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Abstract. We present hierarchical identity-based encryption schemes
and signature schemes that have total collusion resistance on an arbitrary
number of levels and that have chosen ciphertext security in the random
oracle model assuming the difficulty of the Bilinear Diffie-Hellman prob-
lem.
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1 Introduction

Our main result is an efficient construction for accomplishing hierarchical identi-
ty-based encryption while retaining total collusion resistance (in the random ora-
cle model). Prior to this paper, the only method known for making identity-based
encryption hierarchical substantially sacrificed security (collusion resistance) or
efficiency.

1.1 Identity-Based Encryption

In traditional public key encryption, Bob’s public key is a random string unre-
lated to his identity. When Alice wants to send a message to Bob, she must first
obtain Bob’s authenticated public key. Typical solutions to this problem involve
public key directories. The main idea in identity-based encryption is to eliminate
the public key distribution problem by making Bob’s public key derivable from
some known aspect of his identity, such as his email address. When Alice wants
to send a message to Bob, she merely derives Bob’s public key directly from his
identifying information. Public key directories are unnecessary.

Shamir [17] proposed the idea of identity-based cryptography in 1984, and
described an identity-based signature scheme in the same article. However, prac-
tical identity-based encryption (IBE) schemes were not found until recently with
the work of Boneh and Franklin [5,6] and Cocks [8] in 2001. Cocks’s scheme is
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based on the Quadratic Residuosity Problem, and although encryption and de-
cryption are reasonably fast (about the speed of RSA), there is significant mes-
sage expansion, i.e., the bit-length of the ciphertext is many times the bit-length
of the plaintext. The Boneh-Franklin scheme bases its security on the Bilinear
Diffie-Hellman Problem, and is quite fast and efficient when using Weil or Tate
pairings on supersingular elliptic curves or abelian varieties.

We must note that ID-based encryption has some disadvantages. Bob receives
his private key from a third party called a Private Key Generator (PKG) that
computes his private key as a function of its master secret and Bob’s identity.
This requires Bob to authenticate himself to the PKG (in the same way he would
authenticate himself to a CA), and requires a secure channel through which
the PKG may send Bob his private key. Bob’s PKG must publish parameters
that embed its master secret, and Alice must obtain these parameters before
sending an encrypted message to Bob. Another disadvantage is that the PKG
knows Bob’s private key, i.e., key escrow is inherent in ID-based systems. Clearly,
escrow is a serious problem for some applications.

However, the advantages of identity-based encryption are compelling. The
problem of obtaining authentic public keys has been replaced by the problem
of obtaining authentic public parameters of PKGs, but the latter should be
less burdensome since there will be substantially fewer PKGs than total users.
For example, if everyone uses a single PKG, then everyone in the system can
communicate securely without ever having to perform online lookup of public
keys or public parameters.

1.2 Motivation for Hierarchical ID-Based Encryption (HIDE)

Although having a single PKG would completely eliminate online lookup, it
is undesirable for a large network because the PKG becomes a bottleneck. Not
only is private key generation computationally expensive, but also the PKG must
verify proofs of identity and must establish secure channels to transmit private
keys. Hierarchical ID-based encryption (HIDE) allows a root PKG to distribute
the workload by delegating private key generation and identity authentication
to lower-level PKGs. In a HIDE scheme, a root PKG need only generate private
keys for domain-level PKGs, who in turn generate private keys for users in their
domains in the next level. Authentication and private key transmission can be
done locally. To encrypt a message to Bob, Alice need only obtain the public
parameters of Bob’s root PKG (and Bob’s identifying information); there are
no “lower-level parameters.” Another advantage of HIDE schemes is damage
control: disclosure of a domain PKG’s secret does not compromise the secrets of
higher-level PKGs. The schemes of Cocks and Boneh-Franklin do not have these
properties.

A hierarchical ID-based key sharing scheme with partial collusion-resistance
is given in [10,11]. Horwitz and Lynn [12] introduced hierarchical identity-based
encryption, and proposed a 2-level HIDE scheme with total collusion-resistance
at the first level and with partial collusion-resistance at the second level, i.e., (a
threshold number of) users can collude to obtain the secret of their domain PKG
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(and thereafter masquerade as the domain PKG). This scheme may be practical
for applications where collusion below the first level is not a concern. Finding a
secure and practical hierarchical identity-based encryption scheme was, prior to
this paper, an important open question.

1.3 Our Results

The scheme in this paper extends the Boneh-Franklin IBE scheme in a natural
way. It is a practical, fully scalable, HIDE scheme with total collusion resistance
and chosen ciphertext security in the random oracle model, regardless of the
number of levels in the hierarchy, assuming the difficulty of the same Bilinear
Diffie-Hellman (BDH) problem given in [6] (see Section 2 below). The scheme is
quite efficient – the bit-length of the ciphertext and the complexity of decryption
grow only linearly with the level of the message recipient.1 For example, if Bob
is at level 1 (just below the root PKG) and Carol is at level 10, Alice’s ciphertext
to Carol will be about 10 times as long as Alice’s ciphertext to Bob, and Carol
will take about 10 times as long as Bob to decrypt the message from Alice. At
the top level, our HIDE scheme is as fast and efficient as Boneh-Franklin. We
show how the scheme can be modified to reduce ciphertext expansion.

