FPGA-based Fast, Cycle-Accurate, Full-System
Simulators

Derek Chiou, Huzefa Sunjeliwala, Dam Sunwoo, John Xu anchiNRatil
University of Texas at Austin, Electrical and Computer Ewgring
{derek,sanjeliw,sunwoo,zxu,npatece.utexas.edu

Abstract— An ideal computer simulator is (i) fast, (ii) accurate
to cycle level resolution, (iii)complete, modeling the entire system
and running unmodified applications and operating systems(iv)
transparent providing visibility into all aspects of the system with
minimum impact to simulation performance, (iv) inexpensive and
(v) easy to create, extend and modify. Conventional wisdom says
that no simulator can simultaneously have all these properés[1]
and none currently does. Instead, simulators are speciakd,
emphasizing some desired properties over others. For exar®
architectural simulators traditionally trade speed for accuracy
while full-system simulators traditionally trade accuracy for
speed.

This paper describes an approach to simulation that potentlly
has all of the characteristics of an ideal simulator listed aove.
It achieves its capabilities by partitioning a simulator into a
software component and a hardware component implemented
in FPGAs. The resulting simulators are capable of 1M to
100M cycles per second, full cycle-accuracy, the ability toun
unmodified applications and operating systems and full vidiility
at a reasonable price. Such a simulator could potentially rsult in
simulator convergence, where different groups can use theame
simulation infrastructure, resulting in more coherent architec-
tures, implementations and software.

I. INTRODUCTION

however, a software-based cycle-accurate simulator would
require tens to hundreds of thousands of processors which is
currently infeasible and would be very costly. It is cleaatth
faster cycle-accurate simulators require hardware stppor

Several companies such as Cadence (Quickturn and Palla-
dium), Axis, IKOS and Tharas sell field-programmable gate
array (FPGA) based accelerators or emulators to improve
cycle-accurate simulator performance. In such systengs, re
ister transfer logic (RTL) code is compiled for an acceler-
ator/emulator box or card, sometimes in conjunction with
components executing in software. Such systems cafadbe
(up to 100M cycles per secondsuccurate, complete and
transparent, but are so expensive that even large companies
can only afford a few copies and often nedsy-to-use. In
addition, these systems require a complete version of the RT
further increasing the cost and time-to-simulation.

There are several projects, many that were presented at the
first WARFP, that implement some components of a computer
system, such as the processor, memory controller[8], [t4] o
both[7], [12], [5], [16], in FPGAs and the rest in real hardea
Such systems aréast and generallycomplete, but are not

Being able to accurately and quickly predict properties @iccurate unless all components are implemented in FPGAs

computer systems is useful for architects, designersyaodt

which makes such systems difficult to initially develop and

developers and users of computers. Simulators provideofien difficult to modify.

window into the inner workings of the computer that help
foster understanding and enable the accurate evaluation of 1.
ideas and theories. Because simulators often do not have the

UNIVERSITY OF TEXAS FPGA-ACCELERATED
SIMULATION TECHNOLOGIES(UT FAST)

same constraints as a real implementation, they can be madA cycle-accurate computer simulator can be partitioneal int

easier to probe, examine and modify.

(i) a timing model that simulates only the micro-architectural

A myriad of simulators exists. Architects traditionallyeus structures that affect timing and resource arbitration @nd

software-based cycle-accurate simulators to evaluategsex

a functional model that simulates only the instruction set

eration processor and system architectures. There are marghitecture (ISA). The timing model implements only the
such simulators in academia and industry[10], [4], [1],][18control path and not the datapath, making the model itself

[2], [15], [19] and simulator builders[23]. Such simuladaare

transparent and can beaccurate but are generally slow, sim-

extremely small, simple and easy to build up out of com-
posable functional units. For example, the timing modejonl

ulating a single complex processor at around 10K cycles gerplements cache tags and not the data itself. ALUs become
second. Thus, such simulators are too slow to run real applipipeline stages. Likewise, the functional model knows imgth
tions on real data sets. Benchmarking[22] and sampling[2@pout timing issues, also making it small and easy to extend.

