
Security Proofs for the MD6 Hash Function

Mode of Operation

by

Christopher Yale Crutchfield

B.S., Electrical Engineering and Computer Science (2006)
B.S., Engineering Mathematics and Statistics (2006)

University of California, Berkeley

Submitted to the Department of
Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 23, 2008

Certified by. .
Ronald L. Rivest

Andrew and Erna Viterbi Professor of
Electrical Engineering and Computer Science

Thesis Supervisor

Accepted by .
Terry P. Orlando

Chairman, Department Committee on Graduate Students

2

Security Proofs for the MD6 Hash Function

Mode of Operation

by

Christopher Yale Crutchfield

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the requirements

for the degree of Master of Science
Revised on June 3, 2008

Abstract

In recent years there have been a series of serious and alarming cryptanalytic attacks
on several commonly-used hash functions, such as MD4, MD5, SHA-0, and SHA-
1 [13, 38]. These culminated with the celebrated work of Wang, Yin, and Yu from
2005, which demonstrated relatively efficient methods for finding collisions in the
SHA-1 hash function [37]. Although there are several cryptographic hash functions
— such as the SHA-2 family [28] — that have not yet succumbed to such attacks, the
U.S. National Institute of Standards and Technology (NIST) put out a call in 2007
for candidate proposals for a new cryptographic hash function family, to be dubbed
SHA-3 [29].

Hash functions are algorithms for converting an arbitrarily large input into a fixed-
length message digest. They typically consist of two main components: a compression

function that operates on fixed-length pieces of the input, and a mode of operation

that governs how apply the compression function repeatedly on the pieces in order
to allow for arbitrary-length inputs. Cryptographic hash functions are furthermore
required to have several important and stringent security properties including (but not
limited to) first-preimage resistance, second-preimage resistance, collision resistance,
pseudorandomness, and unpredictability.

This work presents proofs of security for the mode of operation of the MD6 cryp-
tographic hash function [32] — a candidate for the SHA-3 competition — which
differs greatly from the modes of operation of many commonly-used hash functions
today (MD4, MD5, as well as the SHA family of hash functions.) In particular,
we demonstrate provably that the mode of operation used in MD6 preserves some
cryptographic properties of the compression function — that is, assuming some ideal
conditions about the compression function used, the overall MD6 hash function is
secure as well.

Thesis Supervisor: Ronald L. Rivest
Title: Andrew and Erna Viterbi Professor of
Electrical Engineering and Computer Science

3

4

Acknowledgments

I would like to thank Professor Ron Rivest for all of his support and insight in the

undertaking of this project, as well as for designing the MD6 hash function itself.

In addition, many thanks are owed to Jacob Scott, who tirelessly (and sleeplessly)

provided many helpful comments on earlier drafts of this work. Finally, I must ac-

knowledge Pam Satjawatcharaphong, who helped keep me afloat throughout this

whole process.

5

6

Contents

1 Introduction 13

1.1 Mode of Operation . 15

1.1.1 Iterative Modes of Operation 16

1.1.2 MD6 Mode of Operation . 16

1.2 NIST SHA-3 Competition . 17

1.3 Organization . 19

2 Preliminaries 21

2.1 The MD6 Cryptographic Hash Function 21

2.1.1 MD6 Mode of Operation . 22

2.1.2 Notation . 23

2.2 Definitions . 29

2.3 Related Work . 31

3 Collision and Preimage Resistance 33

3.1 Collision Resistance . 34

3.2 First-Preimage Resistance . 42

3.3 Second-Preimage Resistance . 45

4 Pseudorandomness 49

4.1 Maurer’s Random System Framework 50

4.1.1 Notation . 50

4.1.2 Definitions . 50

7

4.1.3 Bounding Distinguishability 54

4.2 MD6 as a Domain Extender for FIL-PRFs 56

4.2.1 Preliminaries . 56

4.2.2 Indistinguishability . 58

5 Unpredictability (MACs) 65

5.1 Preliminaries . 66

5.1.1 Important Lemmas . 67

5.1.2 A Two-Keyed Variant of MD6 69

5.2 MD6 as a Domain Extender for FIL-MACs 71

6 Conclusion 77

A Birthday Paradox 83

8

List of Figures

1-1 The MD6 mode of operation. The computation begins from the bot-

tom and works its way to the top; the root node represents the final

compression function which outputs the message digest. 17

2-1 The compression function input contains 89 64-bit words: a 15-word

constant vector Q, an 8-word key K, a one-word unique node ID U ,

a one-word control variable V , and a 64-word data block B. The first

four items form the auxiliary (or header) information, shown in grey. 21

2-2 Layout of the control word V . The high-order 4 bits are zero (reserved

for future use). The 12-bit field r gives the number of rounds in the

compression function. The 8-bit field L gives a mode of operation

parameter (maximum tree height). The 4-bit field z is 1 iff this com-

pression operation is the very last one. The 16-bit field p gives the

number of padding bits in the data block B. The 8-bit field keylen

gives the number of key bytes in the supplied key K. The 12-bit digest

size field d gives the size of the final desired hash function output, in

bits. 22

2-3 Layout of the unique node ID word U . The high-order byte is ℓ, the

level number. The seven-byte field i gives the index of the node within

the level (i = 0, 1, . . .). 22

2-4 The MD6 Mode of Operation. With the default setting of L = 31, the SEQ

operation is never used; the PAR operation is repeatedly called to reduce

the input size by a factor of b/c = 4 until a single 16-word chunk remains. 24

9

2-5 The MD6 PAR operator is a parallel compression operation producing level

ℓ of the tree from level ℓ− 1. With the default setting L = 31, this routine

is used repeatedly to produce each higher layer of the tree, until the value

at the root is produced. 25

2-6 The MD6 SEQ Operator is a sequential Merkle-Damg̊ard-like hash operation

producing a final hash output value. With the default setting of L = 31,

SEQ is never used. 26

2-7 Structure of the standard MD6 mode of operation (L = 31). Compu-

tation proceeds from bottom to top: the input is on level 0, and the

final hash value is output from the root of the tree. Each edge between

two nodes represents a 16 word (128 byte, 1024-bit) chunk. Each small

black dot on level 0 corresponds to a 16-word chunk of input message.

The grey dot on level 0 corresponds to a partial chunk (less than 16

words) that is padded with zeros until it is 16 words long. A white

dot (on any level) corresponds to a chunk of all zeros. Each medium

or large black dot above level zero corresponds to an application of the

compression function. The large black dot represents the final com-

pression operation; here it is at the root. The final MD6 hash value is

obtained by truncating the value computed there. 27

2-8 Structure of the MD6 mode of operation (L = 1). Computation pro-

ceeds from bottom to top and left to right; level 2 represents processing

by SEQ. The hash function output is produced by the rightmost node

on level 2. The white circle at the left on level 2 is the all-zero initial-

ization vector for the sequential computation at that level. 27

2-9 Structure of the MD6 mode of operation (L = 0). Computation pro-

ceeds from left to right only; level 1 represents processing by SEQ. The

hash function output is produced by the rightmost node on level 1. This

is similar to standard Merkle-Damg̊ard processing. The white circle at

the left on level 1 is the all-zero initialization vector for the sequential

computation at that level. 28

10

List of Tables

2.1 Variable naming conventions used throughout this paper. 23

11

12

Chapter 1

Introduction

Hash functions are a fundamental primitive in the field of cryptography, used widely

in a broad spectrum of important applications including: message integrity and au-

thentication [3, 4], digital signatures [9], secure timestamping, and countless others.

The security of these applications often rely directly on the security properties of the

underlying hash function; if the hash function fails to be as secure as believed, then

the application fails to be secure as well. Therefore there is often a strong interest

in proving, with the most rigorous scrutiny possible, that a given hash function algo-

rithm indeed has the desired security properties and is resilient to a variety of attacks.

In this thesis, we will address some of these concerns for the MD6 hash function and

prove that its mode of operation preserves some security properties of its compression

function.

A hash function H is an efficiently-computable algorithm that takes as input an

arbitrary-length message M and potentially a fixed-length key K (if we are considering

a keyed hash function), and produces a fixed-length output D called the message

digest .

H(K,M) = D

One practical use of hash functions in cryptography is in the so-called hash-and-

sign paradigm [9] for digital signature schemes. This involves, for a signature scheme

13

σ and a collision-resistant hash function H, hashing the message and then signing

the hash: σ(H(m)). In this way, the hash function H plays the role of a domain

extender for the underlying signature scheme σ, and the overall unforgeability of

the resulting signature scheme is relies heavily on the collision resistance of H. The

rationale for such constructions is that it is very difficult to design a signature scheme

without a hash function that is secure for inputs of arbitrary length, and that it

is significantly easier to design such a scheme when the inputs are assumed to be

bounded.

For example, in the RSA signature scheme [33], σRSA(m) = md (mod N), where

d is the secret exponent and N is the RSA modulus. If we were to allow inputs

of arbitrary lengths, it is clear that this scheme fails to have the property of un-

forgeability, as σRSA(m) ≡ σRSA(m + N) (mod N). That is, given a signature pair

(m,σRSA(m)) from a signing oracle, an adversary can trivially forge signature pairs

(m + kN, σRSA(m)) for any integer k (and thus produce signatures on messages that

the oracle did not sign). However, if instead we first hash the message into Z
∗
N and

then sign it — symbolically, σRSA(H(m)) — it is clear that in order to forge a signa-

ture, the adversary must either break the underlying RSA signature scheme (by, say,

factoring the modulus N) or find a collision in the underlying hash function H.

Applications such as the aforementioned hash-and-sign paradigm, or message au-

thentication, secure timestamping, as well as a host of other uses in various crypto-

graphic protocols, often make several assumptions about the underlying hash function

(which, when it has some or all of these properties, we call a cryptographic hash func-

tion). In particular, we may assume that the hash function may have the following

properties (we will define them more rigorously later on).

• Collision resistance : An adversary should not be able to find two distinct

messages M and M ′ such that H(M) = H(M ′) (a collision). As shown in

the above hash-and-sign example, the security of the signature scheme using H

depends strongly on the collision resistance of H.

• First preimage resistance : An adversary given a target image D should

14

not be able to find a preimage M such that H(M) = D. One reason (among

many) why this property is important is that on most computer systems user

passwords are stored as the cryptographic hash of the password instead of just

the plaintext password. Thus an adversary who gains access to the password

file cannot use it to then gain access to the system, unless it is able to invert

target message digests of the hash function.

• Second preimage resistance : An adversary given a message M should not

be able to find another message M ′ such that M 6= M ′ and H(M ′) = H(M).

This property is implied by collision resistance.

• Pseudorandomness : (For keyed hash functions) an adversary should not be

able to distinguish the outputs of H(K, ·) from a truly random function. Note

that pseudorandomness necessarily implies unpredictability, meaning a pseu-

dorandom function (PRF) naturally is a message authentication code (MAC).

However, the converse is not necessarily true, and indeed PRF is a much stronger

condition than unpredictability.

• Unpredictability : (For keyed hash functions) an adversary given oracle access

to H(K, ·) should not be able to forge the output of a message it did not query.

That is it should not be able to produce a hash pair (M,D) where H(K,M) = D

without having already queried M . We say that if a function is unpredictable,

then it is a message authentication code (MAC).

1.1 Mode of Operation

A mode of operation M is an algorithm that, given a fixed-length compression

function or block cipher f , describes how to apply f repeatedly on fixed-length chunks

of the arbitrarily-sized input in order to produce a fixed-length output for the whole.

In this way, one can construct Variable Input Length (VIL) cryptographic primitives

from Fixed Input Length (FIL) cryptographic primitives, which is an a functionality

commonly referred to as domain extension [16].

15

1.1.1 Iterative Modes of Operation

Many common hash functions in use today — such as MD5 or SHA-1 — are based on

an iterative chaining mode of operation frequently referred to as the Merkle-Damg̊ard

construction [15, 26]. The Merkle-Damg̊ard construction typically makes use of a

compression function f : {0, 1}n+ℓ → {0, 1}n, or a block cipher E made to behave as

a compression function via the Davies-Meyer transform [25]: f(x, y) = Ex(y)⊕ y.

If f is a compression function as defined above, then the plain Merkle-Damg̊ard

construction that uses this compression function, MD
f , begins first by padding the

input message m to have a length that is an integer multiple of ℓ, and picking some

fixed n-bit initial vector IV . It then proceeds sequentially through the ℓ-bit message

chunks, starting from the first chunk, and ending after processing the last one.

Algorithm MDf

Input: m = m1‖m2‖ · · · ‖mt, where |mi| = ℓ for all i.

Output: The message digest, D.

1. y0 ← IV

2. for i← 1 to t

3. yi ← f(yi−1,mi)

4. D ← yt

The Merkle-Damg̊ard construction has been well-studied in the literature, and

variations on this mode of operation (e.g. strengthened Merkle-Damg̊ard and oth-

ers) have been shown to be domain extenders for various cryptographic properties:

collision-resistance [2,10,15,26], pseudorandomness [4,5], unforgeability (MAC) [1,24],

indifferentiability from a random oracle [14], and several others.

1.1.2 MD6 Mode of Operation

However, MD6 makes use of a substantially different tree-based mode of operation

that allows for greater parallelism [32]. Whereas the Merkle-Damg̊ard construction,

when viewed as a graph, is essentially a long chain, MD6 may be viewed as a tree-like

16

construction, with a 4-to-1 compression function reducing the overall length of the

message at each level.

0

1

2

3

level

Figure 1-1: The MD6 mode of operation. The computation begins from the bottom
and works its way to the top; the root node represents the final compression function
which outputs the message digest.

What makes this particular mode of operation different from other tree-based

hashing and MAC schemes in the literature [11, 27] is that each node in the tree is

labeled with some auxiliary information that also feeds into the compression func-

tion. In particular, each node is given a unique identifier (effectively changing the

characteristic of the compression function at each node in the tree) and the root

node is “flagged” with a bit z that identifies that it is the final compression function

used. This auxiliary information encoded into the input of the each compression func-

tion prevents the type of hash function attacks whereby an adversary can produce a

cleverly-constructed message query that corresponds to some substructure of another

query (for example, preventing length-extension attacks).

