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Abstract

Motivation: The majority of disease-associated variants identified in genome-wide association

studies reside in noncoding regions of the genome with regulatory roles. Thus being able to

interpret the functional consequence of a variant is essential for identifying causal variants in the

analysis of genome-wide association studies.

Results: We present GERV (generative evaluation of regulatory variants), a novel computational

method for predicting regulatory variants that affect transcription factor binding. GERV learns a

k-mer-based generative model of transcription factor binding from ChIP-seq and DNase-seq data,

and scores variants by computing the change of predicted ChIP-seq reads between the reference

and alternate allele. The k-mers learned by GERV capture more sequence determinants of tran-

scription factor binding than a motif-based approach alone, including both a transcription factor’s

canonical motif and associated co-factor motifs. We show that GERV outperforms existing meth-

ods in predicting single-nucleotide polymorphisms associated with allele-specific binding. GERV

correctly predicts a validated causal variant among linked single-nucleotide polymorphisms and

prioritizes the variants previously reported to modulate the binding of FOXA1 in breast cancer cell

lines. Thus, GERV provides a powerful approach for functionally annotating and prioritizing causal

variants for experimental follow-up analysis.

Availability and implementation: The implementation of GERV and related data are available at

http://gerv.csail.mit.edu/.

Contact: gifford@mit.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Genome-wide association studies (GWAS) have revealed genetic poly-

morphisms that are strongly associated with complex traits and dis-

eases (Hindorff et al., 2009; Manolio, 2010; McCarthy et al., 2008;

Stranger et al., 2011). Missense and nonsense variants that occur in

protein coding sequences are simple to characterize. However, many

GWAS-detected variants reside in non-coding regions with regulatory

function (Frazer et al., 2009; Hindorff et al., 2009). The influence of

non-coding variation on gene expression and other cellular functions

is not well understood. Previous work has observed that non-coding

DNA changes in the recognition sequences of transcription factors

can affect gene expression and cellular phenotypes (Ward and Kellis,
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2012b). Thus, predicting the effect of genomic variants on transcrip-

tion factor (TF) binding is an essential part of interpreting the role of

non-coding variants in pathogenesis. Most of existing computational

approaches to predict the effect of single-nucleotide polymorphism

(SNPs) on TF binding such as sTRAP and HaplogReg are based on

quantifying the difference between the presented reference and alter-

nate alleles in the context of canonical TF binding motifs (Andersen et

al., 2008; Macintyre et al., 2010; Manke et al., 2010; Molineris et al.,

2013; Riva, 2012; Teng et al., 2012; Ward and Kellis, 2012a; Zuo et

al., 2015). Recent work (Lee et al., 2015) uses k-mer weights learned

from a gapped-kmer SVM (Ghandi et al., 2014) to score the effect of

variants, taking into account the frequency of k-mer occurrences but

not the spatial effect of k-mers.

Here, we present GERV (generative evaluation of regulatory

variants), a novel computational model that learns the spatial effect

of k-mers on TF binding de novo from whole-genome ChIP-seq and

DNase-seq data, and scores variants by the change in predicted

ChIP-seq read counts between the reference and alternate alleles.

GERV improves on existing models in three ways. First, GERV does

not assume the existence of a canonical TF binding motif. Instead it

models transcription factor binding by learning the effects of specific

k-mers on observed binding. This allows GERV to capture more

subtle sequence features underlying transcription factor binding

including non-canonical motifs. Second, GERV accounts for the

spatial effect of k-mers and learns the effect of cis-regulatory regions

outside of the canonical TF motif. This enables us to model the role

of important auxiliary sequences in transcription factor binding,

such as cofactors. Third, GERV incorporates chromatin openness

information as a covariate in the model which boosts the accuracy

of the predicted functional consequence of a variant.

