
Initial Observations of Hardware/Software Co-Simulation
using FPGA in Architecture Research

Taeweon Suh Hsien-Hsin S. Lee
Georgia Institute of Technology

School of Electrical and Computer Engineering

{suhtw,leehs}@ece.gatech.edu

Shih-Lien Lu Johh Shen
Microprocessor Research Lab

Intel Corporation

{shih-lien.l.lu,john.shen}@intel.com

ABSTRACT
This paper demonstrates a new hardware/software co-simul-
ation method that performs execution-driven microarchitec-
ture simulation. Based on an off-the-shelf Pentium-III sys-
tem that communicates with an FPGA via the Front-Side
Bus, all the procedures required to enable such simulation
are detailed. Using the platform, we ported a simple memory
function from Simplescalar to the FPGA and present our pre-
liminary results and analysis. Reflecting the learnings from
our initial observations, we then propose hardware/software
co-simulation to accelerate the simulation time of multi-core
architecture research for our future work.

1. INTRODUCTION
Currently, the FPGA technology has been advanced enough

to model complex chips with the realistic operating frequency.
Taking advantage from the current FPGA technology, this
paper proposes a hardware/software co-simulation method-
ology using off-the-shelf system and FPGA as an effort to
accelerate the simulation time. A simulator runs on an off-
the-shelf machine with one or several parts of the simulator
implemented on FPGA. Whenever the simulation reaches a
point where the simulator’s functions are implemented in the
FPGA, the simulator interacts with the FPGA.

The advantage of the conventional software simulation met-
hod lies in its flexibility. Architects or designers can easily
change the desired simulation parameters to examine the sys-
tem behavior of different architecture variations. However,
its disadvantage is the intolerable simulation time. On the
other hand, while a complete hardware emulation can pro-
vide significant speedup in examining the system behavior,
the flexibility will be nonetheless compromised. In this pa-
per, we attempt to leverage the merits of the software simu-
lation and hardware emulation to retain both the flexibility
and performance. We demonstrate the preliminary results
of the Simplescalar co-simulation with FPGA and discuss
the pros and cons of this approach. Even though the pre-
liminary results emphasize a negative impact of using bus as
communication medium in hardware/software co-simulation,
we find an opportunity of benefiting from it in multi-core re-
search. This paper concludes with our future plan of using
this approach in multi-core research with an Intel internal
simulator called SoftSDV.

2. RELATED WORK
FAST [2] was proposed to accelerate cycle-accurate sim-

ulation by implementing most of the timing model and key
parallelizable parts of the functional model in FPGA. FAST

relies heavily on modular, reusable components to construct
the timing models, making it easy for users to mix and match
components to quickly build new, accurate simulators. Such
a simulation environment is expected to boost the simulation
performance of at least two or three orders of magnitude. Un-
like FAST, our approach focuses on the memory subsystem
modeling in FPGA.

Active Cache Emulator (ACE) [4] is an FPGA-based L3
cache emulator developed by Intel Corporation. ACE emu-
lates the L3 cache on a Pentium R© III 1 (referred to as P-III
hereafter) based server system, where the P-III processor
contains an L1 and an L2 cache. Sitting on the Front-Side
Bus (FSB), ACE keeps track of the memory transactions
and stores appropriate TAG information from address bus,
according to the emulated cache size. If a memory transac-
tion misses the L3 TAG stored in the FPGA, a default L3
miss latency is inserted onto FSB using the snoop stall pro-
tocol. If a hit is detected, zero or a default hit latency is
inserted in the same way. ACE enables the L3 cache mod-
eling and its behavior analysis natively on the off-the-shelf
machine for commercial workloads. We use the same ACE
board for the different experiment purpose.

Even though ACE provides several advantages over a con-
ventional architecture simulation method, there are two short-
comings due to the limitations of the FSB protocol and phys-
ical system configuration. First, there is a limit of the num-
ber of processors emulated. ACE is able to emulate L3 cache
behavior only for the processors in a system since it runs na-
tively on an off-the-shelf system. For example, if there is two
processors on a system with the ACE board, ACE reports
L3 cache behavior for those two processors. However, in the
pure software simulation, the number of processors can be
set as a variable. Therefore, there is virtually no limit to the
number of processors simulated. The second shortcoming of
ACE is that it is not able to emulate complete non-blocking
L3 cache due to the FSB protocol. The FSB protocol does
not allow out-of-order completion unless the bus transaction
is deferred. The deferred transaction usually applies for the
I/O transactions on FSB.

