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ABSTRACT 

The following outlines an effort to speedup the evaluation 

of a transactional memory system without loosing accuracy. 

Instead of using the traditional software simulation 

techniques we build our system within a large FPGA 

device. The system elements are a mix of commercially 

available IP cores and our own design. Together with 

appropriate runtime monitoring this approach yields a 

powerful substitute to simulation. 

1. INTRODUCTION 
Simulation has traditionally been the method for evaluation 

of new ideas and system architectures in the field of 

multiprocessors systems. The cost, complexity, and the time 

consuming effort of implementing a real system has driven 

researchers to revert to simulation. However a truly 

accurate simulation of such systems may take weeks per a 

single scenario, so researchers had to reduce considerably 

the accuracy of their simulations. Inaccurate simulations 

may result because of simplified CPU models or fixed delay 

networks. We address this in a different way, using Altera’s 

largest StratixII FPGA device in order to implement a 16 

processor system. This enables us after the initial setup of 

the system to run many scenarios in considerably shorter 

time then simulation. The setup time of such system is not 

much longer then the time to setup a simulation for such a 

system. 

2. METHOD 
The processors used are Altera’s NiosII processors [5] 

which are simple and relatively small soft core RISC 

processors, each consuming less then one percent of the 

selected device resources.  The use of these processors 

further decreases the time to set up the system since now 

the entire system except for the system memory can be 

implemented inside the programmable device. Using this 

off the shelf microprocessor saves considerable time since 

the design of a new processor is time consuming. It is not 

done even in simulations which usually adjust an existing 

processor model to meet the needs. We do the same here 

utilizing the custom instruction feature of the NiosII soft 

core. Since the system resides in a single FPGA we don’t 

have to design and produce a board of our own, instead we 

use an existing board which features a suitable FPGA 

device with sufficient attached memory.  

We chose Altera’s DSP evaluation board [4] which 

accommodates a StratixII EP2S180 device with a total of 

32MByte of SDRAM attached to it. We design the system 

using Altera’s SOPC [7] builder to further simplify the 

system generation process. The SOPC Builder is a system-

design tool which converts a system-description file into 

HDL files that can be synthesized into an FPGA. This tool 

supports both Altera’s intellectual property system elements 

and user modules written in an HDL language. This enables 

us to define the building blocks of our system and then 

easily create multiple systems in case that a parameterized 

system is not sufficient. 

3. TRANSACTIONAL MEMORY 
We investigate the speculative transactional memory access 

approach [1,2,3] which addresses both consistency and 

coherency issues of such a system. This approach relies on 

statistical analysis of many programs, which shows that in 

many cases the synchronization in shared memory 

multiprocessors is not actually needed. Some reasons for 

this are:   

• The conservative approach that programmers take when 

inserting synchronization elements. This approach 

introduces many unnecessary synchronization points 

assuming that any access to shared memory needs to be 

protected.   

• The dynamic behavior of the program at run time which 

may or may not cause data contention at a particular point 

of time.   

• Programmers must often make trade offs between the 

complexity and the time consuming effort of writing fine 

grained programs and the poor performance of coarse 

grained programs. Fine grained programs introduce 

synchronization elements exactly at the point they are 

needed and remove them as soon as possible while coarse 

grained programs use synchronization elements for large 

blocks. Often the coarse grained approach wins, which 

means other processes may wait idle until the entire block 

ends execution. 

The transactional shared memory approach basically 

suggests chopping the program into atomic chunks of code 

called transactions. Transactions pass data to other 

transactions only through the shared memory. Each 

transaction is performed locally and writes are stored in an 

alternative storage to the shared memory whether it is a 

local write buffer [3], the local cache [2], or a shadow block 

in the directory table (like in our work), until the transaction 

execution ends. When execution ends, the transaction 

commits its data to the main memory. At this point any 



uncommitted transaction in the system, which used data that 

was modified by the recently committed transaction, must 

roll back and restart. Consistency is maintained by the 

semantics of the transactions, and coherency is guaranteed 

by the violation mechanism with roll back which causes re-

fetch of the modified data.   

Since the transactional memory itself is not the purpose of 

this document we will not go into further detailed 

description of the transactional memory system but rather 

concentrate on the proposed system and the methods we use 

to implement and evaluate a transactional memory system 

using FPGAs. 

4. USING FPGAs TO IMPLEMENT 

TRANSACTIONAL MEMORY 
Figure 1 illustrates a multiprocessor system that supports 

transactions. The target multiprocessor is a DSM 

(distributed shared memory) system in which each node is 

an SMP (symmetric multiprocessor). In order to achieve 

that, we compose our system as clusters of microprocessors 

representing an SMP, each with an attached shared 

memory. These clusters are interconnected to each other. 

