
Almost All Primes Can be Quickly Certified

Shaft Goldwa,ser* Joe Kilian*
EEC8 Department Department of Mathematics

and
Laboratory for Computer Science

Massachusetts Institute of Technoiooy

A B S T R A C T

This paper presents a new probabilistie
primality test. Upon termination the test outputs
"composite" or "prime", along with a short proof
of correctness, which can be verified in determinis-
tic polynomial time. The test is different from
the tests of Miller [M], Solovay-Strassen [SSI, and
Rabin [R] in that its assertions of primality are
certain, rather than being correct with high prob-
ability or dependent on an unproven assumption.

Thc test terminates in expected polynomial
time on all but at most an exponentially vanishing
fraction of the inputs of length k, for every k.

This result implies:

• There exist an infinite set of primes which
can be recognized in expected polynomial time.

• Large certified primes can be generated in
expected polynomial time.

Under a very plausible condition on the
distribution of primes in "small" intervals, the
proposed algorithm can be shown ' to run in ex-
pected polynomial t ime on eve ry i n p u t . This

* R e s e a r c h s u p p o r t e d i n p a r t by N S F G r a n t 8 5 0 9 9 0 5 D C R

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, a n d notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1986 ACM 0-89791-193-8/86/0500/0316 $00.75

316

condition is implied by Cramer 's conjecture.

The methods employed are from the theory
of elliptic curves over finite fields.

1. I N T R O D U C T I O N

I . I T e s t i n g P r i m a l i t y : B r i e f R e v i e w

Distinguishing prime numbers from com-
posites has intrigued mathemat ic ians as early
as about 274 B.C, when the sieve algorithm of
Eratosthenes has been allegedly recorded. Much
progress has been made on this problem since
tile 17th century by Fermat, Euler, Legendre and
Gauss.

With the arrival of fast computat ional devices
new algorithmic ideas based on the work of Fer-
mat and Gauss were proposed and implemented
(see [D],[BLS]). These algorithms mostly relied
on factoring and thus where impractical for even
moderate size inputs.

The interest in primality in complexity theory
was invoked by the exciting primality tests of
Miller[M], Solovay and Srassen [SS], and Rabin
[R].

Miller's algorithm [M] is a deterministic poly-
nomial t ime procedure, which when answering
"composite" gives a proof of correctness, and
when answering "prime" does not. The assertions
of primality made by the algori thm are always
correct if if the Extended Riemann Hypothesis
(ERH) is true. However, if the ERII is false, the
numbers declared prime may still be composite.
Thus, tile ERII is not used to bound the running
time of the algorithm, but to vouch for the cor-
rectness of the answer.

The probabilistic primality tests of Solovay-
Strassen [SS] and Rabin [SS], essentially perform a
probabilistic search for a proof of compositeness.
The failure of this search, provides circumstantial
evidence that the number is not composite. These
algorithms always terminate in polynomial time
on every input. Upon termination they declare
the input either composite or probably prime.
When a number is declared "composite", a short
(verifiable in deterministic polynomial time) proof
(certificate) of compositeness is provided. When a
number is declared "probably prime", then it is a
prime with very high probability, but no certainty
is provided.

The fastest deterministic algorithm known is
due to Adleman, Pomerance and Rumley [APR]
(followed by Choen-Lenstra[CL]) and runs in time
O(kc log los k) on inputs of length k. The answers of
this algorithm are always correct. Unfortunately,
it is not only slow but, like its predecessors, does
do not provide us with a short certificate (i.e poly-
nomial time verifiable proof) of its assertions of
primality.

As discussed above, finding a short certificate
of compositeness can be done quickly prob-
abilistically. But, how about short proofs of
primality? Although it is not as obvious as in
the case of compositeness, Pra t t [P] has shown
that short proofs of primality do exist (i.e the
set PRIMES is in NP). Unfortunately, finding a
Pratt-certificate for a given prime involves being
able to factor quickly, which is hard.

Partial progress toward finding short proof
of primality quickly was made by Furer IF]. He
shows a Las Vegas (always correct, probably fast)
algorithm distinguishing between n - a product
of two primes and the n a prime (provided n ~ 1
mod 24).

To summarize, the following questions remain
open:

• Is there an infinite set of primes which can
be recognized in expected polynomial time ?

• Can random large certified primes be
generated in expected polynomial time?

• Is there a probabilistic primality test which
is alaways correct and probably fast on every
prime input, i.e a Las Vegas primality test ?
1.2 O u r Resul t s

In this paper, we propose a probabilistic al-
gorithm which upon termination outputs either
"prime" or "composite", along with a short proof
(certificate) of correctness. The proof of correct-
ness can be verified by a deterministic polynomial
Lime algorithm.
We prove the following.
T h e o r e m 1: Given any prime p of length k, our
algorithm outputs a certificate of correctness of
size O(k2), which can be verified correct in O(k 4)
deterministic time.
T h e o r e m 3: For every size k ~> 0, our algorithm
terminates in expected polynomial time on at least

1 - 0(2 - ' ~ ' ~ ' ~) of the prime inputs of length k.
Note that the fraction of primes for which we
could not prove that the algorithm terminates
in expected polynomial time is smaller than any
polynomial in k fraction.

Let ~(x) denote the number of primes smaller

than z.
Theorem 2: Our algorithm terminates in

expected polynomial time on every input if the
following conjecture is true:

3cl,cs ~> 0

+ _ > c2,/

-- log'* x

for sumeiently large z.
The above conjecture is implied by the well-

known Cramer's conjecture concerning the maxi-
mail size gap between consecutive primes (see sec-
tion 1.2.3 for details).
Theorems 1 through 3 imply the following.
1.2.1 A n inf ini te se t of p r i m e s r e c o g n i z e d in
expec ted po l ynomi a l t i m e

Theorem 2 implies that there exists an infinite
set of primes which cen be recognized in expected
polynomial time. In addition the set contains al-
most all primes of length k, for every k ~> 0.
1.2.2 Genera t ing Large Cert i f i ed P r i m e s

317

A trivial application of this result is that we
carl, given any length k, generate a random prime
p of length k, along with a short proof (certificate)

that p is prime, such that the distribution of the
generated primes is very close to uniform. One
can simply run our algorithm on random k digit
numbers until one is found that can be proven
prime. If the algorithm takes too long on a par-
ticular input, it can be restarted on a different
random input. The expected number of random
numbers to be tried before a certifiably prime one
is found is polynomial in k.