The intuitively surprising aspect of this scheme is that, even though lower-
level PKGs generate additional random information, this does not necessitate
adding public parameters below the root level. Also, the random information
generated by a lower-level PKG does not adversely affect the ability of users not
under the lower-level PKG to send encrypted communications to users under
the lower-level PKG.

A hierarchical ID-based signature (HIDS) scheme follows naturally from our
HIDE scheme (see Section 4). We also introduce the concept of dual-ID-based
encryption (where the ciphertext is a function of both the encrypter and de-
crypter’s identities) and show how this concept, in the context of hierarchical
ID-based encryption, allows the length of the ciphertext to be reduced and per-
mits the creation of “escrow shelters” that limit the scope of key escrow.

The rest of the paper is organized as follows. Definitions and background
information are given in Section 2. Our hierarchical ID-based encryption scheme
is presented in Section 3. An associated hierarchical ID-based signature scheme
is given in Section 4. Section 5 gives modifications to minimize the ciphertext
expansion. Section 6 discusses how to the restrict the scope of key escrow. Section
7 gives security definitions and results (the full version will contain the proofs).
Additional extensions and variations are given in Section 8.

2 Definitions

In this section, we give some definitions similar to those given in [5,6,12].

1 Contrast this with [12], where the complexity of encryption grows linearly with the
security against collusion of a domain PKG’s secret. Our scheme has total collusion
resistance assuming the difficulty of BDH.
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ID-Tuple: A user has a position in the hierarchy, defined by its tuple of IDs:
(ID1, . . . , IDt). The user’s ancestors in the hierarchy tree are the root PKG and
the users/lower-level PKGs whose ID-tuples are {(ID1, . . . , IDi) : 1 ≤ i < t}.

Hierarchical Identity-Based Encryption (HIDE): a HIDE scheme is spec-
ified by five randomized algorithms: Root Setup, Lower-level Setup, Extraction,
Encryption, and Decryption:

Root Setup: The root PKG takes a security parameter K and returns params
(system parameters) and a root secret. The system parameters include a descrip-
tion of the message space M and the ciphertext space C. The system parameters
will be publicly available, while only the root PKG will know the root secret.

Lower-Level Setup: Lower-level users must obtain the system parameters of
the root PKG. In HIDE schemes, a lower-level user is not permitted to have any
“lower-level parameters” of its own. However, this constraint does not necessar-
ily preclude a lower-level PKG from generating its own lower-level secret, which
it may use in issuing private keys to its children. In fact, in our HIDE scheme,
a lower-level PKG may generate a lower-level secret, or it may generate random
one-time secrets for each Extraction.

Extraction: A PKG (whether the root one or a lower-level one) with ID-tuple
(ID1, . . . , IDt) may compute a private key for any of its children (e.g., with ID-
tuple (ID1, . . . , IDt, IDt+1)) by using the system parameters and its private key
(and any other secret information).

Encryption: A sender inputs params,M ∈ M and the ID-tuple of the intended
message recipient, and computes a ciphertext C ∈ C.

Decryption: A user inputs params, C ∈ C, and its private key d, and returns
the message M ∈ M.

Encryption and decryption must satisfy the standard consistency constraint,
namely when d is the private key generated by the Extraction algorithm for
ID-tuple, then:

∀M ∈ M : Decryption(params, d, C) =M

where C = Encryption(params, ID-tuple,M).

Hierarchical ID-Based Signature (HIDS): a HIDS scheme is specified by
five randomized algorithms: Root Setup, Lower-level Setup, Extraction, Signing,
and Verification. For Root Setup, the system parameters are supplemented to
include a description of the signature space S. Lower-level Setup and Extraction
are as above.
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Signing: A signer inputs params, its private key d, and M ∈ M and outputs a
signature S ∈ S.

Verification: A user inputs params, the ID-tuple of the signer, M ∈ M, and
S ∈ S and outputs “valid” or “invalid.”

Signing and verification must also satisfy a consistency constraint, namely when
d is the private key generated by the Extraction algorithm for ID-tuple, then:

∀M ∈ M : Verification(params, ID-tuple,M, S) = “valid”

where S = Signing(params, d,M).
The security of our HIDE scheme is based on the difficulty of the Bilinear

Diffie-Hellman (BDH) Problem. Let G1 and G2 be two cyclic groups of some
large prime order q. We write G1 additively and G2 multiplicatively. Our HIDE
scheme makes use of a “bilinear” pairing.

Admissible Pairings:We will call ê an admissible pairing if ê : G1 × G1 → G2
is a map with the following properties:

1. Bilinear: ê(aQ, bR) = ê(Q,R)ab for all Q,R ∈ G1 and all a, b ∈ Z.
2. Non-degenerate: The map does not send all pairs in G1 × G1 to the identity
in G2.

3. Computable: There is an efficient algorithm to compute ê(Q,R) for any
Q,R ∈ G1.

We will also need the mapping ê to be symmetric, i.e., ê(Q,R) = ê(R,Q)
for all Q,R ∈ G1, but this follows immediately from the bilinearity property
and the fact that G1 is a cyclic group. We note that the Weil and Tate pairings
associated with supersingular elliptic curves or abelian varieties can be modified
to create such bilinear maps, as in [13,5,7]; see also [14,2].

BDH Parameter Generator: As in [5], we say that a randomized algorithm
IG is a BDH parameter generator if IG takes a security parameter K > 0,
runs in time polynomial in K, and outputs the description of two groups G1
and G2 of the same prime order q and the description of an admissible pairing
ê : G1 × G1 → G2.