We first demonstrate the power of GERV on the ChIP-seq data

for transcription factor NF-jB. We show that GERV learns a

vocabulary of k-mers that accurately predicts held-out NF-jB ChIP-

seq data and captures the canonical NF-jB motifs and associated

sequences such as known co-factors. Applying GERV to six tran-

scription factors on which allele-specific binding (ASB) analysis is

available, we show GERV outperforms existing approaches in pri-

oritizing SNPs associated with ASB. We demonstrate the application

of GERV in post-GWAS analysis by scoring risk-associated SNPs

and their linked SNPs for breast cancer and show that GERV trained

on FOXA1 ChIP-seq data achieves superior performance in priori-

tizing SNPs previously reported to modulate FOXA1 binding in

breast cancer cell lines.

2 Methods

2.1 GERV model overview
GERV is a fully generative model of ChIP-seq reads. We assume

that the genome is a long regulatory sequence containing k-mer

‘code words’ that induce invariant spatial effects on proximal tran-

scription factor binding. We use the level of chromatin openness in a

region as a functional prior to predict the magnitude of a sequence-

induced binding signal. Following this assumption, we model the

read counts produced by transcription factor ChIP-seq at a given

base as the log-linear combination of the DNase-seq signal on

nearby bases and the spatial effect of a set of learned k-mers whose

effect range covers that base.

The GERV procedure of variant scoring consists of the following

three steps (Fig. 1):

1. GERV first learns the spatial effects of all the k-mers (k¼1–8)

and the DNase-seq covariates over a spatial window of 6200 bp

de novo from ChIP-seq data using regularized Poisson regression

2. GERV then computes the predicted ChIP-seq read counts for the

reference and alternate allele of a variant from the log-linear

combination of the local DNase-seq signal and spatial effect of

the learned k-mers.

3. GERV predicts the effect of a genomic variant on transcription

factor binding by the l2-norm of the change of predicted reads

between two alleles

2.2 Learning the spatial effect of k-mers
The effect profile of a k-mer is defined as a real-valued vector of

length 2M that corresponds to a spatial window of ½�M;M� 1� rela-

tive to the start position of the k-mer. Specifically, the jth entry of the

profile for a k-mer is the expected log-change in read counts at the jth

base relative to the start of the k-mer. Here, we consider k-mers with

k from 1 to 8 (kmax¼8) as this is the maximum that would fit in

memory in an Amazon EC2 c3.8 xlarge instance. Larger k-mers tested

on a larger memory machine did not perform substantially better than

8-mers. As ChIP-seq signals are relatively sparse and spikey, we chose

an effect range of6200 bp for each k-mer (M¼200).

For notational convenience, we use i for genomic coordinate, k

for k-mer length and j for coordinate offset from the start of a

k-mer. We assume that the genome consists of one large chromo-

some with coordinates 0–N. In practice, we will construct this by

concatenating chromosomes with the telomeres acting as a spacer.

Fig. 1. The schematic of GERV. The spatial effects of all the k-mers and the DNase-seq covariates are learned from the reference genome sequence and ChIP-seq,

DNase-seq datasets. Then the spatial effects (purple, cyan andgreen) of the k-mers underlying the reference (blue) and alternate (red) allele for a variant are

aggregated with DNase-seq covariates by log-linear combination to yield a spatial prediction of localChIP-seq reads for the two alleles. GERV scores the variant

by the l2-norm of the predicted change of reads
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We represent the effect vector of all k-mers of length k as a param-

eter matrix hk of size 4k � 2M. For any particular k-mer of length k

starting at base i on the reference genome, we define gk
i as its row

index in hk. So hk
ðgk

i
;jÞ would denote the effect of this kmer at offset

j 2 ½�M;M� 1�. Additionally, a special parameter h0 is used to set

the average read rate of the genome globally.

The DNase-seq covariate j is defined as a binary vector of length

N that denotes whether each base of the genome has any DNase-seq

read, and we assume that ChIP-seq reads can be predicted with this

covariate and the contributions from surrounding k-mers. We define

the spatial effect of the covariate as b, a vector of length 2L which

can be thought of as analogous to the k-mer effect h but occurring

everywhere and scaled by the binary covariate j. In all the experi-

ments in this analysis, we chose an L¼200 to balance between com-

putational complexity and prediction power.