[9] can reduce the number of instructions while attemptimg
maintain accurate performance prediction capabilitietsaa
still simplifications that can miss complex interactionsieen

t This partitioning is not novel. For example, Asim[10] and
Simplescalar[1] are both partitioned in this fashion. Heerg
since both components are running on the same processor

the application and the operating system, external everds an such simulators, no effort was made to minimize the

parallelism.

communication between the two models. In such simulators,

The only real solution is a cycle-accurate simulator fashere is also much more processing done in the timing model
enough to run real applications. Even with perfect speedujye to the large number of parallel structures to simulae th

inst (O~ @]
. stream . --
Timin - Functional
9 [Oeicremniz |
Model Model 1
FPGA software Reservation(ion Reservation(/##)ion
(micro-arch, stats) feedbacke (ISA)
ALQ ‘ ‘ e Memory Bus

Load/ Store@h
Q’nleback 622

; ; . ot ail’mg Fig. 2. A simple superscalar processor implemented in FASIE solid
in the functional model. In addition, most statistics g white circles indicate the DGR of amdd instruction while the lined circles

is done within the timing model since it produces perform@anggicate the DGR of 4 oad instruction.
information, further slowing down the timing model.
FAST attacks the performance bottleneck inherent in soft-

ware simulators by implementing the timing model in hardyymes, instruction and data virtual addresses and data writ
ware. Hardware is inherently parallel and thus can effityentepy o special registers such as software-filed TLB entries
implement the parallel structures found in the timing modeAqgitional and/or redundant information, such as physical
The separation between functional model and timing modghgresses, can also be passed from the functional model to
eliminates the need to support the data path, dramaticalf¢ timing model to further simplify the latter at the expens
reducing the hardware resources required. Thus, very @mphs 4 larger instruction stream.
processors can fit in a relatively small amount of hardware. | g4ch decoded instruction is “executed” by the timing model
addition, hardware can be applied to gather statisticshIigTR 1, 4rpitrating for and consuming the required resources in
full speed statistics gathering and processing. _ the correct order as required by the instruction. The timing

Unlike existing software-only simulators, FAST simul&or 64| transforms the decoded opcode, by some combination
are carefully optimized to minimize communication betweegy t5pje lookup and combinational logic, into a directedpgra
the functional model and timing model. By doing so, the tWgs rasources (DGR) used to execute the instruétiofn
models can be more loosely coupled and thus be implemenfgd esting side-effect of the DGR method is that any ISA
in different technologies with little impact on performa&nc .5 pe mapped to a timing model that is capable of supporting

Unlike other hybrid FPGA/software simulators that arg,at|SA. For example, a Pentium M timing model could run a
partitioned on target system module boundaries such agyerPC ISA by changing only the opcode-to-DGR mapping.
cache, a floating point unit or even a processor core, FAST isg,ch a simulator is essentially the same as a classic
partitioned on the simulator boundary between the funetiof;ce-driven simulator with the software-based timing elod
ality and timing. This architecture pushes all of the hayd-f replaced by an FPGA-based timing model. Such simulators
software-easy-for-hardware components to hardware a&d fhe capable of simulating non-speculative, non-parditelad
hard-for-hardware-easy-for-software components tow&o#, 5rget system micro-architectures. For example, a traiverd
minimizing bottlenecks. simulator could simulate a micro-architecture based oras-cl
A FAST Basics sic Tomasulo algorithm with no branch prediction even thoug

it does exploit parallelism in a single instruction stredmt

An instruction set simulator capable of booting operatingingamentally does not change the instruction stream. e s
systems and running unmodified applications is used as §jgtems, the communication latency between the functional
functional models. Existing simulators such as Simics[11},odel and timing model are not important since there is

SimOS[18], Bochs[13], QEMU[17], M5[2], Mambo[4] and g feedback, making a hardware timing model an obvious
AMD's SimNow[21] can all serve as full-system functionaherformance win.

models. Such functional simulators are capable of running i
excess of 100M instructions per second, though not all do.B. A Smple Example

Figure 1 is a high-level view of a FAST simulator. The Figure 2 shows an example of a very simple non-
functional model implemented in software pipes an instaunct speculative, single-issue superscalar processor and @Gie D
stream to the timing model implemented in FPGAZhe for two instructions,add and| oad. Each instruction must
functional model’s job is to decode and execute one insbmct first traverse the FETCH unit where the instruction TLB and
at a time and generate a “perfect” instruction stream withl cache are checked and will stall upon a miss. The instruc-
correctly resolved branches. It pipes the decoded ingtructtion then traverses the DECODE unit where it is determined
including a decoded opcode, source and destination regigfethe read register values are available (the actual values

