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A B S T R A C T  

This paper presents a new probabilistie 
primality test. Upon termination the test outputs  
"composite" or "prime", along with a short proof 
of correctness, which can be verified in determinis- 
tic polynomial time. The test is different from 
the tests of Miller [M], Solovay-Strassen [SSI, and 
Rabin [R] in that  its assertions of primality are 
certain, rather than being correct with high prob- 
ability or dependent  on an unproven assumption. 

Thc test terminates in expected polynomial 
time on all but at most an exponentially vanishing 
fraction of the inputs of length k, for every k. 

This result implies: 

• There exist an infinite set of primes which 
can be recognized in expected polynomial time. 

• Large certified primes can be generated in 
expected polynomial time. 

Under a very plausible condition on the 
distribution of primes in "small" intervals, the 
proposed algorithm can be shown ' to  run in ex- 
pected polynomial t ime on eve ry  i n p u t .  This 
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condition is implied by Cramer 's  conjecture. 

The methods employed are from the theory 
of elliptic curves over finite fields. 

1. I N T R O D U C T I O N  

I . I  T e s t i n g  P r i m a l i t y :  B r i e f  R e v i e w  

Distinguishing prime numbers from com- 
posites has intrigued mathemat ic ians  as early 
as about 274 B.C, when the sieve algorithm of 
Eratosthenes has been allegedly recorded. Much 
progress has been made on this problem since 
tile 17th century by Fermat,  Euler, Legendre and 
Gauss. 

With the arrival of fast computat ional  devices 
new algorithmic ideas based on the work of Fer- 
mat  and Gauss were proposed and implemented 
(see [D],[BLS]). These algorithms mostly relied 
on factoring and thus where impractical  for even 
moderate size inputs. 

The interest in primality in complexity theory 
was invoked by the exciting primality tests of 
Miller[M], Solovay and Srassen [SS], and Rabin 
[R]. 

Miller's algorithm [M] is a deterministic poly- 
nomial t ime procedure, which when answering 
"composite" gives a proof of correctness, and 
when answering "prime" does not. The assertions 
of primality made by the algori thm are always 
correct if if the Extended Riemann Hypothesis 
(ERH) is true. However, if the ERII  is false, the 
numbers declared prime may still be composite. 
Thus, tile ERII is not used to bound the running 
time of the algorithm, but to vouch for the cor- 
rectness of the answer. 



The probabilistic primality tests of Solovay- 
Strassen [SS] and Rabin [SS], essentially perform a 
probabilistic search for a proof of compositeness. 
The failure of this search, provides circumstantial 
evidence that the number is not composite. These 
algorithms always terminate in polynomial time 
on every input. Upon termination they declare 
the input either composite or probably prime. 
When a number is declared "composite", a short 
(verifiable in deterministic polynomial time) proof 
(certificate) of compositeness is provided. When a 
number is declared "probably prime", then it is a 
prime with very high probability, but no certainty 
is provided. 

The fastest deterministic algorithm known is 
due to Adleman, Pomerance and Rumley [APR] 
(followed by Choen-Lenstra[CL]) and runs in time 
O(kc log los k) on inputs of length k. The answers of 
this algorithm are always correct. Unfortunately, 
it is not only slow but, like its predecessors, does 
do not provide us with a short certificate (i.e poly- 
nomial time verifiable proof) of its assertions of 
primality. 

As discussed above, finding a short certificate 
of compositeness can be done quickly prob- 
abilistically. But, how about short proofs of 
primality? Although it is not as obvious as in 
the case of compositeness, Pra t t  [P] has shown 
that short proofs of primality do exist (i.e the 
set PRIMES is in NP). Unfortunately, finding a 
Pratt-certificate for a given prime involves being 
able to factor quickly, which is hard. 

Partial progress toward finding short proof 
of primality quickly was made by Furer IF]. He 
shows a Las Vegas (always correct, probably fast) 
algorithm distinguishing between n - a product 
of two primes and the n a prime (provided n ~ 1 
mod 24). 

To summarize, the following questions remain 
open: 

• Is there an infinite set of primes which can 
be recognized in expected polynomial time ? 

• Can random large certified primes be 
generated in expected polynomial time? 

• Is there a probabilistic primality test which 
is alaways correct and probably fast on every 
prime input, i.e a Las Vegas primality test ? 
1.2 O u r  Resul t s  

In this paper, we propose a probabilistic al- 
gorithm which upon termination outputs either 
"prime" or "composite", along with a short proof 
(certificate) of correctness. The proof of correct- 
ness can be verified by a deterministic polynomial 
Lime algorithm. 
We prove the following. 
T h e o r e m  1: Given any prime p of length k, our 
algorithm outputs a certificate of correctness of 
size O(k2), which can be verified correct in O(k 4) 
deterministic time. 
T h e o r e m  3: For every size k ~> 0, our algorithm 
terminates in expected polynomial time on at least 

1 -  0(2 - ' ~ ' ~ ' ~ )  of the prime inputs of length k. 
Note that the fraction of primes for which we 
could not prove that  the algorithm terminates 
in expected polynomial time is smaller than any 
polynomial in k fraction. 

Let ~(x) denote the number of primes smaller 

than z. 
Theorem 2: Our algorithm terminates in 

expected polynomial time on every input if the 
following conjecture is true: 

3cl,cs ~> 0 

+ _ > c2,/  

-- log'* x 

for sumeiently large z. 
The above conjecture is implied by the well- 

known Cramer's conjecture concerning the maxi- 
mail size gap between consecutive primes (see sec- 
tion 1.2.3 for details). 
Theorems 1 through 3 imply the following. 
1.2.1 A n  inf ini te  se t  of  p r i m e s  r e c o g n i z e d  in 
expec ted  po l ynomi a l  t i m e  

Theorem 2 implies that there exists an infinite 
set of primes which cen be recognized in expected 
polynomial time. In addition the set contains al- 
most all primes of length k, for every k ~> 0. 
1.2.2 Genera t ing  Large Cert i f i ed  P r i m e s  
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A trivial application of this result is that we 
carl, given any length k, generate a random prime 
p of length k, along with a short proof (certificate) 

that p is prime, such that the distribution of the 
generated primes is very close to uniform. One 
can simply run our algorithm on random k digit 
numbers until one is found that can be proven 
prime. If the algorithm takes too long on a par- 
ticular input, it can be restarted on a different 
random input. The expected number of random 
numbers to be tried before a certifiably prime one 
is found is polynomial in k. 