1.2 NIST SHA-3 Competition

Although the SHA-2 family of hash functions has not yet succumbed to the kind of

collision-finding attacks that have plagued MD5 and SHA-1 (among others) in recent

years, the U.S. National Institute of Standards and Technology put out a call in

2007 for candidate algorithms for a new cryptographic hash function family, called

SHA-3. As stated in the call for submissions [29], “a successful collision attack on an

17

algorithm in the SHA-2 family could have catastrophic effects for digital signatures”,

thus necessitating the design of an even more resilient cryptographic hash function

family. Although SHA-3 candidates will not differ from SHA-2 in the size of the

message digest (which may vary from 224, 256, 384, and 512 bits) or the size of

other input parameters such as the key, NIST expects that candidate proposals will

improve upon the SHA-2 designs by allowing for randomized (salted) hashing, being

inherently parallelizable to take advantage of today’s multicore processor design, and

being resilient to length extension attacks that many Merkle-Damg̊ard-based hash

functions succumb to. On the last two points, “NIST is open to, and encourages,

submissions of hash functions that differ from the traditional Merkle-Damg̊ard model,

using other structures, chaining modes, and possibly additional inputs.”

In terms of the security requirements for a proposed SHA-3 candidate, the call

for submissions specifically states the following conditions (this is a subset of the

security requirements listed; see [29] for the remainder). For a message digest of d

bits, candidate hash functions must have

(1) Collision resistance of approximately d/2 bits.

(2) First-preimage resistance of approximately d bits.

(3) Second-preimage resistance of approximately d − k bits for any message shorter

than 2k bits.

For the keyed variant of the candidate hash function proposal, NIST requires that

the hash functions supports HMAC (keyed hash function message authentication

codes), PRF (pseudorandom function), as well as randomized hashing. An additional

security requirement for these modes (for a message digest of d bits) is:

(4) When using HMAC to construct a PRF, the PRF should not be distinguishable

from a truly random function with significantly fewer than 2d/2 queries to the

hashing oracle and computation significantly less than a preimage attack.

In this paper we address these security properties, as pertains particularly to the

MD6 mode of operation itself. That is, in this paper we take an agnostic approach

18

to the compression function used and consider only a black-box function f with some

desirable property P (e.g. collision resistance, pseudorandomness, et cetera). Our

goal is then to show that the MD6 mode of operation acts as a domain extender for f

that preserves the property P . The question we attempt to answer is, does the MD6

mode of operation dilute the security of the black-box function with respect to P ,

and if so, by how much? For collision resistance, first-preimage resistance, and pseu-

dorandomness we give concrete security bounds for the property preservation. For

the MAC functionality, we do the same, although we must introduce a new assump-

tion. For the property of second-preimage resistance, we are unable to demonstrate

provably that it preserves this property (although we reduce to a weaker property

instead).

1.3 Organization

This thesis is organized as follows. A detailed description of the MD6 mode of oper-

ation, basic definitions that will be used throughout the paper, and a short summary

of related work will be presented in Chapter 2. In Chapter 3, we will address the col-

lision resistance and preimage resistance of the MD6 mode of operation. Chapter 4 is

devoted to topics regarding the pseudorandomness-preserving properties of MD6. In

Chapter 5, we demonstrate that the MD6 mode of operation preserves unpredictabil-

ity as well (under certain assumptions), and therefore is well-suited for use as a MAC.

In Chapter 6 we conclude with a summary of results and directions for future work.

There is also an appendix on some supplementary topics. Appendix A discusses

the birthday paradox and the birthday bound, which we make use of in a few of our

proofs.

19

20

Chapter 2

Preliminaries

2.1 The MD6 Cryptographic Hash Function

The MD6 hash function is comprised of two main components: the MD6 compression

function and the MD6 mode of operation. The MD6 compression function maps 89

64-bit words of input (64 words of data B, 8 words for the key K, 15 fixed words Q,

and 2 auxiliary information words) down to 16 64-bit words of output. Therefore in

practice it is a function f : {0, 1}k × {0, 1}n → {0, 1}c with k = 8w, n = 66w, and

c = 16w (where w = 64) (see Figure 2-1).

Q K UV B

0 15 2325 89

Figure 2-1: The compression function input contains 89 64-bit words: a 15-word
constant vector Q, an 8-word key K, a one-word unique node ID U , a one-word control
variable V , and a 64-word data block B. The first four items form the auxiliary (or
header) information, shown in grey.

Note that although it takes in 89 words of input, 15 words are fixed for the constant

Q, hence in practice it is only a function on 74w total words of input (8w of which

are assigned for the key). In addition, since the data portion of its input is of length

64w and its output is c = 16w, the MD6 compression function represents a four-fold

21

reduction in the size of data input to the size of the output. Although there is much

more to the MD6 compression function than that, this is all that we will assume about

its construction. See the MD6 documentation for a much more detailed description

of the compression function [32].

As mentioned previously, two words out of the 66 word input space are reserved

for control words U and V . A short description of these auxiliary inputs follows.

0 r L z p keylen d

Figure 2-2: Layout of the control word V . The high-order 4 bits are zero (reserved for
future use). The 12-bit field r gives the number of rounds in the compression function.
The 8-bit field L gives a mode of operation parameter (maximum tree height). The
4-bit field z is 1 iff this compression operation is the very last one. The 16-bit field
p gives the number of padding bits in the data block B. The 8-bit field keylen gives
the number of key bytes in the supplied key K. The 12-bit digest size field d gives
the size of the final desired hash function output, in bits.

ℓ i

Figure 2-3: Layout of the unique node ID word U . The high-order byte is ℓ, the
level number. The seven-byte field i gives the index of the node within the level
(i = 0, 1, . . .).

2.1.1 MD6 Mode of Operation

The MD6 mode of operation describes how to apply the fixed-length compression

function f repeatedly in order to create a fixed-length digest from an arbitrarily-

long input. The standard mode of operation is a hierarchical, tree-based mode of

operation. However, MD6 is also parameterized by a “maximum level” parameter L,

where 0 ≤ L ≤ 31. If L = 31, then the MD6 mode of operation is a full 4-ary hash tree.

If L = 0 then its mode of operation is iterative, similar to Merkle-Damg̊ard. Figures

2-4, 2-6, and 2-5 give a more detailed description of the MD6 mode of operation. In

Figures 2-7, 2-8, and 2-9, we give a graphical representation of the MD6 mode of

22

operation.

2.1.2 Notation

Throughout this paper we will reserve the variable names in Table 2.1.2 to describe

certain quantities. This is mostly consistent with the MD6 documentation [32, Ap-

pendix D], although there are some differences.

Variable Default Usage
B – the data block portion of a compression function input.
b 64 the number of words in array B.
C – the output of the compression function.
c 16w number of bits in the “chaining variable” C.
d – number of bits in the MD6 final output (1 ≤ d ≤ 512).
f – the MD6 compression function mapping {0, 1}n+k to {0, 1}cw.
K 0 the key variable (an input to f).
k 8w number of bits in the key variable K.

keylen 0 the length in bytes of the supplied key; 0 ≤ keylen ≤ kw/8.
ℓ – the level number of a compression node.
L 31 mode parameter (maximum level number).
N – the non-key, non-Q piece of the compression function input.
n 66w the size of N (in bits).
p – the number of padding bits in a data block B.

Q – an approximation to
√

6 (see [32, Appendix A]).
q 15 the length of Q in words.
U – one-word unique node ID.
u 1 length of U in words.
V – a control word input to a compression function.
v 1 length of V in words.
w 64 the number of bits in a word.
z – flag bit in V indicating this is final compression.

Table 2.1: Variable naming conventions used throughout this paper.

23

The MD6 Mode of Operation
Input:

M : A message M of some non-negative length m in bits.

d : The length d (in bits) of the desired hash output, 1 ≤ d ≤ 512.

K : An arbitrary k = 8 word “key” value, containing a supplied key of
keylen bytes.

L : A non-negative mode parameter (maximum level number, or number
of parallel passes).

r : A non-negative number of rounds.

Output:

D : A d-bit hash value D =Mf
d,K,L,r(M).

Procedure:

Initialize:

• Let ℓ = 0, M0 = M , and m0 = m.

Main level-by-level loop:

• Let ℓ = ℓ + 1.

• If ℓ = L + 1, return SEQ(Mℓ−1, d, K, L, r) as the hash function
output.

• Let Mℓ = PAR(Mℓ−1, d, K, L, r, ℓ). Let mℓ be the length of Mℓ

in bits.

• If mℓ = c (i.e. if Mℓ is c words long), return the last d bits of Mℓ

as the hash function output. Otherwise, return to the top of the
main level-by-level loop.

Figure 2-4: The MD6 Mode of Operation. With the default setting of L = 31, the SEQ

operation is never used; the PAR operation is repeatedly called to reduce the input size by

a factor of b/c = 4 until a single 16-word chunk remains.

24

The MD6 PAR Operation
Input:

Mℓ−1 : A message of some non-negative length mℓ−1 in bits.

d : The length d (in bits) of the desired hash output, 1 ≤ d ≤ 512.

K : An arbitrary k = 8 word “key” value, containing a supplied key of
keylen bytes.

L : A non-negative mode parameter (maximum level number, or number
of parallel passes).

r : A non-negative number of rounds.

ℓ : A non-negative integer level number, 1 ≤ ℓ ≤ L.

Output:

Mℓ : A message of length mℓ in bits, where mℓ = 1024 ·
max(1, ⌈mℓ−1/4096⌉)

Procedure:

Initialize:

• Let Q denote the array of length q = 15 words giving the frac-
tional part of

√
6. (See [32, Appendix A].)

• Let fr denote the MD6 compression function mapping a 64-word
input data block B to a 16-word output chunk C using r rounds
of computation. (fr also takes 25 words of auxiliary input infor-
mation.)

Shrink:

• Extend input Mℓ−1 if necessary (and only if necessary) by ap-
pending zero bits until its length becomes a positive integral mul-
tiple of b = 64 words. Then Mℓ−1 can be viewed as a sequence B0,
B1, . . . , Bj−1 of b-word blocks, where j = max(1, ⌈mℓ−1/bw⌉).

• For each b-word block Bi, i = 0, 1, . . . , j−1, compute Ci in parallel

as follows:

– Let p denote the number of padding bits in Bi; 0 ≤ p ≤ 4096.
(p can only be nonzero for i = j − 1.)

– Let z = 1 if j = 1, otherwise let z = 0. (z = 1 only for the last
block to be compressed in the complete MD6 computation.)

– Let V be the one-word value r‖L‖z‖p‖keylen‖d (see Figure 2-
2).

– Let U = ℓ · 256 + i be a “unique node ID”—a one-word value
unique to this compression function operation.

– Let Ci = fr(Q‖K‖U‖V ‖Bi). (Ci has length c = 16 words).

• Return Mℓ = C0‖C1‖ . . . ‖Cj−1.

Figure 2-5: The MD6 PAR operator is a parallel compression operation producing level ℓ

of the tree from level ℓ− 1. With the default setting L = 31, this routine is used repeatedly

to produce each higher layer of the tree, until the value at the root is produced.

25

The (Optional) MD6 SEQ Operation
Input:

ML : A message of some non-negative length mL in bits.

d : The length d (in bits) of the desired hash output, 1 ≤ d ≤ 512.

K : An arbitrary k = 8 word key value, containing a supplied key of keylen
bytes.

L : A non-negative mode parameter (maximum tree height).

r : A non-negative number of rounds.

Output:

D : A d-bit hash value.

Procedure:

Initialize:

• Let Q denote the array of length q = 15 words giving the frac-
tional part of

√
6. (See [32, Appendix A].)

• Let fr denote the MD6 compression function mapping a 64-word
data block B to a 16-word output block C using r rounds of com-
putation. (fr also takes 25 words of auxiliary input information.)

Main loop:

• Let C−1 be the zero vector of length c = 16 words. (This is the
“IV”.)

• Extend input ML if necessary (and only if necessary) by ap-
pending zero bits until its length becomes a positive integral
multiple of (b − c) = 48 words. Then ML can be viewed as
a sequence B0, B1, . . . , Bj−1 of (b − c)-word blocks, where
j = max(1, ⌈mL/(b− c)w⌉).

• For each (b − c)-word block Bi, i = 0, 1, . . . , j − 1 in sequence,
compute Ci as follows:

– Let p be the number of padding bits in Bi; 0 ≤ p ≤ 3072. (p
can only be nonzero when i = j − 1.)

– Let z = 1 if i = j − 1, otherwise let z = 0. (z = 1 only
for the last block to be compressed in the complete MD6
computation.)

– Let V be the one-word value r‖L‖z‖p‖keylen‖d (see Figure 2-
2).

– Let U = L · 256 + i be a “unique node ID”—a one-word value
unique to this compression function operation.

– Let Ci = fr(Q‖K‖U‖V ‖Ci−1‖Bi). (Ci has length c = 16
words).

• Return the last d bits of Cj−1 as the hash function output.

Figure 2-6: The MD6 SEQ Operator is a sequential Merkle-Damg̊ard-like hash operation

producing a final hash output value. With the default setting of L = 31, SEQ is never used.

26

0

1

2

3

level

Figure 2-7: Structure of the standard MD6 mode of operation (L = 31). Computation
proceeds from bottom to top: the input is on level 0, and the final hash value is output
from the root of the tree. Each edge between two nodes represents a 16 word (128
byte, 1024-bit) chunk. Each small black dot on level 0 corresponds to a 16-word
chunk of input message. The grey dot on level 0 corresponds to a partial chunk (less
than 16 words) that is padded with zeros until it is 16 words long. A white dot (on
any level) corresponds to a chunk of all zeros. Each medium or large black dot above
level zero corresponds to an application of the compression function. The large black
dot represents the final compression operation; here it is at the root. The final MD6
hash value is obtained by truncating the value computed there.

0

1

2

level

Figure 2-8: Structure of the MD6 mode of operation (L = 1). Computation proceeds
from bottom to top and left to right; level 2 represents processing by SEQ. The hash
function output is produced by the rightmost node on level 2. The white circle at
the left on level 2 is the all-zero initialization vector for the sequential computation
at that level.

27

0

1

level

Figure 2-9: Structure of the MD6 mode of operation (L = 0). Computation proceeds
from left to right only; level 1 represents processing by SEQ. The hash function output
is produced by the rightmost node on level 1. This is similar to standard Merkle-
Damg̊ard processing. The white circle at the left on level 1 is the all-zero initialization
vector for the sequential computation at that level.

In addition we will often use the following notational conventions when precisely

defining the advantage of an adversary for attacking some cryptographic property of

the compression function or hash function.

