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Abstract
We present a novel ensemble-based computational framework, EnsembleExpr, that achieved the

best performance in the Fourth Critical Assessment of Genome Interpretation expression quanti-

tative trait locus “(eQTL)-causal SNPs” challenge for identifying eQTLs and prioritizing their gene

expression effects. eQTLs are genome sequence variants that result in gene expression changes

and are thus prime suspects in the search for contributions to the causality of complex traits.

When EnsembleExpr is trained on data from massively parallel reporter assays, it accurately

predicts reporter expression levels from unseen regulatory sequences and identifies sequence

variants that exhibit significant changes in reporter expression. Compared with other state-

of-the-art methods, EnsembleExpr achieved competitive performance when applied on eQTL

datasets determinedbyother protocols.WeenvisionEnsembleExpr to be a resource to help inter-

pret noncoding regulatory variants and prioritize disease-associated mutations for downstream

validation.
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1 INTRODUCTION

Genome-wide association studies (GWAS) have identified thousands

of variants relevant to complex traits or diseases (Hindorff et al., 2009;

Manolio, 2010; McCarthy et al., 2008; Stranger, Stahl, & Raj, 2011).

However, as most of these variants reside in noncoding regions of

the genome (Frazer, Murray, Schork, & Topol, 2009; Hindorff et al.,

2009), distinguishing the causal variants from variants simply in strong

linkage disequilibrium (LD) remains challenging. Expression quantita-

tive trait loci (eQTLs) analysis has widely been used to assist in fine-

mapping the causal mutations, and can provide immediate insight into

their biological basis (Cookson, Liang, Abecasis, Moffatt, & Lathrop,

2009). LikeGWAS, the statistical powerof eQTLanalysis is constrained

by SNP linkage in the human genome, and the statistical burden from

the large number of variant–gene pairs to investigate that requires

multiple hypothesis correction.

Massively parallel reporter assays (MPRA) are an efficient way to

systematically dissect transcriptional regulatory elements (Melnikov

et al., 2012) in amanner that approximates their native context behav-

ior. InMPRA, synthesized DNA elements and corresponding sequence

tags are cloned into plasmid reporter constructs, transferred into cells,

sorted for expression, and assayed by high-throughput sequencing.

Tewhey et al. (2016) improved the efficiency and reproducibility of

MPRA to interrogate the expression level of reference and alternate

alleles of 9,116 variants linked to 3,157 eQTLs. They discovered hun-

dreds of variants with allele-specific expression, which is defined as

significantly different expression between two alleles tested in the

same genomic context. In the Fourth Critical Assessment of Genome

Interpretation (CAGI4), this dataset was used as the training and test

sets in the “eQTL-causal SNPs” challenge to identify the best compu-

tational approaches to predict reporter expression level from DNA

sequence and to classify which sequence variants will lead to allele-

specific expression.

We present a computational framework, EnsembleExpr, that pri-

oritizes genetic variants that modulate gene expression. Ensemble-

Expr outperformed competing methods in both parts of the CAGI4

“eQTL-causal SNPs” challenge in all of the evaluation metrics used.

As an ensemble model, EnsembleExpr achieves performance supe-

rior to any single component by integrating complementary features

with different properties and from different sources. Although trained

onMPRA datasets, EnsembleExpr produces competitive performance

in prioritizing eQTLs determined by other protocols, demonstrating

its capacity to serve as a general eQTL-prioritization framework. We

also demonstrate how a sufficient range of sequence-based functional

element annotations is crucial to achieving accurate prediction of gene

expression levels.

HumanMutation. 2017;1–7. c© 2017Wiley Periodicals, Inc. 1wileyonlinelibrary.com/journal/humu
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2 BACKGROUND

2.1 Datasets in CAGI4 eQTL challenge

Tewhey et al. (2016) identified all of the variants (range= 1–205,mean

= 2.87, median = 1) in perfect LD with 3,157 eQTLs drawn from the

Geuvadis RNA-seq dataset of lymphoblastoid cell lines (LCLs) from

individuals of European ancestry (1000 Genomes Project Consortium

et al., 2012; Lappalainen et al., 2013). For each variant, a 150-bp flank-

ing sequence of each of the two alleles was synthesized with the cor-

responding allele centered in the middle of the synthesized oligonu-

cleotide.With these sequences as the library,MPRAexperimentswere

carried out in two LCLs.