Bilinear Diffie-Hellman (BDH) Problem: Given a randomly chosen P ∈
G1, as well as aP , bP , and cP (for unknown randomly chosen a, b, c ∈ Z/qZ),
compute ê(P, P )abc.

For the BDH problem to be hard, G1 and G2 must be chosen so that there is
no known algorithm for efficiently solving the Diffie-Hellman problem in either
G1 or G2. Note that if the BDH problem is hard for a pairing ê, then it follows
that ê is non-degenerate.
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Bilinear Diffie-Hellman Assumption: As in [5], if IG is a BDH parameter
generator, the advantage AdvIG(B) that an algorithm B has in solving the BDH
problem is defined to be the probability that the algorithm B outputs ê(P, P )abc

on inputs G1,G2, ê, P, aP, bP, cP , where (G1,G2, ê) is the output of IG for suf-
ficiently large security parameter K, P is a random generator of G1, and a, b, c
are random elements of Z/qZ. The Bilinear Diffie-Hellman assumption is that
AdvIG(B) is negligible for all efficient algorithms B.

3 Hierarchical ID-Based Encryption Schemes

We describe our scheme in a format similar to that used in [6]. We begin by
describing a basic scheme, and then extend it to a full scheme that is secure
against adaptive chosen ciphertext attack in the random oracle model, assuming
the difficulty of the BDH problem.

We may sometimes refer to elements of G1 as “points,” which may suggest
that ê is a modified Weil or Tate pairing, but we note again that any admissible
pairing ê will work.

3.1 BasicHIDE

Let Leveli be the set of entities at level i, where Level0 = {Root PKG}. Let K
be the security parameter given to the setup algorithm, and let IG be a BDH
parameter generator.

Root Setup: The root PKG:

1. runs IG on input K to generate groups G1,G2 of some prime order q and
an admissible pairing ê: G1 × G1 → G2;

2. chooses an arbitrary generator P0 ∈ G1;
3. picks a random s0 ∈ Z/qZ and sets Q0 = s0P0;
4. chooses cryptographic hash functions H1 : {0, 1}∗ → G1 and H2 : G2 →

{0, 1}n for some n. The security analysis will treat H1 and H2 as random
oracles.

The message space is M = {0, 1}n. The ciphertext space is C = G
t
1 × {0, 1}n

where t is the level of the recipient. The system parameters are params =
(G1,G2, ê, P0, Q0, H1, H2). The root PKG’s secret is s0 ∈ Z/qZ.

Lower-Level Setup: Entity Et ∈ Levelt picks a random st ∈ Z/qZ, which it keeps
secret.

Extraction: Let Et be an entity in Levelt with ID-tuple (ID1, . . . , IDt), where
(ID1, . . . , IDi) for 1 ≤ i ≤ t is the ID-tuple of Et’s ancestor at Leveli. Set S0 to
be the identity element of G1. Then Et’s parent:

1. computes Pt = H1(ID1, . . . , IDt) ∈ G1;
2. sets Et’s secret point St to be St−1 + st−1Pt =

∑t
i=1 si−1Pi;

3. also gives Et the values of Qi = siP0 for 1 ≤ i ≤ t− 1.
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Encryption: To encrypt M ∈ M with the ID-tuple (ID1, . . . , IDt), do the fol-
lowing:

1. Compute Pi = H1(ID1, . . . , IDi) ∈ G1 for 1 ≤ i ≤ t.
2. Choose a random r ∈ Z/qZ.
3. Set the ciphertext to be:

C = [rP0, rP2, . . . , rPt,M ⊕H2(gr)] where g = ê(Q0, P1) ∈ G2.

Decryption: Let C = [U0, U2, . . . , Ut, V ] ∈ C be the ciphertext encrypted using
the ID-tuple (ID1, . . . , IDt). To decrypt C, Et computes:

V ⊕H2(
ê(U0, St)∏t

i=2 ê(Qi−1, Ui)
) =M.

This concludes the description of our BasicHIDE scheme.

Remark 1. Each lower-level PKG – say, in Levelt – has a secret st ∈ Z/qZ,
just like the root PKG. A lower-level PKG uses this secret to generate a secret
point for each of its children, just as the root PKG does. An interesting fact,
however, is that lower-level PKGs need not always use the same st for each
private key extraction. Rather, st could be generated randomly for each of the
PKG’s children.

Remark 2. H1 can be chosen to be an iterated hash function so that, for example,
Pi may be computed as H1(Pi−1, IDi) rather than H1(ID1, . . . , IDi).

Remark 3. In what follows, we may refer to St as Et’s private point, and to
{Qi : 1 ≤ i < t} as Et’s Q-values. We say that S′

t and {Q′
i : 1 ≤ i < t} form a

valid private key for the point-tuple (P1, . . . , Pt) if S′
t = s0P1+

∑t−1
i=1 s

′
iPi+1 and

Q′
i = s′

iP0 for some (s′
1, . . . , s

′
t−1) ∈ (Z/qZ)t−1.

Remark 4. Note that the same g can be used for all descendants of E1. This
value can be precomputed.