AdvP
A

= Pr





Random values are chosen;

A is given these values as input;

A produces some output

: A’s output violates P





For example, one definition of the advantage of A for breaking the collision resis-

tance of f is due to Rogaway and Shrimpton [35].

Advfil-cr
A

= Pr



 K
$← {0, 1}k;

(m,m′)← A(K)
:

m 6= m′,

f(K,m) = f(K,m′)





Here the probability is taken over the uniform random choice of key value K

from the keyspace {0, 1}k (where this random choice is denoted by $). To be more

precise, we should also take into account the internal randomness of the algorithm

A, which in general is not a deterministic algorithm. We could denote this similarly

as (m,m′)
$← A(K), but throughout this paper we will often take this as a given and

omit the $.

28

2.2 Definitions

Definition 1 (Fixed Input Length). A function f mapping domain D to R is a fixed

input length (FIL) function if D = {0, 1}i for some positive integer i. That is, its

inputs consist only of bit strings of some fixed length.

Definition 2 (Variable Input Length). A function H mapping domain D to R is a

variable input length (VIL) function if D = {0, 1}∗. That is, its inputs are bit strings

of variable length.

Definition 3 (Domain Extender). We say some algorithm A is a domain extender

for property P if, given a fixed input length function f that is FIL-P (that is, has

the property of P for fixed input length), then Af (A when given oracle access to f)

is a variable input length function that has the property of VIL-P (that is, it has the

property of P for variable input length).

Note that traditionally a domain extender only extends the domain of the function

and provides no guarantees that the new function satisfies any properties. However,

in our context we will mean that A is a domain extender and a property P preserver.

Definition 4 (Running Time). Oftentimes we will say that an algorithm A has

“running time” t. By this we mean that t includes both the amount of time taken by

an invocation of A as well as the size of the code implementing A, measured in some

fixed RAM model of computation (as in [1]).

Definition 5 (Mode of Operation). Throughout this paper we will useM to denote

MD6’s mode of operation. This is defined irrespective of the compression function

used, although we will often useMf : {0, 1}k × {0, 1}∗ → {0, 1}d to denote the MD6

mode of operation applied to the compression function f (i.e. Mf (M) is the MD6

hash of a message M), the superscript denoting that the mode of operation only

makes black-box use of f . When needed, we will parameterize Mf by L, denoting

this asMf
L.

On occasion we will consider the output of Mf without the final compression

29

function. Recall that the final compression function has the z bit set to 1, and then

its output is chopped from c bits down to d bits. Therefore we write the mode of

operation without the final compression function as Hf : {0, 1}k × {0, 1}∗ → {0, 1}n,

where

Mf = chopd ◦ f ◦ Hf .

The function chopd : {0, 1}c → {0, 1}d operates simply by returning the last d-bits

of its input. We can abbreviate the action of the final compression function and the

chop by defining g = (chopd ◦ f) : {0, 1}k × {0, 1}n → {0, 1}d.

Definition 6 (Height). For a given maximum level parameter L, let the height of

the MD6 hash tree parameterized by L on a message M of length µ = |M | be given

as heightL(µ). Recall that the height of a tree is given by the distance of the root

node from the farthest leaf node. For example, the tree in Figure 2-7 has height 3,

the tree in Figure 2-8 has height 6, and the tree in Figure 2-9 has height 18.

Oftentimes we will have some adversary A that we grant q queries M1,M2, . . . ,Mq

to the MD6 hash algorithm Mf , where we bound the total length of the queries,
∑

i |Mi| ≤ µ. One question we might ask is, in the course of execution of Mf , how

many queries to f will need to be made given the above resource constraints.

Lemma 2.1. Assume we are given oracle access to f(K, ·) for some K. Then if we

have q messages M1,M2, . . . ,Mq such that

q∑

i=1

|Mi| ≤ µ,

then in order to compute Di =Mf(K,·)
L (Mi) for all i we require at most δ(q, µ) queries

to the oracle f(K, ·), where

δ(q, µ) =
1

3
·
⌈µ

c

⌉
+ q log4

(
1

q
·
⌈µ

c

⌉)
+

q

3
.

Proof. First, note that in the worst case L = 31 and computing Mf consists of

30

only PAR operations, so we will assume this case (and the bound will hold for smaller

values of L). Now, for a given query Mi, let βi =
⌈
|Mi|

c

⌉
denote the number of c-word

message blocks in Mi. If βi = 4k for some integer k, then the hash tree computed

byMf is a complete height-k 4-ary tree. Therefore the number of queries to f(K, ·)
is the number of non-leaf nodes, which is at most 4k−1

3
(via geometric series), which

satisfies the bound. If (in the worst case), βi = 4k + 1, then the hash tree computed

byMf consists of a root node with four sub-trees: a complete height-k 4-ary tree, a

length-k path, and two leaf nodes. Thus the number of queries to f(K, ·) is at most

4k − 1

3︸ ︷︷ ︸
height-k subtree

+ k + 1 ≤ βi

3
+ log4 βi +

1

3
,

and therefore for queries M1,M2, . . . ,Mq,

q∑

i=1

(
βi

3
+ log4 βi +

1

3

)
=

1

3
·
⌈µ

c

⌉
+

(
q∑

i=1

log4 βi

)
+

q

3

≤ 1

3
·
⌈µ

c

⌉
+ q log4

(
1

q
·
⌈µ

c

⌉)
+

q

3

Where the last inequality follows due to the concavity of the log function.

2.3 Related Work

The properties and applications of cryptographic hash functions have been well-

studied in the literature. In particular, for an excellent overview of the history and

uses of cryptographic hash functions the survey of Preneel [31] is a venerable, if pos-

sibly outdated, guide. A very thorough explanation and investigation of security

properties for cryptographic hash functions is due to Rogaway and Shrimpton [35].

In the context of domain extension and property preservation, there are several

important results in the literature; in particular, for variants of Merkle-Damg̊ard [1,

31

14], CBC-MAC [6,7], and variants of CBC-MAC [16]. Tree-based modes of operation

for hash functions have made several appearances in the literature; one such early

work is due to Damg̊ard [15]. Recently, Sarkar and Schellenberg proposed a tree-

based hash algorithm, although theirs differs from MD6 in many respects [36]. To

date, this is the only known large-scale work we are aware of regarding the domain

extension and property preserving characteristics of a tree-based hash.

32

Chapter 3

Collision and Preimage Resistance

In this chapter we prove certain results about the collision and preimage resistance

of the MD6 hash function mode of operation. In particular, we show that the MD6

mode of operation acts as a domain extender for various properties of the fixed input

length compression function used. Our goal is to show that if we assume that the

compression function is collision resistant (respectively, preimage resistant), then the

entire hash function will be collision resistant (respectively, preimage resistant) as

well.

One important caveat is that the notions of collision resistance and preimage

resistance are only defined for keyed hash functions. As observed by Rogaway [34],

an unkeyed hash function H : {0, 1}∗ → {0, 1}d is trivially non-collision resistant: the

existence of an efficient algorithm that can find distinct strings M and M ′ such that

H(M) = H(M ′) is guaranteed, simply by virtue of the existence of such collisions

(as Rogaway says, the algorithm has the collision “hardwired in”). Therefore for an

unkeyed hash function H, what is meant by saying that H is collision resistant is not

that an efficient collision-finding algorithm does not exist, but rather that no efficient

collision-finding algorithm exists that is known to man (the emphasis is Rogaway’s).

Similar concerns can also be expressed for the preimage resistance of unkeyed hash

functions. Although MD6 can behave as a keyed hash function, certain applications

call for the use of the unkeyed variant (where the key field is simply set to λ, the

empty string), such as any application that uses a public hash function. Thus we

33

would like to argue, with some amount of rigor, that its unkeyed variant is collision

or preimage resistant as well.

Fortunately, we can perform reductions for finding collisions and preimages. Specif-

ically, we will show that if one has a collision or preimage for the entire hash, then

one can construct a collision or preimage for the underlying compression function.

Therefore if one assumes that there is no known algorithm for finding collisions or

preimages in the compression function, then there should be no known algorithm for

finding collisions or preimages in the overall hash function. While this is not a com-

pletely rigorous notion of security (as it relies on the extent of human knowledge for

finding collisions, which is impossible to formalize), it is the best we can do in these

circumstances.

After proving reductions for these properties, we show that they apply to the

keyed hash function variant of MD6 as well (for certain — now rigorous — definitions

of collision resistance and preimage resistance). That is, we will demonstrate that if

an algorithm exists that can break the property of collision resistance or preimage

resistance for keyed MD6, then we can use this algorithm as a black box for breaking

the collision resistance or preimage resistance of the underlying compression function.

We may then conclude that breaking either property is at least as difficult as breaking

the respective property for the compression function.

Some of the proofs in this section are similar to those of Sarkar and Schellen-

berg [36], owing to the fact that their mode of operation is also based on a tree-like

construction. However, the differences between the MD6 mode of operation and that

of Sarkar and Schellenberg are significant enough to warrant entirely new proofs of

security.

3.1 Collision Resistance

To begin, we first define what it means for a keyed fixed input length (FIL) compres-

sion function f to be collision resistant, and what it means for a keyed variable input

length (VIL) hash function H to be collision resistant.

34

Definition 7 (FIL-Collision Resistance). For a keyed FIL function f : {0, 1}k ×
{0, 1}n → {0, 1}c, define the advantage of an adversary A for finding a collision as

Advfil-cr
A

= Pr



 K
$← {0, 1}k;

(m,m′)← A(K)
:

m 6= m′,

f(K,m) = f(K,m′)





We define the insecurity of f with respect to FIL-collision resistance (FIL-CR) as

InSecfil-cr
f (t) = max

A

{
Advfil-cr

A

}
,

when the maximum is taken over all adversaries A with total running time t.

Definition 8 (VIL-Collision Resistance). For a keyed VIL function H : {0, 1}k ×
{0, 1}∗ → {0, 1}c, define the advantage of an adversary A for finding a collision as

Advvil-cr
A

= Pr



 K
$← {0, 1}k;

(M,M ′)← A(K)
:

M 6= M ′,

H(K,M) = H(K,M ′)





We define the insecurity of f with respect to VIL-collision resistance (VIL-CR) as

InSecvil-cr
H (t) = max

A

{
Advvil-cr

A

}
,

when the maximum is taken over all adversaries A with total running time t.

Here we add the additional assumption that A must have computed the hashes of

these messages H(K,M) and H(K,M ′) at some point (for the message pair (M,M ′)

that it returned), and so the total time allotment t includes the cost of computing

these hashes. This is a reasonable assumption — not without precedent [1, Section

4.1] — as A should at least verify that H(K,M) = H(K,M ′).

We now give a series lemmas that culminate in demonstrating how one can use

a collision in MD6 to construct a collision in the underlying compression function.

These lemmas rely heavily on the detailed description of the MD6 mode of operation

given in Section 2.1.1. We give a sketch of our approach as follows. The MD6 mode

35

of operation makes use of two operations, PAR and SEQ. The global parameter

L determines the maximum number of times that the operation PAR is invoked

(recursively) on the input message. If the length of the input is long enough that

after (up to) L iterations of PAR the resulting output is still larger than d bits, the

SEQ operation is performed to bring the final digest to d bits. Therefore our lemmas

will be of the following form: if we have two messages that form a collision in PAR

or SEQ, we can examine the intermediary values produced in the computation of

PAR or SEQ to find a collision either in the compression function f or in the final

compression function g = chopd ◦ f . We will conclude by noticing that if there is a

collision in the overall MD6 hash, then there must be a collision in one of the PAR

or SEQ operations.

Lemma 3.1. Suppose M,M ′ ∈ {0, 1}∗ are distinct and further, SEQ(M,d,K,L, r) =

SEQ(M ′, d,K, L, r). Then we can construct m,m′ ∈ {0, 1}n with m 6= m′ such that

f(K,m) = f(K,m′) or g(K,m) = g(K,m′).

Proof. Recall from Section 2.1.1 that the MD6 SEQ operation performs anal-

ogously to the Merkle-Damg̊ard construction, and therefore this proof will proceed

similarly to the well-established collision resistance proofs of security [15]. As shown

in Figure 2-6, we begin by padding out M and M ′ with zeroes to be a positive in-

tegral multiple of (b − c) = 48 words, and subdivide each message into sequences

M = B0‖B1‖ · · · ‖Bj−1 and M ′ = B′
0‖B′

1‖ · · · ‖B′
j′−1 of j and j′ (respectively) (b− c)-

word blocks. Before we can proceed, we must first define some intermediary values

that we use throughout our proof. Let

mi = Ui‖Vi‖Ci−1‖Bi,

36

where we define the auxiliary fields,

Ui = L · 256 + i

Vi = r‖L‖zi‖pi‖keylen‖d

zi =





1, if i = j − 1

0, otherwise

pi =





of padding bits in Bj−1, if i = j − 1

0, if i < j − 1

and the chaining variables,

C−1 = 064w

Ci = f(K,mi), for 0 ≤ i < j − 1

Cj−1 = g(K,mj−1) = chopd(f(K,mj−1)).

We also define m′
i similarly for the B′

i values.

Now first suppose that j 6= j′; that is, the number of blocks in the input messages

differ. Then we are easily able to construct a collision between the inputs to the

final compression function in SEQ. Since j 6= j′ we have Uj−1 6= U ′
j′−1, as the binary

representation of j − 1 and j′ − 1 are encoded into these values. This clearly implies

that mj−1 6= m′
j′−1. Moreover, we have our collision, since

g(K,mj−1) = Cj−1 = SEQ(M,d,K,L, r) = SEQ(M ′, d,K, L, r) = C ′
j′−1 = g(K,m′

j′−1).

On the other hand, suppose that j = j′ and the number of blocks in the input

messages are the same. We show that at some point along the chain of computations,

a collision occurs. That is, the event Ci = C ′
i implies that either there is a collision

37

at block i, or the previous chaining variables are equal, Ci−1 = C ′
i−1. Thus starting

from the assumption that Cj−1 = C ′
j−1 (i.e. that the outputs of SEQ are equal), we

can work our way backwards through the chain to find a collision.

First, suppose that mj−1 6= mj−1. Since g(K,mj−1) = Cj−1 = C ′
j−1 = g(K,m′

j−1),

we have a collision. Now, on the contrary, suppose that mj−1 = m′
j−1. Then this

implies that Cj−2 = C ′
j−2.