Moreover, certified members of special sub-
sets of the prime numbers, can be produced at
random. If one wished, for instance, to find an k
digit prime of the form 4t+3, one could randomly
try k digit numbers until one was found that was
certifiably prime, and also of the form 4t+3. Since
there is a large fraction of k digit primes of this
form, this algorithm is guaranteed to find one in

expected polynomial time. In general, members of
any sufficiently dense subset of the prime numbers
may be found in this manner.

An application of this technique is in produc-
ing random numbers with certified factorization.
Bach[B] showed how to generate uniformly dis-
tributed numbers of a given length with "known"
factorization. [[owever, one could never be cer-
tain that the given factorization was complete.
Using Bach's algorithm in conjunction with our
algorithm, one can randomly generate nearly
uniformly distributed numbers with certified,
known factorization.
1.2.3 How likely is our conjecture ?
Let us restate our conjecture:

3c l , c2 > 0

c 2 ~/'~
r(~ + V~) - ~(~) _> log ¢1 x

for sufficiently large z.
A famous conjecture, due to Cramer, con-

cerning the maximal gap between two primes, im-
plies ours. His conjecture can be restated as: for
sufficiently large x,

+ log > o

318

Additional support of our conjecture, is
provided by the following facts about the density
of the primes.

The Prime Number Theorem tells us that for
surf. large z.

X

log x

The best bound known for the maximal gap
between two primes is due to Heath-Brown and
Iwaniec[III]. They show, that for sufficiently large
x, there always exist a prime in the interval Ix, x +
x11/20].

Finally, a theorem by Heath-Brown [HB] im-
plies that there exists constants cl,c2 such that
for sufficiently large x, the number of intervals

[Y,Y+ ~/T] where z ~ y ~ 2x in which there

are less than ~ primes, is less than z5/6logC2x log y

Heath- Brown's result is also used, in section
4, to show that our algorithm terminates in ex-
pected polynomial time on almost all prime in-
puts.

1.3 New techniques: Elliptic Curves
Most primality tests previously proposed used

mathematics developed in days of Fermat and
Gauss.

Recently, methods from elliptic curves (see
survey by Tate IT]) over finite fields have been
used for speeding up problems in computational
number theory. This.has started with Schoof's[Sc]
deterministic algorithm to compute square roots
modulo primes. In the same work, Schoof shows a
polynomial time algorithm to compute the order

of the group generated by an elliptic curve over
a finite field. The usage of School's algorithm, is
crucial to our primality test.

Lenstra [L] uses elliptic curves to obtain an
integer factorization method which uses nearly
constant memory, and whose running time is a
function of the size of the smallest prime divisor

of the integer to be factored. The running time
analysis of Lenstra's algorithm depends on a very
plausible assumption concerning the distribution

of smooth numbers in small intervals, and requires

no assumptions about elliptic curves. This is due
to a result he proves concerning tim distribution
of the order of elliptic curves. We make use of
this result in the analysis of the running time of
our algorithm.

The use of elliptic curves in solving the two
oldest problems in number theory: factoring [L]
and primality, suggests they may be quite useful
in solving other computational number theoretic
problems as well.
G U I D E L I N E T O T H E P A P E R

In section 2 a very high level sketch of the
algorithm is given.

In section 3 the necessary backgrgound from
the theory of elliptic curves is reviewed, and nota-
tion is established.

The description of the algorithm is resumed
in section 4. Section 4.1 presents the full version
of the algorithm, and some of its technical details
are discussed. In section 4.2 correctness of the
algorithm is proved. In section 4.3, the expected
running time of the algorithm is analyzed using
the conjecture mentioned in section 1.2.3. In sec-
tion 4.4, slight improvements to the main algo-
rithm are proposed.

Section 5 presents a more sophisticated
analysis of the running t ime of our algorithm, and
it is proved that the algorithm will terminate in
expected polynomial time on nearly all primes.
2. O V E R V I E W O F T H E . A L G O R I T H M

Our algorithm has some of the flavor of
Pratt 's[P] nondeterministic algorithm for generat-
ing short proofs of primality. Given some prime
p, P ra t t proves that p is prime by exhibiting some
g E Z~ such that Op(g) = p - 1 . To prove that
Op(g) = p - 1, the prime decomposition of p -

~1 e3 = Pl P2 - . .P~ must be exhibited, with proof
(i.e. one must recursively show that all the p~'s
are prime). Once this has been accomplished, one

v-1 (1 < i < k) by a can show that Op(g) ~ p--=- _ _
straightforward computation.

Pra t t ' s nondeterministic algorithm is
ineffective, since it is hard to generate the prime
decomposition of p - 1.

We overcome this difficulty by working with
elliptic groups rood p instead of Z~. Given any
prime modulus, there exist many elliptic groups
with varying orders. Moreover, it is easy to

gcnerate such groups at random. We exploit this
extra degree of freedom in a manner similar to
Lenstra's factoring algorithm, as follows.

We randomly pick elliptic groups rood p until
one is found whose order has a sufficiently large
prime factor, q. Such a group can be utilized to
generate a proof that p is prime if q is prime.
We then recursively prove that q is prime, finally
stopping when the number to be proven prime is
sufficiently small.

Using results by Lenstra and others on the
distribution of the order of elliptic groups mod p,
we can deduce important properties of our algo-
rithm from standard results (and/or well known
conjectures) about the distribution of primes in
small intervals. Thus, our analysis requires no
unproven assumptions about elliptic groups.

