing certificate 3.3 to Bob, certificate 3.4 to Carol, and certificate 3.5

to Derek. (She could also have achieved the same effect by issuing the certificates

KA friends −→ KA Bob and KA Bob −→ KB, KA friends −→ KA Carol and

KA Carol −→ KC , KA friends −→ KA Derek and KA Derek −→ KD to Bob, Carol

and Derek respectively.) Edward (KE) has named his key “KE Edward” by issuing the

certificate KE Edward −→ KE. Alice adds Edward to her group ‘friends’ by issuing

certificate 3.6 to him. Alice has a sister, Abby (KAbby), and she considers all of

Abby’s friends to be her friends. She adds them to her group by issuing certificate 3.7

60



to Abby’s friends. Also, Bob’s sister’s friends are Alice’s friends, and she issues

certificate 3.8 to them (note that the name “KA B C D” means KA’s B’s C’s D).

In summary, with the certificates in Figure 3-2, “KA friends” in Alice’s local name

space is bound directly to the keys KB, KC , KD, and indirectly to the keys referenced

by “KE Edward”, “KAbby friends” and “KB sister friends”.

KA friends −→ KB(3.3)

KA friends −→ KC(3.4)

KA friends −→ KD(3.5)

KA friends −→ KE Edward(3.6)

KA friends −→ KAbby friends(3.7)

KA friends −→ KB sister friends(3.8)

Figure 3-2: An example of a SPKI/SDSI group: KA friends

The ability to define groups is one of the principal notions of SPKI/SDSI. One

advantage of this feature is that it facilitates the easier management of ACLs. If a

set of principals with the same characteristics should be granted access to a number

of resources, each protected by a separate ACL, a group definition could be made,

and the group name placed on each of the ACLs. The ACLs could be updated once,

with an entry containing the group name being added onto each of the ACLs. As new

members join the group and are issued the relevant certificates, they will be authorized

to access the protected resources without having to update the ACLs again. If groups

are used, maintaining and updating ACLs is easier and more efficient, as an explicit

list of all the principals does not have to be maintained on each of the ACLs. In the

example in Figure 3-2, if the name (group) “KA friends” is specified in an entry on

an ACL, KB, KC , KD, and all the keys referenced by “KE Edward”, “KAbby friends”

and “KB sister friends” will automatically be authorized to perform the operation

specified in that entry’s tag. Furthermore, and perhaps more importantly, there can
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be a delayed definition of the group. A group can be added onto an ACL without

knowing beforehand the members of the group. ACLs can be updated with an entry

for the group, and, later, at a time that is convenient and appropriate, the owner of the

group can issue name certificates adding principals to the group. ACL administrators

do not have to know all the members of a group when they are setting up ACLs. Note

that the ACL administrator is free to add any principal’s group to his ACL. He is not

restricted to just adding his own groups (though he could just add his own groups if

he so desired). For example, if the user controlling KA maintains the ACL, he can

add groups “KF friends” and “KG friends” on the ACL, say. An example of a

SPKI/SDSI ACL is given in the appendix.

The ability to create groups makes security policies easier and more intuitive to

define as they can be explicitly specified in terms of groups. As the names of the

groups are at the discretion of the owners, groups can have meaningful, intuitive

names. This makes the auditing of group definitions and ACLs, important facets of

secure systems, simpler. One disadvantage of groups is that revoking the membership

of a group member, who is later found to be untrustworthy, is non-trivial. If an explicit

list of principals is maintained on the ACLs, the untrustworthy member’s privileges

can be easily revoked by removing his key from the ACLs. Revocation in SPKI/SDSI

is discussed in detail later.

SPKI/SDSI has a clean support for “role-playing”. A person may assume dif-

ferent roles, depending on the different jobs he may have. For example, in different

capacities, Bob may be acting as an MIT student, or as an Intel summer intern. He

may even have a separate key that he uses when travelling. Bob can create different

key-pairs for each role he plays. One can then distinguish, from the key Bob uses to

sign a particular message, the capacity in which Bob was acting when he signed the

message. ACLs and groups can also be defined to include the appropriate key or the

appropriate name for the key, if name certificates have been issued defining different

names for the different keys. For example, the key Bob uses when he is travelling

could have more restrictive access privileges than his regular keys.
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There is a second way in which SPKI/SDSI supports roles. A group could be

created for each role. The owner of the group is the principal who decides who

should occupy the role by issuing a name certificate to the appropriate person(s). For

example, the student online administrator for the Boxing Club, a student organiza-

tion, can implement the role of club President by creating a group with the name

“Boxing-Club-President”. Its (sole) member would be defined to be the key/name

of the organization’s President. The two methods of creating roles differ in who

controls the principal acting in the role.

Note that the second way in which SPKI/SDSI supports roles is also a useful

way of defining a group of principals that possess a particular binary attribute. For

example, the state of California might define the group “state-employee” by issuing

certificates to residents with that attribute.

Thus, instead of using a global name space architecture, SPKI/SDSI uses local

name spaces, with the ability to link them. A public key followed by zero or more

identifiers forms a global label for a set of public keys.

Authorization

An authorization certificate grants a specific authorization from the certificate’s issuer

to the certificate’s subject. A SPKI/SDSI authorization certificate consists of five

fields: the issuer’s key, the certificate’s subject, a delegation bit, a tag, and a validity

specification. Following are descriptions of these fields:

issuer The key that signs the certificate. This issuer is the principal granting the

specific authorization.

subject The key or group that is receiving the grant of authorization. A subject can

be a public key or a name consisting of a single public key followed by one or

more identifiers. The public key in the subject does not have to be the issuer’s

key. (If the subject does not explicitly begin with a key, it is implicit that it is

a name in the issuer’s name space, and thus begins with the issuer’s key.)
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tag The tag specifies the specific authorization or authorizations being granted from

the issuer to the subject. For example, it may specify the right to access a

particular web site, or read and write to a particular set of files, or login to a

particular account. An example of a tag will be presented shortly, and more

examples are presented in the appendix.

delegation bit If this bit is true, the subject of this certificate is able to grant to

other principals any subset of the authorization that it is receiving from the

issuer of this certificate. If this bit is false, the issuer is not delegating to the

subject the authority it is granting to it.

validity specification This is the same as that for a name cert.

SPKI/SDSI ACLs have a similar syntax to SPKI/SDSI authorization certificates.

A SPKI/SDSI ACL consists of a list of entries. The required fields for each entry

are a subject, a tag, and delegation bit. These fields are the same as that of an

authorization certificate. In fact, each entry of an ACL can be considered to be an

authorization certificate with the issuer being the owner of the ACL, and the subject,

tag and delegation bit being as specified in the entry. The validity specification is as

specified in the entry if it is specified; if the validity specification is not specified in the

entry, the entry, and thus, the corresponding ‘authorization certificate’, is assumed to

be valid for the time period −∞ to +∞. If ACLs are always going to be stored and

processed in secure areas, they do not need issuer fields or signatures. If the owner of

the ACL removes entries when they are no longer valid, then the validity specification

is also optional. Examples of SPKI/SDSI ACLs and authorization certificates are

given in the appendix and in the SPKI/SDSI IETF drafts and RFCs[11, 12].

An authorization certificate in which the issuer, “K”, grants the authorization

specified in the tag, “T”, to the subject, “S”, with the delegation bit, “p”, and

a validity specification, “V”, is represented by the 5-tuple, “(K, S, T, p, V)”. The

value of “p” is either true or false. The validity specification will, generally, not be

crucial to discussions in this thesis, as any certificate which fails its validity spec-

ification at the time it is being used should be ignored. It is included in this 5-
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tuple representation to be consistent with other SPKI/SDSI publications. ACLs are

assigned the special issuer “SELF”, representing the owner of the ACL, and thus,

each entry on an ACL has a 5-tuple representation (SELF, S, T, p, V). As an ex-

ample, if KA is Alice’s public key, and KB is Bob’s public key, Alice can issue an

authorization certificate, (KA, KB, T1, true, V) granting Bob the authorization spec-

ified in T1 with the permission to delegate this authorization. As another example,

(SELF, KB sister friends, T2, false, V) represents an ACL entry with the group

“KB sister friends” on it; the members of this group are allowed to perform the

operations specified in T2, but are not allowed to grant this authority to anyone else.

SPKI/SDSI provides a very simple, flexible, authorization model. Authorizations

can be specified as precisely or as generally as desired using flexible, user-defined

tags. Intuitively, a tag represents a set of requests. The exact syntax of tags is clearly

defined in the SPKI/SDSI IETF Drafts[11]. An example of a tag that would typically

be in an authorization certificate authorizing an HTTP client to access a particular

directory is given in Figure 3-3. The tag states explicitly the set of URLs the client is

allowed to access, and the HTTP protocol and method that it is allowed to use when

accessing the URLs. In this case, the URLs that the client is allowed to access are

those that begin with “http://rooster.lcs.mit.edu:8081/demo/ABC/financial/”, and

it is allowed to perform either HTTP GET or POST requests on those files. More

examples of SPKI/SDSI tags are given in the appendix and in the SPKI/SDSI IETF

drafts and RFCs[11, 12].

(tag
(http
(* set GET POST)
(*
prefix
http://rooster.lcs.mit.edu:8081/demo/ABC/financial/)))

Figure 3-3: An example of a tag

The ability to specify authorizations in tags in certificates is a powerful notion.

Conventional certificates principally bind names to keys. However, a user’s name is
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only one attribute of the user, and is rarely of security interest. A guardian really

needs to know whether that user has been granted specific authorization to access

the protected resource, and, if so, who granted him that authorization.

Besides groups, another fundamental notion of SPKI/SDSI is the ability to del-

egate authorization. One way of thinking of an authorization certificate is that it

transfers or propagates a specific authorization from the issuer to the subject. If the

delegation bit is set in the certificate, the subject is allowed to continue propagating

this authorization, or some subset of it, to other principals, by issuing authorization

certificates to them. If the subject, in turn, sets the delegation bit on its certificates

to true, the principals to whom it is propagating the authorization will also be able

to issue authorization certificates granting new principals the authority, and so on.

When security decisions are made, it is an individual’s characteristics that are used

to determine whether he should be given access to a protected resource. Sometimes

the entity responsible for protecting the resource would prefer to delegate the respon-

sibility for determining if a particular user should be issued access credentials for the

resource. For example, in a company, it may be the system administrator (sys-admin)

who is responsible for setting up and maintaining ACLs on the company’s internal

documents. Instead of having every new employee come to him for access credentials,

he may want to delegate this responsibility to the employees in the Human Resources

(HR) department. In other words, the sys-admin may want to trust employees in the

HR department to correctly identify new employees and issue them certificates that

will allow them access to the company’s internal documents. With SPKI/SDSI, the

sys-admin can delegate the authority to determine who is allowed to access the inter-

nal documents to the HR department. Figure 3-4 on page 67 gives an example. In

the example, the sysadmin (KSY S−ADMIN) adds the group “KSY S−ADMIN Internal”

to ACLs and sets the delegation bits to true. “TINTERNAL DOCUMENTS” represents

the authority to access internal documents. The ACL entry added by the sys-admin

is specified in “certificate” 3.9. He then issues a name certificate adding the HR man-

ager’s key, KHR MANAGER, to the group “KSY S−ADMIN Internal” (certificate 3.10).

The HR manager has, thus, been delegated the authority to decide who should access
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the internal company documents, as the delegation bit in the ACL entry is true (of

course, the sys-admin can still authorize people to view the internal documents as

well, but he may decide to leave this job exclusively to HR). The HR manager issues

authorization certificates to employees in his department. He also sets the delegation

bits in their certificates to true, so that they can also authorize people to view the

documents. The HR employees, in turn, authorize new employees after authenticat-

ing and validating them. When they issue certificates to these employees, if they

are going to be in HR, they will set the delegation bits to true, and if they are not

going to be in HR, they set the delegation bits to false. This keeps the power to

authorize people to view internal company documents within the Human Resources

department (and the sys-admin because he is maintaining the ACLs). Thus, suppose

a particular HR employee’s key is KHR EMPLOY EE, and a particular non-HR (finan-

cial) employee’s key is KFINANCIAL EMPLOY EE. The HR manager would authorize

the HR employee by issuing him certificate 3.11. The HR employee would authorize

the financial employee by issuing him certificate 3.12.

(SELF, KSY S−ADMIN Internal, TINTERNAL DOCUMENTS, true, V )(3.9)

KSY S−ADMIN Internal −→ KHR MANAGER(3.10)

(KHR MANAGER, KHR EMPLOY EE, TINTERNAL DOCUMENTS, true, V )(3.11)

(KHR EMPLOY EE, KFINANCIAL EMPLOY EE, TINTERNAL DOCUMENTS, false, V )(3.12)

Figure 3-4: An example of delegation using SPKI/SDSI certificates

Delegation can also be accomplished using just name certificates alone. In the pre-

vious example, the sys-admin could have added the group “KSY S−ADMIN Internal”

onto the ACL, then issued the HR manager the name certificate adding the group

“KHR MANAGER HR” to the group “KSY S−ADMIN Internal”

(KSY S−ADMIN Internal −→ KHR MANAGER HR). The HR manager can, firstly, now

authorize himself to view the internal documents by issuing himself the name certifi-
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cate KHR MANAGER HR −→ KHR MANAGER, adding himself to his own HR group. He

can give the power of deciding who can access the internal documents to the HR em-

ployee by issuing him the name certificate KHR MANAGER HR −→ KHR EMPLOY EE HR.

(Similarly, the HR employee can now give himself the authority to view the internal

pages.) The HR employee would authorize the financial employee by issuing him

the name certificate KHR EMPLOY EE HR −→ KFINANCIAL EMPLOY EE. The financial

employee will not be able to propagate this authority himself, and thus, the power to

authorize people to view internal documents remains in HR. An important distinction

between delegation that is achieved using an authorization certificate and delegation

achieved using a name certificate is that, in the latter case, the subject is granted,

and allowed to transfer, all of the authority that the issuing group name has. That is,

the authority delegated from the issuing group name to the subject via a name cer-

tificate is all-or-nothing. With an authorization certificate, the issuer may grant, and

delegate to the subject, any subset of the authority that the issuer has. This subset is

precisely specified in the tag of the certificate. The correct way to think about name

certificates, however, is not that they can be used to propagate authorizations, but,

instead, that they are used to define names within the issuer’s local name space. The

fact they can be used to propagate authorizations is a by-product of the properties

of the SPKI/SDSI name space architecture.

Of course, if the sys-admin would like to directly authorize every employee himself,

he can set up the ACL such that every entry is either a public key, or a group that

the sys-admin defines i.e. a group whose name consists of KSY S−ADMIN followed by a

single identifier. In this case, each new employee will have to go to the sys-admin to

have his key placed on the ACL, or to be issued with his group membership certificate.

Because the term ‘trust’ is vague, and imprecisely defined, SPKI/SDSI uses the

transitive term, ‘delegate’, instead. This makes the transitivity relations in certificate

chains easier to see. If Alice issues an authorization certificate to Bob, granting him

some authority, and she delegates that authority to Bob by setting the delegation

bit in the certificate to true, and Bob grants Carol some subset of the authority,

Alice will have, effectively, granted (that subset of the) authority to Carol. If Alice is
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presented with a chain of valid certificates, in which she has delegated some authority

to Bob, Bob has delegated this authority to Carol, Carol has delegated this authority

to Derek, and Derek has granted (delegation bit set to true or false) this authority

to Edward, Alice will trust that Edward has been granted the authority from her.

If, at any link in the chain, the authorization certificate has its delegation bit set to

false, Alice will not trust authority granted beyond that certificate. Alice can control

the propagation of authority by setting the delegation bit in her certificate to false,

in which case it would not be possible for Bob to grant Carol the authority he is

receiving from Alice.

Authorization Flow The SPKI/SDSI Infrastructure is primarily concerned with

authorizing principals to perform particular operations on protected resources. To

provide access control18 on a resource, the guardian sets up an access control list

(ACL) to protect it. Alice, a typical user, requests to perform a particular operation

on the resource. Examples of requests are a request to read a particular file, a request

to read a file in a particular directory, a request to login to a particular account,

and a request to turn on a particular electrical appliance; in these examples, the

‘protected resources’ are the file, directory, account and appliance respectively. For

the guardian to honor Alice’s request, her request must be accompanied with a “proof

of authenticity”, that authenticates the request, and a “proof of authorization” that

shows that she is authorized to perform the request. The “proof of authenticity” is

typically a signed tag, and the “proof of authorization” is typically a sequence/chain

of certificates. The principal that signed the tag must be the same principal that the

chain of certificates authorizes.