Now, fix some i such that 0 ≤ i < j − 1 and suppose that Ci = C ′
i. Then either

mi 6= m′
i and we have a collision f(K,mi) = Ci = C ′

i = f(K,m′
i), or mi = m′

i and

therefore Ci−1 = C ′
i−1. Thus by starting from Cj−1 = C ′

j−1 and walking backwards

along the chain of computations, we either find a collision or, for each i, mi = m′
i.

In particular, if mi = m′
i for all i, then this implies that Bi = B′

i for all i as well.

Furthermore, this implies that the number of padding bits are equal, pj−1 = p′j−1.

However, if this is the case then it must be that M = M ′, which is a contradiction.

Therefore a collision in f or g must occur at some point along the chain.

Lemma 3.2. Suppose M,M ′ ∈ {0, 1}∗ are distinct and further, PAR(M,d,K,L, r, ℓ) =

PAR(M ′, d,K, L, r, ℓ). Then we can construct m,m′ ∈ {0, 1}n with m 6= m′ such that

f(K,m) = f(K,m′).

Proof. We proceed much in the same fashion as Lemma 3.1, but this proof is

simpler because of the parallel nature of PAR. Following the definition of PAR shown

in Figure 2-5, we pad out M and M ′ with zeroes until their lengths are multiples of

b = 64 words, and subdivide each message into sequences M = B0‖B1‖ · · · ‖Bj−1 and

M ′ = B′
0‖B′

1‖ · · · ‖B′
j′−1 of j and j′ (respectively) b-word blocks. As before, we define

the intermediary variables we will use in this proof. Let

mi = Ui‖Vi‖Bi,

38

where we define the auxiliary fields,

Ui = ℓ · 256 + i

Vi = r‖L‖z‖pi‖keylen‖d

z =





1, if j = 1

0, otherwise

pi =





of padding bits in Bj−1, if i = j − 1

0, if i < j − 1

and the output variables,

Ci = f(K,mi)

We also define m′
i similarly for the B′

i values.

From our definitions,

C0‖C1‖ · · · ‖Cj−1 = PAR(M,d,K,L, r, ℓ) = PAR(M ′, d,K, L, r, ℓ) = C ′
0‖C ′

1‖ · · · ‖C ′
j′−1,

and therefore j = j′.

Moreover, if there exists an i such that mi 6= m′
i, then we have a collision, as

f(K,mi) = Ci = C ′
i = f(K,m′

i). Now suppose that for all i, mi = m′
i. This implies

that for all i, the input messages Bi = B′
i and the number of padding bits pi = p′i.

Therefore it must be the case that M = M ′, which is a contradiction.

Theorem 3.3. Suppose M,M ′ ∈ {0, 1}∗ and L,L′, K,K ′ provide a collision in the

hash function Mf ; that is, Mf
L(K,M) = Mf

L′(K ′,M ′). Then we can construct

m,m′ ∈ {0, 1}n with m 6= m′ such that f(K,m) = f(K ′,m′) or g(K,m) = g(K ′,m′).

39

Proof. Let ℓ and ℓ′ be the “layered height” of each hash tree. That is, in the

computation of MD6, ℓ and ℓ′ are the number of total applications of PAR and SEQ

on m and m′, respectively. Note this is not the height of the hash tree, since the root

node of the graph in Figure 2-8 has height 6. Rather, it is the “level” of the root node

in the computation, plus one if SEQ has been applied. Thus the layered height of

the hash tree in Figure 2-8 is 3, as is the layered height of the hash tree in Figure 2-7.

From this point, we assume that L = L′, K = K ′, and ℓ = ℓ′, since these parameters

(L,K, ℓ) are included as part of the input to the final compression function g. If this

is not the case, then there is a collision in g and we are done. Thus we drop the prime

′ in the variable names and consider only L, K, and ℓ.

The rest of the proof will follow substantially from Lemmas 3.1 and 3.2. As in

the definition of MD6 (see Figure 2-4), we use the following intermediary variables,

M0 = M

Mi = PAR(Mi−1, d,K, L, r, i), for 1 ≤ i < ℓ

D = Mℓ =





SEQ(Mℓ−1, d,K, L, r), if ℓ = L + 1

chopd(PAR(Mℓ−1, d,K, L, r, i)), otherwise

with D′ and M ′
i defined similarly for M ′.

By Lemma 3.2, Mi 6= M ′
i implies that either Mi+1 6= M ′

i+1 or we can find a collision

in one of the compression functions f used at level i. Therefore, moving from the

bottom of the hash tree up (starting from the condition M0 6= M ′
0) we either find a

collision in f or reach level ℓ − 1 with Mℓ−1 6= M ′
ℓ−1. If PAR is the last function

executed (i.e. ℓ < L + 1), then by Lemma 3.2 we have found a collision in g, since

D = D′. If SEQ is the last function executed (i.e. ℓ = L + 1), then by Lemma 3.1

we have also found a collision in either f or g, again because D = D′.

40

Theorem 3.4. Let f : {0, 1}k×{0, 1}n → {0, 1}c be a FIL-CR function, and suppose

that g = (chopd ◦f) : {0, 1}k×{0, 1}n → {0, 1}d is also FIL-CR. ThenMf : {0, 1}k×
{0, 1}∗ → {0, 1}d is a VIL-CR function with

InSecvil-cr
Mf (t) ≤ InSecfil-cr

f (2t) + InSecfil-cr
g (2t).

Proof. Suppose A is an algorithm with the best possible chance of success for

breaking the VIL-collision resistance of Mf among all algorithms running in time t,

so that the probability of success of A is InSecvil-cr
Mf (t). We construct an algorithm C

that uses A as a subroutine to attack the FIL-collision resistance of either f or g.

To begin, C receives as input the hash function key K; in order to succeed, it must

produce messages m 6= m′ such that f(K,m) = f(K,m′) or g(K,m) = g(K,m′), and

run in time no greater than 2t. C then invokes A on the key K, which ultimately

returns messages M 6= M ′ such thatMf (K,M) =Mf (K,M ′).

Algorithm C

Input: K, the compression function key; A, the collision-finding algorithm

Output: m 6= m′, such that f(K,m) = f(K,m′) or g(K,m) = g(K,m′)

1. (M,M ′)← A(K)

2. D ←Mf (K,M) and store each input to f(K, ·)
3. D′ ←Mf (K,M ′) and store each input to f(K, ·)
4. if M 6= M ′ and D = D′

5. then Use Theorem 3.3 to find m 6= m′ that collide in f(K, ·) or g(K, ·)
6. return (m,m′)

7. else return (0n, 0n)

By Theorem 3.3, from a collision inMf (K, ·) we can recover a collision in f(K, ·)
or g(K, ·). This recovery process takes time at most t, since it only requires comput-

ing the hashes Mf (K,M) and Mf (K,M ′) and considering the intermediate values

queried to f(K, ·) in each computation. In addition, the running time of the algo-

rithm A is at most t. Thus with probability of success at least InSecvil-cr
Mf (t), we are

41

able to find a collision in either f or g in time 2t.

3.2 First-Preimage Resistance

Recall that the property of first-preimage resistance is an important one in many

cryptographic applications. For example, as mentioned in Chapter 1, most computer

systems store the hashes of user passwords. The inability of any adversary to invert

these hashes is therefore important to preserve the security of the system1.

Since we aim to show that the MD6 mode of operation extends the property of

first-preimage resistance from the compression function to the overall hash function,

we precisely define what it means for both the FIL compression function and the VIL

hash function to be first-preimage resistant.

Definition 9 (FIL-Preimage Resistance). For a keyed FIL function f : {0, 1}k ×
{0, 1}n → {0, 1}c, define the advantage of an adversary A for finding a preimage as

Advfil-pr
A

(D) = Pr
[
K

$← {0, 1}k; m← A(K,D) : f(K,m) = D
]
,

Advfil-pr
A

= max
D∈{0,1}d

{
Advfil-pr

A
(D)

}
.

We define the insecurity of f with respect to FIL-preimage resistance (FIL-PR) as

InSecfil-pr
f (t) = max

A

{
Advfil-pr

A

}
,

when the maximum is taken over all adversaries A with total running time t.

Definition 10 (VIL-Preimage Resistance). For a keyed VIL function H : {0, 1}k ×

1Although in practice, many systems use a salted hash for their password file to make dictionary-
based inversion attacks much more difficult.

42

{0, 1}∗ → {0, 1}d, define the advantage of an adversary A for finding a preimage as

Advvil-pr
A

(D) = Pr
[
K

$← {0, 1}k; M ← A(K,D) : H(K,M) = D
]
,

Advvil-pr
A

= max
D∈{0,1}d

{
Advvil-pr

A
(D)

}
.

We define the insecurity of H with respect to VIL-preimage resistance (VIL-PR) as

InSecvil-pr
H (t) = max

A

{
Advvil-pr

A

}
,

when the maximum is taken over all adversaries A with total running time t. As

before, we make the reasonable assumption that computing H(K,M) counts towards

the total time allotment of t, since we assume any preimage-finding algorithm must

at least verify that M is a valid preimage of D.

Note that these definitions differ from the commonly regarded notion of preimage

resistance (Pre) as defined by Rogaway and Shrimpton [35]:

AdvPre
A

= Pr



 K
$← {0, 1}k; M $← {0, 1}n;

D ← f(K,M); M ′ ← A(K,D)
: f(K,M ′) = D





In particular, the definitions given above are a stricter notion of preimage resistance

that Rogaway and Shrimpton term “everywhere preimage-resistance” (ePre); this

definition attempts to capture the infeasibility of finding a preimage for a given D,

over all choices of D. We adopt this definition because it simplifies our analysis.

Since everywhere preimage-resistance implies preimage resistance [35], we do not lose

any security by doing so.

We begin by demonstrating, via reduction, that the MD6 hash function is VIL-

preimage resistant so long as its underlying compression function is FIL-preimage

resistant.

Theorem 3.5. Let f : {0, 1}k×{0, 1}n → {0, 1}c, and suppose that g = (chopd ◦f) :

{0, 1}k × {0, 1}n → {0, 1}d is also FIL-PR. Then Mf : {0, 1}k × {0, 1}∗ → {0, 1}d is

43

a VIL-PR function with

InSecvil-pr
Mf (t) ≤ InSecfil-pr

g (2t).

Proof. Suppose that A is an algorithm with the best possible chance of success for

breaking the VIL-preimage resistance ofMf among all algorithms running in time t,

so that the probability of success of A is InSecvil-cr
Mf (t). We construct a new algorithm

P, running in time at most 2t, that uses A as a subroutine to attack the FIL-preimage

resistance of g.

The behavior of P is straightforward: if A manages to find a valid preimage, then

P can simply compute the hash and return the input to the final compression function

g. However, some care must be taken in the analysis because, as mentioned in the

definition of preimage resistance, the choice of target digest D that maximizes the

advantage can depend on the algorithm P used.

Algorithm P

Input: K, the compression function key; A, the preimage-finding algorithm; D, the

target digest

Output: m, such that g(K,m) = D

1. M ← A(K,D)

2. D′ ←Mf (K,M)

3. m ← the input to the final compression g(K, ·) in the computation of D′

4. if D = D′

5. then return m

6. else return 0n

To begin with, P receives as input a digest D ∈ {0, 1}d, the key K, and the Mf

preimage-finding algorithm A, and its goal is to produce a preimage m ∈ {0, 1}n

such that g(K,m) = D. Next, P invokes A on the target digest D and key K to

receive a message M ∈ {0, 1}∗ such that, with some probability, Mf (K,M) = D.

If M is indeed a preimage of D, then letting m ∈ {0, 1}n be the input given to the

44

final compression function g(K, ·) in the computation of Mf (K,M) will indeed give

a preimage of D.

Now we wish to show that the advantage of P is at least the advantage of A. Let

D̂ be the value of the target digest D that maximizes the advantage of A:

D̂ = arg max
D∈{0,1}d

{
Pr
[
K

$← {0, 1}k; M ← A(K,D) : Mf (K,M) = D
]

.

Then the advantage of P when given target digest D̂ is at most its advantage over

the best possible D, so that

InSecvil-pr
Mf (t) ≤ Advvil-pr

A
= Advvil-pr

A
(D̂) ≤ Advfil-pr

P
(D̂) ≤ Advfil-pr

P
≤ InSecfil-pr

g (2t).

In order to prove the bound for running time, notice that it takes time at most

t to run A(K,D), and by our earlier assumption it takes time at most t to compute

Mf (K,M). Therefore the total time is at most 2t.

3.3 Second-Preimage Resistance

As discussed in Chapter 1, second-preimage resistance is defined as the computational

infeasibility of any adversary, given a target message m, to produce a different message

m′ such that these two messages hash to the same value. Clearly, second-preimage

resistance is a potentially stronger assumption than collision resistance, since pro-

ducing second preimages also yields hash function collisions. Therefore, as in other

treatments of this problem [36], it suffices in general to prove collision resistance,

which we demonstrated earlier in Section 3.1.

Unfortunately, trying to prove a reduction of the FIL-second-preimage resistance

of the compression function to the VIL-second-preimage resistance of the overall hash

function fails to work naturally. The problem with the reduction is that we have some

algorithm A that can break the second-preimage resistance of Mf and we want to

45

construct an algorithm S that uses A to break the second-preimage resistance of f .

So S receives a message m ∈ {0, 1}n and a key K ∈ {0, 1}k and must find m′ ∈ {0, 1}n

such that m 6= m′ and f(K,m) = f(K,m′). However, attempting to invoke A on m

directly will not succeed. In particular, A is only guaranteed to succeed with some

probability over the choice of K and M ∈ {0, 1}∗. In particular, A could be excellent

at finding second-preimages when given a target M such that |M | > n, but absolutely

miserable when |M | = n. Therefore we are unable to translate the success of A into

the success of S and the reduction fails.

Although it seems like it should be possible to perform such a reduction, we know

of no approach for reducing the property successfully. In addition, we do not know of

any similar attempts in the literature to prove domain extension for second-preimage

resistance. Therefore we will simply say that the collision resistance of MD6 is secure

with d/2 bits of security, therefore it follows that the second-preimage resistance of

MD6 is secure with at least d/2 bits of security and hope that suffices.

However, we would like to specifically address the security requirements in the

NIST SHA-3 hash function specifications [29], with respect to second-preimage resis-

tance. Recall from Section 1.2 that for a hash function with a d bit message digest,

then for a target preimage of 2k bits the hash function should have second-preimage

security of approximately d− k bits.