Given these definitions, we define a generative model for ChIP-

seq reads on the genome. Observed counts at position i on the gen-

ome are generated from a Poisson distribution with rate parameter

ki, which is defined as:

ki ¼ exp

 � X
k2½1;kmax�

X
j2½�M;M�1�

hk
ðgk

iþj
;�jÞ

�

þ
� X

l2½�L;L�1�
b�l � jiþl

�
� h0

! (1)

The problem we solve is a regularized Poisson regression.

Particularly, we would like to maximize the following:

max
h;b

fð
X

i

cilogðkiÞ � kiÞ � g
X

|hk|1g (2)

To efficiently optimize this objective function, we performed an

accelerated gradient descend method. The detail of implementation

can be found in the Supplementary Data (Supplementary Text S1).

2.3 ChIP-seq signal prediction for reference and

alternate allele
In step 2, given the effect profiles of all the k-mers and the DNase-

seq covariates trained from step 1, we first predict the ChIP-seq

count k at each position across the reference genome by combining

the effect of proximal k-mers and DNase-seq level into the log-linear

model using Equation (1). Then in similar manner, we predict the

read counts k0 of the alternate allele after replacing the k-mers that

are affected by the variant. If we assume an SNP, at most 4
3� ð4

kmax

�1Þ k-mers will change.

2.4 Variant scoring
In step 3, we score an SNP at locus on the genome by the square

root of the sum of squared per-base change (l2-norm of the change)

of binding signal at all bases within the effect range of any k-mers af-

fected by the variant:

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j2½�M�kmaxþ1;M�1�

ðkiþj
0 � kiþjÞ2

s
(3)

2.5 Collapsing GERV k-mers into a position weight

matrix
We interpret the active k-mers captured by GERV with a post-pro-

cessing framework that aggregates similar k-mers into position

weight matrixes (PWMs):

1. We filter k-mers based on the sum of spatial effect to eliminate

inactive k-mers.

2. We calculate the Levenshtein distance (number of single charac-

ter edits) between the remaining k-mers.

3. We perform UPGMA hierarchical clustering over the candidate

k-mers until the minimal distance among clusters is larger

than 2.

4. For each cluster, we define its key k-mer as the one with

the largest sum of spatial effect. We obtain the PWM for this

cluster by aligning all k-mers in the cluster against the key

k-mer.

5. All the clusters are ranked by the average sum of spatial effect of

all the k-mers in the cluster.

2.6 ChIP-seq peak prediction comparison
Gapped-kmer SVM was downloaded from http://www.beerlab.

org/gkmsvm/index.html. To match with the training data for

GERV, the positive training set for gapped-kmer SVM consists of

the all the NF-jB ChIP-seq peaks on chr1-13 of GM12878 from

ENCODE, and the negative training set consists of the same num-

ber of randomly sampled regions of similar size on chr1-13. The

default parameter set (‘-d 3’) was used. Both GERV and gapped-

kmer SVM were evaluated on the same test set. The positive test

set consists of all the NF-jB ChIP-seq peaks on chr14-22 of

GM12878 from ENCODE, and the negative test set consists of the

same number of randomly sampled regions of similar size on

chr14-22.

2.7 Benchmark the performance in prioritizing SNPs

with ASB
2.7.1 deltaSVM

deltaSVM source code was downloaded from http://www.beerlab.

org/deltasvm/. For each transcription factor included in the bench-

marking, a gapped-kmer SVM model was trained using ChIP-seq

peaks of that factor on chr1-13 of GM12878 from ENCODE as

positive sets and the same number of randomly sampled region of

similar size on chr1-13 as negative sets. The default parameter set

(‘-d 3’) was used. As instructed by the software, the gapped-kmer

SVM model was then used to score all the possible 10-mers, the re-

sult of which was input as the kmer-weight parameter to

deltaSVM.

