Simulating Biological Reactions:
A Modular Approach

Alexander J. Hartemink, Tarjei S. Mikkelsen, and David K. Gifford

ABSTRACT. We develop a general framework for simulating a sequence of bio-
logical reactions using small simulation modules. We demonstrate the useful-
ness of such a framework by implementing a simulator called the CYBERCYCLER.
The CYBERCYCLER contains DNA hybridization, polymerization, ligation, and
melting modules linked together to simulate a thermocycling process. This
simulator enables us to interpret the behavior of our own programmed mu-
tagenic unary counter in the laboratory. We describe the modules we imple-
mented and then present a comparison of output from the CYBERCYCLER with
the results of laboratory experiments to evaluate the effectiveness of the cy-
BERCYCLER simulator. We define a concrete specification for transformation
modules and for populations of molecules passed between modules. This speci-
fication enables the construction of tools for simulating an arbitrarily complex
sequence of biological reactions. We provide Java interfaces and classes for
building such tools.

1. Introduction

Biological reactions implementing any non-trivial form of DNA-based compu-
tation are likely to be extremely complex: computations intended to solve large
problems will require large populations of molecules, and the biological reactions
used to carry out the computations will transform these populations in compli-
cated ways. The prospect of reasoning about all the products being formed in
these reactions is quite daunting.

In our laboratory, we have constructed a simple unary counter to experimentally
demonstrate the feasibility of DNA-based computation using programmed muta-
genesis [12, 14]. While the counter has been engineered to operate cleanly [13],
the repeated thermocycling that increments the counter causes a wealth of product
species to be formed after just a few cycles. This reaction complexity makes it dif-
ficult to predict or even interpret the results of frequent thermocycling; even when
the results are predictable and interpretable, simply keeping track of the myriad
interactions taking place during the reaction remains a significant challenge.

1991 Mathematics Subject Classification. Primary ; Secondary .
Hartemink is partially funded by a National Science Foundation Graduate Research
Fellowship.

©1999 Alexander J. Hartemink, Tarjei S. Mikkelsen, David K. Gifford

1



2 ALEXANDER J. HARTEMINK, TARJEI S. MIKKELSEN, AND DAVID K. GIFFORD

Tools that can predict, analyze, interpret, and keep track of the products being
formed in biological reactions would be of great benefit. In that context, the contri-
bution of this work is three-fold: first, we develop a general framework for building
tools to simulate biological reactions; second, we present the CYBERCYCLER, a tool
built within this framework and able to simulate the reactions necessary for un-
derstanding our laboratory unary counter implementation; and third, we provide
Java interfaces and classes that define a concrete specification for this framework,
enabling the construction of tools for simulating an arbitrarily complex sequence of
biological reactions. The CYBERCYCLER demonstrates that this general framework
is useful for building simulation tools, and the Java interfaces and classes instan-
tiate this framework, producing a flexible and extensible environment for building
simulation tools more easily.

Overview of this Paper. We begin by surveying some related work to mo-
tivate our research and then develop a general framework for building tools to
simulate biological reactions. Once the basic elements of this framework have been
elucidated, we present the CYBERCYCLER, a tool for simulating thermocycled reac-
tions such as those incrementing our unary counter [12, 14, 13]. We briefly outline
the various modules we implemented for the CYBERCYCLER, and then compare the
output of the CYBERCYCLER with the results of laboratory experiments to evaluate
the effectiveness of the CYBERCYCLER simulator. Finally, we offer a collection of
Java interfaces and classes as a specification for building general simulation tools.
We close by suggesting some directions for future work.

2. Related Work

The need for rational design and analysis of biological reactions has spawned a
variety of software tools. These tools can generally be divided into three categories:
thermodynamic prediction of secondary structure, thermodynamic analysis of hy-
bridization (including optimal PCR primer selection), and simulation of specific
models of DNA-based computation.