3.2 FullHIDE: HIDE with Chosen Ciphertext Security

In [6], Fujisaki-Okamoto padding [9] is used to convert a basic IBE scheme to
an IBE scheme that is chosen ciphertext secure in the random oracle model. In
the same way, BasicHIDE can be converted to FullHIDE, a HIDE scheme that
is chosen ciphertext secure in the random oracle model. Next we describe the
scheme FullHIDE.

Setup: As in the BasicHIDE scheme, but in addition choose hash functions
H3 : {0, 1}n × {0, 1}n → Z/qZ and H4 : {0, 1}n → {0, 1}n.
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Extraction: As in the BasicHIDE scheme.

Encryption: To encrypt M ∈ M with the ID-tuple (ID1, . . . , IDt), do the fol-
lowing:

1. compute Pi = H1(ID1, . . . , IDi) ∈ G1 for 1 ≤ i ≤ t,
2. choose a random σ ∈ {0, 1}n,
3. set r = H3(σ,M), and
4. set the ciphertext to be:

C = [rP0, rP2, . . . , rPt, σ ⊕H2(gr),M ⊕H4(σ)]

where g = ê(Q0, P1) ∈ G2 as before.

Decryption: Let C = [U0, U2, . . . , Ut, V,W ] ∈ C be the ciphertext encrypted
using the ID-tuple (ID1, . . . , IDt). If (U0, U2, . . . , Ut) /∈ G

t
1, reject the ciphertext.

To decrypt C, Et does the following:

1. computes

V ⊕H2(
ê(U0, St)∏t

i=2 ê(Qi−1, Ui)
) = σ,

2. computes W ⊕H4(σ) =M ,
3. sets r = H3(σ,M) and tests that [U0, U2, . . . , Ut, V ] is a BasicHIDE encryp-
tion of M using r and (ID1, . . . , IDt). If not, it rejects the ciphertext.

4. outputs M as the decryption of C.

Note that M is encrypted as W = M ⊕ H4(σ). This can be replaced by
W = EH4(σ)(M) where E is a semantically secure symmetric encryption scheme
(see [9] and Section 4.2 of [6]).

4 Hierarchical ID-Based Signature (HIDS) Schemes

ID-based encryption, whether hierarchical or not, has a clear advantage over
PKI; it does not require online public key lookup. On the other hand, it is not
so clear that ID-based signatures have an advantage over traditional signature
schemes using PKI. Indeed, any public-key signature scheme may be transformed
into an ID-based (hierarchical) signature scheme by using (a hierarchy of) cer-
tificates, since certificates “bind” an identity to a public key.

The previous comments notwithstanding, we present a Hierarchical ID-based
Signature (HIDS) scheme based on the difficulty of solving the Diffie-Hellman
problem in the group G1. When viewed in isolation, this HIDS scheme is not
especially useful for the reasons stated above (though it may be more efficient).
However, as will be explained later, the HIDS scheme becomes quite useful when
viewed in combination with the HIDE scheme as a complete package.
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4.1 A HIDS Scheme

As noted by Moni Naor (see Section 6 of [6]), an IBE scheme can be immediately
converted into a public key signature scheme as follows: the signer’s private
key is the master key in the IBE scheme. The signer’s signature on M is the
IBE decryption key d corresponding to the “public key” H1(ID) = H1(M).
The verifier checks the signature by choosing a random message M ′, encrypting
M ′ with H1(M), and trying to decrypt the resulting ciphertext with d. If the
ciphertext decrypts correctly, the signature is considered valid.

This observation can be extended to a hierarchical context: a HIDE scheme
can be immediately converted to a HIDS scheme. Suppose the signer has ID-
tuple (ID1, . . . , IDt). To sign M , the signer computes a private key d for the
ID-tuple (ID1, . . . , IDt,M), and sends d to the verifier. As before, the verifier
checks the signature by choosing a random messageM ′, encryptingM ′ with the
“public key” (ID1, . . . , IDt,M), and trying to decrypt the resulting ciphertext
with d. The security of this HIDS scheme follows immediately from the security
of our HIDE scheme, since forging a signer’s signature is equivalent to recovering
the private key of one of the signer’s children.

An obvious pitfall in the HIDS scheme just described is that an attacker might
try to get the signer to signM = IDt+1 where IDt+1 represents an actual identity.
In this case, the signer’s signature will actually be a private key, which thereafter
may be used to decrypt messages and forge signatures. The easy solution to this
problem is to use some expedient – such as a bit prefix – that distinguishes
between signing and private key extraction.

Below we describe our HIDS scheme in more detail. The security of the HIDS
scheme is based on the difficulty of solving the Diffie-Hellman problem in the
group G1 (as opposed to HIDE, which requires the BDH problem to be difficult,
and therefore requires the Diffie-Hellman problem in G2 to be difficult).

Let Leveli be the set of entities at level i, where Level0 = {Root PKG}. Let
K be the security parameter given to the setup algorithm, and let IG be a BDH
parameter generator.

Root Setup: The root PKG:

1. runs IG on input K to generate groups G1,G2 of prime order q and an
admissible pairing ê: G1 × G1 → G2;

2. chooses an arbitrary generator P0 ∈ G1;
3. picks a random s0 ∈ Z/qZ and sets Q0 = s0P0;
4. chooses cryptographic hash functions H1 : {0, 1}∗ → G1 and H3 : {0, 1}∗ →

G1. The security analysis will treat H1 and H3 as random oracles.