An example scenario follows:

1. Alice requests access to the protected resource. This initial request is not ac-

companied with a proof of authentication or a proof of authorization.

2. The guardian denies this initial request, because it is not authenticated nor

18described in Section 2.5
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authorized. It issues a challenge to Alice saying ‘you are trying to access a

protected file. Using this ACL and tag, prove to me that you have the credentials

to perform the action specified in the tag on the file protected by the ACL.’

The ACL returned will be the ACL protecting the object, and the tag will be

formed from Alice’s request.

3. Using the SPKI/SDSI certificate chain discovery algorithm[3], Alice generates

a chain of certificates. The certificate chain discovery algorithm takes as input

an ACL, a tag, a public key, a set of signed certificates, and a timestamp. If it

exists, the algorithm returns a certificate chain, consisting of signed certificates,

which provides proof that the public key (principal) is authorized to perform

the operation(s) specified in the tag on the object protected by the ACL, at

the time specified in the timestamp. An efficient algorithm for discovering

certificate chains in SPKI/SDSI is described in detail in the paper “Certificate

Chain Discovery in SPKI/SDSI”[3]. Chapter 6 provides an overview of this

algorithm.

4. The principal signs the tag from the guardian. It then sends the certificate

chain and signed tag in a second request to the guardian. This second request

is the principal’s response to the guardian’s challenge. The signed tag provides

proof of authenticity, and the certificate chain provides proof of authorization.

5. The guardian verifies the principal’s second request, and if it verifies, allows

the principal to access the object. The guardian first verifies the signature on

the request, to verify the authenticity of the request, then determines if the

certificate chain provides a chain of authorization from the guardian to the

public key that was used to verify the request’s signature.

An authorization chain/flow [13] consists of a chain of valid certificates that au-

thorizes Alice to perform the specific operation she is requesting to perform in the

tag she signed. The proof of authorization, i.e. certificate chain, in Alice’s second

request provides an authorization chain from the ACL’s issuer to her public key, the

70



key that signed the request. Recall that the ACL’s issuer is referred to as “SELF”,

which represents the particular guardian of the resource. When the guardian verifies

the certificate chain, it is verifying that there is a chain of authorization originating

from it, through the ACL, through zero or more certificates, to Alice’s key. If the

guardian successfully verifies this authorization chain, Alice is authorized to perform

the requested operation on the protected resource. Note that SPKI/SDSI certificate

chains which demonstrate flows of authorization can consist of just authorization

certificates or both name certificates and authorization certificates.

When Alice is being issued her certificates, she should be given all of the cer-

tificates necessary to establish the necessary chain of authorization. In the example

described in Figure 3-4 on page 67, if Alice is the HR manager, she would just be given

certificate 3.10; if she were the HR employee, she would be given certificates 3.10 and

3.11; if she were the financial employee, she would be given certificates 3.10, 3.11 and

3.12. In each case, she will need to use the certificates to establish the authorization

chain from the “KSY S−ADMIN Internal” group to her key. As each SPKI/SDSI

certificate has one signer, a chain of certificates typically represents one certification

path from the guardian to the key in question.

Compare this model to the X.509 hierarchical trust model. In the X.509 model,

the trust does not originate from the guardian of the resource. Instead, it originates

from a third party over whom the guardian may have no control, but is supposed to

trust. The initial decision of trust is removed from the guardian. If there is a chain

of authentication from the ‘trusted’ third party to Alice’s key, the guardian of the

protected resource checks that Alice is on the ACL it is maintaining, and, if she is,

authorizes Alice to perform the operation she is requesting if it is a subset of the set

of authorizations that the guardian allows Alice to perform.

It is important to note that, in SPKI/SDSI, when a request is made, the user

making the request is not authenticated: it is the user’s request that is authenticated,

using a digital signature (recall that, in SPKI/SDSI, the principals are public keys).

The guardian does not necessarily know, or necessarily need to know, the identity

of the user making the request: it just needs to know that the particular principal
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has been authorized to perform the action it is requesting to perform. A SPKI/SDSI

certificate chain is relatively silent about the identity of the user using the key-pair,

and it is up to the recipient of the certificates (the guardian, in this discussion,) to

build up its own image of a principal based on interactions with that principal. For

example, the guardian might determine that the signed request it just received was

made by the same principal that made a request ten minutes ago, but, beyond knowing

that that principal is part of a particular group, say, it may have no idea who the user

controlling that principal is. X.509 certificates contain identifying (authentication)

information, certified by the ‘trusted’ third party. The guardian makes access control

decisions based on the user’s authentication information found in the certificates.

Certificate Result Certificate In SPKI/SDSI, after a guardian verifies that Alice

is authorized to perform a particular operation, or set of operations on a protected

resource, it can issue an authorization certificate itself to Alice, which summarizes

the set of authorizations it has just derived from the certificates Alice presented.

This certificate, termed a Certificate Result Certificate[13], is a typical authorization

certificate, with the following fields:

issuer the guardian’s key

subject Alice’s key

delegation bit This bit is set to true, if, as determined from the authorization

chain used to authorize Alice, Alice is allowed to delegate the authority in

this certificate to others.

tag The summary of the set of authorizations that the guardian has determined,

from the authorization chain, that Alice is allowed to perform.

validity specification Again, as determined from the authorization chain, the valid-

ity specification on the certificate. If all of the specifications in the certificates

in the authorization chain are in terms of validity time periods, this validity
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specification will also be a validity time period that will be no larger than that

of any of the certificates in the chain.

This certificate would be signed with the guardian’s key, and can be returned

to Alice. In the future, when Alice is requesting to access the resource again, she

can simply present the Certificate Result Certificate, instead of re-deriving and send-

ing the full certificate chain again. The guardian verifies requests accompanied by

a Certificate Result Certificate in exactly the same manner as it verifies requests

accompanied by the original certificate chain. Certificate chains could, potentially,

consist of several certificates: there is no upper bound on the number of certificates

that can be in a certificate chain. If Certificate Result Certificates are used, it is

easier for the server to verify future requests. Less network bandwidth is utilized as

fewer certificates are transmitted. Servers can be also stateless: instead of designing

servers to remember the authorizations for a particular client, the server can reply

with a Certificate Result Certificate after validating the first request, and the client

can send this certificate with future requests. Stateless servers are less vulnerable to

denial-of-service attacks. Furthermore, if the server is stateless, it is easier for the

server to completely mediate every access to the protected resource. The client can

also use the Certificate Result Certificate that it received from one guardian in a cer-

tificate chain it presents to another guardian, if the certificate is useful in establishing

an authorization chain from that second guardian. This saves both time and space

for the second guardian, if it trusts the first one to grant the authority specified in

the tag.

If the Certificate Result Certificate will not be used by any verifier other than the

one that created it, it can even be MAC’d by a symmetric key private to the verifier,

instead of signed with the verifier’s private key. This can provide an added efficiency

benefit as symmetric-key operations are much faster than public-key operations.

In the example in Figure 3-4 on page 67, the financial employee presents a cer-

tificate chain consisting of certificates 3.10, 3.11, and 3.12 to be allowed to view the

internal documents. The resulting 5-tuple that the guardian forms after verifying

that the certificate chain authorizes the employee is
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(SELF, KFINANCIAL EMPLOY EE, TINTERNAL DOCUMENTS, false, V). The issuer “SELF”

is the issuer of the ACL, and represents the guardian of the resource. However, autho-

rization certificates require actual public keys as issuers. One approach to resolving

this issue is to recognize that the ACL administrator is the user responsible for protect-

ing the resource, and replace “SELF” with his public key when forming the Certificate

Result Certificate. In this case, the ACL administrator is the sys-admin, and his key

is KSY S−ADMIN . Thus, the Certificate Result Certificate that would be formed is

(KSY S−ADMIN , KFINANCIAL EMPLOY EE, TINTERNAL DOCUMENTS, false, V). In order

for the financial employee to use this certificate, a layer of indirection19 must be placed

on the ACL. The sys-admin can add an entry, (SELF, KSY S−ADMIN , (*), true, V),

onto the ACL in which he, essentially, grants himself all authority, with the ability

to delegate any of the authority that he has. When the financial employee presents

his Certificate Result Certificate with an authenticated request to access internal

documents, his request will be honored.

Threshold Subjects SPKI/SDSI provides a fault tolerance mechanism by way of

threshold subjects. Threshold subjects may only be used in authorization certificates

and may not be used in name certificates. They can be used to specify a requirement

that “k out of n” keys must sign a request before that request can be honored. For

example, an authorization certificate could have a threshold subject that requires

that two out of three keys specified must sign a request before a request using the

certificate is honored. Threshold subjects can also be placed directly on ACLs (which

are, essentially, a list of authorization certificates). Threshold subjects provide fault

tolerance because, if one of the keys in the threshold subject is compromised, the

adversary is still unable to gain access to restricted resources as he will not be able

to convince any of the other principals to sign the request. For example, in a “2 out

of 3” threshold, the adversary will need to compromise two keys before being able to

convince the guard.

19“Any problem in Computer Science can be solved by adding another layer of indirection.” -
David Wheeler
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In terms of flow of authorization, the way to think about threshold subjects is that,

if a certificate specifies a threshold subject, at least k out of the n subjects listed must

have agreed to sign the request before authorization can be propagated through the

certificate. Certificates with threshold subjects may also have their delegation bit

set to true, and, in this case, paths must be shown from (at least) k subjects to the

signers of the request, before authorization can ‘flow’ through the certificate with

the threshold subject. For threshold subjects specified on ACLs, the concept is the

same: “the actual intent is to insure that there are k distinct paths passing permission

between the verifier’s ACL and the prover’s request.”20

If the delegation bit in a certificate with a threshold subject is set to true, fewer

than k keys may be required to sign a valid request if the same principal has been

granted some authority originating from multiple different keys in the threshold sub-

ject. For example, consider a 2-out-of-3 threshold consisting of the keys K1, K2,

and K3, and the certificate with this threshold having the delegation bit set to true;

suppose K1 and K2 grant Alice (KA) the permission in the certificate; then Alice’s

signature alone on a request is good enough to fulfill the requirements of the threshold

subject.

A threshold subject can consist of both keys and names/groups. If groups are

used in the threshold subject, again, fewer than k keys may be required to sign a

valid request if the same principal belongs to different groups. For example, if Alice

is on the Tennis team, and the 2-out-of-3 threshold subject consists of the group

“Tennis Team”, the group “Basketball Team”, and Alice’s public key, then Alice’s

signature alone on a request is good enough to fulfill the requirements of the threshold

subject. Furthermore, if the delegation bit in the certificate is set to true, then the

signature of any single principal to whom Alice grants the authorization specified in

the certificate is enough to fulfill the requirements of the threshold subject.

If one wants to be certain that k different users must independently agree to sign

20Carl Ellison, B. Frantz, B. Lampson, R. Rivest, B. Thomas, and T. Ylonen.
RFC 2693: SPKI Certificate Theory. The Internet Society. September 1999. See
ftp://ftp.isi.edu/in-notes/rfc2693.txt. Last visited 08/07/2001.
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a request before it can be honored, then a threshold subject with just keys in them,

with the delegation bit set to false, should be specified. One should also take steps

to check that the different keys are controlled by different users.

To validate certificate chains, the verifier could make n copies of the certificate

with the threshold subject, use a separate copy to handle each different subject that

is specified in the threshold, and recursively call its verification procedure to check

if there is an authorization chain from each copy to a signer’s key. If there are

chains from k copies, authorization is allowed to ‘flow’ through the certificate with

the threshold subject.

Threshold subjects add a degree of complexity to the SPKI/SDSI infrastructure.

However, they do provide fault tolerance and are very useful. There are many sit-

uations where at least two signatures, say, should be required before a request is

honored.

Certificate Guarantee

If Certificate Revocation Lists (CRLs) are used for invalidating/revoking certificates,

the guarantee the certificate provides is: “This certificate is good until the expiration

date. Unless, of course, you hear that is has been revoked.”21 To a guardian protecting

a resource, this means that if the certificate has not expired, and is not on the latest

CRL that the guardian is using, then it is probably valid. In principal, the guardian

is always required to check against a CRL to see if the certificate has been revoked.

Because CRLs are issued by CAs, there could be significant, variable delay between

a CA being notified that a certificate should be revoked, and the guardian learning

this knowledge.

The SPKI/SDSI certificate guarantee is at the other end of the spectrum. It

is: “This certificate is good until the expiration date. Period.”22 To a guardian

21Ronald L. Rivest. Can We Eliminate Certificate Revocation Lists? Pro-
ceedings of Financial Cryptography ’98 ; Springer Lecture Notes in Com-
puter Science No. 1464 (Rafael Hirschfeld, ed.), February 1998. See
http://theory.lcs.mit.edu/~rivest/Rivest-CanWeEliminateCertificateRevocationLists.ps.
Last visited 08/07/2001.

22Ibid.
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protecting a resource, this means that if the certificate has not expired, then it is

guaranteed to be valid. The guardian never has to check whether a certificate has

been revoked. A certificate from a public-key infrastructure (PKI) which uses CRLs

goes through two phases: (1) probably valid (2) expired. A SPKI/SDSI certificate

also goes through two phases: (1) definitely valid (2) expired. This is a definite

improvement over certificates from PKIs which use CRLs, as they have no “definitely

valid” phase.

How does the SPKI/SDSI model work? First, recall the four reasons a certifi-

cate could be invalid: (1) the certificate has expired, (2) the requestor’s private key

has been compromised, (3) the issuer’s private key has been compromised (4) the

issuer incorrectly issued the certificate. SPKI/SDSI advocates using reasonably short

validity periods inside certificates. As with any PKI, issuers must take care when

issuing certificates. If a certificate has been incorrectly issued, there would only be

a reasonably short period of time in which it could potentially be used. SPKI/SDSI

also advocates using “Certificates of Health” to deal with the specific issue of key

compromise of the requestor’s key.

Short validity periods are facilitated in SPKI/SDSI since, in any particular cer-

tificate chain authorizing a principal to access a particular resource, the function of

each certificate can be easily partitioned among the certificates. Suppose, for exam-

ple, Alice requires a name certificate binding her name in Bob’s local name space to

her key (KB Alice −→ KA), and a name certificate adding “KB Alice” to Charlie’s

team (KC Team −→ KB Alice); suppose the group, “KC Team”, is on an ACL pro-

tecting access to attend Charlie’s team meetings; the second certificate can specify a

relatively short validity period giving Alice the ability to attend a particular meeting.

One of the reasons for standard PKIs to revoke certificates is because the re-

questor’s key has been compromised. SPKI/SDSI treats key compromise as a differ-

ent, separate, issue from certificate revocation. It argues “that certificates should not

be revoked merely because the key is compromised. Rather, the signer should present

separate evidence to the acceptor that the key has not been compromised. Since, in

this framework, the no-compromise evidence is separate, the ordinary certificates can
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continue to be ‘valid’ even though the key has been compromised.”23 SPKI/SDSI

suggests using a new kind of agent, called a “key compromise agent” (KCA), or a

“suicide bureau” (SB). Multiple SBs could cooperate to serve SPKI/SDSI communi-

ties. When Alice creates her key pair, she also signs a personal “suicide note” which

she protects in a private place, and also registers her public key with a SB. In the,

hopefully unlikely event that her key is compromised or her key is lost, she sends her

suicide note to the SB. The SB broadcasts this note on the SB network so that other

SBs are aware of the compromised key.

If Alice’s key has not been compromised or lost, she can ask an SB for a “Certificate

of Health”, certifying that she believes that she is the only entity controlling her

private key. Now, instead of a guardian needing to check if a requestor’s key has

been compromised, it can require that the requestor present a “Certificate of Health”

along with its request. This certificate will have the time and date that it was issued

within the certificate, and the guardian can demand a more recent health certificate

before honoring the request. The task of demonstrating that a key has not been

compromised is, thus, the responsibility of the user using that key, instead of the

responsibility of the guardian. If CRLs are used, the situation is reversed.