Recall that the rationale for this condition is the following. In a hash function

with an iterative mode of operation (such as the plain Merkle-Damg̊ard construction),

a target preimage m consisting of 2k message blocks forms a chain of 2k invocations

of the compression function. Therefore an adversary wishing to perform a second

preimage attack on m can simply pick a random r and compute f(IV, r) = y. It can

then check whether y matches any of the 2k compression function outputs yi. If so,

it outputs the message m′ = r‖mi+1‖ · · · ‖m2k , which is a valid collision with m.

This attack works only because the length of the message m is not encoded in

the hash, so an attacker is able to substitute the prefix r anywhere into the message

chain. One simple method to foil this attack is to append the length of the message

to the end of the message, which prevents an attacker from being able to substitute

46

a truncated message that collides with m. However, even this approach succumbs to

similar cryptographic attacks, as demonstrated by Kelsey and Schneier [20].

MD6 behaves differently from these approaches. Each compression function used

is given control words U and V in the input that label each compression function with

its position in the hash tree. Therefore the above attacks against Merkle-Damg̊ard

and strengthened Merkle-Damg̊ard are foiled since the adversary is no longer given

the 2k-for-1 advantage that it enjoyed for the Merkle-Damg̊ard mode of operation

(effectively, it is not able to query a substructure of the hash function).

47

48

Chapter 4

Pseudorandomness

Pseudorandomness is a useful property for a hash function to have. For one, pseu-

dorandomness implies unpredictability, meaning a pseudorandom hash function can

perform as a message authentication code (MAC) [18,19]. In addition, many crypto-

graphic protocols are proved to be secure in the so-called “random oracle model” [8,

17], which assumes the existence of an oracle that maps {0, 1}∗ into some fixed out-

put domain D. The oracle is a black box that responds to queries in {0, 1}∗ with a

uniformly random response chosen from D (except for inputs that have been queried

previously, whereupon it is consistent). In practice, protocols that assume the exis-

tence of a random oracle use a cryptographic hash function instead, in which case we

desire that the hash function family be pseudorandom or in some sense indistinguish-

able from a random oracle. Unfortunately, random oracles do not actually exist in

real life, and therefore proofs in the random oracle model only provide a heuristic for

security [12]. Nevertheless, it is still desirable to be able to show that a cryptographic

hash function family is pseudorandom, under certain assumptions on the compression

function used.

Previous works have shown that the Cipher Block Chaining mode of operation is

a domain extender for the property of pseudorandomness [6,7,21]. In this chapter we

will demonstrate that the MD6 mode of operation also acts as a domain extender for

fixed-length pseudorandom functions.

49

4.1 Maurer’s Random System Framework

Throughout much of this section we use key concepts from the Random Systems

framework developed by Ueli Maurer [21]. Many of these definitions and lemmas and

much of the terminology are composites of several related papers [21,22,30]

4.1.1 Notation

We generally adhere to the notation used in previous work. Characters in a calli-

graphic font (such as X or Y) denote sets, and their corresponding italicized roman

characters X and Y denote random variables that take values in X and Y (with some

distribution). Superscripts for sets and random variables generally denote a tuple, so

X i = X × · · · × X︸ ︷︷ ︸
i

and X i = (X1, . . . , Xi) is a random variable over X i. We reserve

bold-face characters for random systems, which are defined below.

4.1.2 Definitions

In order to reason about the complicated interactions of certain cryptographic sys-

tems, it is helpful to use the Random Systems framework of Maurer [21]. In particular,

for some cryptographic system S and for each i, S takes in an input Xi and produces

(probabilistically) a corresponding output Yi (in sequence, so next it takes input Xi+1

and produces Yi+1). If S is stateless, then Yi depends only on Xi; however, we can

also consider S as possibly stateful, and so Yi depends on the totality of the previous

values X1, X2, . . . , Xi and Y1, Y2, . . . , Yi−1 (which are referred to as X i and Y i−1 for

convenience).

Thus the behavior of the random system S can be defined as an sequence of

conditional probability distributions, as follows.

Definition 11 (Random System). A (X ,Y)-random system F is an infinite sequence

of conditional probability distributions

F =
{
PrYi|XiY i−1

}∞
i=1

.

50

Collectively, we denote this sequence as Pr
F

Yi|XiY i−1 , the superscript denoting which

random system this distribution corresponds to.

Definition 12 (Equivalence of Random Systems). Two random systems F and G

are said to be equivalent, written F ≡ G, if

for all i ≥ 1, Pr
F

Yi|XiY i−1 ≡ Pr
G

Yi|XiY i−1 ,

or equivalently, for all i ≥ 1, (y1, . . . , yi) ∈ Y i, (x1, . . . , xi) ∈ X i,

Pr
F

Yi|XiY i−1(x1, . . . , xi, y1, . . . , yi) = Pr
G

Yi|XiY i−1(x1, . . . , xi, y1, . . . , yi).

Definition 13 (Random Function). A random function F : X → Y is a random

variable that takes as values functions on X → Y (with some given distribution).

Therefore F is also a (stateless) random system, where

Pr
F

Yi|XiY i−1 = Pr
F

Yi|Xi

and this distribution is determined by the distribution of F on X → Y .

Example 1. Consider the following random functions R and P.

Uniform Random Function Let R : X → Y denote the random function with a

uniform distribution over the space of all functions mapping X → Y .

Uniform Random Permutation Let P : X → X denote the random function with

a uniform distribution over the space of all permutations mapping X → X .

It is a well-known fact that if we are only given o
(√
|X |
)

queries, it is difficult to

distinguish between a uniform random function R : X → X and a uniform random

permutation P : X → X . We will prove this fact via the random system framework

in Example 2.

We now attempt to develop the formal notion of monotone conditions for random

51

systems. Intuitively, we are trying to capture some series of events that occur on the

choices of inputs and outputs of the random system. For example, suppose we are

trying to distinguish between R and P given q queries, as above. If we condition

on the event that we have not observed any collisions in the output of R, then the

distribution on the outputs of each random function are identical (and therefore we

have no hope of being able to distinguish them). Thus in this example we might say

that the monotone condition is “the event that we have not observed a collision in

the output of R up to query i”. We can formalize this intuitive notion as follows.

Definition 14 (Monotone Conditions). A monotone condition A for a random sys-

tem F is an infinite sequence (A1, A2, . . .) of events with an additional monotonicity

condition. We define Ai to be the event that the specified condition is satisfied after

query i, and Ai is the negation of this event (the specified condition is not satisfied

after query i). The monotonicity of the condition A means that once the event is

not satisfied for a given query i, it will not be satisfied after further queries (so,

Ai =⇒ Ai+1).

We can additionally define the random system F conditioned on A, F | A, to be

the sequence of conditional probability distributions

Pr
F

Yi|XiY i−1Ai
, for all i ≥ 1

which are simply the distribution on the output Yi conditioned on the previous state

X i−1Y i−1, the current query Xi, and the monotone condition Ai. Note that we do

not need to condition on the event A1 ∧ · · · ∧ Ai, since Ai =⇒ Ai−1. For a more

formal definition, see [21,22].

To go back to our earlier example, it is clear that the no-collisions condition is

monotone, because observing a collision after query i implies that a collision has

been observed after any further queries. As we will show in Example 2, when we

condition R on this no-collision monotone condition A, the resulting distribution

R | A is equivalent to the uniform random permutation P.

52

Definition 15 (Distinguisher). An adaptive distinguisher for (X ,Y)-random systems

is defined as a (Y ,X)-random system D that interactively and adaptively queries

(X ,Y)-random systems and ultimately outputs a bit Dq after some number of queries

q. In D is a non-adaptive distinguisher, it must first fix its queries X1, . . . , Xq in

advance before receiving the outputs Y1, . . . , Yq and outputting its decision bit Dq.

The random experiment when we pair the distinguisher D with an (X ,Y)-random

system F (where D submits a query to F, F responds to D, D submits another query,

and so forth) is denoted by D ⋄ F.

Definition 16 (Advantage). We denote the advantage of a distinguisher D given q

queries for distinguishing two (X ,Y)-random systems F and G as ∆D

q (F,G). There

are several equivalent formal definitions. We can say that

∆D

q (F,G) =
∣∣Pr

D⋄F[Dq = 1]− Pr
D⋄G[Dq = 1]

∣∣ ,

which requires that the decision bit Dq was computed optimally for this definition to

be precise, or we can also say that the advantage is the statistical difference between

the distributions D ⋄ F and D ⋄G (which are distributions over the space X q × Yq)

∆D

q (F,G) =
1

2

∑

X q×Yq

∣∣Pr
D⋄F
XqY q − Pr

D⋄G
XqY q

∣∣ .

The advantage of the best distinguisher on random systems F and G can be defined

as

∆q(F,G) = max
D

∆D

q (F,G) .

On occasion we may want to restrict ourselves to only distinguishers D given

certain resource constraints. Thus by ∆q,µ(F,G) we mean the maximum advantage

over all adversaries given q queries of total bit-length µ. If we wish to furthermore

constrain their running time by t, we specify this as ∆t,q,µ(F,G).

Going back to our earlier no-collision example, we have a random function R and

the no-collision monotone condition A on R. Recall that if D succeeds in causing Aq

53

to be false, then it will successfully distinguish R from P (because P does not have

collisions). If this occurs, we say that D has provoked Aq.

Definition 17 (Provoking Failure in a Monotone Condition). Let F be a random

system and let A be some monotone condition on F. Denote the probability that D

provokes the condition A to fail after q queries (that is, provokes Aq) as

νD

q

(
D, Ak

)
= Pr

D⋄F
Aq

= 1− Pr
D⋄F
Aq

.

Denote the probability for the best such D to be

νq

(
F, Ak

)
= max

D

νD

q

(
D, Ak

)
.

When we restrict ourselves to considering only non-adaptive distinguishers D, we

use the notation

µq

(
F, Ak

)
= max

non-adaptive D

νD

q

(
D, Ak

)
.

In the prior no-collision example, if D is some algorithm for finding a collision in

the random function R, then clearly its success probability is bounded from above

by νq

(
F, Ak

)
.

4.1.3 Bounding Distinguishability

Throughout this chapter we will make use of some important lemmas due to Mau-

rer [21], the proofs of which we will omit for the sake of brevity, as we focus on our

original results. However, we will give proof sketches of Maurer’s lemmas when it

is helpful to do so. For a much more rigorous treatment of the theory of random

systems, we refer the reader to Maurer and Pietrzak [21,30].

Lemma 4.1 (Lemma 5(i) [21]). For random systems, F, G, H,

∆q(F,H) ≤ ∆q(F,G) + ∆q(G,H) .

54

Proof. This follows directly by the triangle inequality.

In the following lemma we show an upper bound on the advantage of a distin-

guisher D for random systems F and G based on the ability of D to provoke the

failure of a monotone condition on F.

Lemma 4.2 (Theorem 1(i) [21]). For random systems F and G, if A is some mono-

tone condition such that F | A ≡ G, then the advantage of the best distinguisher

for F and G is bounded by the probability of provoking A given the best adaptive

strategy.

∆q(F,G) ≤ νq

(
F, Ak

)

Proof Sketch.

∆q(F,G) ≤ νq

(
F, Ak

)
·∆q

(
F | A,G

)
+ (1− νq

(
F, Ak

)
) ·∆q(F | A,G)

≤ νq

(
F, Ak

)
· 1 + (1− νq

(
F, Ak

)
) · 0

= νq

(
F, Ak

)

The first inequality holds by the law of total probability. The second is due to the

fact that F | A ≡ G, hence ∆q(F | A,G) = 0.

In certain situations, adaptivity does not increase a distinguisher’s advantage with

respect to provoking the failure of some monotone condition. The following lemma

provides a sufficient condition for this to be true.

Lemma 4.3 (Theorem 2 [21]). For a random system F with a monotone condition

A, if there exists a random system G such that F | A ≡ G, i.e.

for all i ≥ 1, Pr
F

Y i|XiAi
≡ Pr

G

Y i|Xi

then adaptivity does not help in provoking Aq:

νq

(
F, Ak

)
= µq

(
F, Ak

)
.

55

Proof. See [30, Lemma 6].

To illustrate the usefulness of this framework, we return to our demonstration of

the indistinguishability of a random function R : {0, 1}n → {0, 1}n from a random

permutation P : {0, 1}n → {0, 1}n by any distinguisher D asking o
(
2

n
2

)
queries

(adapted from [30, Examples 1–3]).

Example 2. We first begin by defining the monotone condition A = {Ai}, where

Ai is the event that after the ith query all distinct inputs have produced distinct

outputs. It is fairly straightforward to demonstrate that R | A ≡ P: unless one has

observed a collision, a random function has output distribution identical to a random

permutation.

Therefore by Lemma 4.2, ∆q(R,P) ≤ νq

(
R, Ak

)
. By definition, νq

(
R, Ak

)
is the

probability of success of the best distinguisher to provoke a collision (using distinct

inputs) on a uniformly random function R, which is clearly bounded by the Birthday

Paradox (see Appendix A).

∆q(R,P) ≤ νq

(
R, Ak

)
≤ q(q − 1)

2n+1

For q = o
(
2

n
2

)
, this is a negligible probability of success.

4.2 MD6 as a Domain Extender for FIL-PRFs

With the random system framework and the above lemmas, we can now prove that

MD6 behaves as a domain extender on FIL-PRFs that preserves pseudorandomness.

4.2.1 Preliminaries

Here we define some random systems used throughout this section.

• Let R denote the random function with uniform distribution over functions

mapping {0, 1}n → {0, 1}c

56

• Let f : {0, 1}k × {0, 1}n → {0, 1}c be the compression function used. Then let

F : {0, 1}n → {0, 1}c denote the random function with a uniform distribution

over the set
{
f(K, ·) | K ∈ {0, 1}k

}
.

• Let O denote a random function with output space Y = {0, 1}d and input space

X = {0, 1}∗ such that for all i ≥ 1, x ∈ {0, 1}∗, y ∈ {0, 1}d,

Pr
O

Yi|Xi
(y, x) =

1

2d
.

O is usually referred to as a random oracle.

• For a random function G : {0, 1}n → {0, 1}c, letHG denote the random function

mapping {0, 1}∗ → {0, 1}n by applying the MD6 mode of operation (without

the final compression function and chop) with G as the compression function.