The resulting MPRA data were split into three groups of similar

sizes: one for training and two for testing. For each variant, only its

genomic location and the sequences of its alleles were provided.

The training set consists of 3,044 variants, and each variant is

described by its normalized plasmid count, RNA counts, log2 fold

expression level (“Log2FC”), expression P value, multiple-testing cor-

rected P value, andwhether the expression for either of the two alleles

is significantly high (regulatory hit or “RegHit”). For each variant, the

dataset also includes the log2 ratio of the alternative/reference allele

of observed RNA expression (“LogSkew”), LogSkew P value, LogSkew

FDR, and whether the change in expression is significant enough to be

labeled an expression-modulating variant or “emVar.”

The first test set consists of 3,006 variants, and for each variant

CAGI4 participants were required to submit a prediction of expres-

sion fold change (“Log2FC”) and whether the variant is significant

(“RegHit”).

The second test set consists of 3,066 variants, 401 of which have at

least one allele with strong expression (“RegHit”). For these 401 vari-

ants, theparticipantswere asked topredict allelic changeof expression

(“LogSkew”) andwhether it is significant (“emVar”).

2.2 Tasks in CAGI4 eQTL challenge

2.2.1 Expression prediction

In this task, the participants needed to submit predictions and con-

fidence estimates for the expression level (“Log2FC”, real value) and

whether the expression is significant (“RegHit”, binary label) for the

first test set.

2.2.2 Allele-specific expression prediction

In this task, the participants needed to submit predictions and confi-

dence estimates for the change of expression between two alleles of

a variant (“LogSkew”, real value) and whether the change is significant

(“emVar”, binary label) for the second test set.

3 METHODS

3.1 Features

Sequence-based features were generated for the regulatory regions

in the CAGI4 challenge (Fig. 1A). First, 150-bp model input sequences

were obtained for both studied alleles as described in the challenge

input files. Then, we applied several computational approaches to ana-

lyze this set of sequences, including Kmer-Set Motif (KSM, in sub-

mission), DeepSEA (Zhou & Troyanskaya, 2015), DeepBind (Alipanahi,

Delong, Weirauch, & Frey, 2015), and ChromHMM (Ernst & Kellis,

2012) to derive sets of functional features that we hoped would help

us predict expression levels.

We used the DeepSEA probabilistic model (v0.94, downloaded

from http://deepsea.princeton.edu/help/) to predict 919 different

measurements, including DNase-seq-based chromatin accessibility,

transcription factor ChIP-seq, and histone mark ChIP-seq experi-

ments, for each of the 150-bp input sequences. Each 150-bp input

sequence was padded with 425 unknown nucleotides (“N”) to match

DeepSEA’s input format. Similarly, we applied the DeepBind model

to the same sequences and generated allele-specific predictions for

the binding affinities of 538 distinct transcription factors. In addi-

tion, a KSM model trained on 57 ENCODE ChIP-seq experiments

for a LCL (GM12878) was used to produce predictions for tran-

scription factor binding affinities. Chromatin state annotations from

the NIH Roadmap Epigenomics (Kundaje et al., 2015) project were

also compiled for all regions and used as one-hot encoded binary

features.

3.2 Computational model

3.2.1 Expression prediction task

Armed with this set of potentially predictive features for expression

levels, many of which are sequence-specific, we used an ensemble of

regularized regression and classification models to predict expression

values for both alleles and regulatory hit status based on the provided

training data (Fig. 1A). We trained multiple LASSO regression models

to predict the normalized log expression levels for each allele using

the DeepSEA features alone, the DeepBind features alone, DeepSEA

and KSM features combined, and DeepSEA along with KSM and chro-

matin state annotations. All learning algorithms were tuned by cross-

validation within the training set, and the various feature sets were

chosen using a heuristic manual analysis. We averaged the LASSO

model predictions to produce the final predictions and took the stan-

dard deviation of their separate predictions as confidence estimates.

For the binary prediction task (“RegHit”), we trained a one-layer neural

networkwith 400 neurons on the same four sets of features described

previously and aggregated their predictions in the samemanner.

