NetFPGA: A Tool for Network Research and
Education

Greg Watson, Nick McKeown and Martin Casado
Department of Electrical Engineering
Stanford University
Stanford, CA 94305-9030
{gwatson, nickm, casado} @stanford.edu

Abstract—NetFPGA is a platform that allows students to build
real networking hardware, using industry-standard design tools
(e.g. Verilog), then deploy and debug their hardware in an opera-
tional network. In the canonical classroom design exercise, a stu-
dent builds an Ethernet switch, or an Internet router and makes
it interoperate with other students’ solutions. NetFPGA-v1 has
been used in classes at Stanford for several years, and is just being
replaced by NetFPGA-v2, which has four Gigabit Ethernet inter-
faces. NetFPGA-v2 is designed for teaching and research; it is
open, easy to use, and simple enough to give away for free.

I. INTRODUCTION

The NetFPGA project is motivated by a need for tools to
teach computer network systems at the undergraduate and grad-
uate level. Specifically we observed that students only gain
practical experience with networking at layers three and above
(routing protocols, transport protocols, etc.) Students’ exposure
to the Link and Physical layers is limited to in-class teaching —
they don’t get to build network systems. There are many rea-
sons for this, some of the obvious ones being:

« the inherent complexity of building custom hardware sys-

tems,

« the practical reality that interesting network systems need
multiple devices before they become interesting, and this
has inherent cost.

« the observation that digital design classes focus more on
microprocessors than networks,

We believe that a custom platform will address the cost and
complexity arguments. By developing interesting network-
based project classes that are easy to use we believe we can get
network systems design adopted more widely in digital design
classes. We set out to build a platform that students could use to
build interesting and realistic network systems (NICs, switches,
routers) within a 10-week class. Our success with the tool has
encouraged us and others to expand its use into research.

NetFPGA has gone through two major design versions. This
paper starts with the first version and explains how it was used
in one particular class at Stanford. The limitations of this first
version are noted, and lead into the description of the second
version which we are just starting to use. We conclude with

This work was funded by the NSF, under grant 02-082 and grant EIA-
0305729
Martin Casado is funded by the DHS Scholarship and Fellowship Program.

the current status and a mention of some other groups who are
using NetFPGA for their research.

II. NETFPGA VERSION 1

The first version of NetFPGA was started in late 2001 and
the first prototypes were used in a post-graduate level project
class at Stanford in 2003. Our original vision was for a rack of
NetFPGA-v1 boards located somewhere in Stanford. Students
would not have physical access to the boards, but rather they
would download and debug their designs remotely. We chose
to provide only remote access because the long term goal was
for Stanford to host the boards and make them available to other
institutions, which would preclude physical access.

A. The NetFPGA-vl system

The NetFPGA-v1 board itself measures six inches by nine
inches and contains three Altera EP20K400 APEX devices, an
eight-port Ethernet controller, three 1IMByte SRAMs and an-
cillary logic. There is no on-board CPU. One of the three FP-
GAs, called the Control FPGA (CFPGA) is pre-programmed
and connects the Ethernet controller to the two User FPGAs
(UFPGASs). All communication with the board is via the Ether-
net ports - the only other physical connectors are for power and
reset.

Students develop their designs using Synopsys tools for syn-
thesis and simulation, and the Altera Quartus tool for place-
and-route. We provide some scripts and libraries to simplify
the development and debug process.

When their design has been simulated and synthesized, stu-
dents upload the FGPA configuration file to a NetFPGA-v1
board via a simple web interface. The students then send pack-
ets to their board, and capture packets received from their board,
in order to verify the hardware functionality. Ultimately the stu-
dents interconnect their board to the campus network and their
design then carries regular internet traffic. We used a locally
developed tool, called the Virtual Network System [1], to map
the NetFPGA-v1 ports into the campus internet.