The mfold algorithm developed by Zuker, et al. [31] is perhaps the most notable
program using thermodynamics to predict secondary structure of single-stranded
DNA and RNA.

Tools in the second category include BIND by Hartemink, et al. [12], Oligo
from MBI, Inc. [15], HY Bsimulator from AGCT, Inc. [2], and the recent HYTHER
program developed at the SantaLucia laboratory [18]. PCRsim by Rubin, et al. [22]
and the Amplify program by Engels [9] simulate standard PCR reactions.

Among the various tools developed for the purpose of simulating specific mod-
els of DNA-based computation, Reif, et al. [21] have developed a graph-theoretic
model for simulating recombinant DNA reactions, and Hagiya, et al. [10] have
developed an applet for analyzing their DNA computing algorithms. Hartemink,
et al. [13] wrote SCAN to optimally select nucleotide sequences according to given
design constraints.

We are unaware of previous work describing the simulation of arbitrary se-
quences of DNA hybridization, polymerization, and ligation reactions. Though
each of these reactions has been studied and simulated separately, we were unable
to combine available tools so as to use them in concert.



SIMULATING BIOLOGICAL REACTIONS: A MODULAR APPROACH 3

3. General Framework for Simulation

While a plethora of software tools exist to simulate specific reactions, there
is a profound lack of tools designed to simulate arbitrary sequences of biological
reactions. A framework that effectively facilitates such simulation must be flexible,
extensible, and general. By developing an “open source” framework with these
properties, we hope to do more than construct a simulation tool; we hope to offer
a means for easily building and expanding simulation tools.

3.1. Modular Design. In our framework, we represent a complicated se-
quence of reactions as a sequence of transformations on molecular populations.
Populations are the material of a reaction, while transformations are the agents of
change in a reaction. Transformations can represent active agents (e.g., enzymes),
environmental changes (e.g., temperature increase), mechanical operations (e.g.,
sampling or splitting populations), or filters (e.g., micropore).

Transformation modules are implemented according to a concrete specification
which allows them to be composed with one another. As a result, complex reactions
can be simulated by building appropriate transformation modules and then linking
them together in a sensible way.

This framework provides a tool-building environment which is flexible and com-
pletely general. It encourages code reuse, but remains fully extensible: researchers
can tailor or tweak modules according to their needs without having to rewrite
entire simulators. As new data or models for various transformations become avail-
able, modules can be updated and redistributed easily.

3.2. Taggable Data. We permit every species within a population to be as-
sociated with an arbitrary number of tags. Tags on species can be used to facilitate
reaction simulation (e.g., a tag indicating that a particular species is immobilized,
allowing it to be separated from other species that are not), experimental analysis
(e.g., the history tag, discussed below), or output functionality (e.g., the radio-label
tag, also discussed below). Transformations may read or write tags in performing
their respective duties, and are responsible for updating them as necessary.

4. CYBERCYCLER Design and Implementation

The CYBERCYCLER accomplishes two purposes. Primarily, it helps us better
understand our unary counter by predicting the products being formed during the
reaction as it is thermocycled. Secondarily, it serves as a “proof of concept” for our
general simulation framework.

To build the CYBERCYCLER within our general simulation framework, we make
a few simplifying assumptions. We assume that polymerase and ligase can be mod-
eled as though they are acting serially even though they are both present simulta-
neously in the reaction. In the case of polymerase and ligase, this seems reasonable.
Similarly, we assume that hybridization and polymerization can be modeled in a se-
rial fashion. This seems justified by the fact that PCR frequently consists of a low
temperature “annealing” step followed by a raised temperature “extension” step
for polymerization, segregating the two operations so as to minimize non-specific
binding.