Note that, in comparing “Certificates of Health” with CRLs, a “Certificates of

Health” is essentially a ‘positive statement’, whereas a CRL is a negative statement.

A “Certificate of Health” states that this key has not be compromised; a CRL states

that all keys (for which the issuer has issued certificates), except the ones on this list,

have not been compromised. Negative statements are much harder to ascertain and

prove as being correct than are positive statements.

In some security systems, using short validity periods may not, by itself, be suf-

ficient. Thus, in the case of high security systems, in which guardians would like to

be alerted as soon as possible before they use a certificate that should not have been

23Ronald L. Rivest. Can We Eliminate Certificate Revocation Lists? Pro-
ceedings of Financial Cryptography ’98 ; Springer Lecture Notes in Com-
puter Science No. 1464 (Rafael Hirschfeld, ed.), February 1998. See
http://theory.lcs.mit.edu/~rivest/Rivest-CanWeEliminateCertificateRevocationLists.ps.
Last visited 08/07/2001.
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issued, certificates can have online-checks in their validity specification. An online-

check is basically a pointer to a server that the guardian must query to see if the

certificate has been revoked or to ask for more evidence that it is still valid. If present

in a certificate, the guardian must query the server each time before accepting the

certificate. Online checks require a network that is reliable and available. SPKI/SDSI

also provides specifications for CRLs (a CRL is a blacklist: any certificate on a CRL

is invalid) and Revalidation Lists (a Revalidation List is a whitelist: only certificates

on a revalidation list are valid).

Sexps

SPKI/SDSI is designed to be simple to understand, adopt and use. To facilitate these

goals, the infrastructure’s data structures, referred to as “S-expressions” (Sexps)[46],

have human-readable ASCII representations, with simple formats. Having data struc-

tures which are easy to read is a useful security feature: humans can easily examine

a certificate themselves before deciding whether to trust it. Examples of SPKI/SDSI

objects are given in the appendix and SPKI/SDSI IETF drafts and RFCs[11, 12].

The easy-to-read ASCII representation of an Sexp is referred to as the Sexp’s

‘advanced form’. Besides the advanced form, the other standard representations are

the canonical (or packed) form and the transport form. The canonical form was de-

signed to be simple to parse by an application, and the transport form was optimized

for transmitting Sexps over networks. Programs exist for easily converting from one

format to another[45]. There have been also efforts to represent SPKI/SDSI’s Sexps

using the Extensible Markup Language (XML)[37].

SPKI/SDSI Summary

SPKI/SDSI achieves scalability without compromising security as it is uses public

keys and a local name space architecture. The infrastructure provides a clean model

for delegating authority, because authorizations can be specified in authorization

certificates. It also provides a clean, scalable model for defining groups, because of its

local name space architecture, and the property that each name can be bound to zero,
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one, or more keys. In SPKI/SDSI, the principals are the public keys. A principal’s

request is honored if the request authenticates, and there is a chain of authorization

from the guardian, via the ACL and zero or more certificates, to the principal.

3.3.4 Comparison of X.509, PGP, SPKI/SDSI

Table 3.1 on page 81 compares and summarizes the similarities and differences be-

tween X.509, PGP, and SPKI/SDSI.
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X.509 Name Space: Global

Types of Certificates: Name Certificates

Name-to-Key binding:
Single-valued function: each global name is bound to ex-
actly one key (assuming each user has a single public-
private key pair).

CA Characteristics: Global Hierarchy. There are commercial X.509 CAs. X.509
communities are built from the top-down.

Trust Model:

Hierarchical Trust Model. Trust originates from a ‘trusted’
CA, over which the guardian may or may not have control.
A requestor provides a chain of authentication from the
‘trusted’ CA to the requestor’s key.

Signatures: Each certificate has one signature, belonging to the issuer
of the certificate.

Certificate Revocation: Uses CRLs

PGP Name Space: Global

Types of Certificates: Name Certificates

Name-to-Key binding:
Single-valued function: each global name is bound to ex-
actly one key (assuming each user has a single public-
private key pair).

CA Characteristics:
Egalitarian design. Each key can issue certificates. PGP
communities are built from the bottom-up in a distributed
manner.

Trust Model: Web of Trust

Signatures: Each certificate can have multiple signatures; the first sig-
nature belongs to the issuer of the certificate.

Certificate Revocation:
A suicide note is posted on PGP certificate servers, and
widely distributed to people who have the compromised
key on their public keyrings.

SPKI/SDSI Name Space: Local

Types of Certificates: Name Certificates, Authorization Certificates

Name-to-Key binding:
Multi-valued function: each local name is bound to zero,
one or more keys (assuming each user has a single public-
private key pair).

CA Characteristics:
Egalitarian design. The principals are the public keys.
Each key can issue certificates. SPKI/SDSI communities
are built from the bottom-up in a distributed manner.

Trust Model:

Trust originates from the guardian. A requestor provides a
chain of authorization from the guardian to the requestor’s
key. The infrastructure has a clean, scalable model for
defining groups and delegating authority.

Signatures: Each certificate has one signature, belonging to the issuer
of the certificate.

Certificate Revocation: Advocates using short validity periods and Certificates of
Health.

Table 3.1: Comparison of X.509, PGP, and SPKI/SDSI
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Chapter 4

SPKI/SDSI Access Control

Protocol

4.1 Protocol

Project Geronimo, the project described in this thesis, explores the viability of

SPKI/SDSI by using it to provide access control over the Web. SPKI/SDSI was

integrated into the Netscape web client and Apache web server. This section de-

scribes the protocol that the client and server use to communicate. The goal of this

protocol is to allow the server to make an access control decision when a client re-

quests access to a protected resource. The protocol facilitates complete mediation of

client requests.

The protocol implemented by the client and server consists of four messages. This

protocol is outlined in Figure 4-1 on page 88, and following is its description:

1. The client sends a standard HTTP request, unauthenticated and unauthorized,

to the server.

2. The server has directories which are public (not protected), and directories

which are protected using SPKI/SDSI access control lists (ACLs). If the client’s

request is for a file in a protected directory, the server sends a response to

the client containing the ACL protecting the directory and the SPKI/SDSI
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tag formed from the client’s HTTP request1. The response’s content-type is

“application/x-spki-sdsi”. The server returns this response whenever the client

sends an unauthenticated request for a file in a directory that is protected by a

SPKI/SDSI ACL. If the requested file is in a public directory, it is returned in

a standard HTTP reply with HTTP status code “200 OK”[21].

3. (a) If the plugin has not already been started, the content-type “application/x-

spki-sdsi” will trigger the SPKI/SDSI Netscape plugin. During initializa-

tion, the plugin prompts the user for his password to unlock his private

key using a small Java-based pop-up password box. The password is used

by the client alone and is never transmitted across the network. If the

private key is successfully unlocked, a small session window appears next

to the Netscape browser. This session window maintains state between

client requests during the same Netscape session. This state is created

and maintained by the client only, and is never transmitted across the net-

work. It prevents the user from having to re-enter his password every time

he accesses a SPKI/SDSI protected document within the same Netscape

session.

(b) Using the ACL and tag from the server, and the user’s public key and

certificate cache (which stores all of the user’s certificates), the plugin

generates a sequence of certificates using the SPKI/SDSI certificate chain

discovery algorithm[3]. This certificate sequence provides a chain of au-

thorization from the ACL ‘issuer’ to the user’s key and provides proof that

the client is authorized to perform the operation specified in the tag. If the

algorithm is unable to generate a sequence, because the user does not have

the necessary certificates, or if the algorithm does not need to generate

a sequence, because the user’s key is directly on the ACL, the algorithm

1Theoretically, the ACL itself, could be a protected resource, protected by another ACL. In this
case, the server would return the ACL protecting the ACL; the client will need to demonstrate that
the user’s key is on this ACL, either directly or via certificates, before gaining access to the ACL
protecting the object to which access was originally requested.
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returns an empty sequence. (The plugin could return an error to the user

if it is not able to generate a certificate sequence and the user’s key is not

directly on the ACL. In our design and implementation, we chose not to

return an error at this point, but to let the plugin send an empty certificate

sequence to the server. This way, when the request is not accepted, the

plugin can be sent the server-side customizable error page2, which lets the

user know where he should go to get valid certificates.)

(c) The plugin generates a timestamp using the client’s local clock. It creates

a SPKI/SDSI sequence consisting of the tag from the server, and the times-

tamp it generated. It signs this sequence with the user’s private key. A

copy of the user’s public key is included in the signature. The plugin then

sends the tag-timestamp sequence, its signature, and certificate sequence

generated in Step 3b to the server.

4. (a) The server verifies the request by first checking the timestamp in the tag-

timestamp sequence against the time in the server’s local clock to ensure

that the request was made recently3; recreating the tag from the client’s

HTTP request and checking that it is the same as the tag in the tag-

timestamp sequence; extracting the public key from the signature; verifying

the signature on the tag-timestamp sequence using this key; validating the

certificates in the certificate sequence; and verifying that there is a chain of

authorization from an entry on the ACL to the key from the signature via

the certificate sequence presented. The authorization chain must authorize

the client to perform the requested operation, as specified by the tag formed

from the client’s HTTP request. If the request successfully verifies, the

server returns the requested object to the client with HTTP status code

“200 OK”. If the verification fails, a server-side customizable error page

2described in step 4a and section 5.1
3In our prototype implementation, the server checks that the timestamp in the client’s tag-

timestamp sequence is within five minutes of the server’s local time i.e.
server’s local time − timestamp < 5 minutes.
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is returned to the client with the HTTP error code “403 Forbidden”[21].

Error code “403 Forbidden” and the error page are returned whenever the

client presents an authenticated request that is denied. The server’s admin

sets up the error page, and can use it to provide feedback to the user about

why his credentials failed, and whom the user should contact to get the

correct credentials.

(b) The client displays either the requested document, or the customizable

error page, that is returned by the server.

The meaning of each client request depends only on the content of the request

itself, and is not dependent on the content of previous requests. The SPKI/SDSI

web server implementing this protocol is stateless, making it easier to implement,

and more resistant to denial-of-service attacks. Because the server is stateless, it is

easier for it to completely mediate every client request, and determine if it should be

honored. The server evaluates each request based on its own merit, returns a response

that depends only on that request, then forgets about the request altogether. The

response the server returns is one of the following:

• If the request is for a file in a public directory, the file is returned. This reply

is the standard HTTP reply, with HTTP status code “200 OK”.

• If the request is for a file in a protected directory, and the request is unau-

thenticated, the server responds with the ACL protecting the directory and

the SPKI/SDSI tag formed from the client’s HTTP request. The response’s

content-type is “application/x-spki-sdsi”.

• If the request is for a file in a protected directory, and the request is authenti-

cated, the server verifies the request using the request’s signature and certificate

sequence provided with the request. If no certificate sequence is provided, the

server uses an empty certificate sequence. If the request’s verification fails, the

server returns a server-side customizable error page with the HTTP error code

“403 Forbidden”.
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• If the request is for a file in a protected directory, and the request is authenti-

cated, the server verifies the request using the request’s signature, and certificate

sequence provided with the request. If no certificate sequence is provided, the

server uses an empty certificate sequence. If the request successfully verifies,

the server returns the requested file with HTTP status code “200 OK”.

The protocol can be viewed as a typical challenge-response protocol. The server

reply in step 2 of the protocol is a challenge the server issues to the client, saying ‘you

are trying to access a protected file. Using this ACL and tag, prove to me that you

have the credentials to perform the action specified in the tag on the file protected by

the ACL.’ The client uses the ACL and tag to help it produce a certificate sequence,

using the SPKI/SDSI chain discovery algorithm. It then sends the certificate sequence

and signed tag-timestamp sequence in a second request to the guardian. The digital

signature provides proof of authenticity, and the certificate sequence provides proof

of authorization. The server verifies the second request, and, if it verifies, returns the

requested file.

The timestamp in the tag-timestamp sequence helps to protect against replay

attacks. As an example, suppose the server logs requests. Suppose this log is not

disposed of properly. The timestamp prevents an adversary from replaying requests

found in the log and gaining access to protected resources4.

4.1.1 Protocol Variations

Following are three variations on the basic SPKI/SDSI protocol:

First Variation

As the meaning of each request depends only on the request itself, the protocol can

be easily adapted to consist of only two messages:

4In order to use timestamps, the client’s clock and server’s clock need to be fairly synchronized;
SPKI/SDSI already makes an assumption about fairly synchronized clocks when validity time periods
are specified in certificates. An alternative design would be for the server to send a nonce in
the protocol’s second message, and for the client to replace the timestamp with this nonce in the
protocol’s third message; of course, in this design, the server is not stateless.
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Figure 4-1: SPKI/SDSI Access Control Protocol
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1. The client creates the tag formed from its HTTP request. It sends the tag-

timestamp sequence and its signature to the server, accompanied with all of the

certificates in the user’s cache, in its initial HTTP request.

2. The server performs the certificate chain discovery, and verifies the credentials

in the same manner as in the original protocol. The protected object is returned

with HTTP status code “200 OK” if the verification is successful. The error

page, with HTTP error code “403 Forbidden”, is returned if the verification is

not successful.

One can imagine favoring this two-stage protocol in a system in which the expected

number of certificates in a typical user’s cache is small. The server has slightly more

work, but, if the number of certificates is small, the extra work will be small. There

is a privacy problem in that the server will be receiving all of the certificates the user

has, instead of just the ones the user needs to send.

Second Variation

If ACLs typically contain a number of entries of public keys, the client’s initial request

could always be signed. Thus, if the user’s key is directly on the ACL, and the tag in

the relevant ACL entry permits the client to perform the operation it is requesting

to perform, the server can return the object in its first reply.

The protocol would be:

1. The client creates the tag formed from its HTTP request. It sends the tag-

timestamp sequence and its signature to the server in its initial HTTP request.

2. If the request is for a file in a public directory, the file is returned with HTTP

status code “200 OK”. If the client’s request is for a file in a protected directory,

the server verifies the client’s request. The request is verified in a manner similar

to the original protocol except that instead of verifying certificates and verifying

certificate chains, the server checks that the key from the signature is directly

on the ACL and that the tag in the relevant ACL entry permits the client
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to perform the operation it is requesting to perform. If the client’s request

successfully verifies, the requested object is returned in a standard HTTP reply

with HTTP status code “200 OK”. Otherwise, the server sends a response to

the client containing the ACL and the SPKI/SDSI tag formed from the client’s

HTTP request. This response’s content-type is “application/x-spki-sdsi”.

3. The subsequent steps are the same as those in the original protocol.

Third Variation

Certificate sequences could, potentially, consist of several certificates: there is no

upper bound on the number of certificates that can be in a certificate sequence. If

clients had to transmit these sequences with every request, there would be a sig-

nificant performance loss. After the server verifies that the client is authorized to

perform a particular operation, or set of operations, it can issue a Certificate Result

Certificate, which summarizes the set of authorizations that have been derived from

the certificates presented. For efficiency, the Certificate Result Certificate could be

MAC’d with a symmetric key which only the server would know, instead of being

signed with the server’s private key. If the certificate is MAC’d with a symmetric key,

only the server that created it would be able to use it. The server verifies future au-

thenticated requests accompanied with a Certificate Result Certificate in exactly the

same manner as it verifies requests accompanied with the original certificate sequence.

Certificate Result Certificates are described in more detail in Section 3.3.3.

4.2 Additional Security Considerations

The SPKI/SDSI protocol, as described, addresses the issue of providing client access

control. The protocol does not ensure confidentiality, nor authenticate servers, nor

provide protection against replay attacks coming from the network.

Security protocols are vulnerable to a number of attacks. To attack a protocol, the

adversary does not have to have access to either the client or the server; he can launch

attacks using the information he overhears from conversations on the network. There

90



are two types of adversaries: a passive adversary who simply records the conversation

and analyzes it, and an active adversary who can do what the passive adversary

does, and also modify messages as they are being transmitted over the network and

replay messages (modified or unmodified) that were previously transmitted. In this

discussion, adversaries are assumed to be active.