2.7.2 sTRAP

We used the R version of sTRAP downloaded from the website

(http://trap.molgen.mpg.de/download/TRAP_R_package/) for scal-

ability. The built-in JASPAR and TRANSFAC motif data included

in the package were used. Specifically, MA0105.1, MA0105.2,

MA0105.3, MA0107.1, MA0061.1, V$NFKAPPAB_01,

V$NFKB_Q6, V$NFKAPPAB65_01, V$NFKAPPAB50_01,

V$P50_Q6, V$NFKB_C and V$RELA_Q6 were used for NF-jB.

MA0139.1, MA0531.1, V$CTCF_01, V$CTCF_02 were used for

CTCF. MA0099.1, MA0099.2, MA0476.1 and V$CFOS_Q6 were

used for FOS. MA0059.1, MA0058.1, MA0058.2, PB0043.1,

PB00147.1, V$MAX_01, V$MAX_04, V$MAX_Q6,

V$MYCMAX_01, V$MYCMAX_02, V$MYCMAX_03 and

V$MYCMAX_B were used for MAX. MA0059.1,

MA0147.1,MA0147.2, V$CMYC_01, V$CMYC_02, V$MYC_01,

V$MYCMAX_01, V$MYCMAX_02, V$MYCMAX_03 and

V$MYCMAX_B were used for MYC. None of the JUND motifs

were included in the built-in motif database of sTRAP. For each

variant, the scores from different matrices of the same factor were

combined by taking the highest one.

Generative evaluation of regulatory variants 3
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3 Materials

3.1 ChIP-seq data
ChIP-seq data for all the factors used in this analysis were down-

loaded from ENCODE. The full list of GEO accession numbers can

be found in Supplementary Table S1.

3.2 DNase-seq data
DNase-seq data of GM12878 were downloaded from ENCODE

(GEO accession GSM816665)

3.3 Allele-specific binding SNPs
As a gold standard for SNPs that affect TF binding, we used the list

of SNPs that are reported to induce ASB of NF-jB, CTCF, FOS,

JUND, MAX and MYC in GM12878. The NF-jB ASB SNPs are

collected from Rozowsky et al. (2011) and Karczewski et al. (2013).

The ASB SNPs data for all other transcription factors are collected

from Rozowsky et al. (2011).

4 Results

4.1 GERV learns a vocabulary of k-mers that regulate

factor binding
We first tested if GERV could predict held-out ChIP-seq data. We

trained a GERV model on ENCODE NF-jB ChIP-seq data and

DNase-seq data from chromosomes 1 to 13 of GM12878 and com-

pared the predicted ChIP-seq signal from GERV to actual ChIP-seq

reads on the held-out chromosomes 14–22. The predicted ChIP-seq

signals are very similar to actual ChIP-seq reads (Fig. 2A and B), with

a chromosome-wide Pearson’s correlation of 0.76. We measured

correlation after smoothing predicted and actual reads over 400bp

windows since actual reads are insufficiently sampled to produce base-

pair resolution measurements. To further examine the ability of

GERV to model ChIP-seq peaks, we used the GERV model trained

above to score a positive set of regions defined as all the ENCODE

GM12878 NF-jB ChIP-seq peaks on chr14-22, and a negative set of

regions defined as same number of randomly sampled region of similar

length on chr14-22. Each region was scored by the sum of predicted

signal in the region. We compared GERV with a previously published

kmer-based model for TF peak prediction by training a gapped-kmer

SVM (Ghandi et al., 2014) on ENCODE NF-jB peaks and same num-

ber of randomly sampled region of similar length on chr1-13 of

GM12878 and then performing the same scoring task on the same

positive and negative set. We quantified the performance of these two

models in prioritizing positive regions over negative regions by calcu-

lating the area under receiver operating characteristic (ROC) curve

(Fig. 2C). Our model achieved a better area under ROC curve of

0.972 than that of 0.949 for gapped-kmer SVM. Thus, GERV learns a

vocabulary of k-mers that can accurately predict the ChIP-seq data.