In the context of our general framework, we implemented transformation mod-
ules representing melting, hybridization, polymerization, ligation, and CyberGel
output. As shown in Figure 1, the first four of these modules are linked together



4 ALEXANDER J. HARTEMINK, TARJEI S. MIKKELSEN, AND DAVID K. GIFFORD

Input
Output Display

Y
ay
e

FIGURE 1. A schematic look at the CYBERCYCLER simulator: In
this depiction, various modules are composed to form the CYBER-
CYCLER. The initial population enters the melting module as input,
and the resulting population is passed in turn to the hybridization
module. The polymerization module receives its input from the
hybridization module and passes its result to the ligation module,
which cycles its result back to the melting module. The population

is sampled after each time through the melting module, with the
sample going to the CyberGel module for display.

in a loop, and the population products are sampled and passed to the CyberGel
module after each cycle.

Furthermore, we tag each strand in the population with a radio-label tag and
a history tag. The radio-label tag is a simple Boolean tag indicating if a strand
has been labeled with radioactive 32P. Any labeled strand that is polymerized
or ligated yields a labeled strand. In the CyberGel module, only labeled strands
produce bands, enabling the output to be compared with autoradiographs from
laboratory experiments.

The history tag describes the reaction in which a strand was formed. Strands
present in the initial population have empty history fields, but any strand formed
during a reaction is tagged with a string describing how it was formed. This allows
every strand’s pedigree to be tracked throughout the simulation, a form of analysis
that is impossible in a laboratory setting.



SIMULATING BIOLOGICAL REACTIONS: A MODULAR APPROACH 5

In the following subsections, we describe the various CYBERCYCLER modules
and the modeling choices we made in their implementation.

4.1. The Hybridization Module. The hybridization module takes a pop-
ulation as input and numbers each single-stranded species of DNA from 1 to n,
where n is the total number of single-stranded species of DNA in the population.
Then for each i € {1,...,n} and each j € {4,... ,n}, the module considers the
possible hybridization of strand ¢ with strand j at every offset position between the
two strands'. For each of these strand xstrand x position possibilities, the module
calculates the predicted AH® and AS® for the hybridization reaction.

Predictions of enthalpy and entropy are calculated using the nearest neighbor
stacking model [12, 23, 24, 26, 20, 8]. Thermodynamic parameters used in the
calculation of AH® and AS® are the most recent published, taken from [23, 17,
3, 4, 5, 6]. Hybrid melting temperature is computed from AH®°, AS°, strand con-
centrations, and cation concentration, as described in [12, 29]. The hybridization
module is parameterized over the annealing temperature, and it considers as valid
any binding whose melting temperature exceeds the annealing temperature.

For our purposes, a conservative (overstated) estimate of the possible products
in the unary counter reaction is desirable. Therefore, for the sake of computational
efficiency, our module implementation does not employ a chemical kinetic model
to determine product concentrations, but instead uses only the simple heuristic
that any new strand is formed at a concentration equal to the lowest concentration
of any of the reactants involved in its formation. This tends to overstate strand
concentrations, but the effect of overstated concentrations on predicted melting
temperature is almost negligible and errs in the direction of conservative product
estimation.

Different applications may require simulations that compute more accurate val-
ues of product concentrations, but this is easily achieved as a result of our modular
framework: a re-implemented hybridization module could incorporate reaction dy-
namics to determine how much of each reactant will be used in forming each possible
product?.

4.2. The Polymerization Module. The polymerization module checks each
strand in the population for bound strands present after the hybridization step. For
each of the m bound strands, the module checks for a stable 3’ end and if present,
extends the bound strand until it reaches the end of the template, or another bound
strand blocking its path. As before, our implementation is conservative in that it
predicts extension products representing polymerization to each of these possible
blockage lengths.

We assume that the polymerase exhibits perfect fidelity (it introduces no mis-
matched nucleotides, insertions, or deletions), full extension of the strand product

IThis includes the cases where one strand extends past the end of the other strand; in total,
the module considers length(i) + length(j) - 2 possible hybridization positions. Note also that
the module considers the case where j is equal to i in order to check for possible dimer formation.
Though the module does not currently check for monomeric secondary structures such as hairpins,
our population specification is perfectly capable of representing such structures.