• For a random function G : {0, 1}n → {0, 1}c, let MG denote the random

function mapping {0, 1}∗ → {0, 1}d by applying the MD6 mode of operation

with G as the compression function. Thus

MG = chopd ◦G ◦ HG.

Our goal in this section will be to demonstrate that if F is a FIL-PRF (indistin-

guishable from R), thenMF will be a VIL-PRF (indistinguishable from O).

Definition 18 (FIL-Pseudorandom Function). A random function G : {0, 1}n →
{0, 1}c is a (t, q, ε)-secure FIL-pseudorandom function (FIL-PRF) if it is (t, q, ε)-

indistinguishable from the uniform random function on the same domain and range,

∆t,q(G,R) ≤ ε.

We say that G is a (q, ε)-secure FIL-quasirandom function (FIL-QRF) if it is a

(∞, q, ε)-secure FIL-PRF. That is, we do not restrict the computational abilities of

57

the distinguisher D but we restrict the number of queries that it can make. As we

are considering distinguishers unconstrained by time, we omit this variable from the

subscript, and write

∆q(G,R) ≤ ε.

Therefore if G is a (q, ε)-secure FIL-QRF, then it is a (t, q, ε)-secure FIL-PRF for

any choice of t.

Definition 19 (VIL-Pseudorandom Function). A random function G : {0, 1}∗ →
{0, 1}d is a (t, q, µ, ε)-secure VIL-pseudorandom function (VIL-PRF) if it is (t, q, µ, ε)-

indistinguishable from a random oracle O,

∆t,q,µ(G,O) ≤ ε.

As above, we say that G is a (q, µ, ε)-secure VIL-quasirandom function (VIL-QRF)

if

∆q,µ(G,O) ≤ ε.

4.2.2 Indistinguishability

Our proof that MF is indistinguishable from O proceeds as follows. First we notice

by the triangle inequality (Lemma 4.1) that

∆q,µ

(
MF,O

)
≤∆q,µ

(
MF,MR

)
+ ∆q,µ

(
MR,O

)
. (4.1)

Then it only remains to bound the quantities on the right-hand side. In Lemma 4.4,

we show how to bound the first term by the advantage for distinguishing between F

and R (which by assumption is small).

Lemma 4.4 (Adapted from Lemma 5(ii) [21]). For random systems G and H that

map {0, 1}n → {0, 1}c,

∆t′,q,µ

(
MG,MH

)
≤ ∆t,δ(q,µ)(G,H) ,

58

where t′ = t−O(δ(q, µ)).

Proof. Given a distinguisher D for MG and MH with resource constraints t′, q,

and µ, we can construct an algorithm for distinguishing G and H that uses D as

a subroutine. This algorithm responds to the queries of D by simulating the MD6

mode of operation M on G or H. By Lemma 2.1, this requires at most δ(q, µ)

queries. Since the only work to be done is in simulating M, this takes total time

t′ + O(δ(q, µ)).

For the second term of Equation (4.1), we proceed in a manner that is similar

to the proof that a random function is indistinguishable from a random permutation

(Example 2). That is, we will construct a monotone condition A such that MR
∣∣A ≡

O, and we then bound the probability of provoking A. However, unlike a random

permutation, a random oracle O naturally has collisions, so our previous no-collision

monotone condition is not applicable. Thus we design a new monotone condition,

one that involves so-called bad collisions. A bad collision in MR is one that occurs

prior to the final compression function in the MD6 mode of operation. As we will

show in Lemma 4.5, if we condition on the absence of bad collisions inMR, then the

distribution of its outputs are identical to that of O.

Definition 20 (Bad Collision). For a random function G : {0, 1}n → {0, 1}c and

messages M,M ′ ∈ {0, 1}∗, let BCMG

L
(M,M ′) denote the event that

M 6= M ′, and HG

L (M) = HG

L (M ′).

Note that a bad collision necessarily implies a collision inMF.

A bad collision on M and M ′ means that not only does HG

L (M) = HG

L (M ′), but

heightL(|M |) = heightL(|M ′|) as well. This is because one word of the input to each

compression function is devoted to U , the representation of the level ℓ and index i

of the compression function in the hash tree. In particular, for the final compression

function, the height of the hash tree is encoded into U , since ℓ + i − 2 is the height

59

of the tree. Therefore if heightL(|M |) 6= heightL(|M ′|) then it is impossible for

HG

L (M) = HG

L (M ′), because this height information is encoded into the output of

HG

L .

Lemma 4.5. Let A = {Ai} be the monotone condition on MR

L such that Ai is the

event that there are no bad collisions in the first i queries (M1,M2, . . . ,Mi):

Ai =
∧

1≤j≤j′≤i

BCMR

L
(Mj,Mj′).

Then MR

L

∣∣A ≡ O.

Proof. Recall that MR

L = chopd ◦R ◦ HR

L , and further, the event BCMR

L
(M,M ′)

implies that HR

L (M) 6= HR

L (M ′). So, effectively, we are asking about the output

distribution of (chopd ◦R) : {0, 1}n → {0, 1}d, conditioned on having distinct inputs,

as compared to the output distribution of O : {0, 1}∗ → {0, 1}d, also conditioned

on having distinct inputs. Since chopd ◦R is just the random function with uniform

distribution over all functions mapping {0, 1}n → {0, 1}d, these distributions are

identical (namely, the uniform distribution over {0, 1}d).

We can now apply the above lemma to bound the probability of distinguishing

betweenMR

L and O.

Lemma 4.6. If MR

L

∣∣A ≡ O, then

∆q

(
MR

L ,O
)
≤ q(q − 1)

2
·
heightL

(
µ
q

)

2c
.

Proof. By Lemma 4.2, since MR
∣∣A ≡ O, any adversary’s advantage for distin-

guishing betweenMR and O with q queries is bounded by the probability of success

by the best adaptive algorithm at provoking Aq (that is, finding a bad collision).

∆q

(
MR,O

)
≤ νq

(
MR, Ak

)
.

60

In addition, by Lemma 4.3, the probability of success for the best adaptive strategy

is no better than that for the best non-adaptive strategy (and in fact, they are equal).

Therefore,

νq

(
MR, Ak

)
= µq

(
MR, Ak

)
.

Thus, we may simply consider the probability of provoking a bad collision non-

adaptively, which is the great benefit of using Maurer’s framework. To do this, we

will first compute the probability that two arbitrary distinct messages M and M ′ will

have a bad collision, and then apply the birthday bound (see Appendix A).

Recall that a bad collision occurs when we have two messages M 6= M ′ where

heightL(M) = heightL(M ′) and HR(M) = HR(M ′). Therefore we can first restrict

ourselves to considering only messages M,M ′ which have equal height h.

Now, with this assumption, we wish to upper bound Pr[BCMR(M,M ′)]. Our goal

will be to prove by induction on the height h that

Pr[BCMR(M,M ′)] ≤ h

2c
.

The base case here is straightforward. It is impossible for two trees of height 1

to have a bad collision. This is because height 1 trees have only one compression

function, namely the final one. By definition, a bad collision is a collision that occurs

before the final compression function, which simultaneously requires that M 6= M ′

and M = M ′. Thus we have a contradiction.

For the inductive step, note that the output ofHR(M) can be described as follows.

First, there exists a partition of M into M1‖M2‖M3‖M4 of four (some possibly empty)

bit strings such that

HR(M) = U‖V ‖HR

1 (M1)‖HR

2 (M2)‖HR

3 (M3)‖HR

4 (M4).

Here the HR

i are random functions mapping {0, 1}∗ → {0, 1}c and U and V are the

auxiliary control information inserted by the MD6 mode of operation. In particular,

when viewed as a hash tree, the height of each HR

i (Mi) is at most h− 1. In addition,

61

if we also partition M ′ in this fashion, we notice that since M 6= M ′ there exists a j

such that Mj 6= M ′
j. Therefore

Pr[BCMR(M,M ′)] = Pr
[
HR(M) = HR(M ′)

]

≤ Pr

[
4∧

i=1

(
HR

i (Mi) = HR

i (M ′
i)
)
]

=
4∏

i=1

Pr
[
HR

i (Mi) = HR

i (M ′
i)
]

≤ Pr
[
HR

j (Mj) = HR

j (M ′
j)
]
.

Thus, we’ve upper bounded the probability of a bad collision occurring by the

probability of there being a collision for one of the HR

i . Let E denote the event that

this collision, HR

j (Mj) = HR

j (M ′
j), occurs. Then

Pr[E] = Pr
[
E
∣∣∣BCHR

j
(Mj,M

′
j)
]
· Pr
[
BCHR

j
(Mj,M

′
j)
]

+ Pr
[
E
∣∣∣BCHR

j
(Mj,M ′

j)
]
· Pr
[
BCHR

j
(Mj,M ′

j)
]

(4.2)

≤ 1 · Pr
[
BCHR

j
(Mj,M

′
j)
]

+
1

2c
· Pr
[
BCHR

j
(Mj,M ′

j)
]

(4.3)

≤ Pr
[
BCHR

j
(Mj,M

′
j)
]

+
1

2c

≤ h− 1

2c
+

1

2c
(4.4)

=
h

2c
(4.5)

Equation (4.2) follows by the law of total probability. In the derivation of Inequal-

ity (4.3), we use the fact that the conditional probability Pr
[
E
∣∣∣BCHR

j
(Mj,M ′

j)
]

is

just the probability of collision for the random function R on distinct inputs, which is

equal to 1
2c . In addition, Pr

[
E
∣∣∣BCHR

j
(Mj,M

′
j)
]

is the probability of collision for the

random function R on identical inputs, which is just 1. For Inequality (4.4), we can

use our inductive hypothesis, since as we noted earlier HR

j (Mj) has height at most

62

h− 1, thereby arriving at Inequality (4.5).

Since we’ve shown that for any two messages M and M ′ the probability of a bad

collision is bounded by h
2c , it remains to bound the total probability of causing a bad

collision given q non-adaptive queries of total length at most µ. Since an adversary

cannot cause a bad collision by querying two messages with different heights, the best

strategy for the adversary is to produce q queries of all equal height heightL

(
µ
q

)
, and

by the birthday bound

∆q

(
MR,O

)
≤ q(q − 1)

2
·
heightL

(
µ
q

)

2c
.

Now that we have bounded the probability of success for any distinguisher given

resources q and µ, we show that MD6 acts as a domain extender for FIL-QRFs, and

later we will show that it does the same for FIL-PRFs.

Theorem 4.7. Fix the resource constraints q, and µ. If F is a (δ(q, µ), ε)-secure

FIL-QRF, thenMF

L is a (q, µ, ε + β(q, µ))-secure VIL-QRF, where

β(q, µ) =
q(q − 1)

2
·
heightL

(
µ
q

)

2c
.

Proof. By Lemma 4.1 (the triangle inequality), the advantage of any adversary

given q queries and total message bit-length µ in distinguishingMF from O is

∆q,µ

(
MF

L,O
)
≤ ∆q,µ

(
MF

L,MR

L

)
+ ∆q,µ

(
MR

L ,O
)
.

By Lemma 4.4, the advantage of any adversary given q queries and µ bits in distin-

guishingMF

L andMR

L is

∆q,µ

(
MF

L,MR

L

)
≤ ∆δ(q,µ)(F,R) ≤ ε.

Therefore it remains only to bound ∆q

(
MR,O

)
. By applying Lemmas 4.5 and 4.6,

63

we can bound this by

∆q,µ

(
MR

L ,O
)
≤ q(q − 1)

2
·
heightL

(
µ
q

)

2c
.

Finally, combining this with our previous results yields

∆q,µ

(
MF

L,O
)
≤ ε +

q(q − 1)

2
·
heightL

(
µ
q

)

2c
.

Corollary 4.8. If F is a (t, δ(q, µ), ε)-secure FIL-PRF, then MF

L is a (t′, q, µ, ε +

β(q, µ))-secure VIL-PRF, where t′ = t−O(δ(q, µ)).

Proof. The proof proceeds almost identically to Theorem 4.7.

∆t′,q,µ

(
MF

L,O
)
≤∆t′,q,µ

(
MF

L,MR

L

)
+ ∆t′,q,µ

(
MR

L ,O
)

≤∆t′,q,µ

(
MF

L,MR

L

)
+ β(q, µ)

≤∆t,δ(q,µ)(F,R) + β(q, µ) (4.6)

≤ ε + β(q, µ)

Inequality (4.6) follows as a corollary to Lemma 4.4, since simulating the query re-

sponses to the adversary takes time O(δ(q, µ)).

One important note is that for large values of L, heightL(x) grows logarithmically

in x. However, for the iterative mode of operation with L = 0, heightL(x) grows

linearly in x. Holding q fixed, this is asymptotically the same as the bound shown

by Bellare et al. for the Cipher Block Chaining mode of operation [7], which was

approximately O
(

ℓq2

2c

)
, where ℓ is the block length of the longest query. Therefore

the MD6 mode of operation for large L represents an asymptotic improvement (loga-

rithmic in heightL(µ/q) as opposed to linear) over the Cipher Block Chaining mode

of operation.

64

Chapter 5

Unpredictability (MACs)

That a family of functions has the property of pseudorandomness is a very strong

assumption to make. Much simpler is the assumption that a family of functions is

merely unpredictable, which allows it to function as a MAC (recall that pseudoran-

domness implies unpredictability, and thus PRFs are also MACs [18, 19].) However,

if one simply wants to prove that some hash function Hf is a secure MAC, it seems

unnecessary to derive this property by assuming that the underlying compression f

is pseudorandom. One might wonder whether it is instead possible to prove that

Hf is a MAC if f is a MAC, analogous to the proof in Section 4.2. If so, it might

alleviate some concerns about the use of a hash function Hf as a MAC, since a

successful pseudorandomness distinguisher for f would not necessarily invalidate the

MAC capabilities of Hf (unless f is also shown to be predictable as well).

This may not be true if H is the Cipher Block Chaining (CBC) mode of operation,

HCBC. Whereas one can prove concretely that CBC-MAC is pseudorandom if its

underlying block cipher is pseudorandom [6, 7], An and Bellare constructed a simple

FIL-MAC f such that Hf
CBC does not share the property of unpredictability [1].

However, they also demonstrated that a two-keyed variant of the Merkle-Damg̊ard

construction is a VIL-MAC if its compression function is a FIL-MAC. Thus it is

interesting for us to consider if MD6 also is a domain extender that preserves the

property of unpredictability.

65

5.1 Preliminaries

We begin with some definitions that will be essential to our later proofs.