3.2.2 Allele-specific expression prediction task

For allelic expression change (“LogSkew”) prediction, given that

“LogSkew” is defined and calculated as the expression difference

between the two alleles, we decided to directly utilize the “Log2FC”

expression model we trained in the previous section instead of train-

ing a new model. We applied our trained “Log2FC” model to gener-

ate expression predictions for each allele in the held-out test set to

submit. Then, for each variant, we took the difference in predicted

expression levels between the reference and the alternate alleles as

our “LogSkew” prediction (Fig. 1B).

http://deepsea.princeton.edu/help/
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F IGURE 1 The schematic of EnsembleExpr.A: The 150-bp sequence centered at the queried allele is taken as input to four computational mod-
els to generate functional features that are used by two ensemble models to make expression predictions (“log2FC”) and significance estimates
(“RegHit”). B: During training, the provided expression levels of the two alleles of each variant are used to train an ensemble model of significant
allele-specific expression (ASE). During testing, we first apply the trained expression model in (A) to generate expression predictions, which are
then given to the significant ASE model to make predictions (“emVar”). The difference of the predicted expression levels is directly output as the
prediction for allelic expression change (“LogSkew”)

For predicting “emVar” labels (allele-specific expression status), we

trained on the actual expression levels for the reference and alter-

nate alleles provided in the sample data. An ensemble of binary clas-

sification models was considered, with all regularization parameters

tuned by cross-validation (Fig. 1B). Models used in the final ensemble

included linear regularized logistic regression, kernel regularized logis-

tic regression, k-nearest neighbors, support vector machine (SVM)

with linear kernel and SVM with radial basis function kernel. The pre-

dictions of all models were combined to form the final probability esti-

mate, alongwith ameasure of confidence in the prediction. After train-

ing, we first ran our prediction module in the previous task (Expres-

sion prediction) to generate expression predictions for each allele of

the held-out test set. Then, we applied the expression-to-emVarmodel

trained here to make predictions of significant allele-specific expres-

sion (“emVar” hits).

4 RESULTS

4.1 EnsembleExpr outperforms competing

approaches in CAGI eQTL challenge

We assessed the predictions from EnsembleExpr and other competing

methods in the challenge. For predicting log (normalized) expression

levels (“Log2FC”) and expression level differences between two alleles

(“LogSkew”), both of which are regression tasks, we used Spearman’s

rank correlation coefficient that is nonparametric and stablewith value

scaling. For predicting significant expression (“RegHit”) and significant

allele-specific expression (“emVar”), both of which are binary classifi-

cation tasks, we chose two benchmarks: the receiver operating charac-

teristic (ROC) and the precision recall curve (PRC). ROCevaluates how

the true-positive rate changeswith the false-positive rate,where a ran-

dom prediction would be along the diagonal with an area under curve

(AUC) of 0.5, and a better model would have larger AUC. PRC shows

howtheprecision changeswith increasing recall (truepositives),where

the desiredmodel shouldmaintain high precision for large recall.

EnsembleExpr outperformed all the competing methods in both

the expression prediction task and the allele-specific expression pre-

diction task. In the first part of the challenge, expression predictions

from EnsembleExpr correlate the best with the experimental observa-

tions (Table 1, a Spearman correlation of 0.485 for the reference allele

and 0.470 for the alternate allele). In predicting significant expression

(“RegHit”), EnsembleExpr is the only model with an auROC > 0.8 and

an auPRC> 0.5 (Table 1; Fig. 2A).

In the second part of the challenge, EnsembleExpr accurately pre-

dicted the LogSkew change in expression with a Spearman correla-

tion better than other submissions, many of which had correlations

close to zero (Table 2). Prioritizing variants that give rise to significant

change of expression (“emVar”) was the hardest among all four tasks.