Each of the processors in the system can access both its 

local shared memory or the memory of the other clusters 

paying the penalty of an inter-cluster programmed delay 

emulating the distributed system. This penalty may be 

reduced to none thus making the equivalent of one large 

SMP composed of all the processors in the system.  

4.1 System Switch Fabric and Local Switch 

Fabric 
The System Switch Fabric is the Altera’s Avalon switch 

fabric [6] which is instantiated by the SOPC builder. This 

fabric comprises of address decoders, data-path 

multiplexers, and built in arbiters. It supports a variety of 

bus sizes, peripherals, clock-domain crossers, and most 

importantly variable-latency transactions and burst 

transactions. Since the Avalon interconnecting fabric 

supports variable latency, we utilize this feature by adding a 

delay element before each memory module and the fabric, 

thus emulating varying delay network typical to DSM.  This 

delay is determined on a per node (processor) basis 

enabling us to use in fact a single fabric which can be 

programmed to divide the system to clusters. Zero added 

delay between a processor and a memory element means 

that they belong to the same cluster (local switch fabric) 

while any other delay represents the DSM delay (system 

switch fabric). This scheme enables any configuration of 

clusters from one processor per cluster and up to all 

processors on the same cluster (one SMP). The delay 

between clusters may be fixed or pseudo random depending 

on the chosen scenario. 

Figure 1. Distributed shared memory system on an FPGA. 

Each microprocessor cluster represents a symmetric 

multiprocessor. 

4.2 Microprocessor 
As already noted, the processor used is Altera’s soft core 

processor, NiosII. The version we use is the five pipeline 

stages processor. The interface of this processor to the 

system in our implementation consists of the data bus, the 

instruction bus, and the interrupt line. The data bus is used 

for the transaction data and also for accessing dedicated 

memory mapped locations over the switch fabric. These 

memory locations are used to dispatch transactions to the 

processors, pass information between the processors and 

the transaction control engines, and arbitrate for commit 

grant. The instruction bus is used for transaction 

instructions fetches. The interrupt line is used to roll back 

the current transaction. This interrupt line is connected to 

the Transaction Rollback Controller.  

4.3 System Memory 
In a real system, each cluster has an attached local memory 

with a Directory placed between the memory and the 

system fabric. However the evaluation board we use has a 

single 32Mbytes SDRAM which can be controlled by a 

single memory controller located inside the FPGA. To 

solve this issue we divide the memory into logical data 

memory units each serving one cluster. This partition is 

achieved by adding an adapting layer between the SDRAM 

controller and the rest of the logic. This layer has one slave 

port per directory such that each directory is attached to this 

layer as if it were connected directly to the SDRAM 



controller. In addition the connecting layer has another 

slave port emulating an additional memory holding the 

program code and serving all processors. The cost of this 

adapter layer is slower memory access since it actually 

shares the SDRAM bandwidth between all the directories.  

4.4 Directory  
The Directory placed between each logical data unit and the 

fabric is designed to support the transactional memory 

system.  Its key features are: 

• It keeps track of transactional accesses to each block. 

When a transaction from a specific processor has 

committed, the directory updates the rest of the processors 

about this event. 

 • It holds shadow blocks (copies of dirty blocks that a 

processor had to evict from the cache before the end of the 

transaction). When the processor needs the evicted block 

again the shadow block will be returned instead of the main 

memory copy of the block. Other processors always access 

the valid, committed copy of the block. 

The second feature enables us to share a pool of relatively 

low cost memory block buffers residing in external memory 

dedicated for the directory among all the processors in the 

system. This enlarges the size of the maximum transaction 

available beyond the limited size of the local cache of each 

processor. In our limited board resources we have to use 

part of the logical memory allocated for each cluster for this 

use. When the pool of shadow blocks buffers is full then the 

directory requests the identity of the processor which is 

least likely to commit, from the commit engine and orders it 

to rollback. This frees the shadow resources acquired by 

this processor and enables the more likely to commit 

processors to advance. If required this process repeats itself 

until there is only a single processor which owns shadow 

block buffers in that directory. This sets an upper limit to 

the size of a single transaction in the system. It cannot be 

larger then the local cache size plus the size of the smallest 

directory shadow blocks pool in the system.    

4.5 Transaction Rollback Controller 
The rollback of a violated transaction is done using the 

interrupt lines to the cores. Each processor has an 

associated transaction rollback controller. These are 

mapped on the system switch fabric so they can be accessed 

by any of the directories. The directory informs the rollback 

controller that a transaction violation has occurred by 

writing a violation message to its location on the system 

fabric. The Rollback Controller decides whether a rollback 

is required and if so it sends an interrupt signal to the 

processor. This makes the rollback process itself 

straightforward. In the rollback interrupt routine the 

processor invalidates the entire cache, loads again the 

transaction start address to the instruction pointer and 

returns to transaction execution from the beginning. A 

possible performance enhancement may be to flush from 

the cache only the blocks which came from the directory 

that initiated the rollback plus the dirty blocks, instead of 

flushing the entire cache.   