Definition 21 (FIL-MAC). For a keyed FIL function f : {0, 1}k×{0, 1}n → {0, 1}c,
define the advantage of an adversary A for forging a MAC as

Advfil-mac
A

= Pr



 K
$← {0, 1}k;

(m,D)← Af(K,·)
:

f(K,m) = D,

m was not a query to f(K, ·)





We define the insecurity of the FIL-MAC f to be

InSecfil-mac
f (t, q) = max

A

{
Advfil-mac

A

}
,

where the maximum is taken over all adversaries A with running time t and number

of f(K, ·) oracle queries q.

Definition 22 (VIL-MAC). For a keyed VIL function H : {0, 1}k×{0, 1}∗ → {0, 1}d,
define the advantage of an adversary A for forging a MAC as

Advvil-mac
A

= Pr



 K
$← {0, 1}k;

(M,D)← AH(K,·)
:

H(K,M) = D,

M was not a query to H(K, ·)





We define the insecurity of the VIL-MAC H to be

InSecvil-mac
H (t, q, µ) = max

A

{
Advvil-mac

A

}
,

where the maximum is taken over all adversaries A with running time t and number

of H(K, ·) oracle queries q and total query bit-length µ.

To proceed, we must define the notion of weak collision resistance. As the name

implies, this is a weaker notion of the collision resistance defined in Chapter 3; rather

than giving the collision-finding algorithm the key K, we instead give it only oracle

access to the keyed function.

66

Definition 23 (FIL-WCR). For a keyed FIL function f : {0, 1}k×{0, 1}n → {0, 1}c,
define the advantage of an adversary A for FIL-weak collision resistance as

Advfil-wcr
A

= Pr



 K
$← {0, 1}k;

(m,m′)← Af(K,·)
:

m 6= m′

f(K,m) = f(K,m′),





We define the insecurity of the FIL-WCR f to be

InSecfil-wcr
f (t, q) = max

A

{
Advfil-wcr

A

}
,

where the maximum is taken over all adversaries A with running time t and number

of f(K, ·) oracle queries q.

Definition 24 (VIL-WCR). For a keyed VIL function H : {0, 1}k×{0, 1}∗ → {0, 1}c,
define the advantage of an adversary A for VIL-weak collision resistance as

Advvil-wcr
A

= Pr



 K
$← {0, 1}k;

(M,M ′)← AH(K,·)
:

M 6= M ′,

H(K,M) = H(K,M ′)





We define the insecurity of the VIL-WCR H to be

InSecvil-wcr
H (t, q, µ) = max

A

{
Advvil-wcr

A

}
,

where the maximum is taken over all adversaries A with running time t and number

of H(K, ·) oracle queries q and total query bit-length µ.

We also make use of some lemmas from An and Bellare. We restate them here,

without rigorous proofs, which can be found in [1].

5.1.1 Important Lemmas

The two-keyed variant of Merkle-Damg̊ard shown An and Bellare is defined as follows.

Given a keyed compression function f : {0, 1}k×{0, 1}ℓ+b → {0, 1}ℓ and two keys K1

and K2, use the strengthened Merkle-Damg̊ard construction where all compression

67

functions except for the final one use key K1. The final compression function then

uses K2. In their proof that this is a domain extender for FIL-MACs, An and Bellare

used several steps.

1. Show that a FIL-MAC g is also FIL-weak collision resistant.

2. Prove that the Merkle-Damg̊ard construction (without the last compression

function) is a domain extender for FIL-weak collision resistance. That is, if

the compression function g used is FIL-WCR, then the overall hash function h

(without the last compression function) is VIL-WCR.

3. Demonstrate that composing a FIL-MAC g with a VIL-WCR function h (with

independent keys) is a VIL-MAC. Therefore by points 1 and 2, we have a VIL-

MAC from a FIL-MAC.

We begin with a formal statement of the last point.

Lemma 5.1 (Lemma 4.2 [1]). Let g : {0, 1}k×{0, 1}n → {0, 1}d be a FIL-MAC and

let h : {0, 1}k × {0, 1}∗ → {0, 1}n be a VIL-WCR function. Define H : {0, 1}2k ×
{0, 1}∗ → {0, 1}d as

H(K1, K2,M) = f(K2, h(K1,M))

for keys K1, K2 ∈ {0, 1}k and M ∈ {0, 1}∗. Then H is a VIL-MAC with

InSecvil-mac
H (t, q, µ) ≤ InSecfil-mac

g (t, q) + InSecvil-wcr
h (t, q, µ).

Proof. See [1, Appendix A.1].

In addition, we will also make use of the following lemma, which states formally

point 1 from above.

Lemma 5.2 (Lemma 4.4 [1]). Let f : {0, 1}k × {0, 1}n → {0, 1}c be a FIL-MAC

family of functions. Then it is also a FIL-WCR family with

InSecfil-wcr
f (t, q) ≤ q(q − 1)

2
· InSecfil-mac

f (t + O(q), q).

68

Proof. See [1, Appendix A.3].

Since the MD6 mode of operation is different from the two-keyed Merkle-Damg̊ard

construction of An and Bellare, we omit the formal statement for point 2. Instead,

we will prove our own version in Lemma 5.3 for the MD6 mode of operation.

5.1.2 A Two-Keyed Variant of MD6

Note that in Lemma 5.1 the hash function H has a keyspace with twice as many

bits as the underlying functions g and h. Therefore, a straight adaptation of the

techniques of An and Bellare [1] for MD6 does not immediately follow, as MD6 has

only a single key. Thus, we demonstrate here that a two-keyed variant of MD6 is

a domain extender for FIL-MACs, in much the same fashion as An and Bellare’s

approach. That is, we show that the function

Mf [2](K1, K2,M) = chopd(f(K2,Hf (K1,M)))

where Mf [2] : {0, 1}2k × {0, 1}∗ → {0, 1}d is a VIL-MAC if f and chopd ◦ f are

FIL-MACs.

We begin by proving that if the compression function f is a FIL-WCR, thenHf is a

VIL-WCR function. This is analogous to [1, Lemma 4.3], where An and Bellare prove

that the Merkle-Damg̊ard construction also acts as a domain extender for FIL-WCRs.

The proof of this lemma is very similar to the proof of Theorem 3.4, as weak collision

resistance is a weaker notion of the standard collision resistance. However, due to the

additional query resource constraints in the weak collision resistance definition, we

must be precise in our adaptation.

Lemma 5.3. Let f : {0, 1}k × {0, 1}n → {0, 1}c be a FIL-WCR family of functions.

Then Hf : {0, 1}k × {0, 1}∗ → {0, 1}n is a VIL-WCR family of functions with

InSecvil-wcr
Hf (t, q, µ) ≤ InSecfil-wcr

f (2t, δ(q, µ)).

69

Proof. We proceed in a manner that is very similar to the proof for Theorem 3.4.

Let A be an algorithm with the best possible success for breaking the VIL-weak

collision resistance of Hf , given resources t, q and µ. As before, we construct an

algorithm C that uses A as a subroutine to attack the FIL-weak collision resistance

of f .

Recall that in the weak collision resistance setting, instead of being given the

key K as input, we are instead only given oracle access to the function keyed by

K. Therefore Cf(K,·) is given time 2t, q queries, and µ total bits queried, and must

produce messages m 6= m′ such that f(K,m) = f(K,m′).

Algorithm Cf(K,·)

Input: A, the Hf collision-finding algorithm

Output: m 6= m′, such that f(K,m) = f(K,m′)

1. for i ≤ 1 to q

2. do A→Mi,

3. A← Hf(K,·)(Mi)

4. A→ (M,M ′)

5. P ← Hf(K,·)(M) and store each input to f(K, ·)
6. P ′ ← Hf(K,·)(M ′) and store each input to f(K, ·)
7. if M 6= M ′ and P = P ′

8. then Use Theorem 3.3 to find two messages m 6= m′ s.t. f(K,m) = f(K,m′)

9. return (m,m′)

10. else return (0n, 0n)

Note that although we are usingHf instead ofMf , Theorem 3.3 still applies. This

is because M 6= M ′ and Mf (K,M) = Mf (K,M ′), and thus a collision in f exists.

However, it does not occur during the last compression function f , since P = P ′.

Therefore it must be “contained in” Hf .

The advantage for C for breaking the weak collision resistance of f is at least the

advantage of A for breaking the weak collision resistance of Hf , because C succeeds

precisely when A succeeds. As in Theorem 3.4, the amount of required is at most 2t

70

(the time it takes to run A plus the time it takes to perform the hashes). In addition,

by Lemma 2.1, the total number of oracle queries to f(K, ·) that we need to make is

bounded by δ(q, µ).

We can now prove that the two-keyed variant of MD6 Mf [2] is a VIL-MAC,

assuming that f is a FIL-MAC and also that g = chopd ◦ f is a FIL-MAC. Note that

the fact that g is a FIL-MAC does not follow automatically from the fact that f is a

FIL-MAC, so we will treat them as functions with separate levels of security.

Theorem 5.4. Let f : {0, 1}k × {0, 1}n → {0, 1}c be a FIL-MAC. Define the final

compression function g = (chopd ◦ f) : {0, 1}k×{0, 1}n → {0, 1}d and suppose that it

is also a FIL-MAC. Then the two-keyed variant of MD6Mf [2] : {0, 1}2k × {0, 1}∗ →
{0, 1}d is a VIL-MAC with

InSecvil-mac
Mf [2] (t, q, µ) ≤ InSecfil-mac

g (t, q)+
δ(q, µ)2

2
·InSecfil-mac

f (2t + O(δ(q, µ)), δ(q, µ)) .

Proof. As in [1, Theorem 4.1], the proof of this theorem follows from Lemmas 5.1,

5.2 and 5.3.

InSecvil-mac
Mf [2] (t, q, µ) ≤ InSecfil-mac

g (t, q) + InSecvil-wcr
Hf (t, q, µ)

≤ InSecfil-mac
g (t, q) + InSecfil-wcr

f (2t, δ(q, µ))

≤ InSecfil-mac
g (t, q) +

δ(q, µ)2

2
· InSecfil-mac

f (2t + O(δ(q, µ)), δ(q, µ))

5.2 MD6 as a Domain Extender for FIL-MACs

It seems somewhat artificial to double the number of bits in the keyspace of MD6

just to prove that it acts as a domain extender for FIL-MACs. Ideally, we would

like to prove that it has this property as is, while still only making the assumption

71

that the underlying compression functions f and g are FIL-MACs. Unfortunately,

at the moment we do not know how to prove this directly (although we have no

counterexample for this property). Thus, in order to prove this statement for the

standard version of MD6, we will need to introduce an additional assumption on the

compression function f .

The idea for the following is that the flag bit z which indicates that the compression

function is the final one in the computation of MD6 should “blind” the key values.

That is, if we are given oracle access to two functions defined as follows

f0(·) = f(z = 0, K0, ·)

f1(·) = f(z = 1, K1, ·)

then we should not be able to guess whether K0 = K1 or not with any significant

advantage. The intuition behind this is that we want be able to prove that Mf is a

VIL-MAC with the least assumptions necessary on f to get the proof to go through.

Ideally, we would like to be able to only assume that f is a FIL-MAC; however, at

the moment we know of no way for doing this. Of course, we could simply assume f

is a FIL-PRF and automatically get thatMf is a VIL-PRF, and hence a VIL-MAC

(simply by citing the results of Chapter 4). However, this does not line up with our

goal of making minimal assumptions on f . Then a convenient alternative is to assume

that f behaves in a “pseudorandom” fashion, but only on the z bit of the input.

Definition 25 (Key-Blinding Assumption). Let D be a distinguisher given oracle ac-

cess to two functions f0 and f1 that map {0, 1}n−1 → {0, 1}c. We define its advantage

as follows.

Advblind
D,f (t, q) =

∣∣∣∣∣∣
Pr



 K0
$← {0, 1}k; K1

$← {0, 1}k; b $← {0, 1};
a← Df(z=0,K0,·),f(z=1,Kb,·)

: a = b



− 1

2

∣∣∣∣∣∣

The goal of D is to try to determine the value of b, i.e. it is trying to tell whether f0

and f1 use the same key or not. We can define the overall insecurity of the key-blind

property of f to be

72

InSecblind
f (t, q) = max

D

{
Advblind

D,f (t, q)
}

,

where D is given resource constraints of (t, q).

With this assumption, we now prove that the single-keyed version of MD6 acts as

a domain extender for FIL-MACs (with the key-blinding assumption). The essential

concept here is that by the key-blinding property of f , Mf behaves almost exactly

likeMf [2] to any algorithm given only oracle access toMf .

Lemma 5.5. Let f : {0, 1}k × {0, 1}n → {0, 1}c. Then

InSecvil-mac
Mf (t, q, µ) ≤ InSecvil-mac

Mf [2] (t, q, µ) + 2 · InSecblind
f (t, δ(q, µ)) .

Proof. Let A be a forger with the best possible success for attacking the single-

keyed version of MD6, Mf . Therefore, given resources t, q, and µ, the probability

of A succeeding is InSecvil-mac
Mf (t, q, µ). We use A to construct a distinguisher D that

attacks the key-blinding property of f .

Recall that the distinguisher D is given oracle access to two functions f0(·) =

f(z = 0, K0, ·) and f1(·) = f(z = 1, K1, ·), which map {0, 1}n−1 → {0, 1}c, and must

determine whether K0 = K1.

Algorithm Df0, f1

Output: 1 if K0 6= K1, 0 otherwise

1. for i = 1 to q

2. do A→Mi

3. A← chopd(f1(Hf0(Mi)))

4. A→ (M,D)

5. if chopd(f1(Hf0(M))) = D and for all i, M 6= Mi

6. then return 0

7. else return 1

The distinguisher uses A in the following manner: it constructs the function chopd◦

73

f1 ◦ Hf0 using its two oracles and responds to hash queries by A with this function.

There are two cases:

1. If b = 1, then K0 6= K1. Therefore the hash function A is querying is

chopd ◦ f1 ◦ Hf0 =Mf [2].

2. If b = 0, then K0 = K1. Therefore the hash function A is querying is

chopd ◦ f1 ◦ Hf0 =Mf .

Recall that A is an optimal forger forMf (although it may also be a forger forMf [2]

as well), and outputs a forgery (M,D). D outputs 0 if this is a valid forgery (i.e. if A

succeeds, then we suspect that K0 = K1). If the pair is not a valid forgery, we output

1, as we believe that the reason for this failure is that K0 6= K1. We can analyze the

success probability of D as follows.