2See [11, 25, 28] for a more detailed discussion of reaction dynamics and chemical kinetics.
In general, accurate prediction of product concentrations may be quite complicated since there
are competitive reactions and multi-strand hybridization possibilities. For a modestly-sized pop-
ulation, however, it should not be too difficult to achieve a reasonable approximation of product
concentrations.



6 ALEXANDER J. HARTEMINK, TARJEI S. MIKKELSEN, AND DAVID K. GIFFORD

F 3

FIGURE 2. Four binding strands may overlap: In this depiction,
some of the binding strands overlap with one another in such a way
that certain strand combinations preclude simultaneous binding. A
naive implementation might consider all 15 non-empty strand com-
binations, but our recursive implementation considers only the 6
that do not result in strand overlap.

(until it encounters either a blocking strand or the end of the template), and no
exonuclease activity (either 3" — 5 or 5" — 3').

In generating extension products corresponding to all possible blockage lengths,
our module implementation incorporates a recursive polymerization procedure.
Starting from the strand located most proximate to the 3’ end of the template,
the procedure calls itself again twice, once incorporating the strand, and once with-
out it. In the recursive call where the strand is incorporated, the next strand
considered is the first one whose 5" end is beyond the 3’ end of the current strand.
In the recursive call without the strand, the next strand considered is the next one
in the 5-sorted list. This recursive procedure allows large portions of the binary
subset tree to be pruned.

In the case shown in Figure 2 for example, the number of considered combi-
nations is reduced from 2™ — 1 = 15 to 6. As m grows and the degree of overlap
increases?, the computational savings becomes even more significant. Anecdotally,
running times for simulations of five-cycle reactions with this recursive procedure
were around a minute, whereas running times for an iterative version of the module
were around an hour.

4.3. The Ligation Module. The ligation module receives the intermediate
population? from the polymerization module and looks for possible ligation sites:

30verlap becomes increasingly common in later cycles as polymerase generates new species
from subsequences of existing species in every cycle.

4The population of strands that is passed between the two modules has no real significance
and exists only because of our modeling assumption that we can treat the two as separable modules
and apply them serially. We refer to such a population as an intermediate pseudo-population,
since it is purely an artifact of the modeling. Our claim in modeling the reaction this way is
that the population that results from applying the polymerization and ligation modules in series
is a reasonably accurate approximation of the one produced if the modules were to be applied
simultaneously, but of course, an artifactual pseudo-population may be produced along the way.
This pseudo-population should not be considered as existing in a real experimental setting.



SIMULATING BIOLOGICAL REACTIONS: A MODULAR APPROACH 7

adjoining strands bound to a single template. If the 3’ end of the upstream strand
and the 5’ end of the adjacent downstream strand are both stable, the module
ligates the pair together to produce a longer strand.

Once again, the ligation module is conservative in that it assumes that any
putative ligation can either fail or succeed and reports both possibilities as prod-
ucts. For our purposes, it suffices to assume that half the putative ligations fail
and half succeed, so as to allow the CYBERCYCLER to consider both possibilities.
Applications needing a more accurate measure of ligation efficiency are easily ac-
commodated by a simple re-implementation of the module.

4.4. The Melting Module. Like the hybridization module, this module is
parameterized over temperature. However, when the temperature is higher than
the highest temperature permissive for nucleic acid hybridization, the actual im-
plementation of this module is trivial. When that assumption holds, as is the case
in our unary counter, the module simply examines the various species in the pop-
ulation and, for each one that is double-stranded, it produces two single-stranded
species. The resulting population is then passed to the next module in the chain.
In the case of the CYBERCYCLER, the population is sampled and then given to the
hybridization module.

