
Investigation of Transactional Memory Using FPGAs
Simon Grinberg Shlomo Weiss

School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, ISRAEL
simongr1@post.tau.ac.il weiss@eng.tau.ac.il

ABSTRACT

The following outlines an effort to speedup the evaluation

of a transactional memory system without loosing accuracy.

Instead of using the traditional software simulation

techniques we build our system within a large FPGA

device. The system elements are a mix of commercially

available IP cores and our own design. Together with

appropriate runtime monitoring this approach yields a

powerful substitute to simulation.

1. INTRODUCTION
Simulation has traditionally been the method for evaluation

of new ideas and system architectures in the field of

multiprocessors systems. The cost, complexity, and the time

consuming effort of implementing a real system has driven

researchers to revert to simulation. However a truly

accurate simulation of such systems may take weeks per a

single scenario, so researchers had to reduce considerably

the accuracy of their simulations. Inaccurate simulations

may result because of simplified CPU models or fixed delay

networks. We address this in a different way, using Altera’s

largest StratixII FPGA device in order to implement a 16

processor system. This enables us after the initial setup of

the system to run many scenarios in considerably shorter

time then simulation. The setup time of such system is not

much longer then the time to setup a simulation for such a

system.

2. METHOD
The processors used are Altera’s NiosII processors [5]

which are simple and relatively small soft core RISC

processors, each consuming less then one percent of the

selected device resources. The use of these processors

further decreases the time to set up the system since now

the entire system except for the system memory can be

implemented inside the programmable device. Using this

off the shelf microprocessor saves considerable time since

the design of a new processor is time consuming. It is not

done even in simulations which usually adjust an existing

processor model to meet the needs. We do the same here

utilizing the custom instruction feature of the NiosII soft

core. Since the system resides in a single FPGA we don’t

have to design and produce a board of our own, instead we

use an existing board which features a suitable FPGA

device with sufficient attached memory.

We chose Altera’s DSP evaluation board [4] which

accommodates a StratixII EP2S180 device with a total of

32MByte of SDRAM attached to it. We design the system

using Altera’s SOPC [7] builder to further simplify the

system generation process. The SOPC Builder is a system-

design tool which converts a system-description file into

HDL files that can be synthesized into an FPGA. This tool

supports both Altera’s intellectual property system elements

and user modules written in an HDL language. This enables

us to define the building blocks of our system and then

easily create multiple systems in case that a parameterized

system is not sufficient.

3. TRANSACTIONAL MEMORY
We investigate the speculative transactional memory access

approach [1,2,3] which addresses both consistency and

coherency issues of such a system. This approach relies on

statistical analysis of many programs, which shows that in

many cases the synchronization in shared memory

multiprocessors is not actually needed. Some reasons for

this are:

• The conservative approach that programmers take when

inserting synchronization elements. This approach

introduces many unnecessary synchronization points

assuming that any access to shared memory needs to be

protected.

• The dynamic behavior of the program at run time which

may or may not cause data contention at a particular point

of time.

• Programmers must often make trade offs between the

complexity and the time consuming effort of writing fine

grained programs and the poor performance of coarse

grained programs. Fine grained programs introduce

synchronization elements exactly at the point they are

needed and remove them as soon as possible while coarse

grained programs use synchronization elements for large

blocks. Often the coarse grained approach wins, which

means other processes may wait idle until the entire block

ends execution.

The transactional shared memory approach basically

suggests chopping the program into atomic chunks of code

called transactions. Transactions pass data to other

transactions only through the shared memory. Each

transaction is performed locally and writes are stored in an

alternative storage to the shared memory whether it is a

local write buffer [3], the local cache [2], or a shadow block

in the directory table (like in our work), until the transaction

execution ends. When execution ends, the transaction

commits its data to the main memory. At this point any

uncommitted transaction in the system, which used data that

was modified by the recently committed transaction, must

roll back and restart. Consistency is maintained by the

semantics of the transactions, and coherency is guaranteed

by the violation mechanism with roll back which causes re-

fetch of the modified data.

Since the transactional memory itself is not the purpose of

this document we will not go into further detailed

description of the transactional memory system but rather

concentrate on the proposed system and the methods we use

to implement and evaluate a transactional memory system

using FPGAs.

4. USING FPGAs TO IMPLEMENT

TRANSACTIONAL MEMORY
Figure 1 illustrates a multiprocessor system that supports

transactions. The target multiprocessor is a DSM

(distributed shared memory) system in which each node is

an SMP (symmetric multiprocessor). In order to achieve

that, we compose our system as clusters of microprocessors

representing an SMP, each with an attached shared

memory. These clusters are interconnected to each other.

Each of the processors in the system can access both its

local shared memory or the memory of the other clusters

paying the penalty of an inter-cluster programmed delay

emulating the distributed system. This penalty may be

reduced to none thus making the equivalent of one large

SMP composed of all the processors in the system.