Pr[D succeeds] = Pr[b = 1] · Pr
[
D

f(z=0,K0,·), f(z=1,Kb,·) → 1 | b = 1
]

+ Pr[b = 0] · Pr
[
D

f(z=0,K0,·), f(z=1,Kb,·) → 0 | b = 0
]

=
1

2
· Pr
[
A fails to forgeMf [2]

]

+
1

2
· Pr
[
A successfully forgesMf

]

≥ 1

2
·
(
1− InSecvil-mac

Mf [2] (t, q, µ)
)

+
1

2
· InSecvil-mac

Mf (t, q, µ) (5.1)

=
1

2
+

InSecvil-mac
Mf (t, q, µ)− InSecvil-mac

Mf [2] (t, q, µ)

2

For Inequality (5.1), note that A could potentially succeed as a forger forMf [2]. How-

ever, its advantage is bounded, as Advvil-mac
A,Mf [2](t, q, µ) ≤ InSecvil-mac

Mf [2] (t, q, µ), whereby

74

we derive the inequality. Therefore,

Advblind
D,f (t, δ(q, µ)) =

∣∣∣∣Pr[D succeeds]− 1

2

∣∣∣∣

≥

∣∣∣InSecvil-mac
Mf (t, q, µ)− InSecvil-mac

Mf [2] (t, q, µ)
∣∣∣

2

InSecblind
f (t, δ(q, µ)) ≥

∣∣∣InSecvil-mac
Mf (t, q, µ)− InSecvil-mac

Mf [2] (t, q, µ)
∣∣∣

2

In particular, this implies

InSecvil-mac
Mf (t, q, µ) ≤ InSecvil-mac

Mf [2] (t, q, µ) + 2 · InSecblind
f (t, δ(q, µ))

We now conclude by applying the above lemma to derive a bound on the insecurity

ofMf .

Theorem 5.6. Let f : {0, 1}k × {0, 1}n → {0, 1}c be a FIL-MAC and suppose that

it has the key-blinding property. Define g = (chopd ◦ f) : {0, 1}k × {0, 1}n → {0, 1}d

and suppose that it is also a FIL-MAC. Then Mf : {0, 1}k × {0, 1}∗ → {0, 1}d is a

VIL-MAC with

InSecvil-mac
Mf (t, q, µ) ≤ δ(q, µ)2

2
· InSecfil-mac

f (2t + O(δ(q, µ)), δ(q, µ)) +

InSecfil-mac
g (t, q) + 2 · InSecblind

f (t, δ(q, µ)) .

Proof. This follows directly by the application of Theorem 5.4 and Lemma 5.5.

Therefore we have shown that the MD6 mode of operationMf acts as a domain

extender for FIL-MACs, assuming that both f and g are FIL-MACs and that f has the

key-blinding property. Unfortunately we needed to make an additional assumption

about the compression function f , and as such this is not a true “domain extension”

result. However, at the moment we know of no other way to prove that MD6 has this

property, without making additional assumptions.

75

76

Chapter 6

Conclusion

In this paper we have demonstrated that the MD6 mode of operation preserves several

cryptographic properties of its compression function, namely collision resistance, first-

preimage resistance, and pseudorandomness. In addition, we showed that by making

a small, but non-trivial, assumption about the key-blinding nature of the compression

function, we can demonstrate that MD6 preserves the property of unpredictability as

well. We were not able to give a guarantee of property preservation of second-preimage

resistance, but we instead reduced to a property with weaker security guarantees.

Future work in this vein might include investigating whether it can be shown that

the MD6 mode of operation preserves second-preimage resistance. Also, it seems

likely that we ought to be able to show that MD6 preserves unpredictability, without

making the additional key-blinding assumption. Dodis et al. [16] demonstrated that a

three-keyed version of CBC-MAC preserves unpredictability, but then were able to use

clever tricks to reduce it down to a single key (without any additional assumptions).

Perhaps similar techniques can be used to show a similar result for MD6. In addition,

there are other cryptographic properties, such as Maurer’s indifferentiability from a

random oracle [23], that seem promising to consider in the context of MD6.

77

78

Bibliography

[1] Jee Hea An and Mihir Bellare. Constructing VIL-MACs from FIL-MACs: Mes-
sage Authentication under Weakened Assumptions. In Michael J. Wiener, editor,
CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages 252–269.
Springer, 1999.

[2] J. Vandewalle B. Preneel, R. Govaerts. Hash Functions Based on Block Ciphers:
A Synthetic Approach. In D.R. Stinson, editor, CRYPTO 1993, volume 773 of
Lecture Notes in Computer Science. Springer, 1994.

[3] M. Bellare, R. Canetti, and H. Krawczyk. The HMAC Construction. RSA

Laboratories CryptoBytes, 2(1):12–15, 1996.

[4] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying Hash Functions for
Message Authentication. In Neal Koblitz, editor, CRYPTO, volume 1109 of
Lecture Notes in Computer Science, pages 1–15. Springer, 1996.

[5] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Pseudorandom Functions Re-
visited: The Cascade Construction and Its Concrete Security. In FOCS, pages
514–523, 1996.

[6] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The Security of the Cipher Block
Chaining Message Authentication Code. J. Comput. Syst. Sci., 61(3):362–399,
2000.

[7] Mihir Bellare, Krzysztof Pietrzak, and Phillip Rogaway. Improved Security Anal-
yses for CBC MACs. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture

Notes in Computer Science, pages 527–545. Springer, 2005.

[8] Mihir Bellare and Phillip Rogaway. Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols. In ACM Conference on Computer and Com-

munications Security, pages 62–73, 1993.

[9] Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures -
How to Sign with RSA and Rabin. In EUROCRYPT, pages 399–416, 1996.

[10] John Black, Phillip Rogaway, and Thomas Shrimpton. Black-Box Analysis of
the Block-Cipher-Based Hash-Function Constructions from PGV. In Moti Yung,
editor, CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages 320–
335. Springer, 2002.

79

[11] Martin Boesgaard, Thomas Christensen, and Erik Zenner. Badger - A Fast and
Provably Secure MAC. In John Ioannidis, Angelos D. Keromytis, and Moti
Yung, editors, ACNS, volume 3531 of Lecture Notes in Computer Science, pages
176–191, 2005.

[12] Ran Canetti, Oded Goldreich, and Shai Halevi. The Random Oracle Methodol-
ogy, Revisited. CoRR, cs.CR/0010019, 2000. informal publication.

[13] Florent Chabaud and Antoine Joux. Differential Collisions in SHA-0. In Hugo
Krawczyk, editor, CRYPTO, volume 1462 of Lecture Notes in Computer Science,
pages 56–71. Springer, 1998.

[14] Jean-Sbastien Coron, Yevgeniy Dodis, Ccile Malinaud, and Prashant Puniya.
Merkle-damgrd revisited: How to construct a hash function. In Victor Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science, pages
430–448. Springer, 2005.

[15] Ivan Damgrd. A Design Principle for Hash Functions. In Gilles Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 416–427.
Springer, 1989.

[16] Yevgeniy Dodis, Krzysztof Pietrzak, and Prashant Puniya. A New Mode of
Operation for Block Ciphers and Length-Preserving MACs. In Nigel P. Smart,
editor, EUROCRYPT, volume 4965 of Lecture Notes in Computer Science, pages
198–219. Springer, 2008.

[17] Amos Fiat and Adi Shamir. How to Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Andrew M. Odlyzko, editor, CRYPTO,
volume 263 of Lecture Notes in Computer Science, pages 186–194. Springer, 1986.

[18] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the Cryptographic
Applications of Random Functions. In CRYPTO, pages 276–288, 1984.

[19] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to Construct Random
Functions. J. ACM, 33(4):792–807, 1986.

[20] John Kelsey and Bruce Schneier. Second Preimages on n-Bit Hash Functions
for Much Less than 2n Work. In Ronald Cramer, editor, EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 474–490. Springer, 2005.

[21] Ueli M. Maurer. Indistinguishability of Random Systems. In Lars R. Knudsen,
editor, EUROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages
110–132. Springer, 2002.

[22] Ueli M. Maurer and Krzysztof Pietrzak. Composition of Random Systems: When
Two Weak Make One Strong. In Moni Naor, editor, TCC, volume 2951 of Lecture

Notes in Computer Science, pages 410–427. Springer, 2004.

80

[23] Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
Impossibility Results on Reductions, and Applications to the Random Oracle
Methodology. In Moni Naor, editor, TCC, volume 2951 of Lecture Notes in

Computer Science, pages 21–39. Springer, 2004.

[24] Ueli M. Maurer and Johan Sjdin. Single-Key AIL-MACs from Any FIL-MAC.
In Lus Caires, Giuseppe F. Italiano, Lus Monteiro, Catuscia Palamidessi, and
Moti Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer Science,
pages 472–484. Springer, 2005.

[25] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of

Applied Cryptography. CRC Press, 2001.

[26] Ralph C. Merkle. One Way Hash Functions and DES. In Gilles Brassard, editor,
CRYPTO, volume 435 of Lecture Notes in Computer Science, pages 428–446.
Springer, 1989.

[27] Kazuhiko Minematsu and Yukiyasu Tsunoo. Provably Secure MACs from
Differentially-Uniform Permutations and AES-Based Implementations. In
Matthew J. B. Robshaw, editor, FSE, volume 4047 of Lecture Notes in Com-

puter Science, pages 226–241. Springer, 2006.

[28] NIST. FIPS 180-2 Secure Hash Standard. Available at http://csrc.nist.

gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf, Au-
gust 2002.

[29] NIST. Announcing Request for Candidate Algorithm Nominations for a New
Cryptographic Hash Algorithm (SHA-3) Family. Available at http://csrc.

nist.gov/groups/ST/hash/index.html, November 2007.

[30] Krzysztof Pietrzak. Indistinguishability and Composition of Random Systems.
PhD thesis, ETH Zurich, 2006. Reprint as vol. 6 of ETH Series in Information

Security and Cryptography, ISBN 3-86626-063-7, Hartung-Gorre Verlag, Kon-
stanz, 2006.

[31] Bart Preneel. The State of Cryptographic Hash Functions. Lecture Notes in

Computer Science, 1561:158–182, 1999.

[32] Ronald L. Rivest. The MD6 Hash Function. To be released Fall 2008.

[33] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A Method for Ob-
taining Digital Signatures and Public-Key Cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[34] Phillip Rogaway. Formalizing Human Ignorance: Collision-Resistance Hashing
without the Keys. In Phong Q. Nguyen, editor, VIETCRYPT, volume 4341 of
Lecture Notes in Computer Science, pages 211–228. Springer, 2006.

81

[35] Phillip Rogaway and Thomas Shrimpton. Cryptographic Hash-Function Ba-
sics: Definitions, Implications, and Separations for Preimage Resistance, Second-
Preimage Resistance, and Collision Resistance. In Bimal K. Roy and Willi Meier,
editors, FSE, volume 3017 of Lecture Notes in Computer Science, pages 371–388.
Springer, 2004.

[36] P. Sarkar and P.J. Schellenberg. A Parallelizable Design Principle for Cryp-
tographic Hash Functions. Available at http://eprint.iacr.org/2002/031,
2002.

[37] Xiaoyun Wang, Yiqun Lisa Yin, and Hongbo Yu. Finding Collisions in the Full
SHA-1. In Victor Shoup, editor, CRYPTO, volume 3621 of Lecture Notes in

Computer Science, pages 17–36. Springer, 2005.

[38] Xiaoyun Wang and Hongbo Yu. How to Break MD5 and Other Hash Func-
tions. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes

in Computer Science, pages 19–35. Springer, 2005.

82

Appendix A

Birthday Paradox

The Birthday Paradox is a famous example of the sometimes counterintuitive nature

of combinatorics and probability. It states that in a group of at least 23 randomly

chosen people, the probability that any two will share a birthday exceeds 50%.

In general, consider the problem of uniformly sampling q items independently from

a set of n items (in the above example, we uniformly sample 23 birthdays from the

set of 365 possible birthdays). We wish to provide an upper bound on the probability

of picking any item more than once. To generalize further, we consider sampling q

elements independently from a set S (for the moment we no longer care about the

cardinality of the set S). Instead of drawing from the uniform distribution over S we

allow for the distribution on S to be biased. However, this bias is not too great, and

we are given an additional parameter p such that the probability of picking any item

does not exceed p.

∀x ∈ S, Pr[x] ≤ p.

Again, our goal in this case is to provide an upper bound on the probability of

sampling an identical pair of elements. Parameterized by the number of samples q

and the pairwise collision probability p, we call this quantity Pcoll(q, p).

To illustrate why we choose such a convoluted definition, S might be the output

space of the random function MR, which in this paper is typically {0, 1}d. In this

case, q distinct inputs to MR are chosen (perhaps adversarially or not), and the

83

resulting q outputs are our samples. These samples are guaranteed to be independent

(over the space of random functions MR) so long as no bad collisions occur. In

addition, for any two samples x and y,

Pr[x = y] ≤ h

2c
.

Upper bounding Pcoll(q, p) is fairly simple. If we let Ei be the event that sample

xi is not identical to any of the samples x1, x2, . . . , xi−1, then the probability that all

Ei are true is equivalent to 1− Pcoll(q, p) (see Equation (A.1)). We therefore seek to

lower bound this probability.

1− Pcoll(q, p) = Pr

[
q⋂

i=2

Ei

]
(A.1)

= Pr[E2] Pr[E3 |E2] · · ·Pr

[
Eq

∣∣∣∣∣

q−1⋂

i=2

Ei

]
(A.2)

≥ (1− p)(1− 2p) · · · (1− (q − 1)p) (A.3)

=

q∏

j=2

(1− (j − 1)p)

≥ 1− p

q−1∑

j=1

j (A.4)

= 1− p
q(q − 1)

2

Equation (A.2) follows from basic conditional probability. For Inequality (A.3),

note that Pr
[
Ej

∣∣∣
⋂j−1

i=2 Ei

]
≥ 1− (j− 1)p, since if the first j− 1 samples are distinct

then the probability of colliding with any of them cannot exceed (j − 1)p. Finally,

Inequality (A.4) follows from the basic fact that (1 − x)(1 − y) ≥ (1 − x − y), for

x, y ≥ 0 (which holds in this case). Therefore,

Pcoll(q, p) ≤ q(q − 1)

2
p.

84