3. O V E R V I E W OF T H E E L E M E N T A R Y
T H E O R Y O F E L L I P T I C C U R V E S

3.1 D e f i n i t i o n of E l l i p t i c C u r v e s a n d El-
l ip t ic G r o u p s

Given an arbitrary field F, we define an el-
liptic curve, represented in Weierstrauss normal
form, to he the set of points (z, y) which satisfy
the equation y2 = z3 + Az + B, where A , B EF
and 4A 3 + 27B 2 ~ 0. For the rest of our discus-
sion, we assume that the characteristic of F is not
2 o r 3 .
H o w t o a d d p o i n t s on an e l l i p t i c curve .

If one adds a special element, /(usually
referred to as the point at infinity) to the set
of solutions, one gets an abelian additive group,
where I is the identity. Addition is defined by the
"tangent and chord" method illustrated in figure
1. In figure 1, F is the real line.

Given points L and M, not equal to I, con-
sider the line connecting them, or, if L = M , the
line tangent to the curve at L. If this line is
vertical, define L + M to be I. Otherwise, it is

319

guaranteed to intersect the curve at a third point.
Define L+M to be the reflection of this point over
the z axis.

figure 1

One can calculate the equation for this line
(af the form y ~ kz + B) , which can then be
used to find the third intersection point. Thus,
given L ---- (zl, Yl), M ~- (z2, Y2), we can compute
L + M by the following algorithm:

if (Zl ---- z2) a n d (Yl = --Y2) t h e n re tu rn (I)

if (zl ~ z2) t h e n k =
e l s e ~ ~ y s - y l

z2 - - z I

Z s ---- ~ 2 __ Z l __ Z 2

= +

return((.,

The identity element I satisfies I + L = L +
I----L.

This addition law clearly generalizes to ar-
bitrary fields whose characteristic is not 2 or 3.
Furthermore, it also generalizes to elliptic curves
defined over arbitrary rings. However, L + M is
not always defined in this case.

In particular, the correct inverse element

((2y) - l or (z2 - z ,) - l as the case may be) m u s t
exist in the ring for the addition to be well defined.
Working in the ring Z,~ it is easy to determine if
an inverse exists, and thus easy to determine if
L + M is well defined.

How to m u l t i p l y po in t s b y i n t e g e r s .

One must specify just what qM, (q ~_ 0, M E
En) is (if it is even defined), for the case where n is
composite(in fact, the same procedure will be used
when n is prime). Our "addition" operation is not
necessarily associative in this case. We define qM
to be

OM = I,
qM = (q - 1)M + M (for q odd), and
qM = ~M + ~M (for q even).

This "repeated doubling" algorithm,
analogous to the repeated squaring algorithm for
exponentiation in Z,~, allows for efficient computa-
tion. Using this definition, scalar multiplication
by q can be computed using O(log q) additions.
C o m p u t i n g the o r d e r off e l l ip t i c g roups .

Our algorithm heavily relies on the ability to
determine the order of an elliptic group modulo
some prime in polynomial time. An algorithm
due to Schoof[Sc] computes the order of an elliptic
group rood p in O(log 9 p) time.

3.2 N o t a t i o n and C o n v e n t i o n s
Define E,~(A, B) (where gcd(4A a + 27B ~, n) =

1) as the set of points (x,y) over Z,~ satisfying
y2 ~ Z3 + Az + B, Along with a special element
1. For p prime, Ep(A, B) is an elliptic group.

Define Np(A,B) to be the order of Ep(A,B).
For notational convenience, we abbreviate these
as Np and Ep when the choice of A and B is clear
or unimportant. We write the order of an element
M in Ev as OB,(M).

3.3 T h e Group S t r u c t u r e of E l l ip t i c
Curves over GF(p) for p p r i m e .

We use two well known properties of elliptic
curves over GF(p):

(1) The order of the group generated by an
elliptic curve over GF(p) is equal to p + l - t , where
Itl ~ 2Vf~(the Riemann Hypothesis for Finite

320

Fields}.

(2) An elliptic group Ep will be isomorphic to
Z,n, X Z,~ 2 for some rnl,rn2, where rn2[rnl.

Our algorithm works by picking random
curves (i.e. randomly choosing A , B E Zp) until
one is found whose order belongs to a special sub-
set of the natural numbers. An important result
due to Lenstra[L] allows us to relate the probabil-
ity of picking a curve of the right order with the
density of this subset in the interval [p - v/~, p +

T h e o r e m (L e n s t r a [L]): For S C N, define
S~ to be S intersected with the interval [p-v/~, p+
Vr~]. Then

qM by the procedure described in section 3.1 are
well defined.

L e m m a 1: Given points L, M E E,,, p > 3,
p prime, and pin, if L + M is well defined, then
(L+ M)p . ~ (L}p 4- (M)v.

This lemma is useful because once we verify
that some L 4- M is defined mod n (by just go-
ing through the calculation}, we can then make
statements about (L)v 4- (M)p (for pin) without
knowing what p actually is.

P r o o f : Lemma 1 follows trivially from a
simple case analysis on the rules for computing
the sum of two points on the elliptic curve E,,.
These rules may be summarized as:

(Vp, p,ime)(VS)(3c > 0)

c. (IS ,l- 2)
prob(Np(A, B) e S) >

v ~ l o g p

Here, A, B are picked uniformly (subject to 4A 3 +
27B 2 ~ 0 mod p) from Z v.

This theorem is crucia~l to the analysis of our
algorithm. It enables us to relate the running time
of our algorithm to the distribution of primes in
sm~ll intervals, without any mention of elliptic
curves.

3.4 T h e S t r u c t u r e of E l l i p t i c C u r v e s over
Z,~ for c o m p o s i t e n.

While elliptic curves over Z,~ do not form
groups, there is a natural projection from E,~ to
Ep, where p > 3 is prime, and pin. Given a point
x rood n, define (z)v to be z taken rood p. Given
a point M -~ (z,y) E E,~(A,B), define (M)v E
Ev((A)p,(B)p) as ((z)1,,(y)~,). Define Ip -~- I, the
identity element in Ep. Note that 4A 3 + 27B 2 y~
0 rood p , since gcd(n, 4A ~ + 27B ~) -~- 1. Thus,
Ep((A)~,,(B)p) is well defined.