4.5. The CyberGel Module. The CyberGel module receives a sampled pop-
ulation and displays the nucleic acid species contained therein in the format of an
electrophoretic gel. This enables a researcher to examine the contents of a popu-
lation using an output modality that offers the benefits of familiarity and compa-
rability with laboratory-produced gels. Furthermore, it permits the researcher to
examine annotations associated with bands in the gel, which lends it a compara-
tive advantage over laboratory gels. For example, for each band in the CyberGel,
the researcher can learn the exact contents of the band: what strand species (or
combination of species) is present in the band, what its sequence is, and how the
strand was formed (courtesy of its history tag). Though the CYBERCYCLER main-
tains product concentrations for each strand in a population, the CyberGel module
currently displays uniformly-sized bands. A better implementation would render
the bands with a size and intensity proportional to the concentration of the corre-
sponding strand species.

5. Using the CYBERCYCLER

We now turn to a discussion of how we use the CYBERCYCLER to predict the
products that are formed during the operation of our unary counter. For verifi-
cation purposes, we have also used the CYBERCYCLER to examine standard PCR,
assembly PCR, and library assembly with ligase (as in Adleman’s Hamiltonian Path
experiment [1]), but those results are not included here.

The initial population in our CYBERCYCLER simulation consists of all the pieces
of DNA necessary for implementing the programmed mutagenic unary counter (for
a more detailed description of this counter see [12, 14, 13]). We radio-label one
of the mutagenic rule strands (length 21bp) and then pass the population of five
strands to the CYBERCYCLER. The CYBERCYCLER generates an extensive textual
description of the products, consisting of the complete population, concentration,
sequence content, bindings, reactions, and strand histories after each cycle. The
CyberGel module creates a more intuitive graphical representation of the products.



8 ALEXANDER J. HARTEMINK, TARJEI S. MIKKELSEN, AND DAVID K. GIFFORD

CyberGel

Marker Cycle 1 Cycle 2 Cycle 3

z

FicUurE 3. The CyberGel output of a CYBERCYCLER simulation
run at the same conditions as a set of reactions carried out in the
laboratory. Bands in the CyberGel are shown uniformly-sized, in-
dependent of concentration. Bands labeled A through P correspond
in each gel, while bands labeled with a + or 7 are discrepancies.
Bands labeled with a * are artifactual and can be discounted.



SIMULATING BIOLOGICAL REACTIONS: A MODULAR APPROACH 9

In Figure 3, we present the CyberGel output of a CYBERCYCLER simulation run
at the same experimental conditions as a set of reactions carried out in the labora-
tory. We see that the CYBERCYCLER is quite good at predicting and interpreting
bands appearing in the laboratory gel. In particular, each of the bands labeled A
through P in the laboratory gel has a corresponding band in the CyberGel.

The 42bp band in each cycle of the laboratory gel (labeled with a *) is an
artifact and can be discounted. We have observed a band of exactly twice the
length of the radio-labeled rule strand in hundreds of unary counter experiments.
While the exact origin of this band is not known, it has been reproducibly observed
by other researchers as well.

Nevertheless, a few discrepancies between the two gels still remain. One band
in the CyberGel (labeled with a +) is not present in the laboratory gel. This is
likely due to our conservative modeling: while the product represented by this band
might potentially be able to form, it may not be at all likely.

Additionally, three third cycle bands in the laboratory gel (labeled with a ?)
are missing in the CyberGel. We believe these bands represent strands that are
shortened due to monomeric secondary structure in the unary counter template
molecule. They are not predicted by the CYBERCYCLER because our hybridization
module does not currently screen for monomeric secondary structure within the
population.

Despite these discrepancies, one powerful feature of the CYBERCYCLER is its
ability to track the histories of strands throughout the reaction. For example, if
we examine the band in the CyberGel that did not appear in the laboratory gel
(labeled with a +), we can see that it is 92bp long and is formed when strand C
binds to strand D and is extended until it is blocked by strand B, to which it is
ligated.