The signature space is S = G
t+1
1 where t is the level of the signer. The system

parameters are params = (G1,G2, ê, P0, Q0, H1, H3). The root PKG’s secret is
s0 ∈ Z/qZ.

Lower-Level Setup: As in BasicHIDE.
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Extraction: As in BasicHIDE.

Signing: To sign M with ID-tuple (ID1, . . . , IDt) (using the secret point St =∑t
i=1 si−1Pi and the points Qi = siP0 for 1 ≤ i ≤ t), do the following:

1. Compute PM = H3(ID1, . . . , IDt,M) ∈ G1. (As suggested above, we might
use a bit-prefix or some other method, instead of using a totally different
hash function.)

2. Compute Sig(ID-tuple,M) = St + stPM .
3. Send Sig(ID-tuple,M) and Qi = siP0 for 1 ≤ i ≤ t.

Verification: Let [Sig,Q1, . . . , Qt] ∈ S be the signature for (ID-tuple,M). The
verifier confirms that:

ê(P0, Sig) = ê(Q0, P1)ê(Qt, PM )
t∏

i=2

ê(Qi−1, Pi).

5 Shortening the Ciphertext and Signatures

In the HIDE scheme, the length of the ciphertext is proportional to the depth of
the recipient in the hierarchy. Similarly, in the hierarchical ID-based signature
scheme, the length of the signature is proportional to the depth of the signer in
the hierarchy, unless the verifier already has the signer’s Q-values. This section
discusses ways in which this ciphertext expansion problem may be avoided.

5.1 Dual-HIDE: Dual-Identity-Based Encryption

In 2000, Sakai, Ohgishi and Kasahara [16] presented a “key sharing scheme”
based on the Weil pairing. The idea was quite simple: suppose a PKG has a
master secret s, and it issues private keys to users of the form sPy, where Py =
H1(IDy) and IDy is the ID of user y(as in Boneh-Franklin). Then users y and
z have a shared secret that only they (and the PKG) may compute, namely,
ê(sPy, Pz) = ê(Py, Pz)s = ê(Py, sPz). They may use this shared secret to encrypt
their communications. Notice that this key sharing scheme does not require any
interaction between the parties. We can view Sakai, Ohgishi and Kasahara’s
discovery as a type of “dual-identity-based encryption,” where the word “dual”
indicates that the identities of both the sender and the recipient (rather than
just the recipient) are required as input into the encryption and decryption
algorithms. The main practical difference between this scheme and the Boneh-
Franklin IBE scheme is that the sender must obtain its private key from the
PKG before sending encrypted communications, as opposed to merely obtaining
the public parameters of the PKG. For other key agreement schemes that could
be viewed as dual-identity-based see [3,4].

In the hierarchical context, Dual-HIDE may be more efficient than HIDE
if the sender and recipient are close to each other in the hierarchy tree. Sup-
pose two users, y and z, have the ID-tuples (IDy1, . . . , IDyl, . . . , IDym) and
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(IDz1, . . . , IDzl, . . . , IDzn), where

(IDy1, . . . , IDyl) = (IDz1, . . . , IDzl).

In other words, user y is in Levelm, user z is in Leveln, and they share a common
ancestor in Levell. User y may use Dual-HIDE to encrypt a message to user z
as follows:

Encryption: To encrypt M ∈ M, user y:

1. Computes Pzi = H1(IDz1, . . . , IDzi) ∈ G1 for l + 1 ≤ i ≤ n.
2. Chooses a random r ∈ Z/qZ.
3. Sets the ciphertext to be:

C = [rP0, rPz(l+1), . . . , rPzn,M ⊕H2(gr
yl)]

where

gyl =
ê(P0, Sy)∏m

i=l+1 ê(Qy(i−1), Pyi)
= ê(P0, Syl) ,

Sy is y’s secret point, Syl is the secret point of y’s and z’s common ancestor
at level l, and Qyi = syiP0 where syi is the secret number chosen by y’s
ancestor at level i.

Decryption: Let C = [U0, Ul+1, . . . , Un, V ] be the ciphertext. To decrypt C, user
z computes:

V ⊕H2(
ê(U0, Sz)∏n

i=l+1 ê(Qz(i−1), Ui)
) =M.

Note that if y and z have a common ancestor below the root PKG, then the
ciphertext is shorter with Dual-HIDE than with non-dual HIDE. Further, using
Dual-HIDE, the encrypter y computes m − l + 1 pairings while the decrypter
z computes n − l + 1 pairings. (Note that m + n − 2l is the “length” of the
path between y and z in the hierarchy tree.) In the non-dual HIDE scheme, the
encrypter computes one pairing while the decrypter computes n pairings. Thus
when m < 2l − 1, the total work is less with Dual-HIDE than with non-dual
HIDE. The relative computing power of the sender and recipient can also be
taken into account. In the full paper we will show how to decrease the number of
pairings that y and z must compute to m+ n− 2l+1 if their common ancestor
in Levell always uses the same sl rather than generating this number randomly
with each private key extraction.

Dual-HIDE also makes domain-specific broadcast encryption possible. Sup-
pose user y wants to encrypt a message to everyone having the same ancestor
in Levell. Everyone in this common ancestor’s domain may compute the shared
secret ê(P0, Syl), and so this secret may be used as a shared key of everyone in
this domain. Users outside of this domain, other than the parent of the common
ancestor, will be unable to compute this pairing. (In Section 6.1, we describe how
to exclude even the parent.) Note that Dual-HIDE broadcast is not fully com-
patible with the HIDS scheme. If Dual-HIDE broadcast and the HIDS scheme
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use the same parameters, everyone outside the domain who receives a signature
from someone in the domain will also be able to compute ê(P0, Syl).

