Al Oppenheim, DSPG MIT

General Research Interests and Style:

New algorithms for signal processing

Applications to speech, oceanography, video, communications, sensor networks, radar, sonar etc. etc.

•traditional

•speculative directions motivated by metaphors from physics and biology

• "Solutions in search of problems."

Some Research Themes

- Sampling Theory and Signal Representations
- Signal Modelling
- Some "New" Mathematics For Signal Processing
- Biological Signal Processing
- Various applications

Multirate and Nonuniform Sampling

- Efficient reconstruction from nonuniform samples
- Data-dependent Sampling
- Sine wave sampling
- Efficient sample rate conversion
- The "missing pixel" problem

Compensation for Faulty D/A Converters

- •Choose c[n], such that c[0] = -x[0]
- •Choose c[n] to minimize reconstruction error
- Desire finite length solutions

Distributed Signal Processing

Processor Networks:

- Nodes sense, route, and process signals
- Cooperation between nodes accomplishes pre-defined signal processing task

Challenges for Efficient Algorithms:

- Inter-node communication more costly than local computation
- Nodes communicate asynchronously

Distributed Sensor Networks

- Sensors connected with wireless communications collaboratively detect, track, and classify targets in the environment.
- Communication cost can limit the network's signal processing capability.
 - RF circuitry consumes valuable battery power.
 - Shared communication bandwidth limits data flow rates.
- In dense networks using thousands of simple nodes, position information may be unavailable to selection algorithms.

General Hardware for Distributed Signal Processing

Hardware for Distributed Signal Processing

- Signal Source represents processors' input data
- For LTI signal processing, local processors contain adders, multipliers, and memory
- Inter-processor communication over broadcast bus

Measure bus clock cycles per output sample to determine communication complexity of an algorithm

Example: Distributed Computation of a Discrete Fourier Transform

Communication Requirements:

- Direct Computation N bus clock cycles
 - Communication structure is completely parallel
- FFT approximately N/2 log N bus clock cycles
 - Each stage of butterfly computations requires N/2 bus cycles to exchange data between processors
- Communication parallelism of direct computation is well-matched to broadcast communication bus

Processor Load:

- Direct Computation 1 multiply per bus cycle
- FFT- 1 multiply per N/2 bus cycles
- Lack of communication parallelism in FFT prevents efficient utilization of the processors

My Favorite Folk Theorems

- Anything's optimum if you pick the criterion correctly
- Just because it's optimum doesn't mean it's good

•speculative directions motivated by metaphors from physics and biology

• "Solutions in search of problems."

Some Examples of Algorithms based on Nature as a Metaphor

- Cellular automata
- Simulated annealing
- Fractals for coding, modulation, and scene generation
- Chaotic dynamics
- Solitons

Chaotic Signals and Systems

•

• Nonlinear Dynamical Systems x(t) = F[x(t), u(t), t]

Deterministic & SDIC \Leftrightarrow **Chaotic Behavior**

Lorenz System $\dot{x} = \sigma(y - x)$ $\dot{y} = rx - y - xz$ $\dot{z} = xy - bz$

Chaotic Communication Concepts

- A Wide Variety of Broadband Waveforms
- A Class of Self-Synchronizing Receivers

Kevin Cuomo, Alan Oppenheim, Steve Strogatz

Generalized FM

- Carrier waves are generated by dynamical systems that have:
 - 1. A periodic, almost periodic, or chaotic attractor,
 - 2. A known exponentially convergent observer.
- FM is a special case.

Generalized Frequency Modulation

(Torres, Oppenheim and Rosales)

The Lorenz System (Chaotic)

Circuit Implementation

Dynamical System Equations:

Without Modulation

$$\dot{X}_1 = \sigma(x_2 - x_1)$$

$$X_2 = rx_1 - x_1x_3 - x_2$$

$$\mathbf{X}_3 = x_1 x_2 - b x_3$$

With Modulation

$$\dot{X}_1 = (\omega_c + \beta m(t))\sigma(x_2 - x_1)$$

$$\acute{X}_{2} = (\omega_{c} + \beta m(t))(rx_{1} - x_{1}x_{3} - x_{2})$$

$$\mathbf{X}_{3} = (\boldsymbol{\omega}_{c} + \boldsymbol{\beta} m(t))(x_{1}x_{2} - bx_{3})$$

Soliton Multiplexing

Modulate time-separated solitons with OOK, PAM or PPM

Multiplex individual solitons together using Toda lattice

Low-Energy Signaling

Signal Energy Minimized by Multiplexing

Quantum Signal Processing

Quantum Signal Processing

- **Quantize:** 1. To subdivide into small but measurable increments
 - 2. To calculate or express in terms of quantum mechanics

Merriam-Webster's Collegiate Dictionary, Tenth Edition, 1998

- QSP borrows from the principles of quantum mechanics and some of its interesting axioms and constraints
- QSP is not constrained by physics

Quantum Mechanics

- Measurement of the system: probabilistic outcome M(x) with probabilities dependent on the state x
- Consistency of the measurement: repeated measurements on a system yield the same outcomes M(M(x))=cM(x)
- Determinate states: states for which M(x) is determinate i.e. not probabilistic
- Various other constraints imposed by the physics
 - ⇒ Measurement "collapses" the system into a determinate state

Quantum Signal Processing

The QSP framework has led to interesting new results in:

- Quantum detection
- Matched filter banks
- Multiuser detection
- Sampling theory
- Frames

Y.C. Eldar and A.V. Oppenheim "Quantum Signal Processing" IEEE Signal Processing Magazine, November 2002

Biological Signal Processing

Signal Transduction Modeling

Objectives

- Formulate underlying principles governing biological signal transduction pathways using signal processing theory.
- Develop signal processing algorithms inspired from signal transduction pathways.
- Exploit biological hardware to perform signal processing.

Yesterday I thought I had a guess

Yesterday I thought I had a guess

Today I'm confused about the definition

Yesterday I thought I had a guess

Today I'm confused about the definition

The day after tomorrow I'm looking forward to understanding it better