4.1 System Switch Fabric and Local Switch

Fabric
The System Switch Fabric is the Altera’s Avalon switch

fabric [6] which is instantiated by the SOPC builder. This

fabric comprises of address decoders, data-path

multiplexers, and built in arbiters. It supports a variety of

bus sizes, peripherals, clock-domain crossers, and most

importantly variable-latency transactions and burst

transactions. Since the Avalon interconnecting fabric

supports variable latency, we utilize this feature by adding a

delay element before each memory module and the fabric,

thus emulating varying delay network typical to DSM. This

delay is determined on a per node (processor) basis

enabling us to use in fact a single fabric which can be

programmed to divide the system to clusters. Zero added

delay between a processor and a memory element means

that they belong to the same cluster (local switch fabric)

while any other delay represents the DSM delay (system

switch fabric). This scheme enables any configuration of

clusters from one processor per cluster and up to all

processors on the same cluster (one SMP). The delay

between clusters may be fixed or pseudo random depending

on the chosen scenario.

Figure 1. Distributed shared memory system on an FPGA.

Each microprocessor cluster represents a symmetric

multiprocessor.

4.2 Microprocessor
As already noted, the processor used is Altera’s soft core

processor, NiosII. The version we use is the five pipeline

stages processor. The interface of this processor to the

system in our implementation consists of the data bus, the

instruction bus, and the interrupt line. The data bus is used

for the transaction data and also for accessing dedicated

memory mapped locations over the switch fabric. These

memory locations are used to dispatch transactions to the

processors, pass information between the processors and

the transaction control engines, and arbitrate for commit

grant. The instruction bus is used for transaction

instructions fetches. The interrupt line is used to roll back

the current transaction. This interrupt line is connected to

the Transaction Rollback Controller.

4.3 System Memory
In a real system, each cluster has an attached local memory

with a Directory placed between the memory and the

system fabric. However the evaluation board we use has a

single 32Mbytes SDRAM which can be controlled by a

single memory controller located inside the FPGA. To

solve this issue we divide the memory into logical data

memory units each serving one cluster. This partition is

achieved by adding an adapting layer between the SDRAM

controller and the rest of the logic. This layer has one slave

port per directory such that each directory is attached to this

layer as if it were connected directly to the SDRAM

controller. In addition the connecting layer has another

slave port emulating an additional memory holding the

program code and serving all processors. The cost of this

adapter layer is slower memory access since it actually

shares the SDRAM bandwidth between all the directories.

4.4 Directory
The Directory placed between each logical data unit and the

fabric is designed to support the transactional memory

system. Its key features are:

• It keeps track of transactional accesses to each block.

When a transaction from a specific processor has

committed, the directory updates the rest of the processors

about this event.

 • It holds shadow blocks (copies of dirty blocks that a

processor had to evict from the cache before the end of the

transaction). When the processor needs the evicted block

again the shadow block will be returned instead of the main

memory copy of the block. Other processors always access

the valid, committed copy of the block.

The second feature enables us to share a pool of relatively

low cost memory block buffers residing in external memory

dedicated for the directory among all the processors in the

system. This enlarges the size of the maximum transaction

available beyond the limited size of the local cache of each

processor. In our limited board resources we have to use

part of the logical memory allocated for each cluster for this

use. When the pool of shadow blocks buffers is full then the

directory requests the identity of the processor which is

least likely to commit, from the commit engine and orders it

to rollback. This frees the shadow resources acquired by

this processor and enables the more likely to commit

processors to advance. If required this process repeats itself

until there is only a single processor which owns shadow

block buffers in that directory. This sets an upper limit to

the size of a single transaction in the system. It cannot be

larger then the local cache size plus the size of the smallest

directory shadow blocks pool in the system.

4.5 Transaction Rollback Controller
The rollback of a violated transaction is done using the

interrupt lines to the cores. Each processor has an

associated transaction rollback controller. These are

mapped on the system switch fabric so they can be accessed

by any of the directories. The directory informs the rollback

controller that a transaction violation has occurred by

writing a violation message to its location on the system

fabric. The Rollback Controller decides whether a rollback

is required and if so it sends an interrupt signal to the

processor. This makes the rollback process itself

straightforward. In the rollback interrupt routine the

processor invalidates the entire cache, loads again the

transaction start address to the instruction pointer and

returns to transaction execution from the beginning. A

possible performance enhancement may be to flush from

the cache only the blocks which came from the directory

that initiated the rollback plus the dirty blocks, instead of

flushing the entire cache.

4.6 Instructions cache
The instruction cache is the standard instruction cache

which comes with the NiosII processor. This cache is

implemented as a simple one way cache.

4.7 Data cache
The standard NiosII data cache is replaced with our own

data cache. We achieve that by generating the NiosII

processor without a data cache but only with an Avalon

master port for the data bus. Our cache is inserted between

the fabric and the processor, connected as an Avalon slave

to the processor’s data bus and as an Avalon master to the

system switch fabric. This cache is customized to support

the Directory Based Transactional Memory System

including support for the shadow write back of a block

whenever eviction is necessary. Until a transaction commits

all the transaction dirty blocks are kept in the cache or in a

shadow block in the directory. When a transaction commits,

all the dirty blocks in the cache are written to the main

memory and if the directory holds shadow blocks for this

cache they are also committed to the main memory.