This projection is well behaved, as shown by
the following lemma:

D e f i n i t i o n 1: Given points L, M E E,~, L +
M is well defined if, when computing this sum,
all the required inverse elements exist in the ring
Z,~. Likewise, qM, for q an integer, is well defined
if all the additions required in the computat ion of

(1) I + M = M + I = M
(2) + (. , - y) = /
(3) # o)
(4) (Zl,Yl) 4-(Z2,~/2) = (~ - ~ , ~ }

(for
Here, Pt,P2 are fixed polynomials over

z, y ,A ,B , and QI, Q2 are fixed polynomials over

Xl, Yl~ Z2, y2,A, B.
If either L or M is equal to I, then lemma 1 holds
trivially. For the rest of the analysis we assume
L , M y~ [. This implies (L)p,(M)p ~ I.

If L + M is of the form (z, y) + (z, - y) , then
(L)p + (M)~ will also be of this form, and the
lemma will hold.

If L = M = (z,y) (where y ~ 0), then
(L)v = (M)p = ((z)p,(y)v). Using rule 3, it

M - - {Pi(z,y,A,B) P~(=,II,A,B)~ is clear that L _ -- ~ (2y) , (2y) J"
L + M exists only if (2y, n) = 1, which implies
(y)p y~ 0. Therefore, by rule 3, (L)p + (M)p =
(p~((=)P'(y)e'(A)p'(v)P) P~((=)P'(Y)P'(A)~'(B)v)). Since (2(y),) , (2(y),)
we are computing the same rational function mod
n and mod p, using arguments which are respec-
tively congruent mod p, the two values computed
will be congruent rood p. Thus, the lemma will
clearly hold.

If L = (zl ,yl) , and M ~" (z2,Y2) (where
zl ~ z2) then (zl - z2) -1 exists only if (zl)p
(z2)p. The same argument then applies as with
the L = M case. Q . E . D .

321

C o r o l l a r y 1.1: If M E E , , and qM = /(as
calculated by the algorithm described in 3.2), then
if p is prime,p > 3, and pin, then (qM)p = Ip.

The proof follows trivially from lemma 1.
Note that in E , , n composite, it is not clear

that one gets a consistent answer if one computes
qM in several different ways. Corollary 1.1 allows
us to avoid this difficulty.

4. T H E A L G O R I T H M
4.1 Descr ip t ion of the A lgor i thm.

Our algorithm may be thought of as a
primality prover. Given a prime number, p, it
tries to generate a proof that p is prime. This
is a logical counterpart to current randomized al-
gorithms, which produce proofs of compositeness.
Given some number n, which we wish to test for
primality, we can run our algorithm on n in paral-
lel with a compositeness prover.

A naive version of our algorithm may be in-
formally described as follows:
Step 1: Given some number p, which we wish to
prove prime, we start generating random elliptic
groups mod p. This is done by simply choosing
A,B E Zp at random, rejecting choices where
4A 3 + 27B 2 = 0 rood p. The random group will
be denoted by Ep(A,B). We compute the order
of this group using a deterministic algorithm due
to Schoof[Sc]. Schoof's algorithm takes O(log 9 p)
steps.

Next, a s tandard probabilistic primality test-
ing algorithm ([R,SS]) is used to determine if
Np(A, B) is of the form 2q, where q is prime. The
probability of making a mistake can be made ex-
ponentially small. This operation is relatively in-
expensive, and is clearly dominated by the time
required to determine the order of the group in
the first place. If Np is not of the form 2q, q
prime, we repeat step 1.

Step 2: Once such a group is found, we ran-
domly select points on the curve (excluding the
identity) until a point of order q is found. We
can pick random points by picking x E Z~ at ran-
dom, and taking y to be a random square root of

x 3 + Az + B, if one exists(repeating the process if
z 3 + A X + B is a quadratic nonresidue). Clearly,
(x,y) cannot be the identity. Note that square
roots mod p (p prime) may be efficiently computed
in O(log 3 p) expected time by probabilistic algo-
r i thms ([AMM],[B]}.

S t e p 3: We exhibit the curve (represented by
A and B), q, and the point found of order q. We
then recursively prove that q is prime. We stop
when the number to be proven prime is sufficiently
small.

This gives the general flavor of the algorithm.
tIowever, there are some technical details which
still need to be addressed. We proceed to describe
the complete algorithm.

Let PP(x) be a probabilistic primality test,
such as the ones proposed by Miller-Rabin[R] or
Solovay-Strassen[SS]. We require that P P errs
with exponentially low probability, and always
identifies multiples of 2 or 3 as composite.

Prove(p)

Po = P; i = 0
lowerbound = 2 (lg P)~I Ig Ig lg 1,

certificate =,ff
whi l e pi > lowerbound do

repeat Randomly choose A,B E Zp,
Compute Np,(A, B)

u n t i l (4A3 + 27B2, P) = 1 and
pp(~,,,(A,O)) = " p r o b a b l y prime"

1%, (A,S) q -~. - - ~
repeat Randomly choose M E Ep,(A, B)
un t i l M ~ I and qM = I
i = i + l
p~ -~- q
Append (M, pi,A, B) to certificate

if pi is composite t h e n run Prove(p) again
/* p~ is small enough to be
tested deterministically by [APR]*/
return(certificate)

end
We run this procedure in parallel with a deter-

ministic immplementat ion of P ra t t ' s algorithm
for producing a short certificate of primality. If

322

Prat t ' s algorithm finishes first, then his certificate
will be ou tput instead, and Prove(p) is aborted.

We proceed to discuss in greater detail three
key issues: (1) Giving a criteria for when p/ is
small enough to be deterministically checked for
primality, (2) The problem of needing to test

Np(A,B) for primality without a provably cot- 2
reet polynomial test, and (3) Showing how the
certificate ou tput by Prove(p) can be used to prove
that p is indeed prime. This last point is dealt
with in section 4.2.