Fujisaki-Okamoto padding turns Dual-HIDE into FullDual-HIDE, a dual-
identity encryption scheme with adaptive chosen ciphertext security.

5.2 Dual-HIDS: Dual-Identity-Based Signatures

Dual hierarchical identity-based signatures (Dual-HIDS) are much easier to ex-
plain. If users y and z, as above, have a common ancestor in Levell, then y only
needs to send Qyi for l + 1 ≤ i ≤ m. This makes the length of the signature
proportional to m− l rather than m.

5.3 Authenticated Lower-Level Root PKGs

Suppose that user y often sends mail to people at a certain university – say,
Cryptography State University (CSU ) – but that CSU is deep in the hierarchy,
and that y is not close to CSU in the hierarchy. How do we solve the ciphertext
expansion problem? One solution, of course, is for CSU to set up its own root
PKG with its own system parameters, unassociated with the “actual” root PKG.
After y obtains CSU ’s system parameters, its ciphertext to CSU recipients will
be shorter. However, we would prefer not to have “rogue” root PKGs.

A better solution is for CSU to set up a root PKG that is “authenticated”
by the actual root PKG. For this purpose, the actual root PKG may have an
additional parameter, a random message M ′. To set up its authenticated root
PKG, CSU“signs” M ′, generating the signature Sig = St + stPM ′ , where St is
CSU ’s private point, and st is its lower-level secret. CSUalso publishes Qi for
1 ≤ i ≤ t.

Let (ID1, . . . , IDt, . . . , IDv) be the ID-tuple of user z at CSUhaving point-
tuple (P1, . . . , Pt, . . . , Pv). Then y may send an encrypted message to z, using
the parameters for CSU ’s authenticated root PKG, as follows:

Encryption: To encrypt M ∈ M, user y:

1. Computes Pi = H1(ID1, . . . , IDi) ∈ G1 for t+ 1 ≤ i ≤ v.
2. Chooses a random r ∈ Z/qZ.
3. Sets the ciphertext to be:

C = [rP0, rPt+1, . . . , rPv,M ⊕H2(gr
t )]

where

gt =
ê(P0, Sig)
ê(stP0, PM ′)

= ê(P0, St) .

Decryption: Let C = [U0, Ut+1, . . . , Uv, V ] be the ciphertext. To decrypt C, user
z computes:

V ⊕H2(
ê(U0, Sv)∏v

i=t+1 ê(Qi−1, Ui)
) =M

where Sv is z’s private key.
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The number of pairings computed by the decrypter is v − t + 1, one more
than its depth below CSU , not its depth below the actual root PKG.

Interestingly, if y obtains any signature from CSU , not necessarily on a par-
ticular message M ′, then y may use that signature to shorten its ciphertext in
the same way. In effect, y’s possession of any signature from CSUallows y to use
Dual-HIDE as if y’s position in the hierarchy is just below CSU . Thus, y may use
CSU ’s signature to shorten its ciphertext not only to entities below CSU in the
hierarchy, but also to any entity that is close to CSU in the hierarchy. In general,
one could have an “optimized” HIDE scheme in which the sender stores a list
of HIDS signatures that it has obtained, and, upon each encryption, searches
through that list (which may be put in lexicographic order) to find the signer
that is closest in the hierarchy to the intended message recipient, and then uses
that signer’s signature, in combination with Dual-HIDE, to minimize the length
of the ciphertext.

6 Restricting Key Escrow

In IBE schemes, key escrow is “inherent” because the PKG knows the private
key of each user. Even in the hierarchical scheme of Horwitz and Lynn, every
ancestor of a given user in the hierarchy knows that user’s private key. Although
this key escrow property may be useful in some contexts, it is certainly not
desirable for all applications.

In our HIDE scheme, since the private point of a user depends on a secret
number known only to the parent of that user, no ancestor other than the parent
may compute the user’s particular private point. However, the user’s ancestors
can still decrypt the user’s mail; they may simply compute a different (but
equally effective) private key for the user based on different lower-level Q-values.
Using these different Q-values, they may also forge the user’s signature. In this
section, we discuss how Dual-HIDE and/or key agreement protocols can be used
to restrict this key escrow property.

6.1 Restricting Key Escrow Using Dual-HIDE

Consider again users y and z from Section 5.1 who have a common ancestor in
Levell. Let’s say their common ancestor is Cryptography State University, and
suppose that user y uses Dual-HIDE to encrypt its messages to z. As stated
above, CSU ’s parent knows CSU ’s private point. From CSU ’s perspective, this
may be an undesirable situation. However, CSU can easily change its private
point Sl by setting Sl := Sl + bPl and setting Ql−1 := Ql−1 + bP0 for some
random b ∈ Z/qZ. This new private key is just as effective, and is unknown to
CSU ’s parent. Assuming that CSUuses its new private key to issue private keys
to its children, none of CSU ’s ancestors will be able to decrypt y’s message to
z encrypted using Dual-HIDE. More specifically, only ancestors of z that are
within CSU ’s domain will be able to decrypt.
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6.2 Authenticated Key Agreement with no Session Key Escrow

HIDS provides a convenient platform on which key agreement may be authenti-
cated (see also [1] for authenticated three-party (non-ID based) key agreement
protocols using pairings). A simple explicit authenticated key agreement protocol
is as follows:

1. Alice chooses a random a ∈ Z/qZ and sends aP0 and Sign(aP0) to Bob.
2. Bob chooses a random b ∈ Z/qZ and sends bP0 and Sign(bP0) to Bob.
3. Alice and Bob verify the received signatures and compute the shared secret:

abP0.