A brief description of common attacks on protocols follows:

• Replay attacks: the adversary records parts of the conversation and replays them

later, hoping that recipient treats the replayed messages as new messages. This

could trick the recipient into unintentionally divulging protected information,

or performing an unintended action. To prevent replay attacks, steps must be

taken to ensure the freshness of messages: common techniques include using

nonces and/or timestamps.

• Impersonation attacks: the adversary impersonates one of the principals in the

protocol. The person-in-the-middle attack is a common variant of this attack:

the adversary sits in the middle of a conversation impersonating the principals

to each other. For example, if a principal, Alice, say, were to transmit her

public key over an unauthentic channel to another principal, Bob, say, the

adversary could replace Alice’s key with his own. Bob would then be using the

adversary’s key to encrypt his messages to Alice. The adversary can intercept

Bob’s messages, decrypt them, re-encrypt them with Alice’s key, and forward

these messages to Alice. Neither Alice nor Bob may be able to detect that an

adversary can read the encrypted messages.

• Reflection attacks: if symmetric keys are used for authentication, the adversary

can launch a reflection attack by replaying the message to the principal that

originally sent it. This attack is typically foiled by including the names of the

sender in the message that is MAC’d, or having the symmetric key used to

authenticate one principal be different from the symmetric key used to authen-

ticate another principal[28]. If there are two principals in the protocol, using

the latter technique, means that two different symmetric keys are shared by the
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principals.

The Secure Sockets Layer (SSL) protocol is the most widely used security protocol

today. The Transport Layer Security (TLS) protocol is the successor to SSL. Principal

goals of SSL/TLS[42, 49] include providing confidentiality and data integrity of traffic

between the client and server, and providing authentication of the server. There is

support for client authentication, but client authentication is optional.

An SSL session is divided into two phases: the handshake phase, in which the

server is authenticated and symmetric keys are established, and the data transfer

phase, in which the application’s data is transmitted securely. The handshake phase

must be completed before the data transfer phase can begin. Among other features,

SSL/TLS has:

• Authentication of Server: Server authentication in SSL/TLS is based on public-

key cryptography. Before initiating an SSL/TLS session, the client obtains,

using authentic channels, the public keys of CAs it is willing to trust. The

server has a list of X.509 certificates, each issued by a different CA and each

binding the server’s hostname (which may be in the certificate’s DN name5 or

in a special ‘dNSName’ extension6 field) to its public key. Near the beginning

of the SSL/TLS handshake, the server sends its list of certificates to the client.

The client uses the CA keys it trusts to verify the certificates. If one of the

certificates verifies correctly, and the hostname in the certificate matches the

name of the host to which the client is connecting, the client continues with the

handshake; otherwise, the client notifies the user, or terminates the handshake.

The next message the client sends during the handshake encrypts a secret with

the public key found in the certificate. Only an authentic server would be able

to decrypt this message and use the client’s secret to successfully complete the

handshake. Without the client’s secret, an unauthentic server cannot produce

and send valid messages to the client; the client will notice and terminate the

5described in Section 3.3.1
6described in Section 3.3.1

92



handshake. Thus, server authentication in SSL/TLS includes the server sending

the client a certificate; the client verifying that the certificate contains a name

it expects, is signed by a CA it trusts, and has not expired; the client sending

the server a challenge consisting of a secret encrypted with the certificate’s

subject’s key; and the server proving to the client that it is in control of the

corresponding private key by decrypting the challenge, and using it to generate

a response to the client. The client and the server each use the client’s secret to

generate four symmetric keys in a similar manner, and to finish the handshake.

The symmetric keys are used to protect client and server messages in the data

transfer phase.

• Confidentiality: After authenticating the server, TLS/SSL uses the server’s

public key to help bootstrap into a symmetric-key system during the handshake

phase. Symmetric keys are used to encrypt/decrypt messages between the client

and server during the data transfer stage. Encrypting and decrypting with

symmetric keys is more efficient than encrypting and decrypting with public

keys.

• Data Integrity : TLS/SSL MACs the messages sent in the data transfer stage

using symmetric keys established in the handshake phase.

• Protection against Reflection Attacks: The SSL/TLS handshake generates four

different, temporary, shared symmetric-keys: one for the client to use to create

MACs, one for the client to use to encrypt its messages, one for the server to use

to create MACs, and one for the server to use to encrypt its messages. Using

these distinct keys foils reflection attacks, and limits the scope of an attacker if

he compromises one of the keys. For example, if an attacker were to compromise

the key that the client uses for encryption (because the key was too small, say),

he would be able to read messages that the client sends, but not be able to read

messages sent by the server; he would also not be able to forge either client or

server messages.
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• Protection against Person-in-the-Middle Attacks: Authentication of the server

helps protect against a person-in-the-middle attack. Also, before completing

an SSL/TLS handshake, the client and server compare the messages that were

sent and received. If both of their transcripts are the same, the handshake has

not been tampered with.

• Protection against Replay Attacks from the Network: TLS/SSL generates sym-

metric keys that are temporary: they are different between different communica-

tion sessions. TLS/SSL also includes nonces (sequence numbers) in the MAC’d

data. Using sequence numbers also prevents against re-ordered or deleted mes-

sages. These measures protect against an adversary recording traffic as it is

sent over the network, and replaying it.

SSL/TLS is not a panacea, however. In particular, some of the things it does not

provide include:

• Nonrepudiation: Because SSL/TLS uses symmetric keys for authentication dur-

ing its data transfer phase, it does not provide nonrepudiation for either client

or server messages during this phase.

• It is not possible to establish an SSL/TLS session with a machine to which a

network connection cannot be established. For example, if the client is behind

a firewall and wants to establish an SSL/TLS connection with a server on the

other side, either a hole in the firewall must be created, or the client must

establish an SSL/TLS session with the firewall, and let the firewall establish its

own SSL session with the server. In the latter case, the firewall can read all the

conversation between the client and server.

The SPKI/SDSI Access Control Protocol can be layered over a key-exchange pro-

tocol like TLS/SSL to provide additional security. TLS/SSL currently uses the X.509

PKI to authenticate servers, but, it could just as well use the SPKI/SDSI PKI in

a similar manner to authenticate servers. With these considerations, the layering of

the protocols, with respect to HTTP, is shown in Figure 4-2. A systems designer
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may be tempted to optimize the SPKI/SDSI Access Control Protocol if it is going to

be layered over SSL/TLS; if so, he should state explicitly in his design specifications

exactly what he will be trusting the SSL/TLS keys to do.

SPKI/SDSI Access Control Protocol

HTTP

Key-Exchange Protocol with Server Authentication

TCP/IP
(reliable transport)

Figure 4-2: Layering of Protocols

Note that the SPKI/SDSI Access Control Protocol is an example of the end-to-end

argument [39, 31]. The client access control decisions are made in the uppermost layer,

involving only the client and the server. Best stated by Saltzer et al., the end-to-end

argument is:

“The function in question can completely and correctly be implemented

only with the knowledge and help of the application standing at the end-

points of the communication system. Therefore, providing that questioned

function as a feature of the communication system itself is not possible.

(Sometimes an incomplete version of the function provided by the com-

munication system may be useful as a performance enhancement.)”7

7J.H. Saltzer, D.P. Reed and D.D. Clark. End-to-End Arguments in System
Design. ACM Transactions on Computer Systems, 2(4), Nov. 1984, page 278.
See http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf. Last visited
08/07/2001.
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4.3 Possible alternative protocol design

A possible alternative approach to our protocol design is to incorporate SPKI/SDSI-

based client access control into the SSL/TLS protocol. I believe that there are prob-

lems with this approach. In SPKI/SDSI, objects are protected with SPKI/SDSI

ACLs. In our design, the web server’s directories are the objects; each protected

directory is protected by an ACL that is referenced in the directory’s .htaccess file.

When the client makes a request to perform a particular operation in a particular

protected directory on the server, the server sends the appropriate ACL to the client

so that the client knows which SPKI/SDSI certificates to send in order for its request

to be honored.

SSL/TLS provides confidentiality and data integrity of traffic between the client

and server, and authenticates the server. If SPKI/SDSI client access control is in-

corporated into the SSL/TLS protocol, then it seems that one of the following cases

applies:

• the SSL/TLS handshake will need to be renegotiated at least each time the

client makes a request to access an object in a new directory; the handshake

needs to be renegotiated because the client needs to know the ACL protecting

the new directory if it is going to avoid sending all of the certificates in the

user’s cache. This case is clearly infeasible as each renegotiation of SSL/TLS is

computationally expensive. Furthermore, why should changing directories on

the same server require changing the keys that are used to protect messages to

and from that server?

• the client will need to send all of the certificates in the user’s cache during

SSL/TLS handshake and the server will need to maintain state representing

the authorizations belonging to a particular client; with each request from a

particular client, the server checks if the request should be honored, using the

authorizations the server associates with the client, and the ACL protecting

the appropriate directory. In this case, the client is sending, potentially, alot of

unnecessary certificates to the server, and the server is doing alot more work as
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it needs to determine all of the authorizations for each client connecting to it

as well as maintain more state, beyond the state it maintains for the SSL/TLS

session.

• the server will need to have one ACL protecting access to the server. The

server sends this ACL as part of the SSL/TLS handshake, and the client sends

a certificate chain proving that it is authorized to access the server. In this case,

the protected object is the server, and not an individual directory. SPKI/SDSI

features the ability to specify fine-grained authorizations in tags; this feature is

all but lost if the server has just one ACL protecting access to it.

In my opinion, the issue is that SPKI/SDSI client access control decisions should

be made as close to the top of the protocol stack as possible. This is an instance

of the end-to-end argument stated in Saltzer, Reed, and Clark [39] and described in

Section 4.2. With reference to the TCP/IP protocol stack[47], if the client access

control decisions are made in TLS/SSL, they will be made in the transport layer,

the layer in which TLS/SSL provides security. If ACLs are specified in directories,

not all of the information that the client needs to derive its proofs of authorization is

necessarily present in the transport layer: at the time the SSL/TLS handshake is being

established with the server, the client does not know all of the directories the user will

be visiting during that particular SSL/TLS session; therefore, it does not know which

particular user certificates to send to the server. In our design, the client access control

decisions are made in the application layer, the topmost layer in the TCP/IP protocol

stack. In the application layer, the client will have all of the information it needs to

derive its proofs of authorization. The SPKI/SDSI Access Control Protocol is layered

on top of the application level protocol (HTTP in this case). HTTP is layered on top

of (a protocol like) SSL/TLS. With this layering of protocols, the specific functions

of each protocol is clearly defined. SSL/TLS authenticates the server to the client,

and provides a confidential channel with data integrity between the client and the

server; the SPKI/SDSI Access Control Protocol allows the server to determine if a

particular client request should be honored.
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In addition, incorporating SPKI/SDSI client access control into SSL/TLS using

any one of the approaches previously described in this section seems to be a non-

trivial change to the SSL/TLS protocol. It is not clear to me that such a change can

be designed and implemented easily and securely.

In summary, I think that SPKI/SDSI may be incorporated into SSL/TLS for

the purpose of server authentication. Perhaps, the client’s public key may also be

authenticated (perhaps in a manner similar to that of SSH, described in Section 4.4.2)

within SSL/TLS, so that the client does not have to sign every request. However,

SPKI/SDSI client access control decisions should be made in the application layer

using the ACL protecting the requested object.

4.4 Comparisons

This section compares SPKI/SDSI-based client access control with three methods:

password-based access control on the web, Secure Shell (SSH), and access control

based on X.509 certificates.

4.4.1 Password-based access control on the Web

Client access control based on passwords is the most common method in use on the

web today. Each user shares a password with the server. Initially, the user sets up

an account on the server, and protects access to his account with his password. He

logs-in to the server using a username-password pair. The server uses the username

to identify the account, and matches the password provided in the login request

with the password protecting the account. If they match, the user is allowed access

to the account; if they do not match, the user is denied access. SSL/TLS supports

password-based access control well, as accounts can be securely established, and users

can securely log-in, over SSL/TLS connections8.

The scheme can be modelled using the ticket-oriented guard model9. The object

8It should be noted that there are other password-based authentication schemes, such as SRP[48].
9described in Section 2.4
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is the account, the guard is the login program, the principal is the user, and the token

is the password. If the token the user presents is the same as the token the guard

has, the user is allowed to access the account; otherwise, access is denied.

One of the problems with password-based access control is that users need to trust

the server, and the server administrator, to not disclose or use their passwords. If a

user is using the same username-password pair to access multiple online services, the

server administrator at one of the services is able to use this information to access

the user’s account on another service. For example, if Alice has email accounts on

Hotmail and Yahoo, and she uses the same username-password pair to access both

services, a malicious Hotmail administrator, if he correctly guesses that she has a

Yahoo account, can log into her Yahoo account, and vice-versa.

If a user desires protection against this problem, he is forced to remember different

username-password pairs, which gets increasingly more difficult as the number of on-

line accounts he uses increases. Besides being an incredible hassle having to remember

several different passwords, there are also significant security risks. If the user uses

different passwords, he may use passwords which may be easy for him to remember.

Such passwords tend to have low entropy (are easy to guess). Furthermore, if he

accesses different accounts frequently, he may mistakenly enter the password for one

account when trying to login to another account; in the case in which the accounts

are on different servers, and the servers are logging login attempts, the first server

captures the password used on the second server.

If public-key cryptography is used, there is no shared secret between users and

servers. Users can securely use the same public key with many different accounts.

A user will still have to enter a password, but in this case, the password is used to

unlock his private key on the client so that it can be used to sign requests. The user’s

password is never transmitted across the network, and the same password can safely

be used to access many different accounts. Besides the security benefits, there is the

added convenience that if the user wants to change the password he uses to access

his accounts, he just has to change the password locking his private key, instead of

individually having to change the password protecting each account. Even if the user
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were using different passwords to enter different accounts, because he is using different

key-pairs, say, as passwords remain on the client, submitting an incorrect password

cannot result in a breach of security.

Another problem with many password-based implementations is that servers usu-

ally save state, in the form of HTTP “cookies”, on clients. The server typically

generates and sends the cookie to the client when the user successfully logs in. The

client then sends this cookie with future requests to the server. This can be used to

prevent the user from having to re-type his password each time he wants to access

his account within the same client session. The user’s encrypted password may be

in the cookie, though it does not have to be; for example, instead of the encrypted

password, the cookie could contain a randomly-generated shared secret. If the server

uses “transient cookies”, cookies that are stored in memory on the client, the cookies

expire when the web browser is closed, and the user is required to log-in again if he

wants to access his account in a new client session. There are a number of security

risks with using “cookies”. Perhaps the most well-known problem is that cookies can

be used to track and record users’ web browsing habits, which is usually regarded as

a privacy violation. Publications on the security risks of cookies are provided by the

World Wide Web Consortium[40], and the MIT Lab for Computer Science’s Applied

Security Reading Group (ASRG)[20].

The SPKI/SDSI web client also saves state to prevent a user from having to re-

enter his password during the same client session. This state is created and stored

by the client only, and is never transmitted across the network. The scheme is imple-

mented using a client “session window”, and is well documented in Andrew Maywah’s

Master’s thesis[33].

Another significant difference between the two client access control schemes is

that, in password-based access control, only the password needs to be compromised;

in SPKI/SDSI, both the password and the private key that it protects need to be

compromised. As seen from the discussions in the previous paragraphs in this sec-

tion, there are several ways to attack the password in password-based schemes; in

SPKI/SDSI, essentially, the client machine must be compromised, and the private
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key unlocked, to successfully attack the scheme.

If users just use passwords to protect accounts, creating a group in which each

member can access a particular account means either putting each member’s username-

password pair on the ACL’s entry for that account, or having each group member use

the same username-password pair. The first case increases the complexity of ACL

management, which is a security risk. The second case is patently a security risk; for

example, if passwords are shared, accounting becomes difficult because it is difficult

to distinguish between different users. The same problems exist with ‘delegation’,

where one user would like to delegate to another user the authority to decide who can

access a particular account. SPKI/SDSI provides a clean model for creating groups

and delegation without compromise of security. The infrastructure also facilitates

easy ACL management. Accounting is also possible as users will always use different

signatures to authenticate themselves. These features are described in Chapter 3.

One advantage of password-based schemes are that they are easy to set up, espe-

cially over SSL/TLS. When a user sets up an account, he can register his username-

password pair with the server securely over an SSL/TLS connection. In SPKI/SDSI-

based client access control, users need to be issued certificates; this process must

include authentic rendezvous between the certificate issuers and the user, so that the

issuers know that the key for which they issue the certificates is authentic.