For emVar, EnsembleExpr also demonstrated better performance than

other methods, yielding an auROC of 0.655 and an auPRC of 0.452

(Table 2; Fig. 2B).
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TABLE 1 Performance comparison for expression prediction task (sorted by RegHit auROC)

Participant (lab submission) Reference Spearman correlation Alternate Spearman correlation RegHit auPRC RegHit auROC

4 (EnsembleExpr) 0.484936 0.470176 0.528288 0.807690

6-1 0.290971 0.399997 0.461099 0.786722

2-2 0.278613 0.262536 0.402448 0.777035

2-4 0.260072 0.245915 0.437067 0.774688

2-5 0.261064 0.245595 0.432639 0.772747

6-2 0.290971 0.399997 0.433406 0.771472

6-3 0.433043 0.399116 0.426697 0.767268

2-6 0.199247 0.171989 0.353660 0.728643

2-1 0.173587 0.169082 0.385369 0.723336

1-5 0.295519 0.272904 0.304145 0.719242

1-1 0.251873 0.248376 0.329400 0.716045

1-3 0.251027 0.248319 0.328427 0.713983

1-6 0.318642 0.300630 0.312914 0.713570

1-4 0.254598 0.236243 0.311588 0.709843

5-1 0.252023 0.223952 0.369462 0.693357

1-2 0.174655 0.168176 0.293471 0.683512

7 0.208036 0.194298 0.437487 0.670681

3 0.304933 0.236940 0.242830 0.652059

5-2 0.352951 0.353493 0.189516 0.578095

2-3 0.000766 −0.002387 0.126747 0.513558

F IGURE 2 EnsembleExpr outperforms all CAGI4 competingmethods.A: The area under ROC (auROC, left) and area under precision recall curve
(auPRC, right) for EnsembleExpr (red) and other methods (gray) in predicting significant expression. B: The auROC (left) and auPRC (right) for
EnsembleExpr (red) and other methods (gray) in predicting significant allele-specific expression

EnsembleExpr also outperforms state-of-the-art methods in the

eQTL-prioritization literature. Zhou and Troyanskaya (2015) reported

that an L2-regularized logistic regression model trained on DeepSEA-

derived features and evolutionary conservation scores achieved pre-

dictive performance that surpasses existing approaches for eQTLs.

We trained this DeepSEA plus conservation model on the DeepSEA-

derived features and conservation scores for the variants in the CAGI

training set, and predicted “emVar” labels of variants in the test

set. While ranking third among all the submissions, the DeepSEA

plus conservation model achieved a performance inferior to that of
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TABLE 2 Performance comparison for allele-specific expression prediction task (sorted by emVar auROC)

Participant (lab submission) LogSkew Spearman correlation emVar auPRC emVar auROC

4 (EnsembleExpr) 0.449760 0.452561 0.655261

5-1(deltaSVM) 0.333893 0.409730 0.626850

DeepSEA Not applicable 0.389 0.589

5-2(deltaSVM) 0.342004 0.369083 0.577220

7 0.007343 0.431639 0.562854

6-1 0.217845 0.345064 0.561953

6-2 0.190123 0.354726 0.561776

1-3 NaNa 0.311243 0.556499

1-1 NaNa 0.305258 0.550820

1-2 0.030243 0.295886 0.550048

2-3 −0.015476 0.303051 0.545206

1-5 0.056143 0.284863 0.541216

1-4 0.079049 0.293321 0.530856

3 0.030049 0.284356 0.511181

1-6 0.105376 0.286584 0.510103

2-2 −0.007377 0.249473 0.479746

2-1 −0.024347 0.234723 0.477301

2-5 −0.023092 0.233144 0.472651

2-6 −0.023092 0.233144 0.472651

2-4 −0.023092 0.233144 0.472651

Notes: aEvery variant was assigned the same score, leading to incalculable Spearman correlations.

EnsembleExpr (auROC = 0.589, auPRC = 0.389; Table 2). We also

note that submissions 5-1 and 5-2 solely use deltaSVM (Lee et al.,

2015), the state-of-the-art method in predicting dsQTLs (variants-

modulating DNase hypersensitivity). deltaSVM achieved a perfor-

mance better than DeepSEA, but inferior to EnsembleExpr (Table 2).

This comparison shows that EnsembleExpr not only excels among all

the submitted methods, but outperforms the state-of-the-art in the

literature.

Thus, EnsembleExpr modeled the diversity of expression well and

demonstrated unmatched capacity as a predictive model for eQTL pri-

oritization. More importantly, the consistently high performance of

EnsembleExpr across different tasks andevaluationmetrics proves the

robustness of the predictions.