Moreover, certified members of special sub- 
sets of the prime numbers, can be produced at 
random. If one wished, for instance, to find an k 
digit prime of the form 4t+3, one could randomly 
try k digit numbers until one was found that was 
certifiably prime, and also of the form 4t+3. Since 
there is a large fraction of k digit primes of this 
form, this algorithm is guaranteed to find one in 

expected polynomial time. In general, members of 
any sufficiently dense subset of the prime numbers 
may be found in this manner. 

An application of this technique is in produc- 
ing random numbers with certified factorization. 
Bach[B] showed how to generate uniformly dis- 
tributed numbers of a given length with "known" 
factorization. [[owever, one could never be cer- 
tain that the given factorization was complete. 
Using Bach's algorithm in conjunction with our 
algorithm, one can randomly generate nearly 
uniformly distributed numbers with certified, 
known factorization. 
1.2.3 How likely is our conjecture ? 
Let us restate our conjecture: 

3c l , c2  > 0 

c 2 ~/'~ 
r(~ + V~) - ~(~) _> log ¢1 x 

for sufficiently large z. 
A famous conjecture, due to Cramer, con- 

cerning the maximal gap between two primes, im- 
plies ours. His conjecture can be restated as: for 
sufficiently large x, 

+ log > o 
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Additional support of our conjecture, is 
provided by the following facts about the density 
of the primes. 

The Prime Number Theorem tells us that  for 
surf. large z. 

X 

log x 

The best bound known for the maximal gap 
between two primes is due to Heath-Brown and 
Iwaniec[III]. They show, that for sufficiently large 
x, there always exist a prime in the interval Ix, x +  
x11/20]. 

Finally, a theorem by Heath-Brown [HB] im- 
plies that  there exists constants cl,c2 such that 
for sufficiently large x, the number of intervals 

[Y,Y+ ~/T] where z ~ y ~ 2x in which there 

are less than ~ primes, is less than z5/6logC2x log y 

Heath- Brown's result is also used, in section 
4, to show that our algorithm terminates in ex- 
pected polynomial time on almost all prime in- 
puts. 

1.3 New techniques: Elliptic Curves 
Most primality tests previously proposed used 

mathematics developed in days of Fermat and 
Gauss. 

Recently, methods from elliptic curves (see 
survey by Tate IT]) over finite fields have been 
used for speeding up problems in computational 
number theory. This.has started with Schoof's[Sc] 
deterministic algorithm to compute square roots 
modulo primes. In the same work, Schoof shows a 
polynomial time algorithm to compute the order 

of the group generated by an elliptic curve over 
a finite field. The usage of School's algorithm, is 
crucial to our primality test. 

Lenstra [L] uses elliptic curves to obtain an 
integer factorization method which uses nearly 
constant memory, and whose running time is a 
function of the size of the smallest prime divisor 

of the integer to be factored. The running time 
analysis of Lenstra's algorithm depends on a very 
plausible assumption concerning the distribution 

of smooth numbers in small intervals, and requires 



no assumptions about elliptic curves. This is due 
to a result he proves concerning tim distribution 
of the order of elliptic curves. We make use of 
this result in the analysis of the running time of 
our algorithm. 

The use of elliptic curves in solving the two 
oldest problems in number theory: factoring [L] 
and primality, suggests they may be quite useful 
in solving other computational  number theoretic 
problems as well. 
G U I D E L I N E  T O  T H E  P A P E R  

In section 2 a very high level sketch of the 
algorithm is given. 

In section 3 the necessary backgrgound from 
the theory of elliptic curves is reviewed, and nota- 
tion is established. 

The description of the  algorithm is resumed 
in section 4. Section 4.1 presents the full version 
of the algorithm, and some of its technical details 
are discussed. In section 4.2 correctness of the 
algorithm is proved. In section 4.3, the expected 
running time of the algorithm is analyzed using 
the conjecture mentioned in section 1.2.3. In sec- 
tion 4.4, slight improvements to the main algo- 
rithm are proposed. 

Section 5 presents a more sophisticated 
analysis of the running t ime of our algorithm, and 
it is proved that  the algorithm will terminate in 
expected polynomial time on nearly all primes. 
2. O V E R V I E W  O F  T H E  . A L G O R I T H M  

Our algorithm has some of the flavor of 
Pratt 's[P] nondeterministic algorithm for generat- 
ing short proofs of primality. Given some prime 
p, P ra t t  proves that  p is prime by exhibiting some 
g E  Z~ such that  Op(g) = p - 1 .  To prove that  
Op(g) = p -  1, the prime decomposition of p -  

~1 e3 = Pl P2 - . .P~  must be exhibited, with proof 
(i.e. one must recursively show that all the p~'s 
are prime). Once this has been accomplished, one 

v-1 (1 < i < k) by a can show that  Op(g) ~ p--=- _ _ 
straightforward computation.  

Pra t t ' s  nondeterministic algorithm is 
ineffective, since it is hard to generate the prime 
decomposition of p - 1. 

We overcome this difficulty by working with 
elliptic groups rood p instead of Z~. Given any 
prime modulus, there exist many elliptic groups 
with varying orders. Moreover, it is easy to 

gcnerate such groups at random. We exploit this 
extra degree of freedom in a manner  similar to 
Lenstra's factoring algorithm, as follows. 

We randomly pick elliptic groups rood p until 
one is found whose order has a sufficiently large 
prime factor, q. Such a group can be utilized to 
generate a proof that  p is prime if q is prime. 
We then recursively prove that  q is prime, finally 
stopping when the number to be proven prime is 
sufficiently small. 