In most FPGA-based projects we have seen, including those
at Stanford, there is an emphasis on hands-on debugging of the
hardware using logic analyzers. For NetFPGA-v1 we consider
this a last resort — students are strongly encouraged to simulate
first and debug last. The hands-off nature of the NetFPGA-v1



system means that it is not practical to use external logic an-
alyzers (though this would be feasible, albeit expensive, with
network-based analyzers). We considered using the FPGA
vendor’s analysis tool, but that required local CPUs with se-
rial ports attached to each board. Instead we developed our
own simple logic analzyer which can be downloaded to the
NetFPGA-v1 boards as part of the system. Students then set
trigger conditions via a simple GUI-based application, capture
the data on the board itself, and display the signals in a conven-
tional waveform viewer.

A CPU is an essential aspect of most modern digital systems.
Although NetFPGA-v1 has no CPU, students write software to
control their board and this software can run on any computer
connected to the internet, thanks to the VNS system. The soft-
ware can access hardware registers using special Ethernet pack-
ets which are decoded by the CFPGA and translated into reg-
ister read/write transactions for the user’s design. This mecha-
nism enables students to build complex hardware/software sys-
tems.

B. Build your own IP Router

NetFPGA-v1 has been used for two years within the CS344
class at Stanford [2]. In that class students design, build, and
test their own IP router. The students must also demonstrate in-
teroperability with other students’ routers, and finally they add
some enhanced functionality of their own choosing.

One of the goals of teaching the design of network systems
(as with almost any digital system these days) is to expose the
students to the hardware-software interface. While the func-
tionality of an IP router is very clear (RFC 1812), the students
must decide whether to implement each feature in hardware or
software, based on issues such as performance and complexity.

The students design a “classical” IP router - a fast path is
provided by the FPGA, while a slow path is implemented in
software. The fast path decodes incoming packets. If the packet
is a well-formed IPv4 packet then its destination IP address is
looked up in a local routing table. If the next hop is found
then the MAC address of that next hop is looked up in an ARP
cache. If found then the packet is forwarded (TTL decremented
and new checksum calculated). If, at any stage, these tests or
look-ups fail, then the packet is forwarded to the slow path —
the student’s control software which is running on an external
computer. The software handles all ARP packets, as well as
running an OSPF-like routing protocol. The software also must
populate and manage the routing table and ARP cache.

Once their IP router is working then students add new func-
tionality of their choice such as IPSEC encryption, a web server,
NAT server, etc. One enterprising group used their router to
demonstrate man-in-the-middle attacks on ssh connections.

C. Limitations of NetFPGA Version 1

Having used the first version of the board for several years,

we identified a number of aspects that we wanted to change.

« Board Format. The PCB is an awkward format, requir-
ing an obscure rack that is difficult to obtain and requires
self-assembly. In addition, a custom backplane is needed.
Clearly, an easier to use, standard format was desirable.

o Slow. The original board provides eight 10Mb/s Ethernet
ports. This is a perfectly adequate rate for classes but is
insufficient for many research projects.

o CPU. The lack of an on-board CPU has not prevented stu-
dents from developing sophisticated software to control
their boards. Indeed the flexibility of being able to run
their control software on any campus computer has been
very helpful thanks to the familiar development and debug
flow. However, the poor performance does constrain what
the software can achieve. Consequently the option of an
on-board CPU would be desirable.

« Development platform. NetFPGA-v1 uses Linux and So-
laris platforms for development. We would like to expand
this platform support to include Microsoft Windows given
its widespread adoption.

These have all been addressed in the new version of the

board.

III. NETFPGA VERSION 2

In the summer of 2004 we started to address the issues listed
above, and in September 2005 we received the first prototypes
of the new boards.

NetFPGA Version 2 (NetFPGA-v2), is a full-length 32-bit,
33MHz PCI board shown in figure 1. It has a small Xilinx
Spartan device which is programmed at power-on and provides
the PCI interface. It also has a Xilinx V2P30 device which will
have the user designs. The V2P30 has two 512Kx36 SRAM:s.
The entire system is clocked at 62.5 Mhz. The V2P30 also
connects to a Marvell quad 10/100/1000 Ethernet PHY using
standard GMII interfaces. Finally, two of the high-speed Rock-
etlO serial interfaces on the V2P30 are brought out onto SATA
connectors to support inter-board connections.