• U s i n g a d e t e r m i n i s t i c a l g o r i t h m t o s t o p
ear ly:

We need to establish when a number is
small enough tha t its primality may be verified
deterministically in polynomial time. Using a
deterministic test due to Adleman, Pomerance,
and Rumley[APR] one can test n for primality
(and thereby prove n is prime) in (lgn)"iglgig~
steps. Therefore, one can test a number less than
2 (lg'~)°/~s~*'s~ for primality in time polynomial in
lgn.

Thus, the algorithm can keep track of the size
of the original input number, and stop as soon as
the current number to be proved prime goes below
the bound stated above. No real cost is incurred
by switching to the deterministic algorithm at this
point.

The reason for stopping at this point is to in-
crease the fraction of primes we can show (without
any assumptions) are proven prime by this algo-
rithm. Switching to the deterministic test will not
speed the algorithm up.

• C r e a t i n g a p r o o f t h a t is a l w a y s c o r r e c t
w h i l e u s i n g a p r i m a l i t y t e s t t h a t m a k e s mi s -
takes :

In order to determine if N,(A,s) . 2 is prime, we
use a randomized algorithm with an exponentially
low probability of failure. Naively, one might
suppose that this destroys any hope of creating
a certificate that is guarenteed to be correct. A
failure of the primality tester could conceivably
lead to generating an incorrect certificate, or send
the procedure into an infinite loop.

323

However, the fact that an actual certificate
is being generated, instead of merely a yes/no
answer, remedies this problem. As will be shown
in section 3.2, the certificate is easily checked
for validity (else it could hardly, be called a
certificate!). If the procedure gives a certificate
that turns out to be invalid, the procedure can be
run again until it outputs one tha t is valid.

Since the algorithm is run in parallel with
Prat t ' s algorithm, the procedure is guarenteed
to terminate with a certificate in expected time
"merely" exponential in logp. The primality test-
ing algorithms used can be made to have such a
small probability of error that, even with an ex-
ponential time penalty for making an error, the
affect on the expected running time will be negli-
gible.

4.2 P r o o f of c o r r e c t n e s s .

We can show how one can use the ou tput of
Prove(p) to infer that p is indeed prime. This will
prove the correctness of our algorithm.
L e m m a 2: For all n not divisable 2 or 3, if
3 M, q, A, B such that q > n½ + 1 +2n¼, q is prime,
(n, 4A 3 + 27B2) -~ 1, M ~ I , M E E , (A , B) , a n d
qM ---- I, then n is prime.
P r o o f : (by contradiction) Suppose n was com-
posite. Then 3p < vfn, p prime s.t. p]n.

If q M -~ I then qM n ---- I n by corollary 1.1.
Thus, OE,,(Mn)[q. However, OEp(Mn) _< N n <
p + l + 2 v f ~ < n ½ + l + 2 n ¼ < q. Since qis prime,
we have Osp(Mn) : 1. This implies Mr, -~ In,
which implies M ---- I, a contradiction. Q .E .D .

We can now show how to use the ou tpu t of
the algorithm to prove p is prime.

T h e o r e m 1: For any prime p, given the out,-
put of Prove(p), the primality of p can be verified
in (log p)4 steps.

P r o o f : The first quadruple output from
Prove(p) is of the form (M , q , A , B) , where
(p, 4A 3 + 27B 2) ---- 1, M e Ep(A,B) , p not a mul-
tiple of 2 or 3(unless p ---- 2 or 3), and qM ---- I.
These facts can all be verified in O(log 3 p) time.
By lemma 2 it is clear that q (= Pl) prime--* p
prime.

Likewise, one can verify that pl prime--+ Pi-I
prime. Inductively, it can be verified that Pk
prime--+ p prime, where Pk is the second element
of the last quadruple. However, Pk can be verified
trivially (sublinear in IPl), due to its small size.

Finally, we note that pi < P'-l+2v'~'=T
- - 2

Thus, k will be O(logp). Verifying the primality
of p thus requires O(log p) scalar multiplications,
for a total of O(log 4 p) steps.

Finally, note that a certificate used by
Prat t 's algorithm can also be verified in O(log 4 p)
s teps.Q.E.D.
4.3 Ana lys i s of the Expected Running Time
U n d e r a Conjecture.

To prove a number p is prime, one must go
through O(Iogp) iterations of the outer repeat
loop. In each iteration, the algorithm must (1)
Find an elliptic group mod pi whose order is twice
a prime, and (2) Find a point in the group with
this prime as its order.
(1) The expected time required to find an elliptic
group rood pi with the right order is equal to
the expected number of groups that must be tried
before finding one with the right order, multiplied
by the expected time needed to test a group for
this_property. We momentarily defer the question
of what expected number of groups must be tried.
We denote this quantity by Tp,.

Determining if a group has the right order
can be done in O(log 9 Pi) time: First determine
the group's order[Sc], taking O(log 9 Pi) time, then
determine if it is twice a prime (probabilistically),
taking O(log 4 pl) time.

The expected time required to find a group of
the right order is thus Tp, • O(log 9 pi).
(2) Picking a random point (2, y) requires picking
an expected number of ~ x's before finding an

x s.t. (3y) (x, y) i s on the curve.
Since Ep, is isomorphic to Z2q(fOr some q),

half the points will be of order q. Thus, the ex-
pected number of random points that must be
chosen before finding one of order q will be 2.
Determining if a point is of order q can be done
in O(log 3 Pl) time.

Therefore, the expected time to find a point
2p, O(ioga p~). of order q will be 2 • ~ • log a p~

Thus, once a group with the desired
properties has been found, one can find a point
with the desired properties in expected O(log a pi)
time. This is a low order term, overwhelmed by
the Tp,. O(log 9 Pi) running Lime of ([).