In summary, as the models are scaled, there is a tradeoff between ease of establish-

ment and security with password-based access control and SPKI/SDSI-based access

control. In password-based schemes, each new account the user sets up, or is given

access to, means potentially a new password he has to remember. In SPKI/SDSI,

each new account the user sets up, or is given access to, means new certificate(s) for

the user, but he can still safely use the same password and key-pair. In password-

based schemes, security does not scale as more accounts are established. SPKI/SDSI

was designed to facilitate scalability without compromise of security. Table 4.1 on

page 102 summarizes the comparison of password-based and SPKI/SDSI-based client

access control.
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Password SPKI/SDSI

Need to compromise a password Need to compromise a private key and a
password

Password sent across network from client
to server

Neither private key nor password ever
sent across the network

Each new account the user sets up, or is
given access to, means potentially a new
password he has to remember.

Each new account the user sets up, or is
given access to, means new certificate(s)
for the user, but he can still safely use the
same password and key-pair.

Cannot securely use the same password
with different accounts: if the server’s ad-
min is untrustworthy/the server is com-
promised, an adversary can learn the
password protecting one account, and use
it to access other accounts if they are pro-
tected by the same password.

Can securely use the same password with
different accounts: if the server’s admin
is untrustworthy/the server is compro-
mised, the adversary is still unable to ac-
cess other accounts.

If a user uses different passwords with
different accounts, it is a hassle having
to remember several different passwords,
and there are still security risks: he may
choose passwords with less entropy that
are easier for him to remember; also, if
he mistakenly enters the password for
one account when trying to login to an-
other account, the first server captures
the password used on the second server if
servers are logging login attempts.

Can securely use the same password with
different accounts. If different passwords
are used, because different key-pairs are
used, say, submitting an incorrect pass-
word cannot result in a breach of security
as passwords remain on the client.

Creating ‘Groups’ or ‘Delegating’ means
giving others your password, and/or, con-
stantly updating all the relevant ACLs. If
passwords are shared, accounting is diffi-
cult because it is difficult to distinguish
between different users.

Clean model for creating groups and fine-
grained delegation without compromise
of security; the model facilitates easy
ACL management. Accounting is also
possible as users will always use different
signatures.

Easy to understand. Easy to set up, es-
pecially over SSL/TLS.

Principal needs to be issued certificates;
this process must include authentic ren-
dezvous between the certificate issuers
and the principal, so that the issuers
know that the key for which they issue
the certificates is authentic.

Bottom Line
Easier to set up More secure

Table 4.1: Comparison of Password-based and SPKI/SDSI-based Client Access Con-
trol
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4.4.2 Secure Shell (SSH)

A popular access control system in use on the Internet today is Secure Shell (SSH)[1].

SSH allows a user to securely login over an untrusted network. It creates a secure

channel to a shell running on a remote host computer. The user runs a window 10 on

his local machine which provides a command line interface to the shell on the remote

host. He types commands in to the window, and they are sent across the network

over the secure channel, and executed in the shell on the remote computer. There

are two access control systems at work: SSH protects access control to accounts, and

the filesystem restricts the commands a user can execute once the account has been

accessed11.

The SSH protocol is very similar to the SSL/TLS protocol. The SSH client runs

on the user’s local machine, and the SSH server runs on the remote machine to which

the user wishes to login and run the shell. The server is authenticated using public-

key cryptography, after which the server’s public key is used to establish a secure,

symmetric key-based, communication channel between the client and server. In con-

trast to SSL/TLS, client authentication is required in SSH. SSH is an application,

like telnet, ftp, or DNS (Domain Name System); SSL/TLS was designed to be incor-

porated into applications12. SSL/TLS is more transparent than SSH. One advantage

of SSL/TLS is that one does not have to be logged in to a user account to set up a

secure channel[47].

There are several ways in which a client may authenticate itself to the server in

SSH, but this discussion will focus on only two: client authentication using passwords,

and client authentication using public keys.

10for example, a terminal window :
http://www.ssh.com/products/ssh/winhelp22/Terminal Window.html, last visited
08/07/2001.

11With SSH’s forced commands[1] feature, the set of programs that a user may execute in an
account can also be limited.

12Using the TCP (Transmission Control Protocol) protocol stack[47], SSH provides security in
the application layer; SSL/TLS provides security in the transport layer, hence its name: Transport
Layer Security (TLS).
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Client Authentication using Passwords

This is very similar to the preceding discussion in Section 4.4.1 on page 98. The user

supplies a username and password to the SSH client, which the client sends to the

server over the secure channel. The username is used to identify the account, and the

password provided in the login request is matched with the password protecting the

account. If they match, the user is allowed access to the account; if they do not match,

the user is denied access. In the common case, the SSH server uses the password-

authentication system of the host computer to perform its check. The comparison

of this access control system with a SPKI/SDSI-based system is the same as that in

Section 4.4.1.

Client Authentication using Public Keys

If a user wanted to authenticate himself using his public key, he would first add his

key to his account’s ˜/.ssh/authorized keys file on the remote host computer. (If more

than one user were to have access to the same account, their public keys would all

have to be placed in that account’s ˜/.ssh/authorized keys file.) An overview of the

access control protocol follows:

1. The client sends the server a request for public-key authentication. This request

contains the user’s public key.

2. The server reads the target account’s ˜/.ssh/authorized keys file. If the key

presented in the request matches a key in the file, the protocol continues. Oth-

erwise, authentication fails.

3. The server generates a random 256-bit string, encrypts it with the user’s public

key, and sends this to the client. This is the server’s challenge to the client.

4. The client receives the challenge, and decrypts it with the user’s private key to

retrieve the 256-bit string. It combines the string with the session identifier, a

128-bit string which uniquely identifies the particular SSH session, and hashes
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the result. The resulting value is sent to the server as a response to the server’s

challenge.

5. The server independently computes the response to its challenge. If the client’s

response matches the value the server computed for the response, authentication

of the client succeeds. Otherwise, authentication fails.

This design can be modelled using the list-oriented guard model13. The ob-

ject is the account, the guard is the server’s access-check program, the ACL is the

˜/.ssh/authorized keys file, the principal is the user, and the token is the public key.

In comparison with SPKI/SDSI, which is also an example of the list guard model,

SPKI/SDSI offers more flexibility allowing a user to be able to easily, and securely,

define a group of people who can access a particular account without having to update

the account’s ACL, and/or delegate to another user the authority to decide who can

access the particular account. Because of SPKI/SDSI’s delayed binding14 feature, the

ACL can be modified once, and a SPKI/SDSI name/group added to it; after it be-

comes clear which user/users should be authorized to access the account, the relevant

certificates are issued to the user/users giving them access without having to update

the ACL.

4.4.3 X.509-based access control

An alternative to providing client access control using SPKI/SDSI certificates is us-

ing X.509 certificates. Instead of providing a chain of SPKI/SDSI certificates as a

chain of authorization, the client provides a chain of X.509 certificates as a chain of

authentication. The principal differences between the two schemes essentially reduce

to the differences between the two infrastructures. These differences are described in

Chapter 3, and summarized in Table 3.1 on page 81.

13described in Section 2.4
14described in Section 3.3.3
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Chapter 5

Implementation

This section describes, in detail, the implementation of the SPKI/SDSI HTTP server,

and gives a brief overview of the client. The details of the client can be found in

Andrew Maywah’s Master’s Thesis [33]. Both the server and client use Matt Fredette’s

SPKI/SDSI’s C library[19] to create and verify SPKI/SDSI Sexps. This section also

gives an outline of the demo we designed and developed for Project Geronimo.

5.1 Server Implementation

The Apache web server was extended to handle SPKI/SDSI-based access control. An

Apache “module”[41, 32] was used to incorporate SPKI/SDSI into the Apache web

server. The Apache web server was chosen because it is open-source, very popular, and

facilitates extensibility with a modular architecture and a well-defined Application

Programming Interface (API).

Apache provides an API for developing modules that can creatively extend the

server’s core capabilities. Examples of common modules include those that execute

CGI (Common Gateway Interface) scripts, rewrite URLs dynamically, and provide

access control based on the client’s hostname or IP address. The principle functions

of the SPKI/SDSI module are to protect web objects using SPKI/SDSI ACLs, and to

determine whether HTTP client requests should be permitted to perform particular

operations on protected objects.
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Web objects on the server are protected on a per-directory basis. To protect a

directory, a .htaccess file is created in it. The file contains the directive “SPKI/SDSI

on”, and pointers to the file with the SPKI/SDSI ACL and the customizable error

page that is returned if the user’s credentials do not grant him access. File pointers

are relative to the server’s document root. An example of a .htaccess file is presented

in Figure 5-1. Directories which do not have .htaccess files are public directories.

SPKI/SDSI on
ACLFile demo/spki-sdsi-acls/ABC financial acl
ErrorFile demo/ABC/public/error.html

Figure 5-1: An example of a .htaccess file

The customizable error page is an html page which is set up by the server’s ad-

ministrator. It is specified on a per-directory basis in the .htaccess file. It is useful

since, on this web page, the administrator can post information that he/she believes

would be most helpful to a valid user trying to obtain the correct credentials. The

feedback presented on this page can accelerate the process through which a new

user gains valid authorizations. There are six replacement stubs that may be used

in the page: #REPLACE DOCUMENT URL#, #REPLACE TAG#, #REPLACE TAG-

TIMESTAMP SEQUENCE#, #REPLACE SIGNATURE#,

#REPLACE CERTIFICATE SEQUENCE#, and #REPLACE ACL#. Before the server

returns the error page to a client in response to a particular denied request, it re-

places each instance of #REPLACE DOCUMENT URL# with the requested docu-

ment’s URL, #REPLACE TAG# with the tag the server creates from the client’s re-

quest, #REPLACE TAG-TIMESTAMP SEQUENCE# with the tag-timestamp sequence

the client sent with its request, #REPLACE SIGNATURE# with the signature the

client sent with its request, #REPLACE CERTIFICATE SEQUENCE# with the certifi-

cate sequence the client sent with its request, and #REPLACE ACL# with the ACL

protecting the directory the client is trying to access. If the administrator does not

want a particular object to appear on the page returned to the client, he does not

put the replacement stub for it in the page on disk. The page can also contain the
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contact information of persons/offices that would be most helpful in resolving user

concerns. The user should be able to print the error page that is returned to him, and

take the printout to the relevant office. The information on the printout should be

a good starting point in helping to debug the request. The customizable error page

facilitates the feedback process of valid users who are being denied access.

The module is implemented in C, using the Apache API. In processing a request,

the Apache server traverses through several phases, each corresponding to a different

decision it must make. For example, in its “URI translation” phase, the actual file

path of the requested file is determined. As another example, in the “MIME type

checking phase”, the server determines the requested document’s content-type, which

will be used to indicate to the client which application should be used to handle the

document. The SPKI/SDSI module is designed and implemented to interrupt Apache

only in its access control phase, and not affect the other functions that may be called

to process the request. Thus, the module is an access control Apache module.

As described in Chapter 4, the server is stateless. It interprets each request using

only the information presented in the request itself, and not using information in

previous requests. The responses the server returns depending on the request it

receives are detailed in Chapter 4.

5.1.1 Server Verification Process

To verify a request, the module uses five Sexps:

tag Sexp the module creates the tag from the client’s request, using the request’s

URL, protocol, and method. An example of a tag that would be created from

a client’s request is given in Figure 5-2.

ACL Sexp the module retrieves the ACL protecting the directory. The ACL is

stored in the file pointed to by the AclFile directive in the directory’s .htaccess

file.

tag-timestamp sequence Sexp the module uses the tag-timestamp sequence Sexp

the client sends with its request.
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signature Sexp the module uses the signature Sexp the client sends with its request.

certificate sequence Sexp the module uses the certificate sequence Sexp the client

sends with its request.

(tag
(http
GET
http://rooster.lcs.mit.edu:8081/demo/ABC/financial/budget.html))

Figure 5-2: A tag formed from a client’s request

The module’s verification process is outlined in Figure 5-3 on page 112. The design

is completely open, and the client can simulate the entire server verification process

itself and determine whether its request will be honored or not. The process consists

of the following steps:

1. The module checks the timestamp in the tag-timestamp sequence against the

time in the server’s local clock to ensure that the request was made recently. In

our prototype implementation, the module checks that the timestamp is within

five minutes of the server’s local time i.e.

server’s local time − timestamp < 5 minutes.

2. The module recreates the tag from the client’s HTTP request and checks that

it is the same as the tag in the tag-timestamp sequence.

3. The SPKI/SDSI signature Sexp contains in it, the public key corresponding

to the private key that was used to create it. The module verifies that the

signature is a valid signature on the tag-timestamp sequence using the public

key in the signature. If the signature verifies, the request is authentic.

4. Each individual certificate in the certificate sequence is validated by checking

the signature on the certificate and checking that it does not fail its validity
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specification (e.g. the certificate has not expired). If any certificate in the cer-

tificate sequence fails its signature verification or fails its validity specification,

the entire certificate sequence is rejected and the client is denied access.

5. After validating the individual certificates, the module then verifies that the

certificate sequence presented provides a chain of authorization from the ACL’s

issuer to the key that was used to verify the signature. If the chain of autho-

rization is valid, the request is authorized. The module honors the request after

it has determined that it is authorized.

The server, as implemented, does not perform any certificate chain discovery. It

just verifies the certificate chain the client presents. If the chain does not verify,

the request is not authorized, and is denied; if the chain verifies, the request is au-

thorized, and is honored. The process by which authorization chains are verified in

step 5 follows. Briefly, the module first checks that the client request tag, the tag

from the tag-timestamp sequence, is a subset1 of the tag in each of the authorization

certificates in the certificate sequence. If there is an authorization certificate whose

tag is not a superset of the client request tag, the certificate sequence is invalid, and

the verification procedure fails. The module then parses the ACL, parsing each ACL

entry into an unsigned authorization certificate with the issuer “SELF”. ACL entries

whose tags are not a superset of the client request tag are ignored. If there is at

least one entry whose tag is a superset of the request tag, the procedure continues;

otherwise, the request is not authorized, and the procedure fails. The module then

parses each name certificate and authorization certificate in the sequence, and each

of the remaining ACL entries, into rewrite rules2. For each ACL entry, rule rewrites

are conducted in the order indicated in the certificate sequence. If, for at least one

ACL entry, the rule rewrites result in a rule in which the public key used to verify the

request’s signature is derived from “SELF”, the request is authorized, and the verifi-

cation procedure returns ‘success’; otherwise, it returns ‘failure’. There are specific

1Tag intersection is described in the SPKI/SDSI IETF drafts[11].
2described in Section 6.1.1
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formats which the client must use to form its “proof of authorization”, so that the

server can easily, and deterministically, verify the proof.

5.1.2 ACL Manager

A CGI-based tool was developed to enable an administrator to create, view and

update ACLs securely. ACLs are stored in a central directory on the server. The tool

enables the administrator to log into it remotely via password-based authentication

over a secure SSL connection, view the ACLs already on the server, edit existing

ACLs, and create new ACLs. As the server is hosting web objects, the tool’s GUI is

HTTP specific making it simple and intuitive to understand and use.

5.2 Client Implementation

The SPKI/SDSI web client was designed and implemented as a Netscape plugin. A

plugin is a small shared library of procedures that Netscape Communicator calls when

it encounters a document with an appropriate MIME type. Implementing the client

as a plugin offered such benefits as portability, simplicity, and ease of development.

The plugin is written in C and developed on Unix platforms.

The behavior of the plugin is as follows:

1. First, the user selects a link which sends a regular “GET” request to the server.

If the requested document resides in a SPKI/SDSI protected directory, the

server rejects the request by sending back a message containing the ACL and

tag, with content-type “application/x-spki-sdsi”.

2. Upon receiving the message with content-type “application/x-spki-sdsi”, Netscape

initializes the plugin and provides a copy of the message to the plugin.