6. Specification of the General Framework

To provide a concrete specification of the framework developed in Section 3, we
have developed Java interfaces for populations, population transformations, struc-
tures, and sequences, along with abstract classes implementing each of those in-
terfaces. Furthermore, we have created a number of classes extending the abstract
classes so that other researchers can begin to use these interfaces with minimal ini-
tial investment of time. Classes implementing these interfaces can be composed to-
gether as long as they adhere to the interface specification, enabling classes written
at disparate locations to be distributed and used elsewhere. A complete description
of the Java interfaces and classes, as well as all the source code for this specification
are available from http://psrg.lcs.mit.edu/biosim/.

7. Future Work

We continue to develop the biological simulator specification and are in the
process of creating more transformation modules. The CYBERCYCLER was orig-
inally written in C++ and its transformation modules are in the process of be-
ing converted to Java classes. As they are completed, they will be posted to
http://psrg.lcs.mit.edu/biosim/.

Our modules could be extended as needed for different simulation applications.
For example, the hybridization module might be re-implemented to check for hair-
pins and other monomeric secondary structures.



10 ALEXANDER J. HARTEMINK, TARJEI S. MIKKELSEN, AND DAVID K. GIFFORD

Our modules could also be supplemented as needed by implementing additional
transformation modules. Modules that seem straightforward to implement include
split, merge, radio-label (phosphatase and kinase), filter, immobilize, restriction
cut, transcribe, reverse transcribe, and protein translate.

This large collection of modules could then be composed to represent reactions
like PCR, RT-PCR, LCR, library construction, inserting a fragment of DNA into
a plasmid vector, sticker bit-setting, affinity purification, etc.

An integrated simulation desktop environment would simplify tool-building im-
mensely. A simulation desktop environment would permit a researcher to load a set
of available transformation modules into his tool box, and then draw a flowchart-
like representation of the experiment he wished to simulate, inserting the desired
modules from his tool box as needed.

8. Conclusion

We believe our general framework for biological simulation is a useful one for
a variety of reasons. Its modular design allows for code reuse and distributed code
development, enables researchers to compose modules simulating arbitrarily com-
plex sequences of reactions in the laboratory, provides an easy way for researchers
to tailor modules to their desired precision or update modules as more data be-
come available, and establishes a standard interface for future modules, yet to be
developed.

The presence of taggable data is also useful in that it permits the modules to
track various aspects of the reactions and provide the researcher with more infor-
mation about what is happening to the various species during each reaction, much
more than could be gleaned from laboratory experimentation and with dramati-
cally less work. For instance, we implemented history tags to track when and how
strands are formed during the thermocycling process, and radio-label tags to assist
in generating an appropriate CyberGel output image.

We are eager to implement new modules and see what modules other groups
decide to implement or improve. The collaborative possibilities of this simulation
venture are extremely exciting.

Acknowledgments. The authors wish to thank Julia Khodor for her helpful
comments and suggestions, and also for the provision of the electrophoretic gel
displayed in Figure 3. Hartemink also gratefully acknowledges the support of the
National Science Foundation.

References

1] Adleman, L. (1994) Science 266, 1021-1024.
2] Advanced Gene Computing Technologies, Inc. http://www.hybsimulator.com/.
3] Allawi, H. T. & SantaLucia, J. (1997) Biochemistry 36, 10581-10594.
4] Allawi, H. T. & SantaLucia, J. (1998) Biochemistry 37, 2170-2179.
5] Allawi, H. T. & SantaLucia, J. (1998) Biochemistry 37, 9435-9444.
6] Allawi, H. T. & SantaLucia, J. (1998) Nucleic Acids Res. 26, 2694-2701.
7] Anato, V. P. & Tinoco, I. (1992) Nucleic Acids Res. 20, 819-824.
8] Breslauer, K., Frank, R., Blocker, H. & Marky, L. (1986) Proc. Natl. Acad. Sci. USA 83,
3746-3750.
[9] Engels, W. R. (1993) Trends in Biochemical Sciences 18, 448-450.
[10] Hagiya, M. http://nicosia.is.s.u-tokyo.ac.jp/MCP/eng/index. html.
[11] Hammes, G. (1978) Principles of Chemical Kinetics. Academic Press, New York.