Since our system may have up to sixteen processors, and in

view of the limited internal memory resources of the FPGA,

we implement a small one-way cache. The actual size is

determined according to the number of processors used.

4.8 Transaction Dispatch Engine
The Transaction Dispatch engine is the heart of our system.

It holds the program outline in the form of transactions.

Without going into too many details each transaction is

represented by its location in the code and its commit order.

This program outline is prepared by a modified GNU

compiler.

Each processor in the system is waiting in a loop over a

local memory location which can be also accessed from the

switch fabric. The Transaction Dispatch Engine initiates a

new transaction by writing a new program pointer value to

this local memory. The communication between the

processors and the engines is done via the fabric to emulate

a real system in which the Transaction Engines can reside

only in one cluster or in a totally separated location. A

programmable delay is added to any access between each

processor and the engines to emulate this.

4.9 Transaction Commit Engine
The transaction commit engine is responsible for commit

grants for the entire system. It only holds information about

the transaction currently running on each of the processors

and the relations between them, and grants commit

according to that. Only one processor in the system is

allowed to commit at any given moment. No concurrent

commits allowed. When a transaction commit is done the

Commit Engine signals the Dispatch engine that the

processor just committed is free to accept new transaction.

5. PERFORMANCE EVALUATION
In our evaluation board we use an attached one megabyte

SRAM to collect the required data. This data is read at the

end of the program execution in debug mode via the JTAG

debug connector.

5.1 Performance calibration statistics
The transaction dispatch engine allocates a table in the

SRAM to hold these statistics. The Transaction ID serves as

a pointer to its entry in this table.

• Rollback due to data contention counters. When executing

a transaction, each processor counts rollback events for this

transaction in its rollback interrupt routine. At the end of

the commit process this counter value is reported to the

Transaction Commit Engine which updates the table. A

large number of rollbacks may suggest that the transaction

is too large and the programmer may want to reduce it to

improve performance.

• Directory out of shadow blocks memory indication. A

time stamp of this event is logged to each active

Transaction entry. This helps identifying the set of

transactions leading to this event that may involve

substantial performance penalty.

• Directory shadow blocks usage. Each time the cache

issues a shadow block write-back request this event is

counted in the transaction statistics table. If a transaction

has a high count of shadow block usage and also has an

indication that a Directory out-of-shadow event occurred

during the transaction execution, the programmer may need

to split this transaction to improve performance.

5.2 Performance statistics
The following are counters implemented and saved inside

the FPGA.

• Total program execution time, logged by the Transaction

Dispatch Engine. It counts the number of cycles from the

dispatch of the first transaction to commit end of the last

one.

• Average idle time per CPU due to ordering issue. In

ordered transactions this counter counts the wasted cycles

spent waiting to preceding transactions to end execution.

• Average idle time per CPU due to commit bus load. It

counts idle cycles spent when the bus is occupied by

another committing transfer.

• Total average idle time per CPU. It counts all the delays,

including wait for the cache to fetch data.

6. CONCLUSIONS
Using FPGAs to simulate a transactional memory system is

fast and accurate. It can considerably reduce weeks of

simulations to hours. While simulations have to reduce

accuracy in order to deliver results in acceptable time the

FPGA approach runs a real system and experiences

accurate fabric behavior.

Performance monitoring is the weak spot of the entire

FPGA system simulation concept. Unlike in software

simulators, in an FPGA it is not possible to collect

megabytes of data during run time. The resources are

limited. We must carefully plan the statistics we require and

add system monitors that collect this data during run time.

7. ACKNOWLEDGMENTS
We thank Altera for supplying us with the required

evaluation board and product licensing.

8. REFERENCES
[1] Maurice Herlihy, J. Eliot B. Moss. Transactional

memory: architectural support for lock-free data

structures. Proceedings of the 20th annual international

symposium on Computer architecture, pages 289 –

300, 1993.

[2] Ravi Rajwar, James R. Goodman. Transactional lock-

free execution of lock-based programs. Proceedings of

the 10th international conference on Architectural

support for programming languages and operating

systems, pages 5 – 17, 2002.

[3] Lance Hammond, Kunle Olukotun, Vicky Wong, Mike

Chen, Brian D. Carlstrom, John D. Davis, Ben

Hertzberg, Manohar K. Prabhu, Honggo Wijaya,

Christos Kozyrakis. Transactional Memory Coherence

and Consistency. Proceedings of the 31st annual

international symposium on Computer architecture,

pages 102 – 113, 2004.

[4] Altera. Stratix II EP2S180 DSP Development Board

Reference Manual. August 2005.

[5] Altera. Nios II Processor Reference Handbook.

October 2005.

[6] Altera. Avalon Interface Specification. May 2005

[7] Altera. Quartus II Version 5.1 Handbook, Volume 4,

SOPC Builder. October 2005.

