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Figure S1. Rate of discovery of new eukaryotic PPI data has slowed

Organism Number of interactions Percentage of proteins with

at least 1 interaction

Mouse 1486 6.0
Human 26640 41.8
Worm 4559 14.5

Fly 22740 52.7
Yeast 48901 93.5

Table S1. Availability of experimental PPI data for major eukaryotic
organisms. Data based on phenotypic suppression/enhancement and synthetic
interaction was excluded, as these experiments do not provide evidence of a direct
physical interaction between proteins.

Evaluation of alignments

Calculation of information content. Besides sequence identity, information content
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is another popular metric used to quantify the difficulty of an alignment problem. The

information content for an alignment is calculated by summing the information content

of each column of the alignment. The information content of each column is calculated

as given by the equation:

icj =
∑

i Pijlog(Pij/Qi)

In the above equation, icj is the information content of column j, Pij the frequency of

amino acid i in column j and Qi the background frequency of amino acid i. To get the

frequency of each amino acid in a column, we count the number of occurrences of that

amino acid and divide it by the length of the column. A pseudo-count of 0.01 is added to

all counts to avoid zero count. The background distribution Q is taken as the interface

propensities of the amino acids [4]. This distribution is quite different from the frequencies

of occurrence of individual amino acids in the entire SWISSPROT [1] database. However,

for the purposes of this study, information content calculated based on this distribution

captures the relative hardness of each alignment.

Calculation of alignment accuracy. For an alignment of a sequence S to a template

T obtained using a threading approach, the number of correct alignments is calculated

by counting the number of common pairs (t,s) between the threading alignment and the

alignment generated by CMAPi for T and S. The accuracy is then obtained by normalizing

this count by the length of the CMAPi alignment.

Calculation of contact accuracy. Three contact accuracies are calculated for each pre-

dicted contact map. The exact accuracy, i.e., the number of correctly predicted contacts

divided by the total number of true contacts. The two other accuracies allow for a shift

(|δ|) in the predicted contacts. For example, if (s1, s2) are positions of a true contact, we

consider a predicted contact to be correct if it is within (s1±δ, s2±δ). We only report the

contact accuracies with a shift of 2.
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Calculation of interface RMSD. For an interface alignment of a sequence S to a

template T obtained using a threading approach, the RMSD is calculated by considering

only the Cα coordinates of the aligned residues. The Biopython module SuperImposer is

used to calculate the minimum RMSD. Average RMSD per family pair is calculated by

averaging the RMSDs for all possible template-sequence alignments within a family pair.

Results

A
Features/Position in alignment 3 4 5 6 7 8 9

Residues VXG PXF DXL YSD HTS SE DLE
Sec. Struct. C C C C H H H

Avg. Solv. Acc. 58 78 59 22 25 99 69

B

Figure S2. Example of an interface template. A) An example of a multiple
interface alignment from CMAPi (only one core is shown). The upper case letters
represent the contacting residues in the interface, profiles constructed from residues
highligted in red are shown in B. B) Interface template encoding the consensus residues,
consensus secondary structure class and average solvent accessibility at the highlighted
(in red) alignment positions in A. “X” represents the gap state in the alignment.

Cross-validation within SCOPPI families

iWRAP improves contact predictions for within-family threading alignments (Fig S2a).

The trend in relative improvement of iWRAP over DBLRAP is not clear when viewed as

a function of information content (Fig S3b) and iracc (Fig S3c).
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We evaluated the contact density for both methods on contact maps with greater than

25 contacts, where we presume iWRAP’s profiles are aiding in its superior performance

(Fig 2A). Following the contact-map mining techniques of BYSTROFF, we characterized

each contact by the pattern of contacts in a 5x5 residue neighborhood around it. The

average density in this neighborhood is calculated by dividing the number of contacts by

25. We observe that iWRAP predictions have a higher density on average than DBLRAP

predictions, on both the training and testing sets. We then separately clustered patterns

of contacts predicted by iWRAP and DBLRAP and represented each cluster with a rep-

resentative contact pattern (as done in BYSTROFF). In the cross-validation set, patterns

unique to iWRAP predictions have an average density of 0.24 whereas patterns unique to

DBLRAP have an average density of 0.21. We find a similar trend in the training set (for

template-query less than 40% sequence identity): iWRAP predictions (density 0.278) are

denser than DBLRAP predictions (0.226), which is a difference of 1-2 contacts. Average

density of patterns common for both is 0.12 in the cross-validation set and 0.22 in the

training set. We conclude that density is a factor in the improved performance, and thus

may be a factor in the decreased performance in the case of fewer than 20-25 contacts.