Summing over all the O(log p) pi's, and not-
ing that pi < p, we get an upper bound on the to-
tal expected running Lime which is O(log 1° p)(the
maximal Tp,).
Applying Lenstra's Result:

We can use Lenstra's result on the distribu-
tion of Np~ to give a bound on Tp, which depends
solely on the distribution of primes in short inter-
vals. Let S be the set of all numbers which are
twice a prime. The set Sg, will thus be the set of
numbers in [p~- ~vf~, p, + vf~] which are twice
a prime. The cardinality of Sg, will therefore be

the number of primes in [- ~ , P'----~-~:], which is

just ~r(--!-~-~-l)-~r(-~!-s2-~A). By Lenstra's theorem,
and the definition of Tp,,

O /
 _,logp,

n, = 2 J J

If one assumes the asymptotic distribution of
primcs holds in these intervals, one gets a heuristic
bound of O(log 2 p~) for Tp,. This yields a heuristic
bound of O(log t2 p) for the expected running time
of our algorithm. In fact, our algorithm almost
certainly runs in O(log 11 p) time, but this requires
a further assumption on the distribution of Np,.

The interval [P~ vf~, p~v'~] can be essentially

rewritten as [pl, pl + ~v/~], where pl p-v'~
(we may be off by a tiny amount at one of the
endpoints, but this doesn't matter) . This trans-
formation allows a slightly cleaner formulation of
our next result:

Theorem 2: There exists a probabilistic
primality test which is always correct and ter-
minates in expected polynomial t ime on all inputs
if

3 2 4

(3c)(3k) + - > _ _ L _
V ~ -- clog ~ n

Proof: By the same argument as above, our
algorithm will prove p prime in expected time
O(logll+kp). Our algorithm may then be run
in parallel with a s tandard compositeness prover
(e.g. any of the usual randomized primality
testers). Q .E .D .
4.4 A General izat ion of the Algor i thm.

As stated, the algorithm searches for elliptic
groups whose order of the form 2q, where q is
prime. This condition is overly restrictive, and
can be relaxed to that of having an order that is
of the form aq, where q > p½ + 2p¼, and q is
prime.

Heuristically, this should speed up the algo-
r i thm for two reasons:

(1) There are more groups which fit this
criteria. Thus, fewer groups must be tried before
a suitable one can be found.

(2) Fewer iterations of the outermost repeat
loop will be required, since q may go down by
more than a factor of 2 at each iteration.

The first reason is of some theoretical inter-
est. As will be seen in section 5, mathematicians
have come close to proving the conjecture needed
to show that our algorithm runs in expected poly-
nomial time. This slight generalization of the al-
gori thm requires a correspondingly weaker conjec-
ture.

The second effect is of less interest, since even
if only one iteration was needed the algorithm
would still take O(log 11 p) time.

5. E X P E C T E D P O L Y N O M I A L R U N -
N I N G T I M E O N N E A R L Y A L L P R I M E S

In this section we prove that our algorithm
terminates in cxpected polynomial in k time, on
"almost all" of the inpt~t primes of length k.

In section 3.5, an upper bound for the running
time of the algorithm on input p was shown to
be O(logl°p)(the maximalTp,)) where T~,, is the
expected number of elliptic groups to be picked

mod p~ till one of order twice a prime is found
and p~ is the prime used in the i th iteration of the
algorithm.

Lenstra's result (see section 2.2.3) implies

that Tp, : O (- T ~ - ~) where Sp, is the set oi'

numbers which are of the form twice a prime. (
Namely, ISp, I is the number of primes in the in-

terval [P'~2 v~' P,+v~, , 2]). It is not known whether
for every large cnough x, the cardinality of S= is
large (or even that Sz is not empty). However,
it has been shown that for almost all x the car-

v~ dinality of Sz is greater than O (i ~) . This will
be sufficient for our analysis.
5.1 T h e Density of P r i m e s in A l m o s t Al l
Sma l l Intervals

We make use of a theorem due to tIeath-
Brown [HB] concerning the density of primes in
small intervals.
For integers a, b let # , [a , b] denote the numl)er of
primes x satisfying a < x _< b. Let e(a, b) 4-- 1 if
#p[a,b] < b-~ and 0 otherwise.

Theorem (H e a t h - B r o w n) l : 3a lpha , such that
for sufficiently large z,

t.(a, a + ~) _< z i log ~ z.
z<4<2f f i

5.2 Est imat ing the Probabi l i ty of Poly-
nomial Running Time on a R a n d o m Input
Pr ime

Let PRk = (pl[logpJ = k,p prime} denote
the set of primes of length k.

The following running time analysis considers
a probability space defined by the random choices
in PRk of the initial prime input to the algorithm,
and the random coin tosses made by the algorithm
itself.
The following random variables are used in the
proof of this section's main theorem.

Po(k) is a random variable denoting the input
to the algorithm - a random prime in PR~.

I This theorem, communicated to us by Maier and
Pomerance [MP], is actually not explicitly stated in [liB]
but is implied by one of its technical lemmas.

325

Ni(k) for 0 _< i < k is a random variable
denoting the order of the "good" elliptic group
found in the ith iteration of (the main while loop)
of the algoithm on input Pc(n). (A "good" elliptic
group is one whose order is twice a prime). If
a "good" elliptic curve is not found in the ith
iteration, then set Ny(k) ---- 0 for all i _< j .

Recall, that in the i th iteration of the algo-
rithm, a "good" elliptic group is not guranteed
to be ever actually found. The probabilistic
primality test PP which raged the elliptic group
as "good" may have been wrong, or the ith itera-
tion may simply never find a "good" group. If
either of these cases takes place, we assume for
simplicity that the algorithm timesout and fails,
and have set Ny(k) = 0 for all i < j . (In practice,
the algorithm will not timeout and fail, but will
be rerun again on input Pc(k).)

N,(~) P~+l(k) 4- ~ for 1 < i _< k denotes the
value of the prime Pi used in the ith iteration of
(the main while loop of) the algorithm.

A few comments are in order.