3. METHODOLOGY
Figure 1(a) shows our experiment equipment based on an

Intel server system. The original system featured two P-III
processors. For our work, we replaced one processor with
the FPGA board as shown in Figure 1(b). The P-III runs at
500MHz and FSB operates at 66MHz. As such, the FPGA

1Pentium R© is a registered trademark of Intel Corporation
or its subsidiaries in the United States and other countries

board, which sits on FSB, also runs at 66MHz. The system
is also equipped with 2GB SDRAM as the main memory.
Redhat Linux (kernel version 2.4.8-20) running on the P-III
manages the whole system.

For hardware/software co-simulation, there should be a
communication mechanism between P-III and the FPGA
board. Since an off-the-shelf system is used in the experi-
ment, there is no special channel for communication other
than the FSB and the main memory. Since the FPGA board
is in the same level as P-III, there are two communication
mechanisms between them. The first one is through the main
memory using a lock mechanism. By reserving shared main
memory space for communication, one device updates the
shared memory after acquiring the lock. Then, the other
device reads it later on after the lock acquisition. This ap-
proach is costly in terms of execution time since it requires
many main memory transactions for each communication.
The second mechanism is to use the FSB bus directly. In
this approach, the data read operation from the FPGA is
somewhat tricky. It should go through the cache-to-cache
transfer based on the cache coherence protocol of the P6
FSB. For the cache-to-cache transfer, the FPGA monitors
all FSB transactions. If the address of an FSB data transac-
tion is within one of the pre-defined physical address ranges,
the FPGA responds to the transaction and provides data to
the P-III. We chose the second approach as a communication
mechanism since it is much faster than the first approach.
Section 3.1 details a Linux device driver to allocate memory
pages for the FPGA access and Section 3.2 introduces the
cache-to-cache transfer mechanism on the P-III FSB.

3.1 Linux driver
User-level programs under virtual memory support requires

address translation that maps a virtual address into a phys-
ical address for memory accesses. A conventional processor
employs a translation lookaside buffer (TLB) to speed up
the address translation. The performance impact of TLBs is
modeled in architecture simulators such as Simplescalar [1].
The actual address mapping is managed by the operating
system (in our case, the Linux), and the translated physical
address, which appears on FSB, is not visible to the users.
However, for the hardware/software co-simulation purpose,
FPGA needs to know the translated physical address range
in advance, with which it decides whether to respond to the
FSB transaction or not. Therefore, a special Linux device
driver is needed to allocate some of the memory pages for
the FPGA access.

From the P-III point of view, the data communication with
FPGA means that the P-III should be able to read from
FPGA and write to FPGA.

• Read operations can be achieved via the cache-to-cache
transfer, through which the FPGA provides data to the
P-III. It is illustrated in 1© of Figure 1(b). After reading
data from FPGA, the P-III must invalidate the cache line
where the read data is located. Otherwise, the next read
operation to the same location most likely will hit the P-
III on-chip cache instead of generating an intended FSB
transaction to communicating with the FPGA.

• For write operations, the memory pages in the device
driver are configured as write-through mode. Thus, every
write operation of P-III to the allocated pages appears on
FSB as depicted in 2© of Figure 1(b), so the FPGA is able
to take data from FSB.

(a) Equipment picture

Intel server system

Pentium-III

 2GB PC100 SDRAM

 Memory
controller

256KB L2

8KB L1

CPU

FPGA board

FSB

1

2

 cache-to-cache

 write-through

Virtex-II
FPGA

(b) Equipment schematic

Figure 1: Hardware/software Co-design Equipment

3.2 Cache-to-cache transfer on P-III FSB
The P-III implements a MESI coherence protocol, and the

P-III FSB is a 7-stage pipeline bus, consisting of request1,
request2, error1, error2, snoop, response, and data. The
snoop phase is the 5th pipeline stage, where the snoop results
are driven from the remote processors. The cache-to-cache
transfer occurs when the FSB transaction hits on an M state
line of a remote processor’s cache. When a snoop hit occurs
on an M-state line, the remote processor asserts HITM# FSB
signal. Then, when the memory controller is ready to accept
data, which is informed by asserting DRDY# FSB signal,
the cache-to-cache transfer takes place. Note that the main
memory should be updated simultaneously in the P-III cache
coherence protocol when the cache-to-cache transfer occurs.
Each cache-to-cache transfer requires to send 4 quadwords
data, which are 4 64-bit data transfer.