Using results by Lenstra and others on the 
distribution of the order of elliptic groups mod p, 
we can deduce important  properties of our algo- 
rithm from standard results (and/or  well known 
conjectures) about the distribution of primes in 
small intervals. Thus, our analysis requires no 
unproven assumptions about elliptic groups. 

3. O V E R V I E W  OF T H E  E L E M E N T A R Y  
T H E O R Y  O F  E L L I P T I C  C U R V E S  

3.1 D e f i n i t i o n  of  E l l i p t i c  C u r v e s  a n d  El-  
l ip t ic  G r o u p s  

Given an arbitrary field F,  we define an el- 
liptic curve, represented in Weierstrauss normal 
form, to he the set of points (z, y) which satisfy 
the equation y2 = z3 + Az  + B,  where A , B  EF  
and 4A 3 + 27B 2 ~ 0. For the rest of our discus- 
sion, we assume that  the characteristic of F is not 
2 o r 3 .  
H o w  t o  a d d  p o i n t s  on  an e l l i p t i c  curve .  

If one adds a special element, /(usually 
referred to as the point at infinity) to the set 
of solutions, one gets an abelian additive group, 
where I is the identity. Addition is defined by the 
"tangent and chord" method illustrated in figure 
1. In figure 1, F is the real line. 

Given points L and M, not equal to I, con- 
sider the line connecting them, or, if L = M ,  the 
line tangent  to the curve at L. If this line is 
vertical, define L + M to be I. Otherwise, it is 
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guaranteed to intersect the curve at a third point. 
Define L+M to be the reflection of this point over 
the z axis. 

figure 1 

One can calculate the equation for this line 
(af the form y ~ kz + B ) ,  which can then be 
used to find the third intersection point. Thus, 
given L ---- (zl,  Yl), M ~- (z2, Y2), we can compute 
L + M by the following algorithm: 

if  (Zl ---- z2) a n d  (Yl = --Y2) t h e n  re tu rn ( I )  

if  (zl  ~ z2) t h e n  k = 
e l s e ~  ~ y s - y l  

z2  - - z  I 

Z s  ---- ~ 2  __ Z l  __ Z 2  

= + 

return(( ., 

The identity element I satisfies I + L = L + 
I----L. 

This addition law clearly generalizes to ar- 
bitrary fields whose characteristic is not 2 or 3. 
Furthermore, it also generalizes to elliptic curves 
defined over arbitrary rings. However, L + M is 
not always defined in this case. 

In particular, the correct inverse element 

((2y) - l  or (z2 - z , )  - l  as the case may be) m u s t  
exist in the ring for the addition to be well defined. 
Working in the ring Z,~ it is easy to determine if 
an inverse exists, and thus easy to determine if 
L + M is well defined. 

How to m u l t i p l y  po in t s  b y  i n t e g e r s .  

One must specify just what qM, (q ~_ 0, M E 
En) is (if it is even defined), for the case where n is 
composite(in fact, the same procedure will be used 
when n is prime). Our "addition" operation is not 
necessarily associative in this case. We define qM 
to be 

OM = I, 
qM = ( q -  1)M + M (for q odd), and 
qM = ~M + ~M (for q even). 

This "repeated doubling" algorithm, 
analogous to the repeated squaring algorithm for 
exponentiation in Z,~, allows for efficient computa- 
tion. Using this definition, scalar multiplication 
by q can be computed using O(log q) additions. 
C o m p u t i n g  the  o r d e r  off e l l ip t i c  g roups .  

Our algorithm heavily relies on the ability to 
determine the order of an elliptic group modulo 
some prime in polynomial time. An algorithm 
due to Schoof[Sc] computes the order of an elliptic 
group rood p in O(log 9 p) time. 

3.2 N o t a t i o n  and C o n v e n t i o n s  
Define E,~(A, B) (where gcd(4A a + 27B ~, n) = 

1) as the set of points (x,y) over Z,~ satisfying 
y2 ~ Z3 + Az + B, Along with a special element 
1. For p prime, Ep(A, B) is an elliptic group. 

Define Np(A,B) to be the order of Ep(A,B). 
For notational convenience, we abbreviate these 
as Np and Ep when the choice of A and B is clear 
or unimportant. We write the order of an element 
M in Ev as OB,(M). 

3.3 T h e  Group  S t r u c t u r e  of  E l l ip t i c  
Curves  over GF(p)  for p p r i m e .  

We use two well known properties of elliptic 
curves over GF(p): 

(1) The order of the group generated by an 
elliptic curve over GF(p) is equal to p + l  - t ,  where 
Itl ~ 2Vf~(the Riemann Hypothesis for Finite 
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Fields}. 

(2) An elliptic group Ep will be isomorphic to 
Z,n, X Z,~ 2 for some rnl,rn2, where rn2[rnl. 

Our algorithm works by picking random 
curves (i.e. randomly choosing A , B  E Zp) until 
one is found whose order belongs to a special sub- 
set of the natural numbers. An important  result 
due to Lenstra[L] allows us to relate the probabil- 
ity of picking a curve of the right order with the 
density of this subset in the interval [p - v/~, p + 

T h e o r e m ( L e n s t r a  [L]): For S C N, define 
S~ to be S intersected with the interval [p-v/~, p+  
Vr~]. Then 

qM by the procedure described in section 3.1 are 
well defined. 

L e m m a  1: Given points L, M E E,,, p > 3, 
p prime, and pin, if L + M is well defined, then 
(L+  M)p . ~  (L}p 4- (M)v. 

This lemma is useful because once we verify 
that  some L 4- M is defined mod n (by just go- 
ing through the calculation}, we can then make 
statements about (L)v 4- (M)p (for pin) without  
knowing what  p actually is. 

P r o o f :  Lemma 1 follows trivially from a 
simple case analysis on the rules for computing 
the sum of two points on the elliptic curve E,,. 
These rules may be summarized as: 

(Vp, p,ime)(VS)(3c > 0) 

c.  (IS ,l- 2) 
prob(Np(A, B) e S) > 

v ~ l o g p  

Here, A, B are picked uniformly (subject to 4A 3 + 
27B 2 ~ 0 mod p) from Z v. 

