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Direct physical information that describes where transcription factors, nucleosomes, modi-

fied histones, RNA polymerase II, and other key proteins interact with the genome provides

an invaluable mechanistic foundation for understanding complex programs of gene regula-

tion. We present a new method,Joint Binding Deconvolution(JBD), that uses additional eas-

ily obtainable experimental data about Chromatin Immunoprecipitation (ChIP) to improve

the spatial resolution of the transcription factor binding locations inferred from ChIP-Chip

data. Based on this probabilistic model of binding data, we further pursue improved spatial
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resolution by using sequence information. We producepositional priorsthat link ChIP-Chip

data to sequence data by guiding motif discovery to inferred protein-DNA binding sites. We

present results on the yeast transcription factorsGcn4and Mig2 to demonstrate JBD’s supe-

rior spatial resolution and show that positional priors allow computational discovery of the

Mig2 motif when a standard approach fails.

1 Introduction

Chromatin immunoprecipitation followed by DNA microarray hybridization (ChIP-Chip) has emerged

as a powerful tool for studyingin vivogenome-wide protein-DNA interactions including transcrip-

tion factor binding1–13, DNA replication and recombination14,15, and nucleosome occupancy and

histone modification state16–22. Such information has been used to discover transcription factor

DNA binding motifs, to predict gene expression, and to construct large-scale regulatory network

models10,20,21,23–27.

Because raw ChIP-Chip data are complex and noisy28, computational methods are necessary

for extracting meaningful information. Researchers analyzing these data are typically interested

in discovering distinctbinding events, which we define as localized interactions between proteins

and DNA. We further definespatial resolutionto be the distance between an inferred binding event

location and its true location. An ideal computational method would accurately localize inferred

binding events (high spatial resolution), would include no false binding events (high specificity),

and would not miss true binding events (high sensitivity).
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We propose a new computational approach calledJoint Binding Deconvolution(JBD) that

reconstructs binding events from ChIP-Chip data at a higher spatial resolution than the underly-

ing microarray probe spacing. Because a binding event influences multiple proximal microarray

probes, we can deconvolve the predicted probe intensity peak shape from the observed peak shape

to infer the true binding event location. Our method jointly considers all possible configurations

of binding events, allowing it to distinguish pairs of nearby events more reliably than other meth-

ods. Additional detailed information about binding events is obtained by incorporating sequence

data. We do this by linking JBD to DNA motif discovery. JBD’s high-resolution output is used to

compute apositional prior, which guides the motif discovery algorithm to small regions of DNA

sequence. By focusing on regions that are tens of bases in size rather than hundreds or thousands,

the motif discovery algorithm becomes more resistant to ambiguous and noisy inputs.

Previous ChIP-Chip analysis methods have not attempted to improve the underlying microar-

ray’s spatial resolution and have not used an experimentally determined peak shape. The simplest

analysis method for ChIP-Chip data infers binding events at those probes that have intensities

above a specified threshold. Better methods have generally used statistical techniques to identify

bound promoter regions or windows of enriched probes11,21,28–30. One method, MPeak, fits a hy-

pothesized shape to ChIP-Chip probe intensities, but does not consider multiple binding events

jointly or attempt to increase the underlying microarray’s spatial resolution31.

We demonstrate our method on the yeast transcription factorsGcn4andMig2. Using evo-

lutionarily conserved instances of a previously publishedGcn4sequence motif to define plausible
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target genes, we show that JBD makes more accurate binding predictions with higher sensitivity

and specificity than do three competing methods. We show that using JBD’s output as a positional

prior allows motif discovery to ignore erroneous input sequences. We use JBD-derived positional

priors fromMig2 binding data to find a correct binding site motif, which other computational meth-

ods have been unable to do. To examine JBD’s performance without any uncertainty about the true

binding event locations, we generated several synthetic datasets based on theGcn4data. We use

these datasets to compare JBD to several other methods and to examine JBD’s performance on

different ChIP-Chip microarray designs. The software and instructions for use are available on our

website at http://cgs.csail.mit.edu/jbd.

