
Clock control, interface and debug mechanism for an FPGA based x86 
multi-processors emulator 

 
Thorsten Mattner & Franz W. Olbrich 

Intel Corporation 
Theodor-Heuss-Strasse 7 

D-38122 Braunschweig, Germany 
thorsten.mattner@intel.com franz.olbrich@intel.com 

 
At the beginning of a development of future 

processors there is a need to simulate new 
architectural approaches to minimize risk of failure 
and to optimize the system performance. The 
simulation platform must be capable to handle 
various kinds of system hardware and software. The 
platform must also support functionalities like 
performance measurements, tracing for debug and 
hardware-software co-simulation. All this should be 
provided with a maximum performance. Simulation 
speed is the key factor to accomplish meaningful 
results in reasonable period of time. To execute 
detailed system performance analysis a large trace 
memory is required to store data during simulation. 

Software simulation is a common way to 
provide this functionality but the simulation speed 
is too slow especially when evaluating a very 
complex system over a long time period for 
performance measurements. The achievable 
performance with simulation is in the region of 
several 100 Hz. 

Another approach is using a hardware 
accelerator system. The hardware accelerator 
combines the flexibility of a software simulator 
with increased speed of the hardware acceleration. 
The disadvantages of this approach are the limited 
achievable gate-count and the still low simulation 
speed in the range of several 100 kHz. 

An additional approach is the usage of FPGA 
prototyping systems available on the market. The 
reachable speed is higher as with the hardware 
accelerator. The achievable performance for this 
approach is in the range of a few MHz. The 
limitation of the flexible FPGA prototyping system 
is their generic topology. They are no optimized 
boards for a specific architecture available. The 
second limitation is that these boards do not provide 
tracing, control and debug features. 

 To overcome all the above mentioned 
problems we work on the development of a FPGA 
based x86 multi-processor emulator. The emulator 
system will include emulation clock control 
functionality, time-division-multiplexed interfaces 
and extendable debug and trace capabilities. 
Another advantage of the application specific 
implementation is that the architecture of the target 
system can already be considered during the 
planning phase to avoid possible bottlenecks 
regarding IO capabilities as they might occur in a 
flexible FPGA prototyping system which has to 
support a very flexible topology. The system 

performance will be in the range higher then 10 
MHz. 

Node 1

CTRL and Debug
FPGA

Trace Memory

PCI
Bridge

Host PC
CLK 

CTRL

Logic 1
FPGA

Logic 2
FPGA

Interconnect
FPGA

Inter-Node Interface

FP
G

A
 In

te
rc

on
ne

ct

PCI

CLK 
CTRL

CLK 
CTRL

CLK 
CTRL

Emulated Logic

Emulated Logic

Emulated Logic

C
TR

L

Emulated Logic

Trace

Trace

Trace

Trace
CTRL

Node N

 
The emulated system is running with one or 

more controllable emulation clocks which are 
derived from a global distributed low skew system 
clock. The emulation clocks can be 
enabled/disabled between two adjacent emulation 
clock cycles without loosing the clock accuracy in 
the system. This can either be initiated by a host 
system via software or based on some internal 
events of the system. After the event is handled the 
simulation can be continued without any restart. It 
is also possible to control the clock in a multi board 
setup of the system if a higher system complexity is 
required. The accurate clock controlling is the key 
feature to enable control and debug functionalities. 
The system is scalable via a high speed backplane 
and will fit into a compact PCI rack. 

A basic functionality for every FPGA based 
emulation system is the time division multiplexing 
of physical interfaces (internal or device IO) over a 
high speed link between different FPGAs. This is 
especially needed if the complete system or certain 
sub-blocks doesn’t fit into one FPGA and have to 
be partitioned over several FPGAs. 

There will be a basic tracing functionality 
implemented to trace data without any impact on 
emulation speed. In addition extended trace 



functionality provides tracing capabilities without 
any gap over a specific period of time. To support 
this higher tracing bandwidth the tracing logic is 
capable of stopping the emulator clock via the clock 
control logic whenever the internal 1 GB tracing 
buffer is running full. After the memory content 
was send to the host system the system continues to 
run. 

To configure the system or extract the current 
state of internal logic the system will include 
configuration and status registers in every FPGA 
which can be programmed or read from a control 
and debug PC. These registers are automatically 
included into the FPGA via scripting based on 
configuration files. With this approach it is possible 
to access internal logic in the system to get relevant 
information about the current status. This approach 
also enables hardware-software co-simulation. 