C o m m e n t 1: By the properties of the orders
of elliptic curves, N,(k) E [P,(k):1: P ~] , and

thus P,(k) E [- ~ ± e~~_~(k)].
C o m m e n t 2: Since the main while loop

of the algorithm terminates as soon as Pi(k) ~

20osPo(k))r~//~/-z;, an upper bound on the number
of iterations i made by the while loop is B
k - k rZi'L~ii~ .

C o m m e n t 3: For simplicity of the analysis,
we shall assume that our algorithm fails and the
Ny(k)'s are set to 0 for all j ~ i, as soon as
the number of elliptic groups picked at iteration
i and tested for "good" order exceeds log a Pi(k).
(Clearly, bounding the probability of failure for
this simplified version of the algorithm, will bound
the probability of failure in the actual algorithm).

We are ready to state theorem 3.

T h e o r e m 3: For all k, the probability that
the Primality Proving Algorithm terminates in
expected time O(k 12) on random input prime of
length k is greather than

1 _

Proo f : Note that by the comments 1-3 made
above, the probability that the Primality Proving
Algorithm terminates in expected time O(k 12) on
random input prime of length k equals the

er(V1 < i < B, Pi(k) is prime).

Thus, it will suffice to show that

e r (3 i such that P , + l (k) = 0, P , (k) i s prime) _<

O(2-km/~'~) .

The following facts 1 through 4 will be useful
in the calcualion.
fact 1: Let c = 7. Then, Yi < k - 6,

Proof (by induction on i) is ommitted.
fact g: Let ~) 0. For sufficiently large k, for

Z .(a :1: -~-) < 2(I+')'.
2 k (a (2 k + a

proof: Follows directly from Heath-Brown's
theorem stated above. Q.E.D.(fact g)

Define T(x) = 1 ir 3a ~ {z ± j , f~ , -7 < y _<

+7} such that t(a ± -~-) = 1 and 0 otherwise,
w h e r e ± b) = - b , a + b).

Informally, the meaning of T is that if T(t) =
0, then for all numbers z in [t ± 7x/'t] one can
quickly find a prime in the interval [z ± Vfz].
fact 8: Let ~ > 0. For sufficiently large k,

r(t) _<
2 k < t ~ 2 k + z

proof: By the definitions of T and ~ it follows that

r(t) <
2 k ~ t ~ 2 k+l

1

2 ~ < t < 2 ~ + ~ aE{t+.j~/~,-7_<j<7}

But, a positive t(a) will contribute 1 to at
most 30 t's. Thus,

Z r (t) <
2 k ~ t ~ 2 k + z

326

N~(k) for 0 < i _~ k is a random variable
denoting the order of the "good" elliptic group
found in the ith iteration of (the main while loop)
of the algoithm on input Po(n). (A "good" elliptic
group is one whose order is twice a prime). If
a "good" elliptic curve is not found in the ith
iteration, then set N~(k) ---- 0 for all i < j .

Recall, that in the ith iteration of the algo-
rithm, a "good" elliptic group is not guranteed
to be ever actually found. The probabilistic
primality test PP which taged the elliptic group
as "good" may have been wrong, or the ith ite?a-
tion may simply never find a "good" group. If
either of these cases takes place, we assume for
simplicity that the algorithm timesout and fails,
and have set Ny(k) = 0 for all i ~ j . (In practice,
the algorithm will not timeout and fail, but will
be rerun again on input Po(k).)

N~(~) for 1 < i < k denotes the P~+l(k) ~ 2 -- --
value of the prime pi used in the ith iteration of
(the main wlfile loop of) the algorithm.

A few comments are in order.

C o m m e n t 1: By the properties of the orders
of elliptic curves, Ni(k) e [Pi(k) ± P ~] , and

C o m m e n t 2: Since the main while loop
of the algorithm terminates as soon as Pi(k) <_

2 (l°aP°(k))r~zi'~, an upper bound on the number
of iterations i made by the while loop is B =
k - kr zLz .

C o m m e n t 3: For simplicity of the analysis,
we shall assume that our algorithm fails and the
Nj(k) 's are set to 0 for all j > i, as soon as
the number of elliptic groups picked at iteration
i and tested for "good" order exceeds log s Pi(k).
(C|,~arly, bounding the probability of failure for
this simplified version of the algorithm, will bound
the probability of failure in the actual algorithm).

We are ready to state theorem 3.

T h e o r e m 3: For all k, the probability that
the Primality Proving Algorithm terminates in
expected t ime O(k 12) on random input prime of
length k is greather than

1 -

Proof : Note that by the comments 1-3 made
above, the probability that the Primality Proving
Algorithm terminates in expected time O(k 12) on
random input prime of length k equals the

Pr(V1 < i < B, Pi(k) is prime).

Thus, it will suffice to show that

Pr(3i such that Pi+l(k) = O, Pi(k) is prime) ~_

O(2-krz~l*zia;).

The following facts I through 4 will be useful
in the calcualion.
fact 1: Let c = 7. Then, Vi < k - 6,

Pi(k) E [~ ik) ± cV~2---~].

Proof (by induction on i) is ommitted.
fact 2: Let ¢ > 0. For sufficiently large k, for

,(a ± < 2(I+,)~.

proof: Follows directly from Heath-Brown's
theorem stated above. Q.E.D.(fact 2)

Define T(x) -~ 1 if 3a E {x ± jvf~, - 7 < j <

+7} such that ± g) = 1 and 0 otherwise,
where t(a ±b) - ~ t (a - b , a +b).

Informally, the meaning of T is that if T(t)
0, then for all numbers x in [t ± 7Vq] one can
quickly find a prime in the interval [z ± Vfx].
fact 3: Let e > 0. For sufficiently large k,

r(t) _<
2/. < t < 2 ~ + a

proof: By the definitions of T and ~ it follows that

E r(t) _<
2 / . < t < 2 a + a

I

2/. < t<~2a+ l aE(t+~4v/t,--7 ~ i ~ 7)

But, a positive ~(a) will contribute 1 to at
most 30 t's. Thus,

v(t) <
2h ~ t ~ 2 / . + a

327

30~(~ ± ~,/~) _<
2 h - 7 ~ ' < a < 2 k++l +7~/2~+ s

=

2k--L <~<2h+a

(By fact 2)
o(2Ci+.)k) .