3. During initialization, the plugin prompts the user for his password to unlock

his private key using a small Java-based pop-up password box. The password

is used by the client alone and is never transmitted across the network. If the
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private key is successfully unlocked, a small session window appears next to the

Netscape browser. This session window maintains state between client requests

during the same Netscape session. This state is created and maintained by

the client only, and is never transmitted across the network. It prevents the

user from having to re-enter his password every time he accesses a SPKI/SDSI

protected document within the same Netscape session.

4. Using the ACL and tag from the server, and the user’s public key and certificate

cache, the plugin generates a sequence of certificates using the SPKI/SDSI

certificate chain discovery algorithm.

5. The plugin generates a timestamp using the client’s local clock. It creates a

SPKI/SDSI sequence consisting of the tag from the server, and the timestamp

it generated. It signs this sequence with the user’s private key. A copy of

the user’s public key is included in the signature. The plugin then sends the

tag-timestamp sequence, its signature, and certificate sequence generated in the

previous step to the server.

6. If the second request successfully verifies, the server returns the requested doc-

ument to the client, which it displays. If the second request fails to verify, the

server returns an error page to the client, which it displays.

5.3 Demonstration

The principal goal of our work on Project Geronimo was to develop a demo illustrating

some of the capabilities and advantages of the SPKI/SDSI Infrastructure. This demo

was successfully implemented using the SPKI/SDSI web client and server. It featured

a new user, Alice, who had already generated her SPKI/SDSI key-pair and installed

the plugin, going through the process of gaining authorization credentials to view web

pages to which she should be permitted to access.

The background of the demo is that ABC Corporation, a fictitious firm, is going

to be audited by Auditors Inc., another fictitious firm. Alice is among the team
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of auditors from Auditors Inc. who have been assigned to the task. She needs

authorization to view ABC Corp’s financial records (web pages). ABC Corp’s web

pages are hosted on Bob’s web server, and the financial ones are protected by the

SPKI/SDSI ACL: “ABC financial acl”.

The demo consisted of the following steps:

1. ABC Corp’s financial pages are kept in “demo/ABC/financial/”. Bob ed-

its the financial ACL, “ABC financial acl”, to add an entry with the group

“ABC auditors” with authority to perform ‘GET’ requests to this directory.

He uses the administrative ACL manager to edit the ACL and logs into it using

password-based authentication over a secure SSL connection.

2. Alice first tries to access pages in one of ABC Corp’s public directories. She is

successful.

3. Alice then tries to access the “Budget” page in the financial directory. As this

is the first time she is trying to access a document in a SPKI/SDSI protected

realm in the current Netscape session, the plugin pops up a password dialog

box and asks her for her SPKI/SDSI password. It uses this password to unlock

Alice’s private key, and, if successful, starts the client-side SPKI/SDSI session

window. As Alice does not have the proper credentials for the “Budget” page,

she is denied access when she tries to access it. Bob’s customizable error page

is displayed with instructions to contact him for the necessary certificates.

4. Alice copies her public key to a floppy disk, and takes it to Bob3.

5. Bob creates a name certificate for Alice’s key, binding Alice’s public key to

Alice’s name. He binds Alice’s key to a name within his local name space,

demonstrating SPKI/SDSI’s local name space architecture.

6. Bob creates a name (group membership) certificate binding his Alice to his

group “ABC auditors”. This gives Alice access to his “demo/ABC/financial/”

3In our demo, Alice took her public key to Bob on a floppy disk; of course, Bob can obtain Alice’s
key through any authentic channel.
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directory. This certificate demonstrates SPKI/SDSI’s ability to create groups

(and also SPKI/SDSI’s local name space architecture).

7. Bob copies these certificates onto Alice’s floppy disk.

8. Alice takes the floppy disk, and puts these certificates in her cache.

9. Alice now tries to access the Budget protected document. The Plugin sends a

signed request with the new certificates in a chain; she is successful and receives

the file.

10. Alice then tries to access another protected document in the financial directory

(the “Accounts” page). For this subsequent attempt, the plugin doesn’t need to

prompt Alice for her password. This allows much faster access, and illustrates

the functionality of the client-side session window.

11. Alice, however, is still denied access from the “demo/ABC/minutes/” directory,

which is protected with “ABC board meeting minutes acl”. This ACL only has

the “ABC executive committee” group on it. This demonstrates fine-grained

discretionary access control as Bob is able to authorize Alice to view only those

documents that she is required to access.

The SPKI/SDSI objects used in the demo are presented in the appendix. The

demo featured SPKI/SDSI groups and name certificates, ACL administration, the

client-side password box and session window, the server-side customizable error page,

certificate chain discovery, and discretionary, fine-grained access control over an un-

trusted network. The web medium used for the demo made it attractive and more

interesting, and it was successfully presented to several representatives from various

groups in the MIT Laboratory for Computer Science.
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Chapter 6

Certificate Chain Discovery

6.1 Introduction

In Project Geronimo, the certificate chain discovery algorithm is used by the client

to derive a proof of authorization that demonstrates that the principal is allowed

to perform the operation it requests on the object protected by the ACL that the

server sends to the client. The client is the prover and the server is the verifier. In a

simplified protocol:

1. The prover sends the verifier a request to access a protected object.

2. The verifier replies to the prover with a challenge containing the object’s ACL.

3. The prover sends the verifier a second request, with a digital signature providing

proof of authenticity of the request, and a certificate chain providing proof that

the prover is authorized to access the object. This second request is the prover’s

response to the verifier’s challenge.

4. The verifier verifies the second request. If it verifies, the verifier returns the

object to the prover.

Certificate chain discovery is used to derive the proof of authorization in going

from step 2 to step 3. The certificate chain discovery algorithm takes as input an

ACL, a tag, a public key, a set of signed certificates, and a timestamp. If it exists,
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the algorithm returns a certificate chain, consisting of signed certificates, which pro-

vides proof that the public key (principal) is authorized to perform the operation(s)

specified in the tag on the object protected by the ACL, at the time specified in

the timestamp. Thus, in going from step 2 to step 3, the prover runs the certificate

chain discovery algorithm on an input consisting of the ACL the verifier sent to it,

a tag formed from its request (which the verifier may also have sent in the verifier’s

challenge), its public key, the set of certificates in its cache, and the current time.

This chapter describes the intuition of the algorithm for discovering certificate

chains in SPKI/SDSI. The full mathematical description of the algorithm, along with

the formal proof of why it works, is detailed in the journal paper “Certificate Chain

Discovery in SPKI/SDSI”[3].

Recall that each entry of an ACL can be considered to be an authorization cer-

tificate with the issuer being the special designator “SELF”, representing the owner

of the ACL, and the subject, tag and delegation bit being as specified in the entry.

The validity specification is as specified in the entry if it is specified; if the valid-

ity specification is not specified in the entry, the entry, and thus, the corresponding

‘authorization certificate’, is assumed to be valid for the time period −∞ to +∞.

In this chapter, ‘certificates’ from ACL entries are referred to as ACL certificates :

ACL certificates are authorization certificates, and can be distinctly recognized as

they have the issuer SELF. The input certificates belonging to the user are referred to

as user certificates : user certificates can be either name certificates or authorization

certificates; as the issuer of the certificate is always some public key, user certificates

can never have the issuer SELF.

The first step in the algorithm is to remove ACL and user certificates that will be

useless in deriving the proof of authorization. In particular, the algorithm’s first step

is to remove

• Each invalid certificate. If a certificate’s signature does not verify or the certifi-

cate fails its validity specification, it is removed.

• Each authorization certificate whose authorization tag is not equal to, or does

118



not include, the input authorization tag. These certificates are useless in trying

to derive the desired certificate chain1.

For the rest of this chapter, it is assumed that the preceding useless certificates

have been removed from the set of input certificates.

6.1.1 Rewrite Rules

We introduce the concept of SPKI/SDSI “rewrite rules”[3]. Rewrite rules are derived

from SPKI/SDSI name certificates and authorization certificates. As we further de-

velop our framework in subsequent subsections, it will become clear why we use the

term “rewrite rules”.

Recall that a name certificate that defines the local name2 “K A”, where K is the

issuer’s key, to be the subject, “S”, can be denoted as “K A −→ S”. As an example, if

KA is Alice’s public key, and KB is Bob’s public key, Alice can issue a name certificate,

KA friends −→ KB, defining the name “KA friends” to be Bob’s key. “K A −→ S”

represents one of the two types of SPKI/SDSI rewrite rules.

Recall that an authorization certificate in which the issuer, “K”, grants the autho-

rization specified in the tag, “T”, to the subject, “S”, with the delegation bit, “p”, and

a validity specification, “V”, is represented by the 5-tuple, “(K, S, T, p, V)”. The value

of “p” is either true or false. ACL entries are assigned the special issuer “SELF”, the

principal representing the owner of the ACL. Thus, each entry on an ACL has a 5-tuple

representation (SELF, S, T, p, V). As an example, if KA is Alice’s public key, and KB

is Bob’s public key, Alice can issue an authorization certificate, (KA, KB, T1, true, V)

granting Bob the authorization specified in T1 with the permission to delegate this

authorization. As another example, (SELF, KB friends, T2, false, V) represents an

ACL entry with the group “KB friends” on it; the members of this group are allowed

to perform the operations specified in T2, but are not allowed to grant this authority

to anyone else.

1Tag intersection is described in the SPKI/SDSI IETF drafts[11].
2described in Section 3.3.3
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For the certificate chain discovery algorithm, as we are only considering valid

certificates whose authorization tags are a superset of the input tag, the validity

specifications and tags in the 5-tuples do not matter.

Definition: ticket The special “ticket”[3] symbols are “�” (“a live ticket”) or “�”

(“a dead ticket”). The meta-symbol “ z ” may be used to represent a “zombie” ticket

that may be either live or dead.3

The ticket “�” is considered to be “live” - it represents a permission obtained

with the delegation bit turned on, so it can be further delegated. The ticket “�” is

considered to be “dead” - it represents a permission obtained with the delegation bit

turned off, so it cannot be delegated further. To represent a ticket that may either be

live or dead, we use the meta-symbol “ z ”, the “zombie ticket”. The zombie ticket

doesn’t actually appear in rewrite rules, but is used when discussing a rewrite rule

having a ticket which may be either live or dead.

We can now represent an authorization certificate, (K, S, T, p, V), as a rewrite rule.

If the delegation bit, p, is true, allowing propagation, the authorization certificate can

be represented as the rewrite rule: “K � −→ S �”. If the delegation bit, p, is false,

so that delegation is forbidden, the authorization certificate can be represented as

the rewrite rule: “K � −→ S �”. If, for theoretical discussion, the delegation bit

can be either true or false, the authorization certificate can be represented as the

rewrite rule: “K � −→ S z ”. The ticket on the left of a rewrite rule derived from an

authorization certificate is always live. The ticket on the right is live if the delegation

bit p is true; otherwise it is dead.

In the previous examples, the authorization certificate (KA, KB, T1, true, V) can

be represented as KA � −→ KB �. Similarly, the ACL entry

(SELF, KB friends, T2, false, V) can be represented as SELF � −→ KB friends �.

3In ASCII text we suggest using “[-]” for the live ticket, “[X]” for the dead ticket, and “[*]” for
the zombie ticket. The Certificate Chain Discovery paper uses “ 1 ” for the live ticket, “ 0 ” for
the dead ticket, and “ z ” for the zombie ticket.
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Definition: term We say that a term[3] is either a key or a SPKI/SDSI name (re-

call that a SPKI/SDSI name is a key followed by one or more identifiers4). Examples

of terms are: KA and KB Alice friends.

Definition: string We say that a string[3] is either a term or a term followed by a

ticket. Examples of terms are: KA, KB �, KB Alice friends, and KA MIT EECS faculty �.

Thus, to summarize, there are two types of rewrite rules. The rewrite rule’s type

can be determined from the rule itself:

• Rewrite rules derived from (user) name certificates:

These rules have no tickets. The string on the left of the rule is always a

SPKI/SDSI local name, i.e. a key followed by a single identifier. The string to

the right of the rule may be a public key or a name consisting of a key followed

by one or more identifiers.

KA friends −→ KB Carol Jones Ted is an example.

• Rewrite rules derived from (user and ACL) authorization certificates:

The string on the left of the rule is always a public key or SELF followed by a

“�” ticket. The string to the right of the rule may be a public key or a name

consisting of a key followed by one or more identifiers, followed by either a “�”

ticket or a “�” ticket.

KA � −→ KB Carol Jones Ted � is an example.

Rules derived from authorization certificates can be further subdivided into two

types:

• Rewrite rules derived from user authorization certificates:

These rules can never have the issuer SELF.

KA � −→ KB Carol Jones Ted � is an example.

4described in Section 3.3.3
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• Rewrite rules derived from ACL authorization certificates:

These rules always have the issuer SELF.

SELF � −→ KB Carol Jones Ted � is an example.

6.2 Just Keys

Consider, first, the case in which the input set of user certificates consists of only

authorization certificates, and the subjects of all of the authorization certificates and

all of the ACL entries are keys. That is, consider the case in which there are no

SPKI/SDSI names: all of the terms are keys. Let’s denote the input public key (the

prover’s key) by K∗. The problem of producing the desired certificate chain reduces

to doing a depth-first search[5] (DFS) through the authorization certificates, starting

from “SELF �” and searching for “K∗ z ”.

The procedure is simple. The strings in all of the rewrite rules each consist of

either a key followed by a “�” ticket or a key followed by a “�” ticket.

Just keys algorithm:

1. Set up a directed graph with one vertex for each distinct string. There is an

edge from the vertex representing string Si to the vertex representing string Sj

if there is a rewrite rule of the form Si −→ Sj.

2. Use a depth-first search to determine if there is a path from “SELF �” to

“K∗ z ”. If there is a path, return the path; if there is not a path, termi-

nate with failure.

Figure 6-1 gives an example in which the prover, KA in this case, is authorized to

access the object protected by the ACL via user certificates. In the figure, if the

rule KX � −→ KY � were removed, say, KA would not be authorized to access the

protected object.
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6.2.1 How live vs. dead tickets enforce delegation control

We can see how the distinction between a live ticket “�” and a dead ticket “�”

represents and supports the SPKI/SDSI rules of delegation. An authorization rewrite

rule having a dead ticket on the right cannot have another edge leading from it: the

right-hand side of this rule must be a leaf vertex. A rule having a live ticket on the

right may have another edge leading from it signifying authorization being propagated

from the issuer in the first edge to the subject in the second edge. To illustrate the

point, SELF � −→ KX � and KX � −→ KY � can be joined together in a graph to

propagate authorization from SELF to KY . KV � −→ KO � and KO � −→ KA �

could not be joined together in the graph.

There is a second, very important, function of tickets. This function is described

in Section 6.3.1.

6.3 Names and Keys

Now consider the general case, in which terms may be either keys or SPKI/SDSI

names. We may now have authorization rules and name rules. Strings can be either

a key, a name, a key followed by a “�” ticket, a key followed by a “�” ticket, a name

followed by a “�” ticket, or a name followed by “�” ticket.

Definition: Composition of Rewrite Rules Suppose C1 is a rule of the form

L1 −→ R1,

and suppose C2 is a rule of the form

L2 −→ R2,
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where L2 is a prefix of R1. That is, R1 = L2X for some (possibly empty) string X.

Then we define the composition of rewrite rules[3] C3 = C1 ◦ C2 as

C3 = C1 ◦ C2

= L1 −→ (R1 ◦ C2)

= L1 −→ R2X.

We say that we have rewritten C1 (using C2) to obtain C3. If L2 is not a prefix

of R1, then C1 ◦ C2 is undefined.

An an example, we can compose the following rules:

KA friends −→ KA Bob my-friends

KA Bob −→ KB

to obtain the rewrite rule:

KA friends −→ KB my-friends.

That is, if KA says that one definition of her name “friends” is the name

“KA Bob my-friends”, and KA says that one possible definition of her name “Bob”

is KB, then one definition of KA’s name “friends” is “KB my-friends”.

Definition: Compatible We say that two rules C1 = (L1 −→ R1) and

C2 = (L2 −→ R2) are compatible if their composition C3 = C1 ◦ C2 is de-

fined, that is, if L2 is a prefix of R1.(More precisely, if C1 ◦C2 is defined, we say that

C1 is left-compatible with C2, and that C2 is right-compatible with C1.)