Fig. 1. A High-Level View of a FAST simulator

1Though initial implementations use a software-based fanat model, °The DGR can be complex. For example, each node in the DGR aamn ha
hardware-accelerated and hardware implemented funttioodels[16] are multiple output arcs that can be conditionally traversed amultiple input
possible. The entire FAST simulator can also be implemeintgdire software arcs of which a configurable subset may fire the next node.eThway be
if FPGA-board availability is an issue. looping in a DGR as well to implement complex instructions.

are not stored, but a presence bit is) and appropriate eegidboing so dramatically reduces the cost of rollback at the cos
renaming is performed. Then thedd instruction goes to of bandwidth between the functional model and timing model.
the ALU reservation station where it waits for any pending There are ways to dramatically reduce the need for rollback
arguments, if necessary, and then is passed to the ALU. Omawell. For example, our initial implementation modelsygien
theadd instruction completes, it gets put on the bypass busksanch predictors in the functional model. It is not prelgise
to the ALU and the LOAD/STORE unit and arbitrates foaccurate due to timing variations in updating the branch
the WRITEBACK unit to be written back (set presence bit tprediction structures and thus is a branch predictor ptedic
present in the register file.) The functional model assumes that its branch predictor is

After the DECODE unit, thd oad instruction goes to the correct and either executes a conservative number of wrong-
LOAD/STORE unit where the effective address is computefdath instructions or executes until it is told to stop by the
the data TLB and cache are checked and stalls upon a misgsing model. In addition, the timing model continues to
Once thd oad completes in the memory hierarchy, the resuthodel the real branch predictor with timing and is capable
gets put on the bypass buses and the result arbitrates for afienotifying the functional model when its branch predictor
WRITEBACK unit to be written back. is incorrect. The accuracy of the branch predictor predicto
however, is very high and thus almost eliminates rollbacks.

One may wonder why the timing model does not need to be

The FAST simulators described above are simple but ino@lled back as well. Since branch prediction is performetiat
pable of simulating realistic processors that predict bn@s. head of the pipeline, the timing model can avoid being pedut
The basic problem is that speculative processors will exeecipy wrong instructions being issued from the functional niode
down an incorrect instruction path, fetching and issuing-miby stalling and waiting for the right (but incorrect) insttions
speculated instructions, until the misspeculation isalisced to be passed to it. Interestingly, microprocessor architec
and corrected. The functional model, however, will natyraland optimizations are generally beneficial to FAST simufato
execute the correct path and thus will not normally produes well.
misspeculated instructions.) _)

FAST simulators resolve this issue by implementing tha- Functional/Timing Model Interaction
simulated branch predictor and forcing the functional nieale FAST performance hinges on the interface between the
mis-speculate when necessary. If the timing model implémerfunctional model and the timing model. Care must be taken
the branch predictor, it notifies the functional model of migo maximize the performance of the communication protocol,
predicted branches so that the functional model can ther isits implementation and the physical link. Most of the commu-
instructions from the wrong path to drive the timing modehication flows from the functional model to the timing model
Mis-predicted branches are always resolved by the timirg instructions written to an instruction buffer. There ised
model. When a branch is resolved, the timing model must command queues from the timing model to the functional
again notify the functional model of that fact so that thenodel (i) to commit instructions and thus free up instructio
functional model can continue executing down the correbtffer slots and (ii) to force instruction execution downowg
path. This notification requires a communication path frogath or to return instruction execution back to the righthpat
the timing model to the functional model. That path nowecessary for simulation speculation or parallelism.
introduces a loop where communication costs matter. TheThe size of each instruction in the trace is important and can
shorter the time between the timing model indicating a bhanbe aggressively compressed. For example, an uncompressed
mis-prediction to the functional model issuing specukatiwepresentation of x86 instructions takes about 32B. Such
instructions is critical for performance. That time is degent an instruction encodes virtually everything from a flatiéne
on the size of the messages and the latency and bandwidtlopfode to instruction and data virtual and physical adésess
the communication channel. to source and destination registers, regardless of whéibgr