Q.E.D. (fact S).
fact 4: For 1 < i < B s u c h t h a t i < k - 6 ,

Pr(P,(k) = 0 I T (L - ~ J) = O,P,_,(k) is prime)

o(~-e).

proof: For every value P i - t (k) E t 2,-, ±TV ~ - ,]
the cardinality of the set of integers of the
form twice a prime in the interval [P i - l (k) ±
2v /~-~C~] (previously referred to as Sp,_~(~))is

the the numebr of primes in the interval [-~=~--~ ±
¢~?:R~)].

Now, if V(-~-~) = 0, then (=la)(=l- 7 _~
j < +7) such that the interval [a ± ~Vfd] is

entirely contained in [P'~(k) ± V / ~ ~] and

#p [a± ½vfd] > ~ Thus, the number of primes

contained in [_~L~J~ ± V / ~ (k)] is greater than

[io~" (Namely, ISP,_,(k)l = oc¢~=7~). ~og P,_ ~ (~))
By Lenstra's theorem the expected number of

elliptic groups picked in the i - l t h iteration of
the algorithm till one of "good" order is found is

0(~ (~)~og p,_, (~)). Thus, the probability that
" I S ~ , _ , (~) l

in log s P~_~(k) trials a "good" elliptic group is not

found is less than (1 nos~ E_,(O~ ~x°g~P'-'(~) --<

O(e-~).
Q.E.D. (fact "0"

The final calculation now follows.
Pr(algorithm does not terminate in expected 0(k12))

time on random input prime of length k)

Pr(30 < i < B, Pi+l(k) -~ 0, Pi(k)is prime)
B

E Pr(Pi+l(k) ~ 0,Pi{k)is prime) _<

328

B

T~/Po(k) n E Pr(Pi+,(k) = O, Pi(k)is prime , , - ~ T J , = 1)-
/ = l

Pr(T(LP2~+k)J) = 1)+

, r - - P ° (k) / ~ = 0). Pr(P{+t(k) : 0,P{(k)is pr ime, ,L 2~+1 J,

Pr(T(LP2°.~(f~)]) : 0)

(the second summation can be bounded by by fact
4, which is negligible with respect the final result,
and will be ignored from here on).

8 Po(k) ~ Pr(T(k-~i-J) = I)<
i----I

B

EE
i ~ 1 qEPRb

po(k) Pr(T([2~]) : 1 I Po(k) = q)

• Pr(Po(k) = q) =

B T(L.~-])
~ IPR~I -< i = l qEPRa.

The sum ~qepRh T (U ~ - J) c a n be replaced by
~z~- '<t<2~- '+~ T(t) 2~+1- This can be done as at
most 2V+Vof the q E PRk will be mapped into the
same t ---- [~ J .

Finally, by fact 3, for e > 0

B

6. A C K N O W L E D G E M E N T S
We are especially grateful to Oded Goldreich,

Johan Hastad and Silvio Micali for their numerous
useful suggestions about this research and its
writeup.

Carl Pomerance and Helmut Maier pointed us
to the needed result on the density of primes in
short intervals.

Burt Kaliski, I[endrik Lenstra, Andrew Od-
lyzko, Albert Meyer, Victor Miller, Ron Rivest,
and Richard Zippel made helpful remarks and
gave pointers to the literature.

Last but not least, Joe would also like to
thank his parents, Leonard and Mary for their
support and encouragment. Thanks, Len and
Mary!

7. R E F E R E N C E S
*[APR] Adleman, Pomerance, Rumely, "On Dis-
tinguishing prime numbers from composite num-
bers",to appear. Ext. Abstract 21st FOCS (1980),
387-406.

[BLS] Brillhart, Lehmer, Selfridge, "New
Primality7 Criteria and Factorization of 2sup
m+i" , vol 29, no. 1930 (1975).

[Ba2] Bach Eric, "Lenstra's Algorithm for Fac-
toring with Elliptic Curves (Expose)", notes,
February 27th, 1985.

[CL] Choen, Lenstra, "Primality Testing and
Jacobi Sums", to appear.

[D] Dickson, " History of the Theory of Numbers",
Chelsea Publishing Company, 1952.
[F] Furer, "Deterministic and Las Vegas Primality
Testing Algorithms", Proc. of ICALP 1985.
[lIB] Heath- Brown D. R., "The Differences be-
tween Consecutive Primes", J. London Math. Soc.
(2), 18 (1978), 7-13.

[L] Lenstra, "Factoring Integers using Elliptic
Curves over Finite Fields", to appear.

[M] Miller, "Riemann Hypothesis and test for
primality", JCSS 13 (1976), 300-317.

[MP] Maier H., Pomerance C., Personnal Com-
munication.

[Pl Plaisted, "Generating Large Prime Numbers".

[P] Pratt, "Every Prime has a Succinct
Certificate", SIAM J. of Comp. (1975), 214-220.

[R] Rabin, "Probabilistic Algorithms for Testing
Primality", J. of Num. Th. 12, 128-138 (1980).

[Sch] School, "Elliptic Curves Over Finite Fields
and the Computation of Square Roots mod p",
Math. Computation, Vol. 44, Num 170, April
1985, pp.
[Sh] Shallit, "Lenstra's Elliptic Curve Factoring
Algorithm", notes, March 15, 1985.

[Se] Selberg, "On the Normal Density of Primes
in Small Intervals, and the Difference between
Consecutive Primes", Archly for Mathematik of
Naturvidensakb B. XLVII. Nr. 6. 483-494.

[Sha] Shanks, "On Maximal Gaps between Succes-
sive Primes", Math. Computation, Vol. 18, pp.
646-651, 1964.

[SS] Solovay and Strassen, "A fast Monte-Carlo
test for Primality", SIAM. J. of Comp. 6 (1977),
84-85.

[T] Tate, "The Arithmetic of Elliptic Curves",
Inventiones Math. 23, (1974), 179-206.

329