2 Results

We formulate the problem of detecting binding events as a probabilistic graphical model that cap-

tures the combined effect of multiple binding events on each microarray probe. Our model is

generative, because we specify how an underlying physical process probabilistically generates

the experimental data. In particular, we model DNA fragmentation in the ChIP-Chip protocol, as

shown in Figure 1A. The fragmentation process produces pieces of DNA of varying sizes at a given

binding event locus and the genomic interval covered by a given fragment determines what probes

it influences. JBD uses an experimentally measured distribution of fragment sizes to predict the

probe intensity peak shape that a binding event will produce, and then fits this shape to ChIP-Chip

data to infer binding event locations. Figure 1B provides a summary of the model.
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[Figure 1 about here.]

An influence function quantitatively describes how a binding event affects the intensities of

proximal probes. We derive an influence function to model the contribution of DNA fragments to

intensities of probes proximal to a binding event. In the standard ChIP-Chip protocol, proteins are

crosslinked to genomic DNA and the entire mixture is then sheared into randomly sized fragments

via sonication. The fragments bound by a protein of interest are immunopurified, amplified, and

labeled before microarray hybridization. We measure this pre-hybridized material on a micro-

fluidics based DNA analyzer to produce an empirical fragment size distribution. By measuring

material from this step in the ChIP-Chip process, we account for all important sources of fragment

size variation including differences in sonication and non-uniform amplification. We model the

distribution of fragment sizes with a gamma distribution, and fit this model to obtain the influence

function. The final influence function produces an expected relative probe intensity as a function

of distance from a binding event. Figures 1C and 1D show measured and fitted distributions and

the derived influence function. See Supplementary Methods for additional details.

JBD improves the effective spatial resolution of binding events.We first demonstrate that JBD

improves effective spatial resolution without sacrificing sensitivity or specificity. We analyze pre-

viously publishedin vivo Gcn4ChIP-Chip binding data measured using a microarray with an

average probe spacing of 266bp13. We used the JBD model with hidden binding variables spaced

every 30bp across the entire yeast genome (analysis using closer spacings of the hidden variables

increased the computational cost without improving our results). Figure 2 provides five examples
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of JBD predictions at previously identifiedGcn4 targets10. To compare JBD’s effective spatial

resolution to that of other methods, we processed binding event probabilities produced by JBD by

taking the weighted average position of a bound region (weighted by the product of the binding

probability and binding strength).

JBD achieved a mean spatial resolution that is 24 bp better than other methods with compa-

rable sensitivity or specificity on theGcn4data as shown in Table 1. We computed the effective

spatial resolution by pairing each predicted binding event to the closestGcn4motif site and com-

puting the distance between them. In order to penalize excessive predictions clustered around a

single true binding event, we paired each binding prediction with the closest motif site that has

not already been paired. We examined the predictions made by JBD and three other methods:

1) Rosetta, an adaptation of the error model described in Boyeret al.32; 2) MPeak from Kimet

al.31; and, 3) Ratio, an IP enrichment ratio cutoff (see the Methods section for details). For each

method, we tuned the thresholds to produce approximately 100 binding predictions genome-wide;

theGcn4data contains at least this many plausibleGcn4binding events that each method should

be able to detect. We computed the sensitivity and specificity for each method on a set of 77 pre-

viously knownGcn4 targets and a set of 1012 likely non-targets. The Supplementary Methods

provide further details on the evaluation method and results for thresholds other than 100 binding

events; the lists of positive and negative examples are in Supplementary Files 1 and 2 online and

the promoter regions with a conserved motif are in Supplementary File 3.

[Figure 2 about here.]
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JBD also outperforms the Ratio and MPeak methods on synthetic data as shown in Figure 3.