Here, there is no session key escrow. However, there is still an attack scenario:
an ancestor of Alice and an ancestor of Bob could collude to mount a man-in-
the-middle attack. This attack has an analogue in PKI: CAs could collude in
a similar way. Dual-HIDE can be used in combination with key agreement to
minimize the possible scope of such collusion among ancestors.

Implicit authentication based on Sakai-Ohgishi-Kasahara key agreement can
be done as follows. Alice and Bob first perform a standard (or elliptic curve)
Diffie-Hellman exchange, after which Alice thinks the shared Diffie-Hellman
value is gA and Bob thinks it is gB . Then Alice computes the shared secret as
H(gA, SAB) and Bob computes it as H(gB , SAB), where H is a one-way collision-
resistant hash function and SAB = ê(PA, PB)s = ê(SA, PB) = ê(SB , PA), where
PA = H1(IDA) is Alice’s public point and SA = sPA is her private point,
PB = H1(IDB) is Bob’s public point and SB = sPB is Bob’s private point,
and s is their PKG’s master secret. Unless the man-in-the-middle is the PKG,
it will not be able to compute Alice’s or Bob’s version of the shared secret, since
it does not know SAB . However, it can prevent Alice and Bob from computing
the same shared secret. Alice and Bob will not know that their key agreement
protocol has been disrupted until, for example, one sends an undecipherable
message to the other. A passive PKG will not know Alice’s and Bob’s shared
Diffie-Hellman value, and is therefore unable to compute the session key.

7 Security

7.1 Security Definitions

We first give some definitions that are very similar to those given in [5,6,12].
Their similarity should not be surprising because, at a high level, the security
issues involved in hierarchical ID-based cryptography are substantially identical
to those in non-hierarchical ID-based cryptography; we are merely adding new
levels.

Chosen-Ciphertext Security: As Boneh and Franklin noted in the context
of (non-hierarchical) ID-based cryptography, the standard definition of chosen-
ciphertext security must be strengthened for ID-based systems, since one should
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assume that an adversary can obtain the private key associated with any iden-
tity of its choice (other than the particular identity being attacked). The same
applies to hierarchical ID-based cryptography. Thus, we allow an attacker to
make “private key extraction queries.” Also, as in [6], we allow the adversary to
choose the identity on which it wishes to be challenged.

One subtlety is that an adversary may choose its target identity adaptively
or nonadaptively. An adversary that chooses its target adaptively will first make
hash queries and extraction queries, and then choose its target based on the
results of these queries. Such an adversary might not have a particular target in
mind when it begins the attack, and its eventual target need not even belong to
an existing entity. Rather, this adversary is successful if it is able to hack some
identity to which it is not entitled. A nonadaptive adversary, on the other hand,
chooses its target independently from results of hash queries and extraction
queries. For example, such an adversary might target a personal enemy. The ad-
versary may still make hash and extraction queries, but its target choice is based
strictly on the target’s identity, not on query results. Obviously, security against
an adaptively-chosen-target adversary is the stronger, and therefore preferable,
notion of security. However, we will address both types of security, since our
security proofs against nonadaptively-chosen-target adversaries are stronger.

We say that a HIDE scheme is semantically secure against adaptive chosen
ciphertext and adaptive (resp., nonadaptive) chosen target attack (IND-HID-
CCA (resp. IND-NHID-CCA)) if no polynomially bounded adversary A has a
non-negligible advantage against the challenger in the following game. (Note: for
IND-NHID-CCA, Phase 1 is omitted.)

Setup: The challenger takes a security parameter K and runs the Root Setup
algorithm. It gives the adversary the resulting system parameters params. It
keeps the root key to itself.

Phase 1: The adversary issues queries q1, . . . , qm where qi is one of:

1. Public-key query (ID-tuplei): The challenger runs a hash algorithm on ID-
tuplei to obtain the public key H(ID-tuplei) corresponding to ID-tuplei.

2. Extraction query (ID-tuplei): The challenger runs the Extraction algorithm
to generate the private key di corresponding to ID-tuplei, and sends di to
the adversary.

3. Decryption query (ID-tuplei,Ci): The challenger runs the Extraction algo-
rithm to generate the private key di corresponding to ID-tuplei, runs the
Decryption algorithm to decrypt Ci using di, and sends the resulting plain-
text to the adversary.

These queries may be asked adaptively. Note also that the queried ID-tuplei may
correspond to a position at any level in the hierarchy.

Challenge: Once the adversary decides that Phase 1 is over, it outputs two
equal length plaintexts M0,M1 ∈ M and an ID-tuple on which it wishes to be
challenged. The only constraints are that neither this ID-tuple nor its ancestors
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appear in any private key extraction query in Phase 1. Again, this ID-tuple may
correspond to a position at any level in the hierarchy. The challenger picks a
random bit b ∈ {0, 1} and sets C = Encryption(params, ID-tuple,Mb). It sends
C as a challenge to the adversary.