The main change was the move to the PCI format. We real-
ized that version one’s custom rack and backplane was a serious
impediment to the adoption of NetFPGA-v1. One of our new
goals was ease-of-use and so NetFPGA-v2 uses the standard
PCI interface. This had two benefits: first, the format is very fa-
miliar to our intended users, and second, the greater bandwidth
provides new opportunities for hardware/software systems. We
briefly considered using PCI-Express which is achieving rapid
market success, but we believe that PCI is so well established
that it will be available for many years to come.

The PCI bus supplies power and reset, as did the connec-
tor in version one. However we also exploit the speed of PCI
to program the Virtex device. At power-on the Spartan device
configures itself from a flash eprom and identifies itself to the
PCI bus. Software on the host PC can then configure the Virtex
through the PCI interface - configuration takes about one sec-
ond. A user can reconfigure the Virtex device without needing
to reboot the computer.

A. Design Environment

The design environment for NetFPGA-v2 remains simple
and easy to use. We still support Synopsys VCS (under Linux)
for verilog simulations, but now there is also the option of Men-
tor’s ModelSim (under Linux or XP). Many other simulators
would also likely work, but have not been tested. Synthesis and



Fig. 1. The NetFPGA Version 2 Board.

Student board

Fig. 2. Classroom configuration

place-and-route tasks are performed with the Xilinx ISE tool
(Linux or XP).

As before, we want to simplify the development environment
wherever it is appropriate to do so. Consequently, we sup-
ply students with a Perl module that makes it easy to specify
ingress and egress packets in a system simulation. What makes
this interesting is that the students can use the same test script
to test their hardware. Not only does this reflect real-world ver-
ification methodology, but this encourages students to develop
good verification suites, knowing that the same test can be used
on the hardware. Our tools use the pcap format [3] for stor-
ing packet information, so that packets can be examined using
widely available utilities such as tcpdump [4] and ethereal [5].

With NetFPGA-v2 it is practical for students to have hands-
on access to the board, if desired. Our lab configuration uses
several Linux servers each with five NetFPGA-v2 boards. One
of the five boards acts as a 4-port Ethernet NIC, which we call
the Control board. The remaining four boards are allocated one
per student team. One Ethernet port on each student board is
then connected directly to the Control board, as shown in fig-
ure 2. This means that the PC and the five NetFPGA-v2 boards
form a complete network development environment: students
can program their board and send and receive packets to/from
their board without the need for any external infrastucture.

B. Using CPUs in the Virtex device

We are exploring how to use CPUs within the Virtex devices,
either the two on-chip PowerPCs or the soft-core MicroBlaze
processors. The Xilinx Platform Studio software provides a

simple and powerful way to incorporate CPUs and their associ-
ated software tool chain such as gcc and libc. We are currently
developing the board description files needed by Platform Stu-
dio so that the NetFPGA-v2 board can be used in this flow. This
will enable students to have their router software, for example,
run on the NetFPGA-v2 board directly - which means that their
learning experience is more relevant to the way that routers are
develped in industry. Although NetFPGA-v2 has only 4MB of
RAM, we think that the uClinux operating system [6] will run
on the board with a networking stack. A student is currently
investigating how feasible (and useful) this might be.

C. Status

We currently have assembled 18 NetFPGA-v2 boards. We
also have a bus-master DMA driver (Linux 2.6.13+ kernels) for
the 4-port Ethernet Control board described earlier. This driver
presents the NetFPGA-v2 board as four standard Ethernet in-
terfaces. A simpler version of this driver can be used to enable
student software to control their board via ioctl commands that
perform register accesses. The ioctl mechanism is substantially
faster than the packet-based register accesses of Version 1.

In the Winter quarter (Jan-Mar ’06) we plan to use the boards
in an undergraduate digital design class in which students will
design and build a four port learning Ethernet switch. This is
another step on our path towards having NetFPGA gain wider
acceptance among the academic community (starting with our
own!)

Much work remains, particularly in the area of software. We
need some good diagnostic programs to help analyze configu-
ration and hardware problems. We would like to port our logic
analyzer to the new system. Our current drivers work only un-
der a specific O/S release and so we would like to test them on
a wider variety of Linux distributions.