Note that the definition of compatibility really applies to the ordered pair (C1, C2)

since C1 ◦ C2 may be defined (so that C1 and C2 are compatible), but C2 ◦ C1 may

be undefined (so that C2 and C1 are not compatible). Thus, there is the need for the
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more refined notions of left and right-compatibility.

It should now be clear why we have been describing the rules as “rewrite rules”,

and defined a “string” in Section 6.1.1. The rules can be used to rewrite strings to

form new rules.

Thus, in the general case, we cannot simply form a graph and do a depth-first

search through it5. Rules can be composed to derive new rules, with new names not

previously appearing in any certificate. The new rules can be further composed to

derive more rules, with more new names. There exist sets of rules in which composi-

tion can take place ad infinitum, producing new rules. Consider, for instance, the set

consisting of the single rule K1 A −→ K1 A A. This rule can be composed with itself

to form new rules indefinitely:

1. K1 A −→ K1 A A ◦ K1 A −→ K1 A A = K1 A −→ K1 A A A

2. K1 A −→ K1 A A A ◦ K1 A −→ K1 A A = K1 A −→ K1 A A A A

3. K1 A −→ K1 A A A A ◦ K1 A −→ K1 A A = K1 A −→ K1 A A A A A
...

It was not obvious that an efficient SPKI/SDSI certificate chain discovery algorithm

could be developed. We have developed such an algorithm, and a tight bound for

its running time. An earlier version of this algorithm appears in Jean-Emile Elien’s

Master’s thesis[7].

6.3.1 Why authorization rewrite rules have tickets

We can see why authorization rules are represented as rewrite rules with tickets.

The presence of the tickets prevents an authorization rule from being inappropriately

used in a composition as a name rule. For example, it is not correct, according to

5The Certificate Chain Discovery paper considers the case in which all of the certificates are user
name certificates, and all of the subjects of those certificates are either local names or keys; similar
to the case described in Section 6.2, a graph can also be created and a depth-first search performed
to find the values (described in Section 6.4.1) of the names.
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the SPKI/SDSI composition rules, to compose the following name and authorization

rules:

KA C −→ KB C

KB � −→ KB D �

to obtain

KA C −→ KB D C.

Were the tickets not used, this might erroneously be considered a legal composi-

tion. With tickets, the two rules are not compatible. This restriction is consistent

with the viewpoint that the purpose of an authorization certificate is to grant permis-

sion, and not to rewrite names. Only name rules can be used to rewrite names. This

is a crucial point. Tickets maintain the def/auth split [7] in SPKI/SDSI i.e. a single

certificate cannot both define a name and grant an authorization: each certificate is

either strictly a name certificate or an authorization certificate.

We observe the following properties of the composition C3 = C1 ◦ C2:

1. The type of C3, as an authorization or name rule, is the same as the type of C1.

(Rewriting cannot create or destroy tickets.)

2. If C2 is an authorization rule, then L2 = R1.

To illustrate, if C2 is KB � −→ KC �, and C3 is KA � −→ KC �, then C1

must be KA � −→ KB �.

3. If C1 is a name rule, then so is C2. (Equivalently, if C2 is an authorization rule,

then so is C1.)

4. If R1 contains a dead ticket, then C2 must be a name cert.

To give more examples:
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• the rules KB � −→ KB C � and KB C −→ KE can be composed to form

KB � −→ KE �.

• the rules KB � −→ KE � and KE � −→ KH I J � can be composed to form

KB � −→ KH I J �.

• the rules KB � −→ KB C � and KB C −→ KE can be composed to form

KB � −→ KE �.

• the rules KB � −→ KE � and KE � −→ KH � cannot be composed.

• the rules KB D−→KB C and KB C−→KE can be composed to form KB D−→KE.

6.4 Basic Algorithm

Recall, the certificate chain discovery algorithm takes as input an ACL, a tag, a public

key, a set of user certificates, and a timestamp. If it exists, the algorithm returns a

certificate chain, consisting of user certificates, which provides proof that the public

key (principal) is authorized to perform the operation(s) specified in the tag on the

object protected by the ACL, at the time specified in the timestamp. In this section,

the initial set of input ACL “certificates” and user certificates will be denoted by C;

again, the input public key (the prover’s key) will be denoted by K∗.

The basic certificate chain discovery algorithm is as follows:

Basic certificate chain discovery algorithm:

1. Remove from C, all the useless certificates. This step is described in Section 6.1.

Convert the remaining certificates into rewrite rules.

2. Compute the name-reduction closure of C. This step is described in Sec-

tion 6.4.1. Let’s denote the result of computing the name-reduction closure

of C as C#.
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3. From C#, extract all rules of the form:

Ki � −→ Kj z

(where Ki may be “SELF”). Let’s denote this set of rules as C ′.

4. We are now precisely in the case described in Section 6.2 “Just Keys”. Now,

run the algorithm described in that section on C ′. Each of the strings in C ′

consists of a key followed by a ticket. To recap, the steps of that algorithm are:

(a) Set up a graph with one vertex for each distinct string. There is an edge

from the vertex representing string Si to the vertex representing string Sj

if there is a rewrite rule of the form Si −→ Sj.

(b) Use a depth-first search[5] to determine if there is a path from “SELF �”

to “K∗ z ”. If there is no path, terminate with failure.

5. From the information computed in the previous steps, reconstruct and output

the desired certificate chain, consisting only of certificates from the input set of

user certificates.

This algorithm is guaranteed to find a certificate chain if one exists. If a certificate

chain exists, the chain returned can be used to deterministically prove, to any entity,

that K∗ is authorized to perform the operation(s) specified in the input tag on the

object protected by the ACL, at the time specified in the timestamp. Referring to

the protocol in Section 6.1, the prover sends this certificate chain as its “proof of

authorization”.

The name-reduction closure in step 2 is described in the following section.

6.4.1 Name-Reduction Closure

Valuation function

We shall be concerned with the value of various terms. (Recall that a term is a key

or a name.) In SPKI/SDSI, a value is a set of public keys (possibly the empty set).
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The value of a term T is defined relative to a set C of certificates.

Notation: value of a term We let VC(T) denote the value of a term T with

respect to a set C of certificates. When C may be understood from context, we may

use the simpler notation V(T). The value of a term is a set of public keys, possibly

empty.

Value of a key A public key is the simplest kind of a SPKI/SDSI term - it

is constant expression evaluating to itself (as a singleton set). VC(K) = {K} for

any public key K and any set C of certificates. For example, VC1(KA) = {KA} and

VC2(KB) = {KB}, irrespective of C1 and C2.

Value of a name A name has a value that is a set of public keys; this value

may be the empty set, a set containing a single key, or a set containing multiple keys.

This value is determined by one or more name certificates (name rewrite rules); recall

that authorization certificates cannot be used to rewrite names, because they have

tickets (the def/auth split!).

Intuitively, a name certificate “K A −→ S”, defining local name “K A” in terms

of subject S, should be understood as a signed statement by the issuer asserting that

V(K A) ⊇ V(S);

that is, every key in the value V(S) of subject S is also a key in the value V(K A) of

local name “K A”. SPKI/SDSI does not have “negative” name certificates, i.e. you

cannot issue a certificate to remove some key from a group6. Each additional name

certificate for “K A” can only add zero or more new principals to V(K A). Thus, the

above equation says V(K A) ⊇ V(S) and not V(K A) = V(S).

A local name, such as “K Alice”, need not have the same meaning as the local

name “K ′ Alice” when K 6= K ′; the owner of key K may define “K Alice”

6SPKI/SDSI also does not have “negative” authorization certificates: a permission granted by
an authorization certificate is good until the certificate expires or becomes invalid.
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however he wishes, while the owner of key K ′ may similarly but independently define

“K ′ Alice” in an arbitrary manner.

The preceding definition gives the value of local names. The value of a name with

2 or more identifiers, “K A1 A2 ... An”, can be defined recursively as:

V(K A1 A2 ... An) =
⋃

K′∈V(KA1)

V(K ′ A2 ... An).

Thus, any name in SPKI/SDSI represents a set of public keys. Figure 6-2 gives

an illustration; it presents a set C of name rules and gives VC(T ) for various terms T .

Closure of a set of rules

The notion of the closure of a set of rules is fundamental; the closure contains all

rules that can be derived by composition from the given set of rules.

Definition: Closure If C is a set of rules, we define the set C+, called the (tran-

sitive) closure of C, as the smallest set of rules that includes C as a subset and that

is closed under composition of rules.

Informally, the closure C+ contains all rules that can be inferred from C using any

finite number of compositions.

It seems, therefore, that in step 2 in the Basic Algorithm in Section 6.4 on page 128,

we just need to calculate the closure, C+, of C, and extract those rules in which the

terms on the left and right sides are just keys. However, the closure C+ need not be

a finite set, even if C is finite. For example, as we have seen, if C were to contain the

rule K1 A −→ K1 A A, C+ will be an infinite set. Each rule in C+ has a finite-length

derivation from the rules in C, but the set C+ may or may not be finite.

Thus, we define a finite subset of the closure, called the “name-reduction closure”,

a finite subset of C+ that is easy and efficient to compute, and just as useful as the

closure in deriving certificate chains.
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Name certificates issued by Alice:

KA Bob −→ KB(6.1)

KA Carol −→ KB Carol Jones(6.2)

KA Ted −→ KB Carol Jones Ted(6.3)

KA friends −→ KA Bob(6.4)

KA friends −→ KA Carol(6.5)

KA friends −→ KA Ted(6.6)

KA friends −→ KA Bob my-friends(6.7)

Name certificates issued by Bob:

KB Alice −→ KA(6.8)

KB Carol Jones −→ KC(6.9)

KB Frank −→ KF(6.10)

KB my-friends −→ KB Alice(6.11)

KB my-friends −→ KB Frank(6.12)

Name certificates issued by Carol:

KC Ted −→ KT(6.13)

If follows that the following local names have the values:

V(KA Bob) = {KB}

V(KA Carol) = {KC}

V(KA Ted) = {KT}

V(KA friends) = {KB, KC , KT , KA, KF}

V(KB Alice) = {KA}

V(KB Carol Jones) = {KC}

V(KB Frank) = {KF}

V(KB my-friends) = {KA, KF}

V(KC Ted) = {KT}

Figure 6-2: Example illustrating the values of some local names
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Name-reduction closure of a set of rules

Definition: Name-reduction closure If C is a set of rules, we define the set

C#, called the name-reduction closure of C, as the smallest set of rules that includes

C as a subset and that is closed under composition of “reducing” rules. That is, if C#

contains a rule C1 and it also contains a (right-)compatible reducing rule C2, then C#

must also contain C1 ◦ C2.

Definition: Reducing rule We say that a rule C = (L −→ R) is reducing if

|L| > |R|, where |X| denotes the length of sequence X. A reducing rule can only be

a name rule of the form: K A −→ K ′ (K ′ may or may not be the same as K).

If C1 = (L1 −→ R1) is an arbitrary rule, and C2 = (L2 −→ R2) is a

(right-)compatible reducing rule, then C3 = C1 ◦ C2 = (L1 −→ R3) satisfies

|R1| > |R3|. That is, rewriting C1 with a reducing rule C2 gives a new rule with a

strictly shorter right-hand side. For example,

KA D −→ KB E F G ◦ KB E −→ KC = KA D −→ KC F G.

Thus, to compute the name-reduction closure, we only perform rewritings that

cause a reduction in the length of the right-hand side, until no more such rewritings

can be done. This is clearly a finite process. More precisely, our algorithm for com-

puting the name-reduction closure is the following:

Name-reduction closure algorithm:

1. Initialize Ctemp to be the input set C of rules.

2. As long as Ctemp contains two compatible rules C1 and C2 such that C2 is a

reducing rule and C1 ◦ C2 is not yet in Ctemp, add C1 ◦ C2 to Ctemp.

3. Return Ctemp as the computed value of C#.

Intuitively, computing the name-reduction closure C# of a set of rules C only

performs compositions that are useful in computing the value VC(S) of each subject

S in C. The importance of the name-reduction closure of a set of rules is given by the
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following theorems, which show that the name-reduction closure explicitly computes

the values of terms appearing on the right-hand side of the input rules.

Theorem 1 Suppose that C is a set of rules.

If

C = (L −→ R)

is a name rule in C. Then, for each key K ∈ VC(R),

L −→ K

is a rule in C#.

Similarly, if

C = (K ′ � −→ R �)

is an authorization rule in C. Then, for each key K ∈ VC(R),

K ′ � −→ K �

is a rule in C#.

Similarly, if

C = (K ′ � −→ R �)

is an authorization rule in C. Then, for each key K ∈ VC(R),

K ′ � −→ K �

is a rule in C#.
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Theorem 2 Suppose that C is a set of rules.

If

C = (L −→ K)

is a name rule in C#, then there exists a rule

C ′ = (L −→ R)

in C such that K ∈ VC(R).

Similarly, if

C = (K ′ � −→ K �)

is an authorization rule in C#, then there exists a rule

C ′ = (K ′ � −→ R �)

in C such that K ∈ VC(R).

Similarly, if

C = (K ′ � −→ K �)

is an authorization rule in C#, then there exists a rule

C ′ = (K ′ � −→ R �)

in C such that K ∈ VC(R).

These two theorems are the ‘heart-and-soul’ of the certificate chain discovery

algorithm. Their proofs are in the “Certificate Chain Discovery in SPKI/SDSI”[3]

paper. (This thesis just focuses on giving the intuition behind the algorithm, and

is not mathematically rigorous enough to detail the proofs.) Figure 6-3 shows the
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name-reduction closure, and closure, of the certificates from Figure 6-2 on page 132.

The name-reduction closure C# of the certificates in Figure 6-2 includes those certifi-
cates/rules as well as the following (the derivation of each rule is given on the right;
for example, rule (6.14) is obtained by composing rules (6.2) and (6.9)):

KA Carol −→ KC (6.2) ◦ (6.9)(6.14)

KA Ted −→ KC Ted (6.3) ◦ (6.9)(6.15)

KA Ted −→ KT (6.15) ◦ (6.13)(6.16)

KA friends −→ KB (6.4) ◦ (6.1)(6.17)

KA friends −→ KC (6.5) ◦ (6.14)(6.18)

KA friends −→ KT (6.6) ◦ (6.16)(6.19)

KA friends −→ KB my-friends (6.7) ◦ (6.1)(6.20)

KB my-friends −→ KA (6.11) ◦ (6.8)(6.21)

KB my-friends −→ KF (6.12) ◦ (6.10)(6.22)

KA friends −→ KA (6.20) ◦ (6.21)(6.23)

KA friends −→ KF (6.20) ◦ (6.22)(6.24)

All of the preceding rules are also in the closure C+. The following rules are
in C+ but not in the name-reduction closure C#, since (6.11) and (6.12) are not
reducing rules:

KA friends −→ KB Alice (6.20) ◦ (6.11)(6.25)

KA friends −→ KB Frank (6.20) ◦ (6.12)(6.26)

Figure 6-3: The name-reduction closure, and closure, of the certificates in Figure 6-2

6.5 Running Time

Determining the running time of the certificate chain discovery algorithm reduces to

determining the running time of calculating the name-reduction closure.
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Theorem 3: Running time of calculating the name-reduction closure The

running time of name reduction closure on an input set of n certificates, where l is

the length of the longest subject in any input certificate, is O(n3l).

Again, the proof of this theorem is detailed in the “Certificate Chain Discovery in

SPKI/SDSI”[3] paper. There exists an actual pathological input set of certificates in

which the name-reduction closure will take O(n3l) time to run.

We believe that the certificate chain discovery algorithm is very practical, and that

it will be exceptionally effective in practice. In practice, we feel that, as pathological

cases will be uncommon, it will often be the case that |C#| is proportional to |C|, so

that the running time of our algorithm will be linear.

6.6 Full Example

Thus, the certificate chain discovery algorithm first removes useless authorization

certificates; converts the remaining name and authorization certificates into rewrite

rules; computes the name-reduction closure on these rules so that, with respect to

the rules, the names in the subjects of authorization rules are dereferenced to keys;

extracts all rules of the form: Ki � −→ Kj z (where Ki may be “SELF”); forms

a graph of these rules; does a depth-first search to determine if there is a path from

“SELF �” to “K∗ z ”, where K∗ is the input public key; if there is a path reconstructs

and outputs the desired certificate chain, consisting only of certificates from the input

set of user certificates, and otherwise, terminates with failure. Essentially, the proof

of authorization that the algorithm returns consists of a chain of certificates that

allows one to derive “K∗ z ” from “SELF �”; i.e. the proof of authorization consists

of the derivation of the rule SELF � −→ K∗ z .

