
1 

 

Virtualized Full-System Emulation of  
Multiprocessors using FPGAs 

Eric S. Chung, Eriko Nurvitadhi, James C. Hoe, Babak Falsafi, Ken Mai 
Computer Architecture Lab at Carnegie Mellon (CALCM) 

Carnegie Mellon University, Pittsburgh PA 15213 
{echung, enurvita, jhoe, babak, kenmai}@ece.cmu.edu 

1  INTRODUCTION 
After years of sustained focus on uniprocessor performance, 
the “power wall” has started the microprocessor hardware and 
software industry down the multiprocessing (MP) path. This 
transition raises questions on how to study and design future 
MP architectures that could incorporate hundreds or even thou-
sands of processors. To compound the problem, innovative MP 
architectures will require a new, correctly matched software 
base (OS, compiler, applications) to demonstrate their full po-
tential. However, software researchers neither can wait out the 
long hardware development cycles nor pursue significant code 
development on simulators.   

In light of this dilemma, FPGAs have attracted the attention of 
researchers as a fast, flexible and scalable experimental plat-
form for MP architecture studies and software development 
(e.g., http://ramp.eecs.berkeley.edu/). FPGA emulation1 can 
achieve less than 100x slowdown relative to a real system, a 
performance deemed acceptable by many software researchers. 
However, transitioning from the current practice of software 
simulation into FPGA emulation introduces two major chal-
lenges. First, assembling a large-scale (up to 1000-way) multi-
processor prototype, even in FPGAs, is a non-trivial integration 
effort. Second, full-system emulation⎯necessary to run oper-
ating systems and important commercial applica-
tions⎯requires considerable design knowledge and resources 
to implement in FPGAs.  

Our goal in the PROTOFLEX2 project is to develop a practical 
approach to architectural full-system emulation of large-
scale MP systems. The PROTOFLEX approach centers on the 
concept of “virtualization” to decouple the capability and com-
plexity of the emulated target system from that of the emula-
tion host.  This paper presents two virtualization techniques 
that we are investigating. Both techniques enable an emulator 
to exhibit more logical behaviors and resources than what is 
actually implemented (or even implementable) on the FPGA.  

The first technique, hybrid emulation, virtualizes the ISA and 
I/O devices over a combination of hardware emulation and 
software simulation hosts. In a hybrid emulation, only the fre-
quently exercised portion of a system needs to be implemented 
in the FPGA, while infrequent, complex behaviors are rele-
gated to software simulation.  Executing these dynamically rare  
 

                                                             
1 We use “emulation” to refer to modeling the execution of a target 
computer using FPGAs, as opposed to simulation in software. 
2 http://www.ece.cmu.edu/~simflex/protoflex.html 

 
behaviors in software greatly reduces hardware implementation 
complexity but has little impact on emulation performance.  

The second technique, time-multiplexed emulation, 
multiplexes multiple emulated processor instances onto fewer 
physical instances—providing the appearance of more proces-
sors in the system than physically on the FPGA host.  This 
decoupling allows the user to scale the physical implementa-
tion only as needed to meet a desired emulation performance, 
independent of the target system size. We further describe the 
two virtualization techniques in the next two sections.  

2  HYBRID EMULATION 
Only a small subset of total system behaviors actually contrib-
utes to the great majority of runtime.   However, in a full-
system environment, a wide range of supporting ancillary be-
haviors is required—from I/O to interrupts to vendor-specific 
instructions. Prototyping and validating all such ancillary be-
haviors directly in FPGA can easily come to consume the ma-
jority of the development effort.  

We have observed through profiling [1] that these ancillary 
behaviors are exceedingly rare during dynamic runtime. This 
observation leads us to focus our development efforts on com-
mon-case behaviors that would actually benefit from the accel-
eration of FPGA emulation. To that end, we developed an in-
struction-set and device virtualization mechanism (Figure 1) 
which combines FPGA emulation and software simulation of 
different devices and even permits devices (such as the target 
processors) to dynamically switch between FPGA and software 
hosts during runtime.   

CPU CPU

Memory

MMU DMA

Graphics NIC SCSI

Terminal

PCI

Full‐system simulator hostFPGA platform host

CPUCPU

Figure 1: In hybrid emulation, FPGA emulation and software simu-
lation together are hosts of the target system. This virtualization of 
hosting resources is transparent to software in the target system. 

As a virtualization mechanism, hybrid emulation allows infre-
quent behaviors to be omitted from the FPGA hardware while 
still retaining the abstraction of the complete system.  For ex-
ample, when a “partially implemented” processor on the FPGA 
encounters an omitted behavior, it can generate a special hard-
ware fault that interrupts instruction execution. This fault is 
detected and handled by a simulator program on a nearby soft-
ware host (e.g., PC or SoC hard core).  The simulator executes 
the unimplemented behavior and returns the updated state to 
the waiting processor on the FPGA. Such a hybrid target proc-



2 

 

essor emulation can rely on simulation to carry out any unim-
plemented rare behaviors (e.g., TLB flush, memory-mapped 
I/O); furthermore, I/O devices can be supported entirely in 
software simulation. Note that this virtualization of hybrid 
hosting resources is completely transparent to the target sys-
tem’s application and operating system. Please refer to [1] for 
additional discussions on techniques to minimize the imple-
mentation effort and emulation performance overhead. 