Synthetic data provides the most accurate assessment of algorithmic performance because the lo-

cation of binding events is known with certainty;Gcn4motifs may be an inaccurate indicator ofin

vivobinding for a variety of reasons. We generated 200 simulated regions of DNA each containing

two binding events using a noise model, fragment size distribution, and probe intensity ratio distri-

bution derived from the experimentalGcn4ChIP-Chip data (the Supplementary Methods contain

more details). We varied the spacing between binding events in order to evaluate the algorithms’

ability to resolve two proximal binding events. Figure 3 shows the results: JBD misses fewer

binding events and demonstrates significantly better spatial resolution than do the other methods.

In particular JBD misses only a few binding events when they are spaced 300bp apart, and misses

none when they are spaced at least 400bp apart. We did not use the Rosetta method on our synthetic

data because it requires an entire microarray experiment (including individual channel intensities

which we did not generate for our synthetic datasets) rather than selected regions of interest in

order to produce meaningful output.

[Figure 3 about here.]

Synthetic ChIP-Chip data reveal microarray design tradeoffs. To help guide the design of

future ChIP-Chip experiments we examined the effects of microarray probe spacing, number of

experimental replicates, and average DNA fragment size on the spatial resolution of JBD’s bind-

ing event predictions. We used synthetic data generated based on theGcn4 data as previously

described. Each dataset consists of 200 randomly generated binding events spaced either 1000bp
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or 500bp apart, with one or more of the above-mentioned design parameters varied.

In the first test we varied the microarray probe spacing and the average DNA fragment size.

The results of this analysis are consistent with the design principle that probe spacing should

generally be matched to DNA fragment size. That is, if microarray probes are closely spaced,

shorter DNA fragments yield more accurate binding event predictions and vice versa for larger

probe spacings and longer fragment sizes. See Supplementary Tables 3A and 3C for complete

results.

In the second test we explored the trade-off between microarray probe spacing and the num-

ber of experimental replicates. Both decreasing probe spacing and increasing the number of exper-

imental replicates may require more microarrays and a greater cost for a given binding experiment.

Since both variables increase an experiment’s cost future studies will want to optimize the array

and experimental design to achieve the desired spatial resolution. Supplementary Tables 3B and

3D summarize our results. The results suggest two useful design principles. First, more than five

experimental replicates do not significantly improve spatial resolution. Second, a single high den-

sity microarray (100bp probe spacing) provides better spatial resolution than do three experimental

replicates using lower density arrays (300 bp probe spacing).

Positional priors improve robustness and enable the discovery of theMig2 motif. We link

JBD’s binding event predictions to DNA sequence data throughpositional priors, which give the

probability at every genomic base position that a DNA sequence motif occurs. The positional prior

derived from JBD’s output is used to bias a motif discovery algorithm towards sequence regions at
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a resolution of tens of bases rather than hundreds of bases. This approach differs from typical motif

discovery methods that first identify sequences enriched for a motif of interest and then assume that

motifs occur with uniform probability within these sequences.

We first demonstrate that motif discovery using JBD derived positional priors yields sequence

motifs consistent with the published specificities for bothGcn4andMig2. Our motif discovery

method consists of two steps: 1) input sequence selection, and 2) motif search. In the first step

we can use JBD or another method to select input sequences. In the second step we can use either

no positional prior, or a positional prior derived from JBD or another method. In order to evaluate

JBD’s performance against another method we tested variants of steps one and two, in which input

sequences were selected or positional priors were derived using the Ratio method (see the Methods

section for details and Supplemental Figure 2 for the full results). For bothGcn4andMig2, using

JBD for input sequence selection and for positional priors yields a motif that is consistent with the

known motif. The input sequence selection step forMig2 yielded very few sequences in all cases.

However, even with only ten input sequences selected by JBD, a match to the expected specificity

is achieved using positional priors. When positional priors are not used, the quality of the resulting

motif’s match to the expected specificity decreases markedly (see Supplemental Figure 2). The

correct motif forMig2 was not recovered when sequences were selected using the Ratio method.