Although GERV fits a model with a potentially large parameter

space (6200 bp window for 87 380 k-mers when kmax¼8), it uses

sparsifying regularization to avoid overfitting and to limit the num-

ber of active k-mers (Equation 2). For example, in the NF-jB GERV

model, most of the l1-norm of the parameter matrix is contained in

the top 1% of the 87 380 k-mers (Supplementary Fig. S1). GERV is

also robust to the choice of the window size for a k-mer’s spatial ef-

fect and DNase-seq covariates (Supplementary Table S2).

4.2 GERV captures the binding sequence of a TF and its

co-factors
We then examined if GERV learned the sequence features important

for transcription factor binding. We trained a GERV model on

DNase-seq data and NF-jB ChIP-seq data combined from 10 lym-

phoblastoid B cell lines (LCL) individuals. PWMs were generated

for visualization purposes by hierarchical clustering of the active k-

mers in GERV (Section 2.5) and matched to known TF motifs in

JASPAR and TRANSFAC using STAMP (Mahony and Benos,

2007). With a threshold of significant matching at 1e-7, many clus-

ters of the active k-mers correspond to known motifs (Table 1). The

top two k-mer clusters for NF-jB were matched to motifs from NF-

jB family (Supplementary Fig. S2A), indicating that GERV correctly

learned the strongest expected sequence features for the binding.

Moreover, many of the other k-mer clusters learned by GERV cor-

respond to transcription factors, which have been associated with

NF-jB regulation (Supplementary Fig. S2B), including ETS1, AP1,

IRF1 and SP1 (Bartels et al., 2007; Fujioka et al., 2004; Sgarbanti et

al., 2008; Thomas et al., 1997). To validate the role of these tran-

scription factors in NF-jB binding, we performed co-factor analysis

on the same NF-jB data using GEM (Guo et al., 2012) to search for

transcription factors that have spatially binding constraint with NF-

jB. This analysis identified AP-1 and IRF1 as the strongest co-fac-

tors of NF-jB binding. Interestingly, some of the active-kmer clus-

ters in GERV were matched to transcription factors such as ELF1,

ERF2, CTCF and SUT1, which have not been associated with NF-

jB binding in previous studies.

To further interpret the role of the transcription factors whose

motifs were matched to an active-kmer clusters in the NF-jB GERV

model, we performed motif analysis on the SNPs known to alter

transcription factor binding. ASB studies have identified SNPs asso-

ciated with significantly imbalanced binding events on heterozygous

sites (Rozowsky et al., 2011; Karczewski et al., 2013). Therefore,

we collected a list of 56 ASB SNPs for NF-jB and use HaploReg

(Ward and Kellis, 2012b) to query for the motifs that these ASB

SNPs altered (Supplementary Table S3). Among the 56 ASB SNPs

tested, only 16 (29%) were found to alter the canonical motif of

Fig. 2. (A) Example held-out genomic region on chromosome 14 showing

GERV-predicted NF-jB reads (black), actual NF-jB ChIP-seq reads (red) and

rabbit IgG control ChIP-seq reads (green). (B) Comparison of GERV-predicted

(x-axis) and observed (y-axis) NF-jB ChIP-seq reads in binned regions of

held-out chromosomes 14–22. The coefficient and r2 of a linear regression on

predicted and actual z-score is plotted. (C) ROC curve for discriminating NF-

jB peaks from negative control sets using GERV and gapped-kmer SVM

(gkmSVM)
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NF-jB, while another 11 (20%) were found to alter the TF motif

matched to other active-kmer clusters in the GERV model. Thus,

GERV captures the sequence context of factor binding, which pro-

vides additional descriptive power and biological insight for auxil-

iary elements in TF binding.