Cross-validation across SCOPPI families

iWRAP improves contact accuracy prediction for around 75% of the families in the across-

family cross-validation test (Table S2). Threading using templates having one common

family with the query pair help us increase coverage in the yeast interactome prediction.

Of the 110 SCOPPI families having atleast three complexes in a binding mode, we are

able to thread around 30 families after filtering based on sequence identity (< 40%) and

iracc score ( > 0.75).

Examination of the across-family threading results provides some interesting observa-
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tions (see SI Table S2). For SCOPPI family pair a.56.1.1 d.133.1.1 we obtain the best

query as a.56.1.1 d.41.1.1. This indirectly indicates a similarity in binding patterns be-

tween the two families; an observation also suggested by the ABAC database of convergent

evolved interaction motifs ABAC. Further evidence for such an inference is demonstrated

by the family d.185.1.1 f.23.14.1. In our results, the best query for this template is from

the family d.185.1.1 f.23.12.1, which is also noted in the ABAC database. This suggests

that threading across-families might capture similar binding patterns and can be used in

genome-scale PPI predictions.

Methods

Templates

For each family pair in SCOPPI, the coordinates are obtained from the listed PDB IDs.

In order to exclude interfaces formed due to crystallization, we select interfaces with more

than five contacts. Furthermore, PDB models with resolutions lower than 2.5 Å are

selected whenever possible. From an interface made up of two domains, three templates

are constructed. One is the complex template (dimer), which consists of residue pairs (one

on each domain) which have at least one of their heavy atoms at a distance less than 4.5 Å.

Three templates are constructed from an interface in a PDB [2] file. A “dimer” template is

the template describing the interface residues (see main text). Two additional templates

are constructed by extracting the Cα and Cβ coordinates for individual domains from the

PDB entry. In addition to spatial coordinates, these two templates have information about

solvent accessibilities and secondary structure, computed using the program DSSP [5].

These are in the form similar to the templates used by RAPTOR [9].
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Multiple interface alignment

Unlike profiles used in prediction of single chain protein structure, construction of profiles

for PPI prediction is challenging because interactions between the two protein sequences

complicates their treatment as independent alignments. In addition, profiles based on

sequence alignments alone do not effectively capture the multiple binding modes exhibited

within the same family. As demonstrated in Pulim et al. for the special case of cytokines

[7], profiles based on a contact-map representation and alignment of interfaces are better

suited for PPI prediction. Templates and profiles are constructed using these multiple

interface alignments (see Template Construction in Main Text) for every family pair

having atleast 3 “inter-domain” interfaces. These consist of domains on two different

chains in the PDB file. Since we are interested in templates for PPI prediction, we

consider only inter-domain interfaces. This has the added advantage of filtering out

(dimer) interfaces formed due to crystallization. On the other hand, true homodimers

will be excluded from our analysis.

Genomic predictions: S.cerevisiae

For genomic predictions, we used a two phase approach to identify templates for threading.

In the first phase, each of the two query proteins is threaded (using RAPTOR) against

the non-redundant database (<40% sequence identity) of proteins in SCOP1.75 [6]. This

database contains around 10000 templates. We then select the top templates for each

query protein by ranking them by z-scores and using a z-score cutoff of 3.0. At the end

of this phase, we end up with 10-15 templates for each protein. In the second phase, we

check to see if we have a dimer with the SCOP domains represented by any one of these

templates. In case we don’t find such a template, we look for a dimer template which has
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one SCOP family common with one of the templates for the two query proteins. In case

of multiple such dimer templates, we use the template with the highest sequence identity

to the query proteins. This ensures that even for across-family threading, we utilize

structurally similar templates. Our database has around 2000 total dimer templates

(compared to around 2200 non-redundant dimers for Struct2Net).

Once we have the threading alignments for two yeast query proteins using iWRAP, we

extract the following features from the results: template lengths (ltmpa,ltmb), sequence

lengths (lseqa,lseqb), predicted number of contacts (cmap), total interface energy (to-

tal.energy), normalized interface energy (energy), z-scores for the threading alignments

(alnza, alnzb) and z-score for the interface energy (z). In addition, we use the features

sum of threading z-scores (total.z), square root of the product of sequence lengths (piab),

total interface energy normalized by piab (energy pi) and number of contacts normalized

by piab (cmap piab). The negative examples are generated as in Struct2Net [8].

The variable importance plot is shown in Fig S5 and recall-precision curves are shown

in Fig S6. As was observed by Singh et al. [8], the size of the sequences (piab), total

interfacial energy (total.energy), normalized interfacial energy (energy pi) are the most

significant predictors. In addition, we find that sum of alignment z-scores (total.z) and

the number of predicted contacts are important features which were not used in [8].