Positional priors bias motif discovery to the correct answer in the absence of informative

initialization and in the presence of noise. We incorporated the positional prior into an objective

function that is optimized using the Expectation Maximization (EM) algorithm (see methods). EM
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is a local optimization procedure that is typically restarted from multiple initialization points to

reduce its sensitivity to local optima. We investigated the performance of motif discovery on the

Gcn4dataset when the motif position weight matrix (PWM) was initialized to background nu-

cleotide frequencies. Using positional priors, the EM algorithm is insensitive to this uninformative

initialization point and produces a motif consistent with the reported specificity33. When positional

priors were not used motif discovery failed to learn a motif consistent with the known specificity.

We found that this effect was robust to noise. Figure 4 shows that the information provided by

the positional priors allows renders the motif discovery algorithm resistant to a false positive input

fraction of approximately 30%.

[Figure 4 about here.]

3 Discussion

We expect that JBD will be an important tool for dissecting complex regulatory programs. We have

shown that JBD’s joint learning method is able to reconstruct multiple binding events that appear in

raw ChIP-Chip data as a single peak, which is a marked advantage over current approaches. JBD

is also able to reconstruct binding events at higher spatial resolution than do competing methods

without loss of specificity or sensitivity.

JBD accomplishes its superior result byprobabilistically modeling the noisy data genera-

tion processes with suitable prior probabilities on binding to enforce a sparseness constraint on

binding events. JBD does not use standard deconvolution methods because they would introduce
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high-frequency spatial noise as a consequence of simply inverting a low-pass filter (the influence

function). Simpler non-joint deconvolution methods such as MPeak fail to handle nearby events,

because they rely on heuristics rather than on a generative model to determine the number of bind-

ing events that give rise to the observed signal.

Our synthetic results indicate that JBD’s advantages are important at high microarray tiling

densities. At high tilting densities each probe can be influenced by multiple binding events and

the effect of a single binding event is spread over more probes. JBD can accurately separate

the resulting dense and complicated interference patterns. By analyzing synthetic data ranging

over various background noise levels, fragment size distributions, and other parameters, we have

shown that JBD can increase the effective spatial resolution of data gathered using many different

microarray designs and experimental variations.

Finally, we have shown that positional priors at the resolution of tens of bases can accurately

recover DNA motifs when a standard method fails, even with very few examples of bound se-

quence, as in the case ofMig2. Our results further suggest that the use of JBD-derived positional

priors reduces the sensitivity of motif discovery performance to initialization and yields accurate

results that are robust to false positive inputs. In a previous study that profiledMig2 binding in

yeast10, sequences identified as being bound byMig2 were analyzed using six separate motif dis-

covery programs, none of which was able to recover a motif consistent withMig2’s experimentally

characterized specificity34. JBD’s success in guiding motif discovery to theMig2 motif suggests

that it may be useful in searching for other degenerate sequence elements that play critical roles in
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transcription.

Methods

ChIP-Chip data We analyzed theGcn4data previously published by Pokholoket al. 13. ChIP-

Chip data forMig2 binding and negative control experiments using an anti-Myc antibody against

an untagged population of yeast cells were obtained as per Pokholoket al. 13.

We preprocess microarray data to normalize it and reduce experimental noise. The raw inten-

sities from each channel are divided by the median intensity from that channel before computing

a ratio to arrive at a median adjusted ratio. Median normalization accounts for differences in the

amount of material in each channel and between arrays. We further process median adjusted ra-

tios by subtracting the median adjusted ratio from matched probes in averaged negative control

experiments and then adding one. The negative control experiments account for non-Gcn4and

non-Mig2 related binding effects. Supplementary Figure 3 demonstrates the importance of using

these control experiments to avoid false binding event predictions.

DNA fragment size distribution and influence function We experimentally measured the DNA

fragment size distribution of ChIP-Chip IP channel material on an Agilent 2100 BioAnalyzer. We

fit a gamma distribution to the data and then derived the influence function for the JBD model from

the fitted parameters. The influence function models the intensity ratio at a probed bases from a

binding site:

f(d) =
D∑

l=d

l
l∑

a=d

pa(a)pa(l − a), (1)
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wherea denotes the DNA arm length (each DNA fragment has two arms around the binding

site),pa(a) is the probability of an arm of lengtha, l is the DNA fragment size,d is the distance

between the binding event and probe, andD is the maximum fragment size. See the Supplementary

Methods and Supplementary Figure 4 for complete details.