4.3 GERV outperforms existing approaches in

prioritizing ASB SNPs
To demonstrate the power of GERV in detecting regulatory vari-

ants, we compared GERV’s performance against existing

approaches in discriminating ASB SNPs from negative control vari-

ants. We collected ASB SNPs with known differential binding for

NF-jB, CTCF, JUND, MAX, MYC and FOS from previous studies

(Karczewski et al., 2013; Rozowsky et al., 2011) as positive sets, re-

sulting in a total of 56 SNPs for NF-jB, 1225 SNPs for CTCF, 26

SNPs for FOX, 233 SNPs for JUND, 71 SNPs for MAX and 69

SNPs for MYC (Section 3.3). Note that these ASB SNPs were com-

pletely held-out in the training process of any model compared in

this analysis and were only used as the test set.

For each of the six transcription factors, we constructed two

types of negative SNP sets that we assume do not exhibit differential

factor binding. Both kinds of negative sets are subsets of 1000

Genome Project (1KG) SNPs. In the first case, we randomly sampled

100 negative samples for each positive sample, to get a reasonable

sample of the background while making analyses computationally

tractable. The second set is a fine-mapping task which is an import-

ant topic in post-GWAS analysis where a list of lead SNPs and their

linked SNPs are under interrogation for regulatory consequence. To

simulate such tasks, this second set was constructed as random selec-

tion of 1KG SNPs within 10 kb from any ASB SNP. To reflect the

number of SNPs typically in a single LD block, we calculated LD

information from phased genotype data in the 1KG pilot release

using PLINK (Purcell et al., 2007). With a r2 cutoff of 0.8, the me-

dian number of linked SNPs for a variant is 10 (Supplementary Fig.

S3). Thus, in this set, we sampled 10 negative samples for each posi-

tive sample. For both types of negative sets, we sampled 10 sets with

replacement, so that we could obtain the mean and confidence inter-

vals. For each of the 10 negative sets, we constructed a paired posi-

tive set, same size as the corresponding ASB SNP set, by sampling

with replacement from the ASB SNPs.

For each transcription factor, we evaluated the performance of

GERV and two published regulatory variant scoring methods

sTRAP (Manke et al., 2010) (motif-based) and deltaSVM (Lee et al.,

2015) (kmer-based) in discriminating the positive set from each of

the two negative sets. The other motif-based methods are not

included due to either the inability to produce numerical scores for

the queried variants or the low throughput that cannot scale up to

thousands of SNPs. For each factor, a GERV model was trained on

ENCODE ChIP-seq data from chr1-13 of GM12878 and a

deltaSVM model was trained on ENCODE ChIP-seq peaks and

same number of random regions of similar length on chr1-13 of

GM12878. The built-in JASPAR and TRANSFAC motif dataset was

used for sTRAP, which includes the motif for all the factors but

JUND (Section 2.7).

We show the averaged ROC curves and precision recall curves

(PRC) (Supplementary Fig. S4 for the first control set, Fig. 3 for

the second control set) of all the methods for different transcrip-

tion factors and negative sets. We evaluated two aspects of the

curves. The first metric is the area under curve (AUC)

(Supplementary Table S4), which summarizes the overall perform-

ance in prioritizing the positive set over negative set. The second

metric is the true-positive rate at low false-positive rate (for ROC)

or the recall at high precision (for PRC), which reflects the prac-

tical need for low false discovery rate in post-GWAS analysis

where thousands of lead and linked SNPs are tested for regulatory

consequence.

The ROC curves for GERV consistently dominated the compet-

ing methods for all factors and control scenarios, with much better

AUC and higher true-positive rate at low false-positive rates. In

PRCs, because of the small size of the positive set, the confidence

intervals of precision when the recall is low tend to be large, mak-

ing the left-most part of the curves less informative for compari-

son. For transcription factor FOS, MAX and MYC, GERV

achieved a PRC clearly superior to the others, without overlapping

in the confidence interval. For factor JUND, NF-jB and CTCF,

GERV had a similarly precision for low recall but outperformed

the other methods with consistently high precision for larger recall.