IV. RESEARCH APPLICATIONS

Our initial vision for NetFPGA was as a teaching tool in the
classroom. However, the arrival of NetFPGA-v2 with its ease-
of-use, higher performance, and greater capacity has started to
interest researchers. Consequently we are now exploring how
the system can be enhanced to make it more attractive to net-
work researchers.

NetFPGA-v1 has already demonstrated its use as a plat-
form for building sophisticated network systems. NetFPGA-v2
builds on this and, thanks to its greater performance and capac-
ity, makes an excellent candidate for some of the “clean-slate”
internet research that is being proposed such as the NSF GENI
program [7]. In this section we describe two nascent research
efforts using NetFPGA-v2.

A. RCP

The Rate Control Protocol [8] is a new protocol developed
at Stanford to provide TCP sources with the optimal rate at
which they should transmit. We are implementing RCP-capable
routers using NetFPGA-v2 in order to understand the imple-
mentation costs of such a protocol. Without NetFPGA-v2 we
would be limited to a software-only router running on a Linux
box.



B. Intrusion Detection at ICSI

Nicholas Weaver, Jose Gonzalez, and Vern Paxson are cur-
rently implementing shunting, a technique to enable very high
speed (1 Gbps and higher) layer 7 intrusion detection and pre-
vention system, based on the Bro IDS [9] by providing a con-
trollable bridge which the IDS can use to manage the traffic:
allowing it to examine traffic of interest while passing “known
good” traffic (such as encrypted SSH sessions) without loading
the IDS. The Shunt itself will behave just like a dual-port Ether-
net card, except that the Shunt can process data directly, either
forwarding it onward, dropping known-malicious sources, or
passing packets to the host IDS for further analysis.

The NetFPGA-v2 board is being used as the hardware pro-
totype. They have started with the control-board configura-
tion, and are actively extending it to make it easier for research
use, including multiple output FIFOs on each MAC, additional
memory interfaces to the SRAM for user logic, and a shim in-
terface as a placeholder for user logic, which will actually im-
plement the shunting logic. Any packets the shim can’t process
are passed through to the host using the existing control-board
infrastructure.

V. CONCLUSION

NetFPGA has been in development and use at Stanford over
the past four years. In that time it has been used to teach several
advanced network design classes. We have recently redesigned
the system to make it easier to use and more powerful, and we
believe that NetFPGA-v2 is an excellent tool for research as
well as the classroom. Further details are available at [10].

VI. ACKNOWLEDGEMENTS

The authors gratefully acknowledge the contributions made
to this project by the NSF and also by many companies, in par-
ticular Altera, Cypress, Digilent, Synopsys and Xilinx. We are
also extremely thankful to all those who have put many days of
work into the system and who are listed at the websites.

REFERENCES

[1] Martin Casado, Nick McKeown. The Virtual Network System ACM
SIGCSE Bulletin, Volume 37, Pages 76 - 80, 2005

[2] Martin Casado, Gregory Watson, Nick McKeown. Teaching Networking
Hardware ACM ITiCSE, 2005

[3] libpcap packet capture library. http://www.tcpdump.org.

[4] tcpdump network sniffer. http://www.tcpdump.org.

[5] The ethereal network analyzer. http://www.ethereal.com. IEC DesignCon
2001, Santa Clara, CA, Jan. 2001, Paper WB-19.

[6] The uClinux operating system. http://www.uclinux.org/

[7]1 The NSF GENI Program http://www.nsf.gov/cise/geni/

[8] N. Dukkipati, M. Kobayashi, R. Zhang-Shen and N. McKeown, “Pro-
cessor Sharing Flows in the Internet” Thirteenth International Work-
shop on Quality of Service (IWQoS), Passau, Germany, June 2005.
http://yuba.stanford.edu/ nanditad/RCP-IWQoS.pdf

[9] The Bro Intrusion Detection System http://bro-ids.org/

[10] The NetFPGA2 web site http://klamath.stanford.edu/nf2/