Joint binding deconvolution model We formulate the binding event detection problem as a prob-

abilistic graphical model that captures the influence of binding events and experimental noise on

observed probe intensities. We jointly estimate the position and strength of the hidden variables

that represent unknown binding events using Bayesian inference.

All binding events near a probei contribute to its intensityyi according to the influence

function in equation 1. We model the intensityyi at probei as a weighted linear combination of

different binding events with additive noise:

yi =
∑

j:f(|i−j|)>0

f(|i − j|)sjbj + ni (2)

wherebj represents a discrete binding event at positionj, sj represents the corresponding binding

strength,f(|i − j|) represents the influence function (coupling strength between binding sites and

the probe intensities), andni is additive Gaussian noise with zero mean and varianceσi.

Having bothbj andsj in equation 2 allows us to separately model the existence of a binding

event and its binding strength. This makes it easy to incorporate our prior knowledge on binding

frequency separately from our prior knowledge of the enrichment ratios in a particular experiment.
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We can write down the likelihood of the observed data as

p(y|b, s) =
∏

i

N (yi|
∑

j:f(|i−j|)>0

f(|i − j|)sjbj, σi). (3)

whereN (·|
∑

j f(|i − j|)sjbj, σi) represents the probability density function of a Gaussian distri-

bution with mean
∑

j f(|i − j|)sjbj and varianceσi.

We assign a discrete prior distributionp(bj|πj) to the binding eventbj and a Gamma distri-

bution to the binding strengthsj. While bj indicates a discrete binding event,πj represents the

binding probability. The Supplementary Methods describe how we estimate the varianceσi and

specify the prior distributions forbj andsj.

Bayesian joint estimation of binding events and strengthsWe use a Bayesian approach to es-

timate the posterior distributions of all the hidden variables in the JBD model. Specifically, we

use both the data likelihood distributions (3) and the prior distributions to compute the posterior

distributions of the binding probabilitiesp(bj|y):

p(bj|y) =
p(bj,y)

p(y)
=

∑
b\j

∫ ∫
p(bj,b\j, s, π,y)dsdπ∑

b

∫ ∫
p(b, s, π,y)dsdπ

(4)

where
∑

b\j
means summing or marginalizing over the values of{bk}k 6=j. Similarly, we can com-

pute the posterior distributionsp(sj|y) of the binding strengthsj. The means of the posterior

distributions are used as the Bayesian estimates of the hidden variables, and the standard devia-

tion of the posteriors as the confidence intervals or error bars of the estimates. Note that posterior

probabilities directly estimate the probability of a binding event and are thus not p-values (see the

Supplementary Methods).
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Although theoretically sound the Bayesian approach is computationally challenging for the

model described above. Given the size of the JBD network, exact Bayesian calculations require

marginalization over hundreds of thousands of hidden variables. Monte Carlo methods35,36, the

standard for Bayesian inference, converge too slowly to be feasible for solution of our problem.

We thus present a novel message passing algorithm that propagates probabilistic messages between

the nodes of the JBD model, to approximate the posterior distributions. Based on the expectation

propagation (EP) framework37,38, this new algorithm not only uses the structure of the Bayesian

network to pass messages for efficient computation, but also handles the network with both discrete

and continuous variables by iteratively refining the approximation of the posterior distributions.

For details, see the Supplementary Methods.

Using JBD posterior distributions for positional priors Generating the input to the motif dis-

covery algorithm requires two steps: selection of the sequences to be analyzed, and specification

of single base resolution prior probabilities for motif locations over these sequences.

We associate each JBD estimate of a binding event with a confidence score, defined as the

product of binding strengths and binding posteriors in a region around the binding event. We then

rank the JBD binding event predictions by their confidence scores. ForGcn4, we selected the se-

quence regions corresponding to the top 200 binding event predictions and empirically determined

that these sites gave robust and accurate motif discovery results. We used the same confidence

threshold when selectingMig2 sequences.