This theorem is crucia~l to the analysis of our 
algorithm. It enables us to relate the running time 
of our algorithm to the distribution of primes in 
sm~ll intervals, without  any mention of elliptic 
curves. 

3.4 T h e  S t r u c t u r e  of  E l l i p t i c  C u r v e s  over 
Z,~ for  c o m p o s i t e  n.  

While elliptic curves over Z,~ do not form 
groups, there is a natural projection from E,~ to 
Ep, where p > 3 is prime, and pin. Given a point 
x rood n, define (z)v to be z taken rood p. Given 
a point M -~ (z,y) E E,~(A,B), define (M)v E 
Ev((A)p,(B)p ) as ((z)1,,(y)~,). Define Ip -~- I, the 
identity element in Ep. Note that  4A 3 + 27B 2 y~ 
0 rood p ,  since gcd(n, 4A ~ + 27B ~) -~- 1. Thus, 
Ep((A)~,,(B)p) is well defined. 

This projection is well behaved, as shown by 
the following lemma: 

D e f i n i t i o n  1: Given points L, M E E,~, L + 
M is well defined if, when computing this sum, 
all the required inverse elements exist in the ring 
Z,~. Likewise, qM, for q an integer, is well defined 
if all the  additions required in the computat ion of 

(1) I + M = M + I = M  
(2) + ( . , - y )  = / 
(3) # o) 
(4) (Zl,Yl) 4-(Z2,~/2) = ( ~ - ~ , ~ }  

(for 
Here, Pt,P2 are fixed polynomials over 

z, y ,A ,B ,  and QI, Q2 are fixed polynomials over 

Xl, Yl~ Z2, y2,A, B. 
If either L or M is equal to I, then lemma 1 holds 
trivially. For the rest of the analysis we assume 
L , M  y~ [. This implies (L)p,(M)p ~ I. 

If L + M is of the form (z, y) + (z, - y ) ,  then 
(L)p + (M)~ will also be of this form, and the 
lemma will hold. 

If L = M = (z,y) (where y ~ 0), then 
(L)v = (M)p = ((z)p,(y)v). Using rule 3, it 

M - -  {Pi(z,y,A,B) P~(=,II,A,B)~ is clear that  L _  --  ~ (2y) , (2y) J" 
L + M exists only if (2y, n) = 1, which implies 
(y)p y~ 0. Therefore, by rule 3, (L)p + (M)p = 
(p~((=)P'(y)e'(A)p'(v)P) P~((=)P'(Y)P'(A)~'(B)v)). Since (2(y),) , (2(y),) 
we are computing the same rational function mod 
n and mod p, using arguments which are respec- 
tively congruent mod p, the two values computed 
will be congruent rood p. Thus, the  lemma will 
clearly hold. 

If L = (zl ,yl) ,  and M ~" (z2,Y2) (where 
zl ~ z2) then (zl - z2) -1 exists only if (zl)p 
(z2)p. The same argument  then applies as with 
the L = M case. Q . E . D .  
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C o r o l l a r y  1.1: If M E E , ,  and qM = /(as 
calculated by the algorithm described in 3.2), then 
if p is prime,p > 3, and pin, then (qM)p = Ip. 

The proof follows trivially from lemma 1. 
Note that  in E , ,  n composite, it is not clear 

that  one gets a consistent answer if one computes 
qM in several different ways. Corollary 1.1 allows 
us to avoid this difficulty. 

4. T H E  A L G O R I T H M  
4.1 Descr ip t ion  of  the  A lgor i thm.  

Our algorithm may be thought  of as a 
primality prover. Given a prime number, p, it 
tries to generate a proof that  p is prime. This 
is a logical counterpart  to current randomized al- 
gorithms, which produce proofs of compositeness. 
Given some number n, which we wish to test for 
primality, we can run our algorithm on n in paral- 
lel with a compositeness prover. 

A naive version of our algorithm may be in- 
formally described as follows: 
Step 1: Given some number p, which we wish to 
prove prime, we start  generating random elliptic 
groups mod p. This is done by simply choosing 
A,B  E Zp at random, rejecting choices where 
4A 3 + 27B 2 = 0 rood p. The random group will 
be denoted by Ep(A,B). We compute the order 
of this group using a deterministic algorithm due 
to Schoof[Sc]. Schoof's algorithm takes O(log 9 p) 
steps. 

Next, a s tandard probabilistic primality test- 
ing algorithm ([R,SS]) is used to determine if 
Np(A, B) is of the form 2q, where q is prime. The 
probability of making a mistake can be made ex- 
ponentially small. This operation is relatively in- 
expensive, and is clearly dominated by the time 
required to determine the order of the group in 
the first place. If Np is not of the form 2q, q 
prime, we repeat step 1. 

Step 2: Once such a group is found, we ran- 
domly select points on the curve (excluding the 
identity) until a point of order q is found. We 
can pick random points by picking x E Z~ at ran- 
dom, and taking y to be a random square root of 

x 3 + Az + B, if one exists(repeating the process if 
z 3 + A X  + B is a quadratic nonresidue). Clearly, 
(x,y) cannot be the identity. Note that  square 
roots mod p (p prime) may be efficiently computed 
in O(log 3 p) expected time by probabilistic algo- 
r i thms ([AMM],[B]}. 

S t e p  3: We exhibit the curve (represented by 
A and B), q, and the point found of order q. We 
then recursively prove that  q is prime. We stop 
when the number to be proven prime is sufficiently 
small. 

This gives the general flavor of the algorithm. 
tIowever, there are some technical details which 
still need to be addressed. We proceed to describe 
the complete algorithm. 

Let PP(x)  be a probabilistic primality test, 
such as the ones proposed by Miller-Rabin[R] or 
Solovay-Strassen[SS]. We require that  P P  errs 
with exponentially low probability, and always 
identifies multiples of 2 or 3 as composite. 

