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General Research Interests and Style:

New algor ithms for  signal processing 

Applications to speech, oceanography, video, 
communications, sensor  networks, radar , sonar etc. etc.

•traditional 

•speculative directions motivated by metaphors from physics 
and biology

• “ Solutions in search of problems.”



Some Research Themes

• Sampling Theory and Signal Representations

• Signal Modelling

• Some “ New”  Mathematics For  Signal Processing

• Biological Signal Processing

• Var ious applications



Multirateand Nonuniform
Sampling

• Efficient reconstruction from nonuniform
samples

• Data-dependent Sampling
• Sine wave sampling
• Efficient sample rate conversion
•   The “ missing pixel”  problem



Compensation for Faulty D/A Converters
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•C h o o s e  c [ n ] ,  s u c h  t h a t  c [ 0 ]  =  -x[ 0 ]
•C h o o s e  c [ n ]  t o  m i n i m i z e  r e c o n s t r u c t i o n  e r r o r
•D e s i r e  f i n i t e  l e n g t h  s o l u t i o n s

Andrew Russell, Sourav Dey & Alan Oppenheim



Processor Networks:
• Nodes sense, route, and process signals 
• Cooperation between nodes accomplishes pre-defined 

signal processing task 

Challenges for Efficient Algorithms: 
• Inter-node communication more costly than local 

computation
• Nodes communicate asynchronously

Distributed Signal Processing



Distr ibuted Sensor  Networks

• Sensors connected with wireless communications collaboratively detect, 
track, and classify targets in the environment.

• Communication cost can limit the network’s signal processing capability.
– RF circuitry consumes valuable battery power .
– Shared communication bandwidth limits data flow rates.

• In dense networks using thousands of simple nodes, position information 
may be unavailable to selection algor ithms.

Charles Sestok & Alan Oppenheim
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Hardware for  Distr ibuted Signal Processing
• Signal Source represents processors’  input data
• For LTI  signal processing, local processors contain 

adders, multipliers, and memory
• Inter-processor  communication over  broadcast bus

Measure bus clock cycles per  output sample to determine 
communication complexity of an algor ithm

General Hardware for 
Distributed Signal Processing



Communication Requirements:
• Direct Computation - N bus clock cycles

- Communication structure is completely parallel
• FFT - approximately N/2 log N bus clock cycles

- Each stage of butterfly computations requires N/2 
bus cycles to exchange data between processors

• Communication parallelism of direct computation is 
well-matched to broadcast communication bus

Processor Load:
• Direct Computation - 1 multiply  per bus cycle
• FFT- 1 multiply per N/2 bus cycles
• Lack of communication parallelism in FFT prevents 

efficient utilization of the processors

Example: Distributed Computation of a 
Discrete Fourier Transform



My Favor ite Folk Theorems

• Anything’s optimum if you pick the cr iter ion correctly

• Just because it’s optimum doesn’ t mean it’s good



•speculative directions motivated 
by metaphors from physics and 
biology

• “ Solutions in search of 
problems.”



•  Cellular automata

•  Simulated annealing

•  Fractals for coding, modulation, and scene generation

•  Chaotic dynamics 

•  Solitons

Some Examples of Algorithms based on 
Nature as a Metaphor



• Nonlinear Dynamical Systems 
x(t) = F[x(t), u(t), t]

Deterministic & SDIC ⇔ Chaotic Behavior

Lorenz System
x = σ(y – x)
y = rx – y – xz
z = xy – bz
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Chaotic Signals and Systems



Chaotic  Communication  Concepts
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Chaotic  Systems  Provide:

• A  Wide  Variety  of  Broadband  Waveforms
• A  Class  of  Self-Synchronizing  Receivers

Kevin Cuomo, Alan Oppenheim, Steve Strogatz



Generalized FM

• Carrier waves are generated by dynamical systems that have:

1 A periodic, almost periodic, or chaotic attractor,

2 A known exponentially convergent observer.

• FM is a special case.
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Generalized Frequency Modulation
(Torres, Oppenheim and Rosales)

The Lorenz System 
(Chaotic)

Gradient Vector
Circuit Implementation

With ModulationWithout Modulation

Ý x 1 = σ x2 − x1( )

Ý x 2 = rx1 − x1x3 − x2

Ý x 3 = x1x2 − bx3

Ý x 1 = ωc + βm t( )( )σ x2 − x1( )

Ý x 2 = ωc + βm t( )( ) rx1 − x1x3 − x2( )

Ý x 3 = ωc + βm t( )( ) x1x2 − bx3( )

Dynamical System Equations:



• Modulate time-separated solitons with OOK, PAM 
or PPM

Multiplex individual solitons together using Toda 
lattice
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Multiplexing Demultiplexing

Soliton Multiplexing
Andrew Singer and Alan Oppenheim



Signal Energy Minimized by Multiplexing
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Low-Energy Signaling



Quantum Signal Processing

Quantum 
Physics

Signal 
Processing

QSP

Algorithms

Quantum 
Computing



• QSP borrows from the principles of 
quantum mechanics and some of its 
interesting axioms and constraints

• QSP is not constrained by physics

1. To subdivide into small but 
measurable increments

2. To calculate or express in terms of 
quantum mechanics

Quantize:

Merriam-Webster’s Collegiate Dictionary, Tenth Edition, 1998

Quantum Signal Processing



• Measurement of the system: probabilistic outcome 
M(x) with probabilities dependent on the state x

• Consistency of the measurement: repeated 
measurements on a system yield the same outcomes 
M(M(x))=cM(x)

• Determinate states: states for  which M(x) is 
determinate i.e. not probabilistic

• Var ious other  constraints imposed by the physics

⇒ Measurement “ collapses”  the system into a 
determinate state

Quantum Mechanics



The QSP framework has led to interesting new results in:

•  Quantum detection
•  Matched filter  banks
•  Multiuser  detection
•  Sampling theory
•  Frames

Y.C. Eldar  and A.V. Oppenheim “ Quantum Signal Processing ”  
IEEE Signal Processing Magazine, November 2002

Quantum Signal Processing



Signal
Transduction

Signal
Processing

Biological Signal Processing

Signal Transduction Modeling

Biological Signal Processing



• Formulate underlying principles governing biological 
signal transduction pathways using signal processing 
theory.

• Develop signal processing algorithms inspired from signal 
transduction pathways.

• Exploit biological hardware to perform signal processing. 

M.R. Said, A.V. Oppenheim, D.A. Lauffenburger. March 2001.

Objectives



How are stream processing and signal processing 
related?
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How are stream processing and signal processing 
related? 

Yesterday I thought I had a guess

Today I’m confused about the definition

The day after tomorrow I’m looking forward to 
understanding it better