Positional priors for motif discovery were derived from the binding posterior estimates. We
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assume that binding events occur directly over the beginnings of motif instances. Each 300 bp

sequence was weighted with a prior probabilityλ that the sequence contained a functional motif.

We used the maximum binding posterior value observed over the sequence as an estimate of this

weight. Base-by-base binding posteriors were generated using simple linear interpolation between

the 30bp binding posterior points produced by JBD. These base-by-base posteriors were used to

weight each position in the 300 base sequence. The weights were then normalized so that they

summed to the previously determined value ofλ.

To select sequences for motif discovery using raw probe intensities, we used a 300 bp window

around peaks that met a threshold cutoff of 3.7. This threshold was identified, using the Gcn4 ChIP-

Chip data set, by testing a series of thresholds from 1.0 to 5.0 and determining which binding

strength cutoff gave motifs with the best average Euclidean distance to the Gcn4 TRANSFAC

motif. At this threshold approximately50% of the input sequences have matches (defined as 0.40

of the maximum possible log-likelihood ratio score) to the TRANSFAC motif. Positional priors

for the Ratio method were derived in a manner analogous to JBD by using linearly interpolated

probe intensity values to weight sequence positions. The Ratio method-based weightings were

normalized so they summed to 0.50 for all sequences.

Motif Discovery We incorporated positional prior information into a standard motif discovery

algorithm39 in the TAMO package40 to bias the motif search toward regions with high binding

posterior estimates. We used the ZOOPS (zero or one occurrences per sequence) probability model
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outlined as follows:

log P (D, Z|θ, γ) =
N∑

i=1

M∑
j=1

[Zi,j(log P (D|Zi,j = 1, θ) + log γi,j)]+

N∑
i=1

[(1 −
M∑

j=1

Zi,j)(log P (D|
M∑

j=1

Zi,j = 0, θ) + log(1 −
M∑

j=1

γi,j))] (5)

HereD corresponds to the set ofN input sequences of lengthM , and the hidden variableZ is a

matrix indexed by input sequence and position indicating the start position of functional motifs.

The prior probability that a functional motif starts at positionj in sequencei is given byγi,j .

The ZOOPS model assumes that each sequence contains either zero or one functional motif. We

used the Expectation-Maximization algorithm described by Bailey and Elkan39 to search for the

position weight matrix (PWM) motif model that maximizes the expected log-likelihood of the data

given by the above expression.

The positional prior estimates were not only used to guide motif discovery during EM, but

also to select initialization points for the PWM prior to running the algorithm. To search for a motif

of width k, we enumerate all k-mers in the input set and count each k-mer’s occurrence, weighting

each count by the positional prior value at that location. The top 400 k-mers, by weighted count

frequency, are scored by statistical enrichment according to the hypergeometric distribution as

described in Harbisonet al.10. For trials that did not make use of the positional prior information,

no weighting was applied to the counts. The top 20 statistically enriched k-mers were used to

initialize the PWM in separate runs of the EM algorithm. For both factors we repeated runs of EM

at motif widths of 8, 10, and 15bp, and the resulting motifs were scored by statistical enrichment.

We discarded all motifs with a hypergeometric p-value greater than 0.001 and scored the remaining
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motifs according to their Euclidean distance to the expected motif (see below). For each dataset the

best match to the expected specificity was reported. We note that for trials using positional prior

information the most statistically enriched motif was also the motif that most closely matched the

factor’s known specificity. ForGcn4, a motif was available in the TRANSFAC database33. The

Mig2 binding specificity has been characterized experimentally34.

We further evaluated the utility of positional priors by examining the robustness of our motif

discovery results to false positive binding events. We used theGcn4data set for evaluation, because

a sufficient quantity of information was available for performance evaluation. The DNA sequences

used to generate our reportedGcn4motif in Supplemental Figure 2 were partitioned into a positive

and negative set, based on whether they contained a match to theGcn4TRANSFAC motif. We then

generated datasets with a known fraction of false positive sequences by randomly replacing true

positive sequences in the positive dataset with false positive sequences from the negative dataset.