3  TIME-MULTIPLEXED EMULATION 
Even with FPGA prototyping, emulating a 1000-way MP sys-
tem by integrating a thousand processors requires significant 
development and hardware resources.  In the case of providing 
a sufficiently fast functional model, the physical emulation 
platform need not be as complex as the target system since the 
underlying host merely has to present the outward behavior and 
not implement the true structure of the target machine.   

Memory

CPU CPU CPUCPU CPU CPU CPU CPU CPU CPU CPU

EMU
ENG

EMU
ENG

EMU
ENG

Memory

CPU CPU CPUCPU CPU CPU CPU CPU CPU CPU CPU

EMU
ENG

EMU
ENG

EMU
ENG

Figure 2: Decoupling the number of target processors from the
number of physical engines. 

Time-multiplexed emulation, depicted in Figure 2, virtualizes 
the host processor emulation resources by mapping multiple 
processors in the target model to a smaller number of physical 
“emulation engines”. Each engine can be thought of as a re-
source implemented in the FPGA that carries out the execution 
of multiple target processors. Naturally, more engines means 
faster overall performance.  Nonetheless, having fewer engines 
(at less performance) does not limit the number of target proc-
essors that can be modeled.  Instead, the integration effort and 
resources needed when combining multiple engines is deter-
mined by the desired aggregate performance and does not re-
flect the target system’s size.  

How many engines would be needed? Contemporary software 
full-system simulators with instrumentation typically run at 1-
10 aggregate MIPS, which limits their use to simulating MP 
system with only tens of processors.  Our goal is to combine as 
many engines as needed to achieve an aggregate performance 
practical for hundreds to even thousands of processors. Assum-
ing that a single engine can run at 100 MIPS, ten such engines 
can be combined in a 1 GIPS emulator, which can functionally 
model a 100-way system at 10 MIPS per processor, staying 
within the 100x slowdown limit.  

Many approaches are possible for building a time-multiplexed 
emulation engine. The multithreaded design we adopt keeps 
each engine as simple as possible.  Because each engine hosts 
multiple processor contexts, we leverage the parallelism be-
tween processor instances with an interleaved in-order pipe-
line without data-forwarding or stalls. On each cycle, an in-
struction from a different processor is issued into the pipeline.  
This approach simplifies the hardware and is tolerant of long-

latency events such as cache misses, allowing each engine to 
approach the efficiency of 100MIPS@100MHz.  

4  APPLICATION OF FUNCTIONAL EMULATION 
First, a sufficiently fast (less than 100x slowdown) functional 
emulator can support non-trivial software development activi-
ties for large-scale systems. Even when existing commercial 
binaries are used (e.g., databases, web servers), fast functional 
emulation greatly speeds up the many rounds of tuning calibra-
tion required to tune these large applications to the hardware 
configuration. These software activities are excruciatingly slow 
at simulator speeds but can be accelerated with emulation. 
Second, a functional emulator can address a key bottleneck in 
simulation sampling performance studies [2]. The turnaround 
time in sampling-based studies is dominated by the initial time 
spent in functional execution to generate checkpointed sam-
pling points and in functional warming of micro-architectural 
structures (e.g., caches) prior to each measurement.  A func-
tional emulator instrumented with cache simulation greatly 
reduces this cost. 

5  STATUS AND FUTURE WORK 
We have completed a proof-of-concept of hybrid emulation 
that models a uniprocessor UltraSPARC III workstation run-
ning unmodified Solaris 8. The target systems runs on a hybrid 
host comprising of a Xilinx XUP V2P demo board connected 
over optimized Ethernet to a Linux PC workstation running 
Virtutech Simics (http://www.virtutech.com/). The frequently 
exercise behaviors of the UltraSPARC III processor are im-
plemented in FPGA; the remaining processor behaviors are 
support by embedded software simulation.  Simics provides 
validated software models of I/O devices and the workstation 
system environment needed for full-system emulation. We 
have successfully emulated the workstation running uniproces-
sor workloads with Solaris 8 at speeds of up 16 MIPS (our first 
hardware implementation is a multi-cycle processor with 
CPIideal = 5).  Our emulator loads unmodified checkpoints of 
machine state generated by Virtutech Simics allowing experi-
mentation with existing workload libraries.  

We are currently building an interleaved emulation engine 
supporting up to 16 target processor instances with support for 
shared-memory. The engine will run multithreaded full-system 
benchmarks such as SPLASH and TPCC on DB2 and Oracle at 
100 MIPS aggregated for the 16 target processor instances. We 
plan to scale our implementation to tens of engines for simulat-
ing 100- to 1000-way systems.  

An open question in our work is how to virtualize the physical 
memory capacity for thousands of processors. We are currently 
investigating techniques for providing the illusion of large-
scale memories by extending available physical memory on 
FPGAs with slower backing storage (e.g., disk).   

6  REFERENCES 
 [1] E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, K. Mai. ProtoFlex: 

FPGA-accelerated Hybrid Functional Simulation. CALCM Technical 
Report 2007-2, Carnegie Mellon University, February 2007. 
http://www.ece.cmu.edu/~simflex/publ/2007-02.pdf.  

 [2] T. F. Wenisch, R. E. Wunderlich, M. Ferdman, A. Ailamaki, B. 
Falsafi, and J. C. Hoe. SimFlex: statistical sampling of computer 
system simulation. IEEE Micro, 26(4):18-31, Jul-Aug 2006. 