Phase 2: The adversary issues more queries qm+1, . . . , qn where qi is one of:

1. Public-key query (ID-tuplei): Challenger responds as in Phase 1.
2. Extraction query (ID-tuplei �= ID-tuple or ancestor): Challenger responds as
in Phase 1.

3. Decryption query ((ID-tuplei,Ci) �= (ID-tuple or ancestor,C)): Challenger
responds as in Phase 1.

Guess: The adversary outputs a guess b′ ∈ {0, 1}. The adversary wins the game
if b = b′. We define its advantage in attacking the scheme to be |Pr[b = b′]− 1

2 |.

One Way Identity-Based Encryption: As in [5], we define one-way encryp-
tion (OWE) for a public key encryption scheme as follows. The adversary A is
given a random public key Kpub and a ciphertext C that is the encryption of a
random message M using Kpub, and outputs a guess for the plaintext. The ad-
versary is said to have advantage ε against the scheme if ε is the probability that
A outputs M . The scheme is said to be a one-way encryption (OWE) scheme if
no polynomial time adversary has a non-negligible advantage in attacking the
scheme.

We say that a HIDE scheme is one-way (HID-OWE or NHID-OWE, depend-
ing on whether the target is chosen adaptively or not) if no polynomial time
adversary has a non-negligible advantage against the challenger in the following
game. (Phase 1 is omitted for NHID-OWE.)

Setup: The challenger takes a security parameter k and runs the Root Setup
algorithm. It gives the adversary the resulting system parameters params. It
keeps the root key to itself.

Phase 1: The adversary makes public-key and/or extraction queries as in Phase
1 above.

Challenge: Once the adversary decides that Phase 1 is over, it outputs a new
ID-tuple on which it wishes to be challenged. The challenger picks a random
M ∈ M and sets C = Encryption(params, ID-tuple,M). It sends C as a chal-
lenge to the adversary.

Phase 2: The adversary issues more public-key queries and more extraction
queries on identities other than this ID-tuple and its ancestors, and the challenger
responds as in Phase 1.
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Guess: The adversary outputs a guess M ′ ∈ M. The adversary wins the game
if M = M ′. We define the adversary’s advantage in attacking the scheme to be
Pr[M =M ′].

7.2 Security Results

The security of BasicHIDE and Dual-HIDE is based on the difficulty of the BDH
problem, as stated in the following theorems (which are analogous to Theorem
4.1 in [6]):
Theorem 1. Suppose there is an NHID-OWE adversary A that has advantage ε
against the BasicHIDE or Dual-HIDE scheme for some ID-tuple and that makes
qH2 > 0 hash queries to the hash function H2 and a finite number of private key
extraction queries. If the hash functions H1, H2 are random oracles, then there
is an algorithm B that solves the BDH in groups generated by IG with advantage
at least (ε− 1

2n )/qH2 and running time O(time(A)).
Theorem 2. Suppose there is an HID-OWE adversary A that makes at most
qH2 > 0 hash queries to the hash function H2 and at most qE > 0 private key
extraction queries and has advantage εt of successfully targeting a BasicHIDE
or Dual-HIDE node in Levelt. If the hash functions H1, H2 are random oracles,
then there is an algorithm B that solves the BDH in groups generated by IG with
advantage at least (εt( t

e(qE+t) )
t − 1

2n )q−1
H2

and running time O(time(A)).
If t = O(1) and qE is polynomial in the security parameter, then (t/e(qE+t))t

is non-negligible in the security parameter, and we have a polynomial reduction
from BasicPub to BasicHIDE (for adaptively-chosen-target adversaries).

With Fujisaki-Okamoto padding, these schemes can be made chosen cipher-
text secure if BDH is hard in the groups generated by IG. The proof follows from
Theorems 1 and 2 analogously to the way that Theorem 4.4 of [6] follows from
Lemma 4.3 of [6]. Further, the security of the HIDS scheme depends only on the
difficulty of the Diffie-Hellman problem in the group G1, and not on BDH. We
will give security proofs in the full version of the paper.

8 Extensions and Observations

Improving Efficiency of Encryption: Levels 0 and 1 can be merged into a
single (combined levels 0 and 1) root PKG. In that case, g = ê(Q0, P1) is in-
cluded in the system parameters. This saves encrypters the task of computing
the value of this pairing. However, decrypters must compute an extra pairing
(as a result of being one level lower down the tree).

Distributed PKGs: As in Section 6 of [6], the secrets si and private keys can
be distributed using techniques of threshold cryptography to protect the secrets
and make the scheme robust against dishonest PKGs.

Concrete Schemes: For our HIDE and HIDS schemes, one can use the same
elliptic curves or abelian varieties as those in [6], [7], or [15].
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9 Conclusion

We gave hierarchical ID-based encryption (HIDE) schemes that are practical, to-
tally collusion-resistant, and secure against chosen-ciphertext attacks. The mes-
sage expansion factor and complexity of decryption grow only linearly with the
number of levels in the hierarchy. We introduced a related hierarchical ID-based
signature (HIDS) scheme that is especially effective when used in combination
with HIDE and Dual-HIDE. This also appears to be the first paper related to
ID-based cryptography that gives methods for circumventing key escrow.
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