During sampling sequences were weighted by their mean binding strength and binding posterior

product to ensure that the datasets were biased toward sequences for which JBD predicts binding.

For each dataset motif discovery was performed using either JBD positional priors or with no

positional priors. The motif position weight matrix was initialized to background base frequencies

for all trials. The mean Euclidean distance of each motif from the TRANSFACGcn4motif was

calculated. At each level of false positives we report the motif distance averaged over six separate

randomly selected datasets.

Motif distance calculations Motifs were scored by their Euclidean distance to an expected motif.

For this calculation we determined the alignment of the two motifs that produced the best score.

18



When the reverse complement of a motif yielded a better match, we used the reverse complement.

We required a minimum overlap of 6 base pair positions. For a motif,M , and an expected motif

T , with an overlap ofN positions, the score is defined as follows:

D =

∑N
i=1

√∑4
j=1(Mi,j − Ti,j)2

N

The summation over indexj is over the four possible bases in the multinomial distribution at a

particular position in the PWM.
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and (3) hybridization of the fragments to a microarray and the resulting data read-
out. (B) JBD is a generative probabilistic graphical model, depicted using standard
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cles) through an influence function. For a given genomic locationj, we model the
prior probability of protein-DNA binding (πj), the binding event (bj), and a contin-
uous binding strength (sj). (C) The distribution of DNA fragment sizes produced
in the ChIP protocol were experimentally measured and statistically modeled. The
measured distribution from binding experiments using the yeast transcriptional ac-
tivatorGcn4is shown (blue) with the fitted statistical model (red). The mean frag-
ment size is 327bp. (D) An influence function is derived from the measured frag-
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binding probabilities (blue, second track),Gcn4 evolutionarily conserved motif
sites (red blocks), and ORFs (green, bottom track). In (A), the vertical dashed
lines above theStr3promoter demonstrate the difference between the binding po-
sition predicted by JBD (left line) and methods such as Rosetta or MPeak (right
line) that do not work at sub-probe resolution. (B) and (C) show similar cases at
theGgc1andOdc2promoters in which JBD better localizes binding events to the
Gcn4site. (D) shows a wide peak in the enrichment ratios at theBap2promoter
that JBD interprets as two binding events corresponding to the two conservedGcn4
motif sites. (E) shows two nearby motif sites that JBD includes in a single peak in
the binding probability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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Euclidean distance of each motif from the TRANSFACGcn4motif was calculated.
The plot shows the mean motif distance as a function of the fraction of false posi-
tive sequence examples for the cases in which positional priors are used (squares)
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(A) (B)

(C) (D)

Figure 1: Joint Binding Deconvolution (JBD) probabilistically models key aspects of ChIP-Chip
experiments. (A) Key aspects of the ChIP-Chip protocol involve (1) shearing of DNA crosslinked
to a protein, (2) immunoprecipitation of bound fragments, and (3) hybridization of the fragments to
a microarray and the resulting data readout. (B) JBD is a generative probabilistic graphical model,
depicted using standard Bayesian Network notation. The unobserved (hidden) binding variables
at the bottom affect the observed data (probe intensity measurementsyi, the top row of circles)
through an influence function. For a given genomic locationj, we model the prior probability of
protein-DNA binding (πj), the binding event (bj), and a continuous binding strength (sj). (C) The
distribution of DNA fragment sizes produced in the ChIP protocol were experimentally measured
and statistically modeled. The measured distribution from binding experiments using the yeast
transcriptional activatorGcn4 is shown (blue) with the fitted statistical model (red). The mean
fragment size is 327bp. (D) An influence function is derived from the measured fragment size dis-
tribution, specifying the expected relative probe intensity as a function of distance from a binding
event.
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(B) Ggc1 (C) Odc2