Given the fact that CTCF has a motif (19 bp) more than twice as

long as the maximum length of k-mer (8 bp) learnable for GERV

(Section 2.2), the competitive performance on CTCF demonstrates

the strong descriptive power of GERV in modeling TF binding. We

can also see that even without DNase-seq covariates, the GERV

model still achieved a performance superior to the competing

methods, demonstrating the power of the model in capturing se-

quence determinants of the TF binding. We also found that in our

second control scenario, choosing 50 instead of 10 negative SNPs

for each positive SNP did not change the relative performance of

the methods compared.

To mimic the original ASB analysis, we constructed an add-

itional type of negative set by sampling 10 negative samples for each

positive sample from heterozygous SNPs in GM12878 with the dis-

tribution of SNP’s distance to the closest ChIP-seq peak matched to

that of the positive sets. This is a more difficult and partially

Table 1. TF motifs matched to active-kmer clusters in NF-jB GERV

model using STAMP with E-value cutoff of 1e-07

Cluster Matched motif Motif database Matched TF E

PWM1 M00053 TRANSFAC REL 5.1842e-08

MA0101.1 JASPAR REL 1.2145e-09

PWM2 M00053 TRANSFAC REL 7.0388e-14

MA0101.1 JASPAR REL 1.1385e-12

PWM3 M00495 TRANSFAC Bach1 8.0813e-13

MA0099.2 JASPAR AP1 9.4186e-10

PWM4 M01111 TRANSFAC RBP-Jkappa 6.0791e-08

PWM5 M00339 TRANSFAC ETS1 1.3508e-11

MA0080.2 JASPAR SPI1 3.6387e-10

PWM7 M01057 TRANSFAC ERF2 2.0724e-08

MA0123.1 JASPAR abi4 1.9650e-08

PWM12 MA0139.1 JASPAR CTCF 1.1289e-08

PWM15 M00062 TRANSFAC IRF1 2.7655e-10

MA0050.1 JASPAR IRF1 3.1444e-09

PWM18 MA0399.1 JASPAR SUT1 2.7097e-08

PWM20 M00722 TRANSFAC core-binding 3.6831e-09

PWM22 MA0242.1 JASPAR run_Bgb 3.1286e-11

PWM23 M01066 TRANSFAC BLIMP1 1.4886e-09

PWM27 MA0453.1 JASPAR nub 4.2762e-09

PWM32 M00345 TRANSFAC GAMYB 8.8633e-08

PWM33 MA0344.1 JASPAR NHP10 2.3002e-09

PWM38 MA0403.1 JASPAR TBF1 5.6499e-08

PWM43 M00181 TRANSFAC E2 2.9261e-08

PWM49 MA0152.1 JASPAR NFATC2 5.3905e-11

For each cluster, only the strongest match in each motif database

(TRANSFAC and JASPAR) is shown. PWMs are ordered by the average sum

of spatial effect of all the k-mers in the corresponding cluster.
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confounded task with potentially a much higher ratio of false-

negative ASB SNPs included in the negative set. GERV outper-

formed the other methods using ROC analysis for four out of six

factors in this task, with precision-recall analysis showing improved

performance for one of six factors (Supplementary Fig. S6 and

Table S4). The presence of false-negative ASB SNPs could explain

the precision-recall performance and the close-to-random perform-

ance on FOS for all methods.

4.4 GERV prioritizes linked-SNPs that modulate FOXA1

binding in breast cancer
To demonstrate the application of GERV in post-GWAS analysis,

we applied GERV to a breast-cancer-associated variant set (AVS)

collected by a previous study (Cowper-Sal lari et al., 2012). It is

composed of 44 risk-associated SNPs discovered from GWAS stud-

ies and 1053 ‘linked’ SNPs that were not discovered in GWAS

but are in strong linkage disequilibrium (r2 > 0:8) with any risk-

associated SNP. It has been shown that breast-cancer-associated

SNPs are enriched for the binding sites of FOXA1, a pioneer tran-

scription factor essential for chromatin opening and nucleosome

positioning favorable to transcription factor recruitment (Carroll

et al., 2005, 2006; Eeckhoute et al., 2006; He et al., 2010; Lupien

et al., 2008).