4.6 Instructions cache 
The instruction cache is the standard instruction cache 

which comes with the NiosII processor. This cache is 

implemented as a simple one way cache. 

4.7 Data cache  
The standard NiosII data cache is replaced with our own 

data cache. We achieve that by generating the NiosII 

processor without a data cache but only with an Avalon 

master port for the data bus. Our cache is inserted between 

the fabric and the processor, connected as an Avalon slave 

to the processor’s data bus and as an Avalon master to the 

system switch fabric. This cache is customized to support 

the Directory Based Transactional Memory System 

including support for the shadow write back of a block 

whenever eviction is necessary. Until a transaction commits 

all the transaction dirty blocks are kept in the cache or in a 

shadow block in the directory. When a transaction commits, 

all the dirty blocks in the cache are written to the main 

memory and if the directory holds shadow blocks for this 

cache they are also committed to the main memory. 

Since our system may have up to sixteen processors, and in 

view of the limited internal memory resources of the FPGA, 

we implement a small one-way cache. The actual size is 

determined according to the number of processors used.   

4.8 Transaction Dispatch Engine 
The Transaction Dispatch engine is the heart of our system. 

It holds the program outline in the form of transactions. 

Without going into too many details each transaction is 

represented by its location in the code and its commit order. 

This program outline is prepared by a modified GNU 

compiler.  

Each processor in the system is waiting in a loop over a 

local memory location which can be also accessed from the 

switch fabric. The Transaction Dispatch Engine initiates a 

new transaction by writing a new program pointer value to 

this local memory. The communication between the 

processors and the engines is done via the fabric to emulate 

a real system in which the Transaction Engines can reside 

only in one cluster or in a totally separated location. A 

programmable delay is added to any access between each 

processor and the engines to emulate this.     

4.9 Transaction Commit Engine 
The transaction commit engine is responsible for commit 

grants for the entire system. It only holds information about 

the transaction currently running on each of the processors 

and the relations between them, and grants commit 

according to that. Only one processor in the system is 

allowed to commit at any given moment. No concurrent 

commits allowed. When a transaction commit is done the 



Commit Engine signals the Dispatch engine that the 

processor just committed is free to accept new transaction.  

5. PERFORMANCE EVALUATION 
In our evaluation board we use an attached one megabyte 

SRAM to collect the required data. This data is read at the 

end of the program execution in debug mode via the JTAG 

debug connector.     

5.1 Performance calibration statistics 
The transaction dispatch engine allocates a table in the 

SRAM to hold these statistics. The Transaction ID serves as 

a pointer to its entry in this table. 

• Rollback due to data contention counters. When executing 

a transaction, each processor counts rollback events for this 

transaction in its rollback interrupt routine. At the end of 

the commit process this counter value is reported to the 

Transaction Commit Engine which updates the table. A 

large number of rollbacks may suggest that the transaction 

is too large and the programmer may want to reduce it to 

improve performance. 

• Directory out of shadow blocks memory indication. A 

time stamp of this event is logged to each active 

Transaction entry. This helps identifying the set of 

transactions leading to this event that may involve 

substantial performance penalty.  

• Directory shadow blocks usage. Each time the cache 

issues a shadow block write-back request this event is 

counted in the transaction statistics table. If a transaction 

has a high count of shadow block usage and also has an 

indication that a Directory out-of-shadow event occurred 

during the transaction execution, the programmer may need 

to split this transaction to improve performance.  

5.2 Performance statistics 
The following are counters implemented and saved inside 

the FPGA. 

• Total program execution time, logged by the Transaction 

Dispatch Engine. It counts the number of cycles from the 

dispatch of the first transaction to commit end of the last 

one.  

• Average idle time per CPU due to ordering issue. In 

ordered transactions this counter counts the wasted cycles 

spent waiting to preceding transactions to end execution.  

• Average idle time per CPU due to commit bus load. It 

counts idle cycles spent when the bus is occupied by 

another committing transfer. 

• Total average idle time per CPU. It counts all the delays, 

including wait for the cache to fetch data. 

6. CONCLUSIONS 
Using FPGAs to simulate a transactional memory system is 

fast and accurate. It can considerably reduce weeks of 

simulations to hours. While simulations have to reduce 

accuracy in order to deliver results in acceptable time the 

FPGA approach runs a real system and experiences 

accurate fabric behavior.         

Performance monitoring is the weak spot of the entire 

FPGA system simulation concept. Unlike in software 

simulators, in an FPGA it is not possible to collect 

megabytes of data during run time. The resources are 

limited. We must carefully plan the statistics we require and 

add system monitors that collect this data during run time.  
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