Consider the following example:

ACL entries:
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(SELF, K0 engineering, T1, true, (07/28/01, 07/30/01))(6.27)

(SELF, K0 finance, T1, true, (07/28/01, 07/30/01))(6.28)

(SELF, K0 human resources, T1, false, (10/09/01, 10/11/01))(6.29)

User certificates:

K0 finance −→ K1 accounting(6.30)

K1 accounting −→ K1 Bob(6.31)

K1 Bob −→ K2(6.32)

(K2, K3 Alice, T1, false, (07/28/01, 07/30/01))(6.33)

K3 Alice −→ KA(6.34)

K5 Alice Brown −→ KA(6.35)

(K6, K3 Alice, T2, false, (07/28/01, 07/30/01))(6.36)

The tags T1 and T2 are completely disjoint.

At time 07/29/01, Alice (KA), runs the certificate chain discovery algorithm with

tag T1 (assume that all of the name certificates are valid on 07/29/01).

1. Remove all the useless certificates and convert the remaining certificates into

rewrite rules:
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At the conclusion of this step, we have:

SELF � −→ K0 engineering � (from certificate (6.27))(6.37)

SELF � −→ K0 finance � (from certificate (6.28))(6.38)

K0 finance −→ K1 accounting (from certificate (6.30))(6.39)

K1 accounting −→ K1 Bob (from certificate (6.31))(6.40)

K1 Bob −→ K2 (from certificate (6.32))(6.41)

K2 � −→ K3 Alice � (from certificate (6.33))(6.42)

K3 Alice −→ KA (from certificate (6.34))(6.43)

K5 Alice Brown −→ KA (from certificate (6.35))(6.44)

2. Compute the name-reduction closure.

At the conclusion of this step, we have:

SELF � −→ K0 engineering � (rule (6.37))(6.45)

SELF � −→ K0 finance � (rule (6.38))(6.46)

K0 finance −→ K1 accounting (rule (6.39))(6.47)

K1 accounting −→ K1 Bob (rule (6.40))(6.48)

K1 Bob −→ K2 (rule (6.41))(6.49)

K2 � −→ K3 Alice � (rule (6.42))(6.50)

K3 Alice −→ KA (rule (6.43))(6.51)

K5 Alice Brown −→ KA (rule (6.44))(6.52)

K1 accounting −→ K2 (6.48) ◦ (6.49)(6.53)

K2 � −→ KA � (6.50) ◦ (6.51)(6.54)

K0 finance −→ K2 (6.47) ◦ (6.53)(6.55)

SELF � −→ K2 � (6.46) ◦ (6.55)(6.56)
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3. Extract all rules of the form:

Ki � −→ Kj z

(where Ki may be “SELF”).

At the conclusion of this step, we have:

K2 � −→ KA � (rule 6.54)(6.57)

SELF � −→ K2 � (rule 6.56)(6.58)

4. Set up a graph and do a depth-first search to determine if there is a path from

“SELF �” to “KA z ”. If there is no path, terminate with failure.

This graph simply looks like:

SELF � −→ K2 � −→ KA �

The DFS returns the path

SELF � to K2 � to KA �

showing that a certificate chain exists.

5. From the information computed in the previous steps, reconstruct and output

the desired certificate chain, consisting only of certificates from the input set of

user certificates.

The resulting certificate chain is, represented as an ordered list:
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(K0 finance −→ K1 accounting,

K1 accounting −→ K1 Bob,

K1 Bob −→ K2,

(K2, K3 Alice, T1, false, (07/28/01, 07/30/01)),

K3 Alice −→ KA)

If Alice (KA), as a prover, were to sign a request that was a subset of T1 and

send this request accompanied with this certificate chain to a verifier at time

07/29/01, the verifier would be able to derive the rule SELF � −→ KA �. If

the verifier was a server7, and the other parts of the server’s verification process

were successful, Alice’s request would be honored.

Production of Certificate Chains The format of the output certificate

chain in this example in the last step is described in the Certificate Chain

Discovery paper[3] as the linear format. As the paper notes, the linear format

may produce an output which is exponential in the size of the input certificate

set. The paper also describes the compressed format, which is just as easy to

create, but produces an output which is polynomial in the size of the input.

6.7 Threshold Subjects

Threshold subjects are described in Section 3.3.3. The scenario for certificate chain

discovery is, essentially, the same as before: a set of parties Alice1 (KAlice1), Alice2 (KAlice2),

..., Alicen (KAlicen) attempt to determine if they are authorized if they collectively

sign an access request, based on a set of (user and ACL) certificates that may contain

authorization certificates with threshold subjects. To derive certificate chains, the

7described in Section 5.1
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certificate chain discovery algorithm could, essentially, make n copies of the certifi-

cate/rule with the threshold subject, use a separate copy to handle each different

subject that is specified in the threshold, and recursively call itself to derive an au-

thorization chain from each copy to any one of keys KAlice1 , KAlice2 , ..., KAlicen . If

there are chains from k copies, the algorithm continues until it has derived a chain

originating from SELF; otherwise, the algorithm terminates with failure.

Definition: Threshold subject A threshold subject[3] is an expression of the form

Θk(S1, S2, ..., Sn) z

where 1 ≤ k ≤ n and where each Si is a term or another threshold subject.

As an example, consider the following authorization rule derived from a certificate

with a threshold subject:

SELF � −→ Θ2(K0 mit faculty,(6.59)

K0 intel researcher,

K0 Alice) �

This rule requires that keys representing at least two of the three names sign an access

request; equivalently with two of the three groups (MIT faculty, Intel researcher, or

Alice) represented. (If Alice is an MIT faculty member, then her signature alone is

good enough; otherwise two keys must be used to sign the request.)

The basic certificate chain discovery algorithm described in Section 6.4 is extended

to handle threshold subjects. As noted, there is now not just a single signer K∗ on

the request, but a set K∗ of signers; we want to determine if this set of signers is

authorized.

The extended algorithm is as follows:

Basic certificate chain discovery algorithm extended to handle threshold
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subjects:

1. Apply Step 1 of the original certificate chain discovery algorithm, i.e. remove

useless certificates and convert the remaining ones into rewrite rules.

2. Make n copies of the rule with the threshold subject, use a separate copy to

handle each different subject that is specified in the threshold. Basically,

(a) introduce new dummy placeholder keys at each position in the threshold

subject. For example, the rule derived from the authorization certificate

(6.59) is rewritten as

SELF � −→ Θ2(Kdummy1 , Kdummy2 , Kdummy3) �(6.60)

where Kdummy1 , Kdummy2 , Kdummy3 represent new public keys that do not

appear elsewhere in the set of rules.

(b) add additional authorization rules to preserve the semantics of the original

(now rewritten) authorization rule. Continuing with the same example,

we would add the rules:

Kdummy1 � −→ K0 mit faculty �

Kdummy2 � −→ K0 intel researcher �

Kdummy3 � −→ K0 Alice �

(If the original authorization rule had a dead ticket instead of a live one

on the right-hand side, then these rules would also have dead tickets on

their right-hand sides.)

3. Temporarily set aside the rewritten authorization rules of the form (6.60), so

that we have a set of rules containing no threshold subjects whatsoever. We now
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apply Step 2 of the original certificate chain discovery algorithm, the name re-

duction closure. Again, let’s denote the result of computing the name reduction

closure as C#.

4. Extract all rules of the form:

Ki � −→ Kj z

(where Ki may be “SELF”). This step is the same as the Step 3 of the original

algorithm. Again, let’s denote this set of rules as C ′.

5. Add the threshold rules set aside in Step 3 of this algorithm to C ′. We now have

just a set of authorization rules, each of which has as a subject either a key or

a threshold subject on a list of keys. This is analogous to the case in Step 4 of

the original algorithm. At this stage, using the set C ′,

(a) Remove any authorization rule whose right-hand side is “Kj �” where

“Kj” is not a member of the set K∗ of keys that may participate in this

access request.

(b) Label each key in K∗ as “marked”; label all others as “unmarked”.

(c) Until no more progress can be made, iterate the following:

• If the key Kj is marked, and there is an authorization rule Ki � −→ Kj z ,

then mark Ki.

• If there is an authorization rule of the form

Ki � −→ Θk(Kl1 , Kl2 , ..., Kln) z

where at least k of the keys Kl1 , Kl2 , ..., Kln are marked, then mark

Ki.

If SELF is now marked, there exists a certificate chain. Otherwise, terminate

with failure.
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6. From the information computed in the previous steps, reconstruct and output

the desired certificate chain, consisting only of certificates from the input set of

user certificates. This step is analogous to step 5 of the original algorithm.

6.8 Certificate Chain Discovery Conclusion

We have developed an efficient algorithm for computing certificate chains for SPKI/SDSI.

Thus, SPKI/SDSI has an efficient procedure for answering the fundamental question,

“Is A authorized to do X ?” While SPKI/SDSI is very expressive, its expressiveness

does not come at the price of intractability; sets of SPKI/SDSI certificates are easy

to work with.
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Chapter 7

Conclusion

SPKI/SDSI’s most interesting features include the ability to define groups, the ability

to delegate authorizations, and the facilitation of the development of scalable, secure,

distributed computing systems. This thesis demonstrates the viability of using the

infrastructure to provide access control in distributed environments. It demonstrated

that, with SPKI/SDSI, security can be integrated into systems in a manner which

embodies the end-to-end argument: using certificates and digital signatures, security

decisions can be made at the ‘ends’, on the clients and servers.

The research presented in this thesis is currently playing a fundamental role in

integrating security into MIT’s Project Oxygen[34], and one system[2] is already using

this research as the basis of its security. Two interesting directions for future research

are the integration of SPKI/SDSI into a Peer-to-Peer system, and the development

of a distributed certificate chain discovery algorithm, in which all the certificates may

not be present on one computer, but may be present on several computers over a

network.
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Appendix A

SPKI/SDSI Demo Objects

The appendix shows the objects used in the demo outlined in Section 5.3 on page 114.

The format of the Sexps is described in the SPKI/SDSI IETF Draft[11].

SPKI/SDSI on
AclFile demo/spki-sdsi-acls/ABC financial acl
ErrorFile demo/ABC/public/error.html

Figure A-1: demo object: .htaccess file protecting the financial directory
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(acl
(entry
(subject
(name
(public-key
(rsa-pkcs1-md5
(e #23#)
(n
|AMMgMuKpqK13pHMhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3C
MBkkZqrM0St4KkmMuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMg
bR4Fk+ctyUxIv3CQ93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH+
+Txw9NAHq4r|)))

ABC executive committee))
(tag
(http

(* set GET)
(*
prefix
http://ostrich.lcs.mit.edu:8081/demo/ABC/financial/))))

(entry
(subject
(name
(public-key
(rsa-pkcs1-md5
(e #23#)
(n
|AMMgMuKpqK13pHMhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3C
MBkkZqrM0St4KkmMuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMg
bR4Fk+ctyUxIv3CQ93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH+
+Txw9NAHq4r|)))

ABC auditors))
(tag
(http
(* set GET)
(*
prefix
http://ostrich.lcs.mit.edu:8081/demo/ABC/financial/))))

)

Figure A-2: demo object: the ACL ABC financial acl
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(tag
(http
GET
http://ostrich.lcs.mit.edu:8081/demo/ABC/financial/budget2000.html))

Figure A-3: demo object: tag created from client’s HTTP request

(sequence
(tag
(http
GET
http://ostrich.lcs.mit.edu:8081/demo/ABC/financial/budget2000.html))

(timestamp
2001-08-02 23:15:10))

Figure A-4: demo object: tag-timestamp sequence

(signature
(hash md5 |NaIIcSv3MQJwdeG2F9sEWg==|)
(public-key
(rsa-pkcs1-md5
(e #23#)
(n
|AKg3tOzoJ5PGQ5q9jzxzwxE8o6bIZ6/cE8gEL+1xJa23viE3bz68ruh
pD5muqJ+uyDCNxgAZ0JVXJazmX1QjiGudj9kEmuni8gJRLZRu0T5E3K7
OU2dodu0kdDg32kym7+ooZNe/F0zWGekfESeezyQ25kvNO3XQvMHXafW
cYjRw|)))

(rsa-pkcs1-md5
|Z85SJP0CygufKofBZXcL6ISXFeOYfyoGnCwh0vX07RgemHWIJJTRsHzx4
7NfnkoSKcpDy+cG8NnhdULFw0Ymnc5sxPzPJUxIYdrQZToFk52VUxgR3tb
ibzeM9CrvL5qZ19lpFiBXDb1KfWsAEYKL9PhW6D6oHEAof0Q50bblIMc=|)
)

Figure A-5: demo object: signature
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(cert
(issuer
(name
(public-key
(rsa-pkcs1-md5
(e #23#)
(n
|AMMgMuKpqK13pHMhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3C
MBkkZqrM0St4KkmMuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMg
bR4Fk+ctyUxIv3CQ93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH+
+Txw9NAHq4r|)))

Alice))
(subject
(public-key
(rsa-pkcs1-md5
(e #23#)
(n
|AKg3tOzoJ5PGQ5q9jzxzwxE8o6bIZ6/cE8gEL+1xJa23viE3bz68ru
hpD5muqJ+uyDCNxgAZ0JVXJazmX1QjiGudj9kEmuni8gJRLZRu0T5E3
K7OU2dodu0kdDg32kym7+ooZNe/F0zWGekfESeezyQ25kvNO3XQvMHX
afWcYjRw|)))))

(signature
(hash md5 |J1F6I3PH8B7cx9nHb5XXIA==|)
(public-key
(rsa-pkcs1-md5
(e #23#)
(n
|AMMgMuKpqK13pHMhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3CMB
kkZqrM0St4KkmMuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMgbR4F
k+ctyUxIv3CQ93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH++Txw9N
AHq4r|)))

(rsa-pkcs1-md5
|aekwGvKshxzWP9AI9ViKq4AKzlB/wb4Ub4I1CUh3Z0p2Nqa0/4J/qL4dW
4DBIQfGFNhCazjn3DIQJbjQan9TsLh7G2lfysrcozVpPCwqnLfrJUwdyTS
M8yU6795T4pg4RhLY33MDsc85MSHX6qGYbAP26GzXmBY66JPAqZJIjAk=|
))

Figure A-6: demo object: Alice’s name certificate
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(cert
(issuer
(name
(public-key
(rsa-pkcs1-md5
(e #23#)
(n
|AMMgMuKpqK13pHMhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3C
MBkkZqrM0St4KkmMuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMg
bR4Fk+ctyUxIv3CQ93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH+
+Txw9NAHq4r|)))

ABC auditors))
(subject
(name
(public-key
(rsa-pkcs1-md5
(e #23#)
(n
|AMMgMuKpqK13pHMhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3C
MBkkZqrM0St4KkmMuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMg
bR4Fk+ctyUxIv3CQ93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH+
+Txw9NAHq4r|)))

Alice)))
(signature
(hash md5 |4/quwr4uJ8a0tOBaNCKrHQ==|)
(public-key
(rsa-pkcs1-md5
(e #23#)
(n
|AMMgMuKpqK13pHMhC8kuxaSeCo+yt8TadcgnG8bEo+erdrSBveY3CMB
kkZqrM0St4KkmMuHMXhsp5FX71XBiVW1+JGCBLfI7hxWDZCxGTMgbR4F
k+ctyUxIv3CQ93uYVkg9ca6awCxtS0EI7sLuEB+HKuOLjzTsH++Txw9N
AHq4r|)))

(rsa-pkcs1-md5
|JxvEayYstAs2aypi422iJ/x0/CKzvwVT0WheIqKJhopkuY4SAyre53tKj
cqw1wy91EnGgdoLvLTTmUn/yPRVNLsiffAo96w87tN2KP1rnOp06rrQVf8
+4cBKNKQ/b4vFddKIBZ4dK6UqGDRaafUeQsAXPi2M3yFuDCeKU9220Pg=|
))

Figure A-7: demo object: Alice’s name (group) certificate
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