For the combined predictor, we used DBLRAP’s threading alignments to extract fea-

tures used in Struct2Net, and trained a classifier as above. The two predictions were

combined by using a common cutoff to compute the combined ROC curve.
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Figure S3. Improvements in contact accuracy (|δ| = 2) by iWRAP. a)Even when
DBLRAP predicts less than 20% of contacts, iWRAP can predict significantly more
number of contacts close to the true contact map. Relative improvement in contact
accuracy (|δ| = 2) as a function of information content and iracc: b) Although the trend
is not very clear, iWRAP only seems to perform poorly as compared to DBLRAP when
the information content per position in the true alignment is high. c) The performance
improvement of iWRAP is not strongly dependent on iracc. But the lower iracc
alignments (i.e. harder alignments) are the alignments that give the highest
improvements in accuracies. d) RMSD comparison between iWRAP and DBLRAP-
better contact prediction by iWRAP does not affect RMSD of the predicted interface.
All the results are for template-query pairs having a sequence identity less than 40% at
interface.
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(a) (b)

(c) (d)

Figure S4. Example of improvement in contact accuracy by iWRAP. a) Contact map
representation for the true interface of 1upcA12-1upcB375 b) Contact map predicted by
DBLRAP. c) Initial contact map predicted by iWRAP from threading. d) Final contact
map predicted by iWRAP after contact map optimization. In Figure 2 of the main
document, these contacts are mapped onto the actual structure.
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Template
Pair

DBLRAP iWRAP

Avg Acc Best Query Max Acc Avg Acc Best Query Max Acc

a.56.1.1 d.133.1.1 0.04 a.56.1.1 d.41.1.1 0.74 0.09 a.56.1.1 d.41.1.1 0.09
d.185.1.1 f.23.13.1 0.24 f.21.1.2 f.23.13.1 0.67 0.14 f.21.1.2 f.23.13.1 0.67
d.185.1.1 f.23.14.1 0.06 d.185.1.1 f.23.12.1 0.14 0.20 d.185.1.1 f.23.12.1 0.43
d.145.1.3 d.15.4.2 0.11 d.133.1.1 d.15.4.2 0.31 0.32 d.145.1.3 d.41.1.1 0.50
d.185.1.1 f.21.1.2 0.0 - 0.0 0.08 d.185.1.1 f.23.12.1 0.14
c.81.1.1 d.58.1.5 0.0 - 0.0 0.14 b.52.2.2 d.58.1.5 0.14
b.1.18.8 c.37.1.8 0.03 a.87.1.1 c.37.1.8 0.09 0.06 a.87.1.1 c.37.1.8 0.13
b.85.3.1 b.92.1.1 0.03 b.85.3.1 c.1.9.2 0.06 0.18 b.85.3.1 c.1.9.2 0.20
b.47.1.2 g.3.11.1 0.04 b.23.1.1 g.3.11.1 0.07 0.0 - 0.0
a.56.1.1 d.41.1.1 0.12 d.15.4.2 d.41.1.1 0.23 0.12 d.15.4.2 d.41.1.1 0.15
b.47.1.2 g.3.15.1 0.05 b.47.1.2 g.68.1.1 0.11 0.10 b.47.1.2 g.68.1.1 0.24
b.47.1.2 g.8.1.2 0.11 b.47.1.2 g.68.1.1 0.36 0.03 b.47.1.2 g.3.15.1 0.08
d.133.1.1 d.15.4.2 0.05 d.145.1.3 d.15.4.2 0.06 0.0 - 0.0
b.23.1.1 g.3.11.1 0.01 b.47.1.2 g.3.11.1 0.022 0.03 b.47.1.2 g.3.11.1 0.04
f.23.12.1 f.23.13.1 0.0 f.23.12.1 f.23.14.1 0.0 0.07 f.23.12.1 f.23.14.1 0.11
f.21.1.2 f.27.1.1 0.04 f.21.1.2 f.23.13.1 0.08 0.02 f.23.13.1 f.27.1.1 0.05
d.145.1.3 d.41.1.1 0.01 d.145.1.3 d.15.4.2 0.02 0.04 d.145.1.3 d.15.4.2 0.06
f.23.13.1 f.28.1.1 0.01 f.23.13.1 f.32.1.1 0.02 0.09 f.23.13.1 f.32.1.1 0.22
c.36.1.10 c.36.1.6 0.0 - 0.0 0.10 c.36.1.10 c.48.1.1 0.13
c.36.1.10 c.48.1.1 0.0 - 0.0 0.10 c.36.1.6 c.48.1.1 0.20
f.23.13.1 f.32.1.1 0.0 - 0.0 0.35 f.23.13.1 f.28.1.1 0.38
f.21.1.2 f.23.13.1 0.07 d.185.1.1 f.23.13.1 0.12 0.06 d.185.1.1 f.23.13.1 0.11
a.7.3.1 d.15.4.2 0.02 d.145.1.3 d.15.4.2 0.02 0.0 - 0.0
b.33.1.1 f.32.1.1 0.03 f.23.13.1 f.32.1.1 0.03 0.0 - 0.0
f.27.1.1 f.32.1.1 0.0 - 0.0 0.06 f.23.13.1 f.32.1.1 0.07
b.49.2.3 c.1.6.1 0.10 b.49.2.2 c.1.6.1 0.22 0.14 b.49.2.2 c.1.6.1 0.26
f.23.12.1 f.23.14.1 0.03 f.23.12.1 f.23.13.1 0.03 0.03 f.23.12.1 f.23.13.1 0.03
b.49.2.2 c.1.6.1 0.24 b.49.2.3 c.1.6.1 0.38 0.15 b.49.2.3 c.1.6.1 0.29