To mis-speculate and resume, the functional model suppaate used. Compression techniques such as mirroring siomlat
rollback. The two rollbacks are signaled usingsat pc structures like TLBs and translated instruction buffersl an
command from the timing model to the functional model thatddress compression[6] can dramatically reduce the aserag
rolls back to a particular past instruction and forces itgpam number of bytes per instruction, perhaps by a factor of eight
counter to a specified value. FAST currently relies on safwaor more, at the cost of increased complexity in the functiona
checkpoints of the functional model to implement rollbacksnodel. In addition, techniques used in high-performancae pa
Depending on the relative overhead of a checkpoint, tlalel systems to improve the communication can also be used
timing model can cache the correct path trace to minimize th®improve communication between the functional model and
functional model roll back on recovery. We are experimentirthe timing model.
old value logging to make rollback faster. The overwritten
values can either be saved by software or passed to the timing
model as part of the instruction stream. In the latter cds®, t Our inital set of FAST simulators supports the IA32 instruc-
timing model can, upon rollback, return only the most recetibn set. We are currently using a heavily modified Bochs[13]
overwritten value per modified register or memory locationthat supports rollback via checkpoint as the functional ehod

C. Smulating Speculative Processors

IIl. FAST IMPLEMENTATION STATUS

Thus, the simulators can boot unmodified operating systenys Patrick Bohrer, James Peterson, Mootaz Elnozahy, Rajaniemy,
and run unmodified applications. It runs on both standard Ahmed Gheith, Ron Rockhold, Charles Lefurgy, Hazim Shaftuiia

Li b I h bedded ithi Nakra, Rick Simpson, Evan Speight, Kartik Sudeep, Eric Vamdter-
Inux boxes as well as on the embedded processor within gen, and Lixin Zhang. Mambo: a full system simulator for thwevprpc

a Xilinx Virtex Il Pro part. Our modified Bochs is running at architecture. SGMETRICS Perform. Eval. Rev., 31(4):8-12, 2004.
about 3.86 MIPS on a 3.0GHz Pentium 4 and about 60K cycld8l Jared Casper, Ronny Krashinsky, Christopher Battend #aste

. Asanovic. A Parameterizable FPGA Prototype of a Vectara@d
per second on the 300MHz, in-order embedded PowerPC on Processor. InProceedings of the Workshop on Architecture Research

the Xilinx part. The functional model is currently unoptired using FPGA Platforms, held at HPCA-11, February 2005.

giving us much headroom to improve. Since we do no ye[p] Danie] Citron and Larry_RudoIph. C_reating av_/ider busngs'(_:aching
have a PCI-Exoress FPGA board. we are runnina Bochs on techniques. Inn Proceedings of the First International Symposium on
Vi Xp » W unning High-Performance Computer Architecture, pages 90-99, 1995.

the embedded PowerPC in the FPGA. [7] Nirav Dave and Michael Pellauer. UNUM: A General Micropessor

ifi i i ; Framework Using Guarded Atomic Actions. Proceedings of the

Our mOded Bochs is bg|_ng created .by a SF:”_pt that Workshop on Architecture Research using FPGA Platforms, held at
automatically parses and modifies Bochs to include instoct HPCA-11, February 2005.

tracing, checkpointing and rollback. The script permitstais [8] John D. Davis, Lance Hammond, and Kunle Olukotun. A FiésdiAr-

i chitecture for Simulation and Testing (FAST) MultiprocessSystems.
QUICkly adapt to new Bochs .releas.es.. . In Proceedings of the Workshop on Architecture Research using FPGA
We are on track to completing a timing model that simulates piatforms, held at HPCA-11, February 2005.

a simple out-of-order, branch-predicted processor coat th[9] Lieven Eeckhout, Robert H. Bell Jr., Bastiaan StougiegeK De

: : : : : Bosschere, and Lizy K. John. Control Flow Modeling in St
supports reservation stations, multiple functional ynitsual Simulation for Accurate and Efficient Processor Design Bsid In

memory, a full memory hierarchy, DRAM and disks by March proceedings of the International Symposium on Computer Architecture
of this year. It is designed to support CMP/SMP configuration (ISCA), June 2004.

; ; ; ; ; [10] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, idkeung Luk,
as well. The model is belng written in Ve“IOg and Bluesp¢c[3 Srilatha Manne, Shubhendu S. Mukherjee, Harish Patil,éBt&Vallace,

We have already Completed a Simp|e 80486-like architecture Nathan Binkert, Roger Espasa, and Toni Juan. Asim: A pedaoga
with separate L1 instruction and data caches and separate model framework.Computer, 35(2):68-76, 2002.