4. CO-SIMULATION RESULTS
As a preliminary experiment to check the correctness of

all procedures, one simple function mem access latency() of
the Simplescalar was implemented in FPGA and the Sim-
plescalar was modified to generate an FSB transaction when-
ever it reaches the function in order to get appropriate data
from the FPGA. In the Simplescalar, mem access latency()
is used to model the main memory latency depending on the
requested data size. The modified Simplescalar code uses a
simple load instruction to get the latency information from
the FPGA. The lower 12-bit of the address bus is used to
encode the size of the requested data and the upper part of
the address bus is loaded with the virtual address of the al-

Table 1: Execution times of baseline and co-
simulation

Baseline Co-simulation Difference
(h:m:s) (h:m:s) from baseline

mcf 2:18:38 2:20:50 + 2:12
bzip2 3:03:58 3:06:50 + 2:52
crafty 2:56:38 2:59:28 + 2:50

eon-cook 2:43:52 2:45:45 + 1:53
gcc-166 3:45:30 3:48:56 + 3:26

gzip graphic 3:06:51 3:09:05 + 2:14
parser 3:34:57 3:37:27 + 2:30
perl 2:42:30 2:45:50 + 3:20
twolf 2:43:30 2:45:28 + 1:58

located memory page. Since the TLB translation is on per
memory page basis, the lower 12-bit in a 4KB page of the vir-
tual address is identical to that of the physical address. On
FSB, the address information is driven in the first stage (the
request1 phase) and data is driven in the last stage of the
pipeline. Thus, there are a few bus cycles (more than 4 bus
cycles) for the FPGA to calculate the appropriate response.

4.1 Simplescalar results
Table 1 shows the co-simulation results using SPECint2000

benchmarks. Each benchmark program was simulated for 1
billion instructions using sim-outorder. Baseline represents
the system without the FPGA implementation. Contrary
to the belief, the co-simulation exacerbated the simulation
times. On average, the co-simulation is 2 mins 35 secs slower
than the baseline. This comes from three factors: the long
latency of accessing the FPGA, linux device driver over-
head, and the implementation choice of a way too simple
Simplescalar function. The following details the each of the
factors.

Every Simplescalar’s request for the memory latency in-
formation goes through FSB as explained. This data read
access on FSB takes around 20 FSB bus cycles, which is,
in turn, translated to ∼160 CPU cycles. In addition to the
native long latency of accessing the bus, there are two con-
tributors of further worsening the latency.

• The cache-to-cache transfer requires to send 4 quadwords
data even though the Simplescalar demands only one
data (32-bit)

• P-III’s coherence protocol requires to update the main
memory simultaneously when the cache-to-cache trans-
fer occurs. It means that even when a snoop processor
(FPGA in our experiment) is ready to supply data, it
has to wait until the memory controller is ready to ac-
cept data

Secondly, the device driver takes system resources. For
example, one TLB entry is allocated in our device driver for
communication between P-III and FPGA. These resources
would be used in the software simulation. The other reason
of our longer execution times is that mem access latency()
function is so simple, containing only 21 x86 instructions
that even software simulation takes at most a few dozen of
CPU cycles, which is translated to only a few FSB cycles.
Even though the FPGA can calculate the latency within one
bus cycle, it does not show any noticeable advantage over
the conventional software simulation.

4.2 Discussion
The Simplescalar co-simulation shows the possibility of us-

ing FPGA in architecture research to enhance the simulation
time. However, as indicated in the co-simulation results,
there are obstacles to overcome before we can make it useful.
The FSB access latency is noticeably long in our experimen-
tal infrastructure. In addition, there is a system overhead in-
curred by the linux driver. The driver takes system resources
and occupies one TLB entry for FPGA accesses. Therefore,
the FPGA will be only helpful when we implement those
software functions that need very long execution times in
the software simulation. In general, Digital Signal Process-
ing (DSP) functions such as Fast Fourier Transfer (FFT)
and Inverse Discrete Cosine Transfer (IDCT) take signifi-
cant amount of time in software. Thus, those functions are
usually implemented in hardware in the embedded system
design. However, the computer architecture simulator tends
to be control-intensive rather than data-intensive. Therefore,
it is not so easy to find a function that would take advan-
tage of hardware implementation unless the whole simulator
is implemented in hardware.

Nevertheless, as the mainstream of the future computer ar-
chitecture research migrates to the multi-core architecture,
we find an opportunity of using FPGA to expedite the sim-
ulation time. The multi-core simulation takes much more
time compared to the single core simulation. Especially, the
memory subsystem is getting complicated since distributed
L3 caches are likely to be used to reduce L3 access latency,
and interconnection network instead of the shared bus is con-
sidered to solve the bandwidth problem in a multi-core ar-
chitecture. Therefore, pure software-based simulation would
hinder to characterize architectural variations. Using FPGA
as a prototype platform of multi-core architecture was al-
ready presented in [3]. In a single Virtex-II Pro FPGA, it
implemented up to 5 cores with Xilinx’ software core named
Microblaze and PowerPC hardcore. Even though this work
uses simple RISC processors, it demonstrated the FPGA’ po-
tential as an alternative in multi-core architecture research.
Section 5 details our plan of the multi-core research using
FPGA.