4.2 Ensemble demonstrated competitive

performance on public eQTL dataset

We next evaluated the ability of EnsembleExpr to predict eQTLs

determined by protocols other than MPRA to test its generality

beyond the CAGI4 competition. Recent work (Zhou & Troyanskaya,

2015) collected 78,613 noncoding eQTLs from the GRASP (Genome-

Wide Repository of Associations between SNPs and Phenotypes)

databases (Leslie, O’Donnell, & Johnson, 2014) and constructed

several size-matched negative sets sampled from different subsets

of 1000 Genomes Project noncoding variants. We classified these

held-out positive and negative eQTL examples using our MPRA-

trained EnsembleExpr model, DeepSEA, deltaSVM, GWAVA (Ritchie,

Dunham, Zeggini, & Flicek, 2014), CADD (Kircher et al., 2014), and

FunSeq2 (Fu et al., 2014). For deltaSVM, we used the same model

in submission 5-1 (using parameters trained on GM12878 DNase-

hypersensitive region), given its good performance in CAGI4. For

DeepSEA, we used the same model trained on CAGI4 data as dis-

cussed in the previous section. To make the comparison fair, we

did not directly use DeepSEA’s performance reported in Zhou and

Troyanskaya (2015), where the classifier was trained on the same

eQTL data and evaluated with a cross-validation scheme. For CADD,

we used the provided Web server (http://cadd.gs.washington.edu/,

v1.0). We downloaded the GWAVA software from http://www.sanger.

ac.uk/resources/software/gwava/ and downloaded the FunSeq2 soft-

ware from http://info.gersteinlab.org/Funseq2. To avoid test set con-

tamination, we excluded any variants that were included in CAGI4.

We found that EnsembleExpr outperformed all the competing

methods in classifying eQTLs from the three negative sets (Fig. 3),

although the AUROC for all methods was low. This demonstrates

that although trained on MPRA datasets, EnsembleExpr can serve as

a general eQTL-prioritization framework that is applicable on other

datasets. We attribute the generalizability to EnsembleExpr’s use

of features that were predicted for different cell lines. To examine

whether the unsatisfactory performance of detalSVM primarily

resulted from cell line mismatch, we further retained only the eQTLs

discovered from LCLs, and classified this set of eQTLs from the neg-

ative sets using the cell-line-matched deltaSVM model. However, we

observed no notable improvement in performance (Supp. Fig. S2). On

the other hand, we do note that the parameters of deltaSVM model

we used, which performed well on CAGI dataset, were originally

optimized for predicting dsQTLs instead of eQTLs.

http://cadd.gs.washington.edu/
http://www.sanger.ac.uk/resources/software/gwava/
http://www.sanger.ac.uk/resources/software/gwava/
http://info.gersteinlab.org/Funseq2
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F IGURE 3 EnsembleExpr achieved competitive performance com-
pared with published methods in predicting GRASP eQTLs from vari-
ous size-matched negative sets sampled from 1000 Genomes Project
noncoding variants. The x-axis denotes the different negative sets by
the average distance to the paired eQTL

4.3 Components of the ensemble provide

complementary functional information

We benchmarked EnsembleExpr and each of the single models

included in the ensemble to understand the major sources of improve-

ment. Through 10-fold cross-validation for each model, we evaluated

the median R2 when predicting log expression level (“Log2FC”) and

the median auROC and auPRC when predicting significant expres-

sion (“RegHit”). We observed that with the DeepSEA-predicted func-

tional features, including TF binding, histonemarks, and DNase hyper-

sensitivity, we could already reach decent accuracy in both tasks

(Table 3). However, models with only TF-binding-based features from

either deep learning (DeepBind) or k-mer-based models (KSM) are

much less satisfactory. Butwedidobserve that incorporatingDeepSEA

with features from KSM and ChromHMM led to better performance,

suggesting that these twomodels provide complementary information

despite the comprehensiveness of the DeepSEA output.