Prove(p) 

Po = P; i = 0 
lowerbound = 2 (lg P)~I Ig Ig lg 1, 

certificate =,ff 
whi l e  pi > lowerbound do  

repeat  Randomly choose A,B  E Zp, 
Compute  Np,(A, B) 

u n t i l  ( 4A3 + 27B2, P) = 1 and  
pp(~,,,(A,O)) = " p r o b a b l y  prime" 

1%, (A,S) q -~. - - ~  
repeat  Randomly choose M E Ep,(A, B) 
un t i l  M ~ I and qM = I 
i = i + l  
p~ -~- q 
Append (M, pi,A, B) to certificate 

if  pi is composite t h e n  run Prove(p) again 
/* p~ is small enough to be 
tested deterministically by [APR]*/ 
return(certificate) 

end 
We run this procedure in parallel with a deter- 

ministic immplementat ion of P ra t t ' s  algorithm 
for producing a short certificate of primality. If 
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Prat t ' s  algorithm finishes first, then his certificate 
will be ou tput  instead, and Prove(p) is aborted. 

We proceed to discuss in greater detail three 
key issues: (1) Giving a criteria for when p/ is 
small enough to be deterministically checked for 
primality, (2) The problem of needing to test 

Np(A,B) for primality without a provably cot- 2 
reet polynomial test, and (3) Showing how the 
certificate ou tput  by Prove(p) can be used to prove 
that  p is indeed prime. This last point is dealt 
with in section 4.2. 

• U s i n g  a d e t e r m i n i s t i c  a l g o r i t h m  t o  s t o p  
ear ly:  

We need to establish when a number is 
small enough tha t  its primality may be verified 
deterministically in polynomial time. Using a 
deterministic test due to Adleman, Pomerance, 
and Rumley[APR] one can test n for primality 
(and thereby prove n is prime) in ( lgn)"iglgig~ 
steps. Therefore, one can test  a number less than 
2 (lg'~)°/~s~*'s~ for primality in time polynomial in 
lgn.  

Thus, the algorithm can keep track of the size 
of the original input  number, and stop as soon as 
the current number to be proved prime goes below 
the bound stated above. No real cost is incurred 
by switching to the deterministic algorithm at this 
point. 

The reason for stopping at this point is to in- 
crease the fraction of primes we can show (without 
any assumptions) are proven prime by this algo- 
rithm. Switching to the deterministic test will not 
speed the algorithm up. 

• C r e a t i n g  a p r o o f  t h a t  is a l w a y s  c o r r e c t  
w h i l e  u s i n g  a p r i m a l i t y  t e s t  t h a t  m a k e s  mi s -  
takes :  

In order to determine if N,(A,s) . 2 is prime, we 
use a randomized algorithm with an exponentially 
low probability of failure. Naively, one might 
suppose that  this destroys any hope of creating 
a certificate that  is guarenteed to be correct. A 
failure of the primality tester could conceivably 
lead to generating an incorrect certificate, or send 
the procedure into an infinite loop. 
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However, the fact that  an actual certificate 
is being generated, instead of merely a yes/no 
answer, remedies this problem. As will be shown 
in section 3.2, the certificate is easily checked 
for validity (else it could hardly, be called a 
certificate!). If the procedure gives a certificate 
that  turns out to be invalid, the procedure can be 
run again until it outputs  one tha t  is valid. 

Since the algorithm is run in parallel with 
Prat t ' s  algorithm, the procedure is guarenteed 
to terminate with a certificate in expected time 
"merely" exponential in logp. The primality test- 
ing algorithms used can be made to have such a 
small probability of error that,  even with an ex- 
ponential time penalty for making an error, the 
affect on the expected running time will be negli- 
gible. 

4.2 P r o o f  of  c o r r e c t n e s s .  

We can show how one can use the ou tput  of 
Prove(p) to infer that  p is indeed prime. This will 
prove the correctness of our algorithm. 
L e m m a  2: For all n not divisable 2 or 3, if 
3 M,  q, A, B such that  q > n½ + 1 +2n¼, q is prime, 
(n, 4A 3 + 27B2) -~ 1, M ~ I , M  E E , ( A , B ) , a n d  
qM ---- I, then n is prime. 
P r o o f :  (by contradiction) Suppose n was com- 
posite. Then 3p < vfn, p prime s.t. p]n. 

If q M  -~ I then qM n ---- I n by corollary 1.1. 
Thus, OE,,(Mn)[q. However, OEp(Mn) _< N n < 
p + l + 2 v f  ~ < n ½ + l + 2 n ¼  < q. Since qis  prime, 
we have Osp(Mn) : 1. This implies Mr, -~ In, 
which implies M ---- I, a contradiction. Q .E .D .  

We can now show how to use the ou tpu t  of 
the algorithm to prove p is prime. 

T h e o r e m  1: For any prime p, given the out,- 
put of Prove(p), the primality of p can be verified 
in (log p)4 steps. 

P r o o f :  The first quadruple output  from 
Prove(p) is of the form ( M , q , A , B ) ,  where 
(p, 4A 3 + 27B 2) ---- 1, M e Ep(A,B) ,  p not a mul- 
tiple of 2 or 3(unless p ---- 2 or 3), and qM ---- I. 
These facts can all be verified in O(log 3 p) time. 
By lemma 2 it is clear that  q ( =  Pl) prime--* p 
prime. 



Likewise, one can verify that  pl prime--+ Pi-I  
prime. Inductively, it can be verified that Pk 
prime--+ p prime, where Pk is the second element 
of the last quadruple. However, Pk can be verified 
trivially (sublinear in IPl), due to its small size. 

Finally, we note that  pi < P'-l+2v'~'=T 
- -  2 

Thus, k will be O(logp). Verifying the primality 
of p thus requires O(log p) scalar multiplications, 
for a total of O(log 4 p) steps. 

Finally, note that  a certificate used by 
Prat t 's  algorithm can also be verified in O(log 4 p) 
s teps.Q.E.D. 
4.3 Ana lys i s  of  the Expected  Running  Time 
U n d e r  a Conjecture.  