5. FUTURE WORK
Figure 2 shows the simplified diagram of our future work.

We begin with 8 core configuration as illustrated in Fig-
ure 2(a). The shaded region including L3 caches and in-
terconnection network is implemented in FPGA and the rest
is simulated in P-III as shown in Figure 2(b). For L3 caches,
FPGA only keeps track of TAG information. As an inter-
connection network, we first consider a ring architecture.

SoftSDV [5] is an Intel internal simulator for platform and
microarchitecture research. It can be configured with not
only single processor but also multiprocessors, and users can
set various parameters such as main memory size and I/O
configuration. SoftSDV is able to run Windows or Linux with
configured parameters on Windows or Linux-based machines
providing real-life environment. SoftSDV co-simulation in-
cludes the following details.

• Investigating the cache interface in SoftSDV

• Modifying SoftSDV L3 cache model to access FPGA

• Implementing L3 and ring interconnection in SoftSDV

SoftSDV co-simulation depicted in Figure 2(b) requires at
least two FSB accesses for each local L3 miss. Since FPGA

CPU0

L1

L2

CPU1

L1

L2

CPU2

L1

L2

CPU3

L1

L2

CPU4

L1

L2

L3

Ring I/F

L3

Ring I/F

L3

Ring I/F

L3

Ring I/F

L3

Ring I/F

CPU5

L1

L2

L3

Ring I/F

CPU6

L1

L2

L3

Ring I/F

CPU7

L1

L2

L3

Ring I/F

FPGA implementation

(a) Ring-based multi-core schematic

Intel server system

Pentium-III

 2GB PC100 SDRAM

 Memory
controller

SoftSDV
with 8 core

configuration

FPGA

FSB

L3 caches &
Interconnection

modeling

(b) Partition for multi-core co-simulation

Figure 2: SoftSDV multi-core co-simulation

keeps track of all L3 TAG information, the data access la-
tency can be calculated in the first FSB access, depending
on where the data is located (either remote L3(s) or main
memory). The second FSB access is used to confirm if the
latency information returned from the first access is correct
at the simulation time when the calculated access latency is
elapsed. This second access is needed since there could be
routing problem such as the buffer full in the ring interface by
the end of L3 access latency, due to other processors’ accesses
of the interconnection routes. In addition to the ring config-
uration issue, there could be many design options depending
on L3 cache organization. We expect that the distributed
L3 caches and interconnection networks such as torus, ring
and mesh in multi-core architecture are complicated enough
to implement in hardware to reduce the simulation time.

We also plan to use Pentium R©4 based server system, which
accommodates four processors, in our future experiment.
With the ACE board in the system, it enables even faster em-
ulation experiment since FSB operates at 100MHz in the sys-
tem. It could also increase the access frequency to FPGA by
multithreading the simulation across the processors, through
which co-simulation would benefit more from hardware im-
plementation. In addition, Pentium R©4 based server system
creates potential to experiment the behavior of various low-

level caches such as the ACE experiment in the P-III system
and bus-level research such as the coherence traffic efficiency
evaluation in the real multiprocessor environment.

6. REFERENCES
[1] D. Burger and T. Austin. The simplescalar toolset,

version 2.0. Technical Report 1342, University of
Wisconsin, June 1997.

[2] D. Chiou. FAST:FPGA-based Acceleration of Simulator
Timing Models. In 1st Workshop on Architecture
Research using FPGA Platforms, Feb. 2005.

[3] C. R. Clark, R. Nathuji, and H.-H. S. Lee. Using an
FPGA as a Prototyping Platform for Multi-core
Processor Applications. In 1st Workshop on Architecture
Research using FPGA Platforms, Feb. 2005.

[4] J. Hong, E. Nurvitadhi, and S. L. Lu. Design,
Implementation, and Verification of Active Cache
Emulator (ACE). To appear in the International
Symposium on Field Programmable Gate Arrays
(FPGA), Feb. 2006.

[5] R. Uhlig, R. Fishtein, O. Gershon, I. Hirsh, and
H. Wang. A presilicon software development
environment for the IA-64 architecture. Intel Technology
Journal, Dec. 1999.

