Lecture 3 Notes

Hash Function

\(h: \{0,1\}^* \rightarrow \{0,1\}^n \approx \text{"random" (recall random oracle)} \)

\(h(x) = y \)

\(h(x') = y \)

“collision”: \(h(x) = h(x') \)

Computational Difficulty

Asymptotic complexity (“rates of growth of difficulty”, \(\Theta(2^n) \))

Concrete complexity (constants matter)

Properties

 - Infeasible, given randomly chosen \(y \in \{0,1\}^n \), to find any \(x \) s.t. \(h(x) = y \)

 Given \(y \):
 - Pick \(x_1 \), check if \(h(x_1) = y \)
 - \(\text{Prob}(x_1: h(x_1) = y) = 1/2^n \) (avg)

 Back of Envelope Calculation:
 - \(2^{30} \) chips
 - \(2^{34} \) trials/sec
 - \(\pi \times 10^7 \) sec/yr = \(2^{25} \) sec/yr
 - \(2^{64} \) trials/sec
 - \(2^{80} \) trials half day
 - \(2^{89} \) trials/yr

 SHA-1 has 160-bit output \(\rightarrow 2^{71} \) yrs to break OW of SHA-1

 - Infeasible of finding two distinct values \(x, x' \) s.t. \(h(x) = h(x') \)

 Difficulty = \(2^{2n} \)

 Birthday Problem:
 - \(t \) values \(x_1, x_2, \ldots, x_t \) people
 - \(y_1, y_2, \ldots, y_t \) b-days

 \(\text{Prob}(y_1 = y_2) = 1/2^n \)

 \(\text{# pairs} = \binom{t}{2} = \frac{t(t-1)}{2} = \Theta(t^2) \)

 \(\text{E}[\text{# pairs w/ same b-day}] = \frac{1}{2} \cdot 2^n \)

 \(\approx 2^n \) \(\rightarrow t \approx 2^n \)

3. “Weak Collision Resistance” – WCR
 - Infeasible, given randomly chosen \(x \), to come up with \(x' \) s.t. \(h(x') = h(x) \)

 \(2^n \) time to break “random” hash function

“Thm”: CR \(\Rightarrow \) WCR

Contrapositive: \(\neg \)WCR \(\Rightarrow \neg \)CR

Thm: OW \(\Rightarrow \) CR

Proof: Want \(h \) that is OW but not CR

Let \(g \) be OW

\(y = h(x) = g(x) = g \) applied to all of \(x \) except for last bit

\(x = zb \)

\(h(0) = h(1) \rightarrow \text{collision!} \)

Inverting \(h \Rightarrow \) inverting \(g \)

Thm: CR \(\Rightarrow \) OW

Proof: Want \(h \) that is CR but not OW

Let \(g \) be CR

Let \(h(x) = \begin{cases} \text{if } |x| = n & \text{no collisions} \\ g(x) & \text{else} \end{cases} \)

\(g(x) \) is CR

h is CR

Thm: WCR \(\Rightarrow \) CR

Proof: Want \(h \) that is WCR but not CR

Let \(g^i(x) \) mean \(g(g(\cdots g(x))) \) – \(g \) is iteratively applied \(i \) times, \(g \) is OW and CR

Inputs: \((x, x') \) – pairs of strings w/ arbitrary length

\(h(x, x') \rightarrow \begin{cases} x = x_0 \quad \cdots \quad x_i \quad \text{least: ends in 4 zeros or until we take 100 steps (i=100)} \\ x = x_0 \quad \cdots \quad x_j \quad \text{ends in 4 zeros or j=100} \end{cases} \)

Output: \((g^i(x), g^i(x), i+j) \)

\(h(x, g(x')) = h(g(x), x') \)

As bit string

Often
APPLICATIONS

① Password storage: store h(pw) on disk – Need OW

② Detecting file modification: store h(F) for each file in system offline on secure CD – Need WCR

③ Secure URL: – Need WCR

④ Commitments:
 Alice has some bid $x
 Alice can compute C(x)
 Alice submits C(x) as her “sealed bid”
 Later on, she can “open” C(x) to reveal x in only one way (binding)

Properties:
 Secrecy - Anyone who uses C(x) should learn nothing about x
 “Non-malleable” – Not possible to come up with commitment to a related value x’ (e.g. x’ = x + 1)

Need OW, CR