To prove a number p is prime, one must go 
through O(Iogp) iterations of the outer repeat 
loop. In each iteration, the algorithm must (1) 
Find an elliptic group mod pi whose order is twice 
a prime, and (2) Find a point in the group with 
this prime as its order. 
(1) The expected time required to find an elliptic 
group rood pi with the right order is equal to 
the expected number of groups that must be tried 
before finding one with the right order, multiplied 
by the expected time needed to test a group for 
this_property. We momentarily defer the question 
of what  expected number of groups must be tried. 
We denote this quantity by Tp,. 

Determining if a group has the right order 
can be done in O(log 9 Pi) time: First determine 
the group's order[Sc], taking O(log 9 Pi) time, then 
determine if it is twice a prime (probabilistically), 
taking O(log 4 pl) time. 

The expected time required to find a group of 
the right order is thus Tp, • O(log 9 pi). 
(2) Picking a random point (2, y) requires picking 
an expected number of ~ x's before finding an 

x s.t. (3y) (x, y ) i s  on the curve. 
Since Ep, is isomorphic to Z2q(fOr some q), 

half the points will be of order q. Thus, the ex- 
pected number of random points that  must be 
chosen before finding one of order q will be 2. 
Determining if a point is of order q can be done 
in O(log 3 Pl) time. 

Therefore, the expected time to find a point 
2p, O(ioga p~). of order q will be 2 • ~ • log a p~ 

Thus, once a group with the desired 
properties has been found, one can find a point 
with the desired properties in expected O(log a pi) 
time. This is a low order term, overwhelmed by 
the Tp,. O(log 9 Pi) running Lime of ([). 

Summing over all the O(log p) pi's, and not- 
ing that  pi < p, we get an upper bound on the to- 
tal expected running Lime which is O(log 1° p)(the 
maximal Tp,). 
Applying  Lenstra's Result:  

We can use Lenstra's result on the distribu- 
tion of Np~ to give a bound on Tp, which depends 
solely on the distribution of primes in short inter- 
vals. Let S be the set of all numbers which are 
twice a prime. The set Sg, will thus be the set of 
numbers in [p~- ~vf~, p, + vf~] which are twice 
a prime. The cardinality of Sg, will therefore be 

the number of primes in [ - ~ ,  P'----~-~:], which is 

just ~r(--!-~-~-l)-~r(-~!-s2-~A ). By Lenstra's theorem, 
and the definition of Tp,, 

O /  
 _,logp, 

n,  = 2 J  J 

If one assumes the asymptotic distribution of 
primcs holds in these intervals, one gets a heuristic 
bound of O(log 2 p~) for Tp,. This yields a heuristic 
bound of O(log t2 p) for the expected running time 
of our algorithm. In fact, our algorithm almost 
certainly runs in O(log 11 p) time, but  this requires 
a further assumption on the distribution of Np,. 

The interval [P~  vf~, p~v'~] can be essentially 

rewritten as [pl, pl + ~v/~], where pl p-v'~ 
(we may be off by a tiny amount  at one of the 
endpoints, but this doesn't matter) .  This trans- 
formation allows a slightly cleaner formulation of 
our next result: 

Theorem 2: There exists a probabilistic 
primality test which is always correct and ter- 
minates in expected polynomial t ime on all inputs 
if 

3 2 4  



(3c)(3k) + - > _ _ L _  
V ~  -- clog ~ n 

Proof:  By the same argument  as above, our 
algorithm will prove p prime in expected time 
O(logll+kp).  Our algorithm may then be run 
in parallel with a s tandard compositeness prover 
(e.g. any of the usual randomized primality 
testers). Q .E .D .  
4.4 A General izat ion of  the Algor i thm.  

As stated, the algorithm searches for elliptic 
groups whose order of the form 2q, where q is 
prime. This condition is overly restrictive, and 
can be relaxed to that  of having an order that  is 
of the form aq, where q > p½ + 2p¼, and q is 
prime. 

Heuristically, this should speed up the algo- 
r i thm for two reasons: 

(1) There are more groups which fit this 
criteria. Thus, fewer groups must be tried before 
a suitable one can be found. 

(2) Fewer iterations of the outermost  repeat 
loop will be required, since q may go down by 
more than a factor of 2 at each iteration. 

The first reason is of some theoretical inter- 
est. As will be seen in section 5, mathematicians 
have come close to proving the conjecture needed 
to show that  our algorithm runs in expected poly- 
nomial time. This slight generalization of the al- 
gori thm requires a correspondingly weaker conjec- 
ture. 

The second effect is of less interest, since even 
if only one iteration was needed the algorithm 
would still take O(log 11 p) time. 

5. E X P E C T E D  P O L Y N O M I A L  R U N -  
N I N G  T I M E  O N  N E A R L Y  A L L  P R I M E S  

In this section we prove that  our algorithm 
terminates in cxpected polynomial in k time, on 
"almost all" of the inpt~t primes of length k. 

In section 3.5, an upper bound for the running 
time of the algorithm on input  p was shown to 
be O(logl°p)( the maximalTp,)) where T~,, is the 
expected number of elliptic groups to be picked 

mod p~ till one of order twice a prime is found 
and p~ is the prime used in the i th iteration of the 
algorithm. 

Lenstra's result (see section 2.2.3) implies 

that  Tp, : O ( - T ~ - ~ )  where Sp, is the set oi' 

numbers which are of the form twice a prime. ( 
Namely, ISp, I is the number of primes in the in- 

terval [P'~2 v~' P,+v~, , 2 ]). It is not known whether 
for every large cnough x, the cardinality of S= is 
large (or even that  Sz is not empty).  However, 
it has been shown that  for almost all x the car- 

v~ dinality of Sz is greater than O ( i ~ ) .  This will 
be sufficient for our analysis. 
5.1 T h e  Density of P r i m e s  in  A l m o s t  Al l  
Sma l l  Intervals 

We make use of a theorem due to tIeath- 
Brown [HB] concerning the density of primes in 
small intervals. 
For integers a, b let # , [ a ,  b] denote the numl)er of 
primes x satisfying a < x _< b. Let e(a, b) 4-- 1 if 
#p[a,b] < b-~ and 0 otherwise. 