12]

13]

14]

[15]
[16]

[17]
(18]
[19]
20]
(21]
[22]
23]
[24]
25]

[26]

27)
(28]

[29]
(30]
(31]

SIMULATING BIOLOGICAL REACTIONS: A MODULAR APPROACH 11

Hartemink, A. & Gifford, D. (1997) Thermodynamic Simulation of Deoxyoligonucleotide Hy-
bridization for DNA Computation. Proceedings of the 3rd DIMACS Workshop on DNA Based
Computers, June.

Hartemink, A., Gifford, D. & Khodor, J. (1998) Automated Constraint-Based Nucleotide
Sequence Selection for DNA Computing. Proceedings of the 4rd DIMACS Workshop on DNA
Based Computers, June.

Khodor, J. & Gifford, D. (1998) Design and Implementation of Computational Systems Based
on Programmed Mutagenesis. Proceedings of 4th DIMACS Workshop on DNA Based Com-
puters, June.

Molecular Biology Insights, Inc. http://oligo.net/.

Petruska, J., Goodman, M. F., Boosalis, M. S., Sowers, L. C., Cheong, C. & Tinoco, I. (1988)
Proc. Natl. Acad. Sci. USA 85, 6252-6256.

Peyret, N., Anada, P., Allawi, H. T. & SantaLucia, J. (1999) Biochemistry 38, 3468-3477.
Peyret, N. & SantaLucia, J. hitp://sun2.science.wayne.edu/ jslsun2/hyther. htm.

Pritchard, C. E. & Southern, E. M. (1997) Nucleic Acids Res. 25, 3403-3407.

Quartin, R. & Wetmur, J. (1989) Biochemistry 28, 1040-1047.

Reif, J. H. http://bmec.cs.duke.edu/.

Rubin, E. & Levy, A. (1996) Nucleic Acids Res. 24, 3538-3545.

SantaLucia, J. (1998) Proc. Natl. Acad. Sci. USA 95, 1460-1465.

SantaLucia, J., Allawi, H. & Seneviratne, P. A. (1996) Biochemistry 35, 3555-3562.
Steinfeld, J., Francisco, J. & Hase, W. (1989) Chemical Kinetics and Dynamics. Prentice-
Hall, Englewood Cliffs, New Jersey.

Sugimoto, N., Nakano, S., Yoneyama, M. & Honda, K. (1996) Nucleic Acids Res. 24, 4501-
4505.

Werntges, H., Steger, G., Riesner, D. & Fritz, H. (1986) Nucleic Acids Res. 14, 3773-3790.
Weston, R. & Schwartz, H. (1972) Chemical Kinetics. Prentice-Hall, Englewood Cliffs, New
Jersey.

Wetmur, J. (1991) Crit. Rev. in Biochem. and Mol. Biol. 26, 227-259.

Zenkova, M. A. & Karpove, G. G. (1993) Uspekhi Khimii 62, 414-435.

Zuker, M., Mathews, D. H. & Turner, D. H. (1999) Algorithms and Thermodynamics for RNA
Secondary Structure Prediction: A Practical Guide in RNA Biochemistry and Biotechnology.
J. Barciszewski & B. F. C. Clark, eds. NATO ASI Series, Kluwer Academic Publishers.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, LABORATORY FOR COMPUTER SCIENCE, 545

TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

E-mail address: amink@mit.edu

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, LABORATORY FOR COMPUTER SCIENCE, 545

TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

E-mail address: tarjei@mit.edu

MASSACHUSETTS INSTITUTE OF TECHNOLOGY, LABORATORY FOR COMPUTER SCIENCE, 545

TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

E-mail address: gifford@mit.edu