The rs4784227 breast-cancer-associated SNP has been shown to

disrupt the binding of FOXA1 with several lines of evidence

(Cowper-Sal lari et al., 2012; Long et al., 2010). We trained a

GERV model and a deltaSVM model on ENCODE FOXA1 ChIP-

seq data from a breast cancer cell line T47D. Using these two mod-

els, we scored rs4784227 and all of its linked SNPs collected in the

AVS (rs3803662, rs17271951 and rs3095604). GERV correctly pre-

dicted the effect of rs4784227 on FOXA1 binding, while deltaSVM

failed (Fig. 4A).

Having probed a single risk-associated SNP, we then applied

GERV to all the SNPs in the breast cancer AVS. The 29 variants pre-

viously reported to modulate FOXA1 binding (Cowper-Sal lari et

al., 2012) had significantly higher GERV scores than the rest of the

AVS (Fig. 4B, Mann–Whitney U test P¼0.0011, AUC¼0.68,

Supplementary Fig. S7). In contrast, deltaSVM could not distinguish

the positive set from the rest of the AVS (Mann–Whitney U test

P¼0.19, AUC¼0.57, Supplementary Fig. S7)

5 Discussion

Despite the recent substantial advances in characterizing the gen-

ome-wide transcription factor binding sites with ChIP-seq experi-

ments, it remains a challenge to interpret variation in the noncoding

region of the genome and to determine variants that cause transcrip-

tion factor binding changes in post-GWAS analysis. Our work

improves the prediction of causal non-coding variants when com-

pared with other contemporary methods.
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Fig. 3. ROC curve (first row) and PRC (second row) for discriminating ASB SNPs from the second type of negative variant set (10 times of the size of positive set)

using GERV (red), GERV without covariates (yellow), deltaSVM (blue) and sTRAP (green). Gray-dashed line in ROC curves indicates random chance. In each fig-

ure, 95% confidence intervals of the true-positive rate (for ROC) or precision (for PRC) are plotted. The performance of sTRAP on JUND is not measurable as

JUND motif is not included in its built-in motif database
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viously reported to modulate FOXA1 binding had significantly higher (Mann–

Whitney U test P¼0.0011) GERV scores than the rest of the AVS

6 H.Zeng et al.

 at M
IT

 L
ibraries on N

ovem
ber 18, 2015

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv565/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv565/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv565/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv565/-/DC1
http://bioinformatics.oxfordjournals.org/


As the first generative model that directly predicts the ChIP-seq

signal, GERV achieved greater accuracy than other methods in pre-

dicting ChIP-seq peaks. GERV models the spatial effect of all the k-

mers and thus captures the effect of the primary motif and auxiliary

sequences on TF binding. We have shown that many of these auxil-

iary sequences correspond to known binding cofactors, while others

were matched to transcription factors whose roles in the binding

regulation have not been previously characterized. Since GERV is

trained on cell-type-specific ChIP-seq and DNase-seq data each

GERV model is cell-type specific. The effect size of kmers across cell

types is generally stable, with differences that reflect cell-type-

specific effects (Supplementary Table S5).

The generative nature of the GERV model scores each variant as

the predicted change to a proximal ChIP-seq signal. The analysis on

six transcription factors NF-jB, CTCF, FOS, JUND, MAX and

MYC demonstrated that GERV outperforms existing methods in

discriminating variants known to alter TF binding from negative

control sets. In a few cases (Fig. 3F, Supplementary Fig. S4F), the

discriminative nature of the competing methods equipped them with

higher precision for recalling a small fraction of positives. However,

their inability to model auxiliary sequences led to the dramatic pre-

cision decrease afterward, while GERV achieved constantly high

precision for larger recall.

Applied to an AVS of breast cancer, GERV correctly predicted

the effect of previous validated causal SNP rs4784227 and highly

prioritized variants reported to affect FOXA1 binding in breast can-

cer cell line. With the superior performance exemplified in this task,

we expect GERV to play an important role in functionally annotat-

ing and prioritizing putative causal variants for downstream experi-

mental analysis.
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