; : : [11] Peter S. Magnusson et al. Simics: A Full System SimatefPlatform.
instruction and data TLBs that runs at 100MHz when runnn{bl In IEEE Computer, pages 50-58, February 2002.

without a functional model. [12] Christos Kozyrakis and Kunle Olukotun. ATLAS: A ScalatEmulator
Preliminary estimates indicate that a timing model for the for Transactional Parallel Systems. Rroceedings of the Workshop

)) . ; on Architecture Research using FPGA Platforms, held at HPCA-11,
largest current Pentium M with a 2MB cache fits in a single, February 2005.

medium/large FPGA (Virtex 4 FX60). It is very likely that[13] Kevin P. Lawton. Bochs: A portable pc emulator for umixLinux J.,
multiple timing models could fit in a single FPGA. 1996(29es):7, 1996. _
[14] Shih-Lien Lu, Eriko Nurvitadhi, Jumnit Hong, and Stelearsen. Mem-
ory Subsystem Performance Evaluation with FPGA based Haorsla
IV. CONCLUSIONS In Proceedings of the Workshop on Architecture Research using FPGA
Platforms, held at HPCA-11, February 2005.

The FAST approach has strong potential to produce Vdﬂﬁ?] Milo M.K. Martin, Daniel J. Sorin, Bradford M. BeckmaniMichael R.

. Marty, Min Xu, Alaa R. Alamelden, Kevin E. Moore, Mark D. Hiland
fast, accurate, complete and transparent simulators tieat a David A. Wood. Multifacet's General Execution-driven Mplocessor

inexpensive and easy-to-use. FAST simulators are capdble 0 Simulator (GEMS) Toolset. submitted to Computer ArchitieetNews.
efficiently simulating almost all general-purpose spetima [16] Eriko Nurvitadhi and James Hoe. Full-System Architeesl Ex-

" . ploration Sandbox. IrProceedings of the Workshop on Architecture
processors as well as multiprocessors. FAST simulators do peooren using FPGA Platforms, held at HPCA-11, February 2005.

so by carefully partitioning the simulation problem into g17] QEMU webpage. http://fabrice.bellard.free.frigemu
functional model responsible for simulating at the ISA and8l Mendel Rosenblum, Edouard Bugnion, Scott Devine, atepi®n A.

. . - Herrod. Using the simos machine simulator to study compéerputer
functional peripheral level and a timing model responsfbte systems.ACM Trans. Model. Comput. Simul., 7(1):78—103, 1997.

modeling micro-architectural structures that impacttigniiBy [19] Lambert Schaelicke and Mike Parker. ML-RSIM Refererdanual.
partitioning functionality and timing, each module witteéach Technical report, Department of Computer Science and Eeging,

del b ianifi v simpl h . d Notre Dame, 2002.
model becomes significantly simpler than an integrate 'SOEO] Timothy Sherwood, Erez Perelman, Greg Hamerly, anddBtalder.

tion, making them easier to create, modify and maintain. The™ Automatically characterizing large scale program behadinASPLOS:
resulting simulators are faster than pure software sirordat X Proceedings of the 10th international conference on Architectural

]] .]] support for programming languages and operating systems, pages 45—
since they implement highly parallel micro-architectucah- 57. ACM Press, 2002.

structs in hardware, but leave the nearly sequential fanati [21] simNow webpage. http://developer.amd.com/simnspxa
computation to microprocessors more suitable for thodestas[22] SPEC webpage. http://www.spec.org. _
[23] Manish Vachharajani, Neil Vachharajani, and David lugst. The
liberty structural specification language: a high-leveldelong language

REFERENCES for component reuse. IRLDI '04: Proceedings of the ACM SIGPLAN
2004 conference on Programming language design and implementation,
[1] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalan Wfras- pages 195-206. ACM Press, 2004.

tructure for Computer System ModelintEEE Computer, 35(2):59-67,
February 2002.

[2] Nathan L. Binkert, Erik G. Hallnor, and Steven K. ReintiarNetwork-
Oriented Full-System Simulation using M5. @ixth Workshop on Com-
puter Architecture Evaluation using Commerical Workloads (CAECW),
February 2003.

[3] Bluespec webpage. http://www.bluespec.com.