Table S2. Cross-validation results (contact accuracies |δ| = 2) for interfaces having one
common family.
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Figure S5. Variable Importance plot for the boosting classifier employed in iWRAP
predictions.
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Figure S6. Precision vs recall for the S.cerevisiae predictions. Here, precision=true
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GO Term P-value Sample freq.(%) Background freq.(%)
cellular macromolecule

metabolic process 5.39e-13 76.4 52.9
macromolecule metabolic

process 8.68e-12 80.0 58.0
cellular metabolic

process 3.67e-11 85.2 64.9
gene expression 8.44e-11 52.8 31.4

primary metabolic
process 3.86e-10 85.6 66.3

metabolic process 4.75e-9 88.8 71.5
regulation of

cellular process 1.32e-8 47.2 28.3
regulation of biological

process 2.57e-8 50.0 31.0
regulation of gene

expression 4.85e-8 33.2 17.2
regulation of cellular
biosynthetic process 5.05e-8 34.0 17.8

cellular process 7.64e-8 96.4 83.9
regulation of biosynthetic

process 8.19e-08 34.0 18.0
regulation of macromolecule

biosynthetic process 9.32e-08 33.2 17.4
cellular RNA metabolic

process 1.49e-07 37.6 21.0
cellular biosynthetic

process 1.73e-07 57.2 38.4
biosynthetic process 2.20e-07 57.6 38.9

cellular nucleobase, nucleoside,
nucleotide and nucleic acid

metabolic process 2.68e-07 51.6 33.3
macromolecule biosynthetic

process 5.92e-07 48.4 30.8
regulation of cellular

metabolic process 8.41e-07 35.2 19.7
macromolecular complex

subunit organization 9.46e-07 22.0 9.8
cellular macromolecule

biosynthetic process 1.12e-06 48.0 30.7
regulation of primary

metabolic process 1.96e-06 35.2 20.0
regulation of macromolecule

metabolic process 3.12e-06 34.4 19.5
regulation of metabolic

process 7.07e-06 36.0 21.1
macromolecular complex

assembly 7.94e-06 18.4 7.9
cellular macromolecular

complex subunit
organization 9.88e-06 18.4 7.9

compound metabolic
process 1.78e-05 58.4 41.7

cellular macromolecular
complex assembly 3.07e-05 14.8 5.9

biological regulation 4.31e-05 51.6 35.6
regulation of transcription 2.01e-04 25.2 13.7

regulation of cellular
transcription 2.01e-04 25.2 13.7

cellular transcription 3.64e-04 26.0 14.5
transcription 3.64e-04 26.0 14.5

regulation of cellular
nucleobase, nucleoside,

nucleotide and nucleic acid
metabolic process 4.78e-04 26.0 14.6

regulation of nitrogen
compound metabolic process 5.47e-04 26.0 14.6

transcription from RNA
polymerase II promoter 1.27e-03 16.8 8.0
nucleosome organization 1.72e-03 6.0 1.6

transcription, DNA-dependent 3.22e-03 22.0 12.2
cellular transcription,

DNA-dependent 3.22e-03 22.0 12.2
RNA biosynthetic process 3.69e-03 22.0 12.2
regulation of transcription

from RNA polymerase II promoter 3.86e-03 13.2 5.9
cellular component assembly 4.65e-03 19.6 10.5
ribonucleoprotein complex

assembly 9.87e-03 6.4 1.9

Table S3. Enrichment results for the predicted PPIs. The genetic interaction set
from [3] was used as the background.
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