Theorem ( H e a t h - B r o w n ) l :  3a lpha ,  such that  
for sufficiently large z, 

t.(a, a + ~ )  _< z i log  ~ z. 
z<4<2f f i  

5.2 Est imat ing  the  Probabi l i ty  of Poly- 
nomial  Running  Time on a R a n d o m  Input 
Pr ime 

Let PRk = (pl[logpJ = k,p prime} denote 
the set of primes of length k. 

The following running time analysis considers 
a probability space defined by the random choices 
in PRk of the initial prime input  to the algorithm, 
and the random coin tosses made by the algorithm 
itself. 
The following random variables are used in the 
proof of this section's main theorem. 

Po(k) is a random variable denoting the input  
to the algorithm - a random prime in PR~. 

I This  theorem, communicated to us by Maier and 
Pomerance [MP], is actually not explicitly stated in [liB] 
but is implied by one of its technical lemmas. 
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Ni(k) for 0 _< i < k is a random variable 
denoting the order of the "good" elliptic group 
found in the ith iteration of (the main while loop) 
of the algoithm on input Pc(n). (A "good" elliptic 
group is one whose order is twice a prime). If 
a "good" elliptic curve is not found in the ith 
iteration, then set Ny(k) ---- 0 for all i _< j .  

Recall, that in the i th iteration of the algo- 
rithm, a "good" elliptic group is not guranteed 
to be ever actually found. The probabilistic 
primality test PP which raged the elliptic group 
as "good" may have been wrong, or the ith itera- 
tion may simply never find a "good" group. If 
either of these cases takes place, we assume for 
simplicity that  the algorithm timesout and fails, 
and have set Ny(k) = 0 for all i < j .  (In practice, 
the algorithm will not timeout and fail, but will 
be rerun again on input Pc(k).) 

N,(~) P~+l(k) 4- ~ for 1 < i _< k denotes the 
value of the prime Pi used in the ith iteration of 
(the main while loop of) the algorithm. 

A few comments are in order. 

C o m m e n t  1: By the properties of the orders 
of elliptic curves, N,(k) E [P,(k):1: P ~ ] ,  and 

thus P,(k) E [ - ~  ± e~~_~(k)]. 
C o m m e n t  2: Since the main while loop 

of the algorithm terminates as soon as Pi(k) ~ 

20osPo(k))r~//~/-z;, an upper bound on the number 
of iterations i made by the while loop is B 
k - k rZi'L~ii~ . 

C o m m e n t  3: For simplicity of the analysis, 
we shall assume that  our algorithm fails and the 
Ny(k)'s are set to 0 for all j ~ i, as soon as 
the number of elliptic groups picked at iteration 
i and tested for "good" order exceeds log a Pi(k). 
(Clearly, bounding the probability of failure for 
this simplified version of the algorithm, will bound 
the probability of failure in the actual algorithm). 

We are ready to state theorem 3. 

T h e o r e m  3: For all k, the probability that 
the Primality Proving Algorithm terminates in 
expected time O(k 12) on random input prime of 
length k is greather than 

1 _ 

Proo f :  Note that  by the comments 1-3 made 
above, the probability that the Primality Proving 
Algorithm terminates in expected time O(k 12) on 
random input prime of length k equals the 

er(V1 < i < B, Pi(k) is prime ). 

Thus, it will suffice to show that  

e r (3 i  such that P , + l ( k ) =  0, P , (k ) i s  prime ) _< 

O(2-km/~'~) .  

The following facts 1 through 4 will be useful 
in the calcualion. 
fact 1: Let c = 7. Then, Yi < k -  6, 

Proof (by induction on i) is ommitted. 
fact g: Let ~ ) 0. For sufficiently large k, for 

Z .(a :1: -~-) < 2(I+')'. 
2 k ( a ( 2 k + a  

proof: Follows directly from Heath-Brown's 
theorem stated above. Q.E.D.(fact g) 

Define T(x) = 1 ir 3a ~ {z ± j , f~ ,  -7  < y _< 

+7} such that t(a ± -~-) = 1 and 0 otherwise, 
w h e r e  ± b) = - b , a  + b). 

Informally, the meaning of T is that  if T(t) = 
0, then for all numbers z in [t ± 7x/'t] one can 
quickly find a prime in the interval [z ± Vfz]. 
fact 8: Let ~ > 0. For sufficiently large k, 

r(t) _< 
2 k < t ~ 2 k +  z 

proof: By the definitions of T and ~ it follows that  

r(t) < 
2 k ~ t ~ 2  k+l 

1 

2 ~ < t < 2 ~ + ~  aE{t+.j~/~,-7_<j<7} 

But, a positive t(a) will contribute 1 to at 
most 30 t's. Thus, 

Z r ( t )  < 
2 k ~ t ~ 2 k +  z 
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N~(k) for 0 < i _~ k is a random variable 
denoting the order of the "good" elliptic group 
found in the ith iteration of (the main while loop) 
of the algoithm on input Po(n). (A "good" elliptic 
group is one whose order is twice a prime). If 
a "good" elliptic curve is not found in the ith 
iteration, then set N~(k) ---- 0 for all i < j .  

Recall, that in the ith iteration of the algo- 
rithm, a "good" elliptic group is not guranteed 
to be ever actually found. The probabilistic 
primality test PP which taged the elliptic group 
as "good" may have been wrong, or the ith ite?a- 
tion may simply never find a "good" group. If 
either of these cases takes place, we assume for 
simplicity that  the algorithm timesout and fails, 
and have set Ny(k ) = 0 for all i ~ j .  (In practice, 
the algorithm will not timeout and fail, but will 
be rerun again on input Po(k).) 

N~(~) for 1 < i < k denotes the P~+l(k) ~ 2 -- -- 
value of the prime pi used in the ith iteration of 
(the main wlfile loop of) the algorithm. 