(D) Bap2 (E) YHR162W

Figure 2: JBD predicts the binding probability of the yeast transcription factorGcn4every 30bp
across the entire genome. Shown here are five examples of knownGcn4 targets. Each example
depicts ChIP-Chip probe intensity ratios (red, top track), JBD binding probabilities (blue, second
track), Gcn4evolutionarily conserved motif sites (red blocks), and ORFs (green, bottom track).
In (A), the vertical dashed lines above theStr3promoter demonstrate the difference between the
binding position predicted by JBD (left line) and methods such as Rosetta or MPeak (right line)
that do not work at sub-probe resolution. (B) and (C) show similar cases at theGgc1andOdc2
promoters in which JBD better localizes binding events to theGcn4site. (D) shows a wide peak in
the enrichment ratios at theBap2promoter that JBD interprets as two binding events corresponding
to the two conservedGcn4motif sites. (E) shows two nearby motif sites that JBD includes in a
single peak in the binding probability.
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Figure 3: JBD better resolves proximal binding events than do other methods. Shown here is per-
formance of the JBD, MPeak, and Ratio methods on 200 simulated DNA regions each containing
two binding events. We generated the synthetic data using a model designed to match key features
of the actual ChIP-ChipGcn4data. We varied the spacing between the two binding events, effec-
tively controlling the overlapping influence of events on proximal probes. The effects of closely
spaced binding events are tightly coupled; binding events’ influences become independent at ap-
proximately 1000bp. For a variety of spacings, JBD clearly outperforms the Ratio and MPeak
methods both in terms of (A) percentage of undetected binding events and, (B) mean spatial reso-
lution. Note that the average spacing between simulated microarray probes is 100bp.
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Figure 4: Positional priors for motif discovery improve robustness to false input DNA sequence
regions. To vary the fraction of false positive input sequences, we partitioned DNA sequence
regions containing a potential binding event into positive and negative sets, based on whether they
contained a match to theGcn4TRANSFAC motif. In each of 87 random trials, sequences with a
defined fraction of false positive examples were randomly sampled from the positive and negative
sets. Motif discovery was performed on randomly selected sequence sets, and the mean Euclidean
distance of each motif from the TRANSFACGcn4motif was calculated. The plot shows the mean
motif distance as a function of the fraction of false positive sequence examples for the cases in
which positional priors are used (squares) or are not used (crosses).
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1 The average distance of JBD’sGcn4binding predictions to motif sites is smaller
than for other methods, and JDB identifies more knownGcn4 targets. The first
column displays the mean spatial resolution (distances of predictions to motifs).
The last column reports the number of binding events predicted in promoters of 77
previously identifiedGcn4targets (though not necessarily in the same conditions
as in our binding experiments). We evaluated binding predictions on 573 pro-
moter regions containing evolutionarily conservedGcn4motifs. For each method,
we calibrated parameters so that approximately 100 binding events were predicted
across the genome; no method makes more than 2 false positive calls. Supple-
mentary Table 2 shows data for other thresholds, which yield similar results. With
the microarray design analyzed, the mean distance between probes and randomly
placed binding events is approximately 66bp. See the Supplementary Methods for
details of the evaluation method and the list of promoter regions used. . . . . . . . 31
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Method Mean Spatial σx̄ Numb. of Detected
Resolution (x̄) Known Sites

JBD 41 4.0 33
Rosetta 68 8.1 29
MPeak 65 10 24
Ratio 67 15 15

Table 1: The average distance of JBD’s Gcn4 binding predictions to motif sites is smaller
than for other methods, and JDB identifies more known Gcn4 targets. The first column
displays the mean spatial resolution (distances of predictions to motifs). The last column
reports the number of binding events predicted in promoters of 77 previously identified
Gcn4 targets (though not necessarily in the same conditions as in our binding experi-
ments). We evaluated binding predictions on 573 promoter regions containing evolution-
arily conserved Gcn4 motifs. For each method, we calibrated parameters so that approx-
imately 100 binding events were predicted across the genome; no method makes more
than 2 false positive calls. Supplementary Table 2 shows data for other thresholds, which
yield similar results. With the microarray design analyzed, the mean distance between
probes and randomly placed binding events is approximately 66bp. See the Supplemen-
tary Methods for details of the evaluation method and the list of promoter regions used.
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