4.4 Accurate eQTL prioritization requires a

comprehensive panel of functional features

We next sought to understand what sequence-derived functional fea-

tures, among the hundreds we used, are most predictive of expression

and eQTL status. Expression is regulated by sophisticated machinery

where numerous regulators and epigenetic marks act in concert. To

include a large enough panel of features, we investigated one of the

LASSO regression models in the ensemble that was trained to predict

TABLE 3 Performance of each component in the ensemble

Task1-a Task1-b

Features included R2 auROC auPRC

Ensemble 0.3976 0.8647 0.5830

KSM+DeepSEAa 0.3803 0.8515 0.5622

KSM+DeepSEA+ChromHMMa 0.3769 0.8462 0.5380

DeepSEAa 0.3728 0.8347 0.5391

DeepBinda 0.2508 0.8209 0.4438

KSM 0.2393 0.7943 0.3943

Notes: aModels included in the ensemble.

expression (“Log2FC”) from sequence-derived prediction of DNase

hypersensitivity, histonemarks, transcription factor binding, and chro-

matin state (Supp. Table S1).

We first analyzed the sign of the coefficients in the LASSO model

to understand the direction in which each feature affects the expres-

sion prediction. As expected, themodel assigned large positiveweights

to DNase hypersensitivity, histone marks known to be associated

with promoters (such asH3K4me3) and predicted functional elements

(such as Creyghton et al., 2010), and transcription initiators (such as

IRF1) (Supp. Table S2). The model also gave large negative weights

to chromatin regulators known for repressive effects on transcription

(such as EZH2) and histone marks predictive for gene bodies (such as

H3K36me3). These observations persisted even when we retrained

themodel 10 times, and calculated themeanand95%confidence inter-

val of the coefficients (Supp. Table S2).

We next analyzed the predictive importance of the features. By

design, LASSO models impose sparsity and force the coefficients for

nonimportant features to zero. However, the limitation of such L1-

regularization-based models is that when faced with a group of highly

correlated features, as in our experiments, the model may only pick

one feature at random from a correlated set. Thus, to fully understand

which features are important for expression prediction, instead of

directly looking at the coefficients in the LASSO model, we retrained

a randomized LASSO model that performs “stability selection”

(Meinshausen & Bühlmann, 2010) by resampling the training data

and computing a LASSO model on each resampling. The more often

a feature gets selected, the more important it is for the performance

of the model. We observed a bimodal distribution of feature impor-

tance (Supp. Fig. S1). Most of the 994 features are considered not

very important, whereas a group of 60 features demonstrate great

importance. These top 60 features are highly diverse, including

histone marks predictive for enhancer/promoter/repressive regions,

important transcription regulators, and chromatin states predictions

(Supp. Table S3). This diversity of useful features suggests that a

comprehensive functional annotation of the sequence, rather than one

type or two, is essential for accurate expression prediction and eQTL

prioritization. We also observed that while many of the important

features are predicted for the same type of cell line as the one the

MPRA experiment was performed on (LCLs), many features predicted

for other cell lines, such asK562 andH1-hESC, also proved to be highly

informative.

5 DISCUSSION

We have described an ensemble-based framework, EnsembleExpr,

that achieved the best performance in both parts of the “eQTL-causal

SNPs” challenge in the CAGI4. We also demonstrated that although

trained on MPRA datasets, EnsembleExpr can also produce competi-

tive predictions on eQTL datasets determined by other protocols.

We found that each component model of EnsembleExpr provides

useful yet complementary information, and when combined, they

lead to a successful ensemble with performance surpassing any

single model that we examined. Through a systematic analysis of
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feature importance, we demonstrated that features important for

accurate prediction by EnsembleExpr are highly diverse, ranging from

chromatin state and histone marks to transcription factor binding.

Most EnsembleExpr features, except the chromatin state labels from

ChromHMM, are obtained from sequence-based computational mod-

els that can provide predictions for each allele. This enables precise

characterization of how a single base change affects expression levels,

which we consider crucial for any model aiming to interpret sequence

variants.

With the capacity to accurately predict sequence variants with

significant allele-specific expression determined by different proto-

cols, we expect EnsembleExpr will serve as a resource to assist in

pinpointing causal mutations for complex traits and diseases, and

will help in understanding the pathogenic pathways. The power of

EnsembleExpr can likely be further improved, asmore and larger-scale

MPRA data become available. EnsembleExpr is openly available at

http://ensembleexpr.csail.mit.edu for researchers to utilize freely for

downstream analysis.
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