A few comments are in order. 

C o m m e n t  1: By the properties of the orders 
of elliptic curves, Ni(k) e [Pi(k) ± P ~ ] ,  and 

C o m m e n t  2: Since the main while loop 
of the algorithm terminates as soon as Pi(k) <_ 

2 (l°aP°(k))r~zi'~, an upper bound on the number 
of iterations i made by the while loop is B = 
k - kr zLz . 

C o m m e n t  3: For simplicity of the analysis, 
we shall assume that  our algorithm fails and the 
Nj(k) 's are set to 0 for all j > i, as soon as 
the number of elliptic groups picked at iteration 
i and tested for "good" order exceeds log s Pi(k). 
(C|,~arly, bounding the probability of failure for 
this simplified version of the algorithm, will bound 
the probability of failure in the actual algorithm). 

We are ready to state theorem 3. 

T h e o r e m  3: For all k, the probability that 
the Primality Proving Algorithm terminates in 
expected t ime O(k 12) on random input prime of 
length k is greather than 

1 -  

Proof :  Note that  by the comments 1-3 made 
above, the probability that the Primality Proving 
Algorithm terminates in expected time O(k 12) on 
random input prime of length k equals the 

Pr(V1 < i < B, Pi(k) is prime ). 

Thus, it will suffice to show that  

Pr(3i such that Pi+l(k) = O, Pi(k) is prime ) ~_ 

O(2-krz~l*zia; ). 

The following facts I through 4 will be useful 
in the calcualion. 
fact 1: Let c = 7. Then, Vi < k -  6, 

Pi(k) E [~ ik )  ± cV~2---~]. 

Proof (by induction on i) is ommitted. 
fact 2: Let ¢ > 0. For sufficiently large k, for 

,(a ± < 2(I+,)~. 

proof: Follows directly from Heath-Brown's 
theorem stated above. Q.E.D.(fact 2) 

Define T(x) -~ 1 if 3a E {x ± jvf~, - 7  < j < 

+7}  such that ± g )  = 1 and 0 otherwise, 
where t(a ±b) - ~ t ( a - b , a  +b). 

Informally, the meaning of T is that if T(t) 
0, then for all numbers x in [t ± 7Vq] one can 
quickly find a prime in the interval [z ± Vfx]. 
fact 3: Let e > 0. For sufficiently large k, 

r(t)  _< 
2/. < t < 2 ~ + a  

proof: By the definitions of T and ~ it follows that  

E r(t) _< 
2 / . < t < 2 a +  a 

I 

2/. < t<~2a+ l  aE(t+~4v/t,--7 ~ i ~ 7 )  

But, a positive ~(a) will contribute 1 to at 
most 30 t's. Thus, 

v(t) < 
2h ~ t ~ 2 / . + a  
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30~(~ ± ~,/~) _< 
2 h - 7  ~ ' < a  < 2 k++l +7~/2~+  s 

= 

2k--L <~<2h+a 

(By fact 2) 
o(2Ci+.)k) .  

Q.E.D. (fact S). 
fact 4: For 1 < i <  B s u c h t h a t i <  k - 6 ,  

Pr(P,(k) = 0 I T ( L - ~ J  ) = O,P,_,(k) is prime ) 

o(~-e). 

proof: For every value P i - t (k )  E t 2,-, ±TV ~ - ,  ] 
the cardinality of the set of integers of the 
form twice a prime in the interval [ P i - l ( k ) ±  
2v /~-~C~]  (previously referred to as Sp,_~(~))is 

the the numebr of primes in the interval [-~=~--~ ± 
¢~?:R~)]. 

Now, if V(-~-~)  = 0, then (=la)(=l- 7 _~ 
j < +7) such that  the interval [a ± ~Vfd] is 

entirely contained in [P'~(k) ± V / ~ ~ ]  and 

#p [a±  ½vfd] > ~ Thus, the number of primes 

contained in [_~L~J~ ± V / ~ ( k ) ]  is greater than 

[io~" (Namely, ISP,_,(k)l = oc¢~=7~). ~og P,_ ~ (~)) 
By Lenstra's theorem the expected number of 

elliptic groups picked in the i - l t h  iteration of 
the algorithm till one of "good" order is found is 

0( ~ (~)~og p,_, (~)). Thus, the probability that 
" I S ~ , _ , ( ~ ) l  

in log s P~_~(k) trials a "good" elliptic group is not 

found is less than (1 nos~ E_,(O~ ~x°g~P'-'(~) --< 

O(e-~).  
Q.E.D. (fact "0" 

The final calculation now follows. 
Pr(algorithm does not terminate in expected 0(k12)) 

time on random input prime of length k) 

Pr(30 < i < B, Pi+l(k) -~ 0, Pi(k)is prime) 
B 

E Pr(Pi+l(k) ~ 0,Pi{k)is prime) _< 
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B 

T~/Po(k) n E Pr(Pi+,(k) = O, Pi(k)is prime , , - ~ T J ,  = 1)- 
/ = l  

Pr(T(LP2~+k)J ) = 1)+ 

, r - - P ° ( k ) / ~  = 0). Pr(P{+t(k) : 0,P{(k)is pr ime,  ,L 2~+1 J, 

Pr(T(LP2°.~(f~)]) : 0) 

(the second summation can be bounded by by fact 
4, which is negligible with respect the final result, 
and will be ignored from here on). 

8 Po(k) ~ Pr(T(k-~i-J) = I)< 
i----I 

B 

EE 
i ~ 1  qEPRb 

po(k) Pr(T([ 2~]) : 1 I Po(k) = q) 

• Pr(Po(k) = q) = 

B T(L.~-] )  
~ IPR~I -< i = l  qEPRa. 

The sum ~qepRh T ( U ~ - J ) c a n  be replaced by 
~z~- '<t<2~- '+~ T(t) 2~+1- This can be done as at  
most 2V+Vof the q E PRk will be mapped into the 
same t ---- [ ~ J .  

Finally, by fact 3, for e > 0 

B 
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