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This paper presents an FPGA-based testbed designed and built for quick development, verification and 
refinement of architectural concepts related to the implementation of advanced processor architectures. 
The original purpose of this platform is to evaluate the design of individual components of the class of 
architectures called  Processor-In-Memory,  as well  as a reduced-scale multi-PIM system running at 
clock frequencies within an order of magnitude of its silicon implementation. While the system has 
already proven its usefulness in several PIM component studies, its possible applications range much 
farther thanks to its  reconfigurable logic capacity,  connectivity options and flexibility  of  control  and 
interaction.
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1 Introduction
The  Processor-In-Memory  architecture  [1,2]  exploits  available  memory  bandwidth  by  placing  the 
computing logic at close proximity to the memory array (at the secondary sense amplifiers) and taking 
advantage  of  wide  buses  to  perform  data  transactions.  The  latency  of  memory  accesses  is  also 
mitigated, firstly by avoiding transferring the data through the package pins, and secondly by providing 
a direct access to the contents of row buffer. Such an arrangement, a PIM node, is replicated multiple 
times  on  a  silicon  die,  yielding  very  high  cumulative  processing  speed  and  aggregate  memory 
bandwidth. The nodes in PIM architecture are tightly connected both on the chip using a low-latency 
communication bus, as well as across multiple chips through an external interconnection network.

To support the development of PIM architecture efficiently, the test platform must satisfy the following 
set of requirements:

● The aggregate logic resources on the board must accommodate the entire PIM node structure. At 
the time of development this implied a multi-FPGA platform, as either no single FPGA device on the 
market  was  offering  the  required  capacity,  was  prohibitively  expensive,  or  its  availability  was 
questionable.

● The prototype system has to simulate interactions between several PIM nodes. To accomplish this, 
multiple FPGA boards are necessary together with a means enabling flexible (in terms of latency, 
throughput and network topology) inter-board communications.

● The test platform has to mimic the wide memory buses used by computing nodes by deploying 
FPGAs with a sufficient number of I/O pins and combining a number of discrete memory devices to 
act as a single, wide data word module.

● The design has to be modular, allowing the addition of extra boards when the expansion of the test 
setup  is  necessary.  The  built-in  interconnect  cannot  inherently  enforce  a  limited  node  count 
topology.

● The prototype board must embed a supervisor logic, which initializes the communication with an 
external controlling entity (such as a PC), configures the FPGAs using bitstreams provided by the 
user, monitors the board hardware, and reports status of these operations. A secondary out-of-band 
channel for data exchange between the logic implemented in the FPGA and the controlling PC is a 
desirable  addition.  All  these  functions  can  be  conveniently  carried  out  by  a  dedicated 
microcontroller with a custom firmware.

● The test platform should also feature a minimal, highly customizable monitoring and display circuitry 
independently, if possible, from the main FPGAs and the supervisor. That way, critical events can 
be intercepted and analyzed even in a case of system lockup. An additional benefit is that event 
counters can be flexibly defined and interfaced to without consuming much of the main FPGAs' 
resources. This functionality can be implemented in a cheap, small-scale FPGA.

● Since the final PIM specifications are not known, the testbed has to be flexible enough to adapt to 
the changing requirements. This postulates that the design has to exhibit some degree of symmetry 
to enable comparable layout and functionality if, for example, two simplified PIM nodes must be 
instantiated on a single board.



2 Architecture

The simplified testbed board diagram is shown in Figure 1. Its major components include:

1. Four Xilinx Virtex-E FPGAs (part number XCV2000E-6FG1156) with 2.5 million system gates1 per 
device. The FPGAs are arranged in two pairs, each of which is equipped with a local memory bank. 
The interconnect between the “left” and “right” FPGA of each pair is over 300 signal lines wide. 
Each  of  the  FPGAs  attaches  to  an  IEEE1394  driver  to  support  an  independent,  out-of-board 
communication link. 

The corresponding FPGAs in each pair  also connect  via buses over 100 lines wide.  The wide 
interconnects make possible low-latency, high-bandwidth data transfers between PIM components 
distributed across the FPGAs, thus enabling their good integration and minimizing the potentially 
negative effects of multi-FPGA approach. Due to the short span of the interconnects, the signaling 
protocol can be single-ended, resulting in a more efficient pin allocation.

2. Two 8MB SRAM memory banks, each composed of 17 chips with 16 data lines and 10ns access 
time. This arrangement provides a 256-bit wide memory bus with an additional 16 lines for error 
correction/redundancy. The main data lines are split  uniformly between the FPGAs in each pair 
(128 signals). To balance the pin assignment, the memory address bus connects to the “left” FPGA 
and EDAC lines to the “right” FPGA in each pair. Note that the memory banks are disjoint, hence 
configuring a two-node PIM testbed is trivial.

3. The board supervisor  is  a 32-bit  Hitachi/Renesas SuperH-2E RISC MCU with  a flash program 
memory  running  at  40MHz.  Besides  being  able  to  steer  the  FPGA  configuration  lines,  this 
microcontroller also drives a 24-bit bus attached directly to I/O pins in each FPGA, thus enabling 

1 According to the Xilinx datasheet.

Figure 1. Structure of the FPGA testbed system
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data transfers between the synthesized logic cores and an external computer. The PC connectivity 
may be achieved either through the IEEE1394 link layer controller,  or,  for  the initial  stages of 
firmware development, a standard RS-232 serial link.

4. The display and auxiliary I/O circuit is based on a Xilinx XC2S200-5FG456 FPGA. This component 
can communicate with each “large” FPGA independently through dedicated 48-bit buses. It also 
interfaces with two miniature connectors to allow an outboard I/O and the attachment of an external 
display board. Since the logic structure of this part can be freely defined, a number of possible 
additional applications is possible. For example, since the data transfer over IEEE1394 channels is 
not always desirable or convenient, it may be used as a fast, configurable parallel I/O interface. 
Another  use  could  be  as  a  collection  of  hardware  counters  with  dedicated  event  signal  lines 
sourced by other FPGAs, or logic debugger with signal analysis implemented in hardware. Such an 
arrangement is convenient, as direct pin access of any FPGA packaged in a BGA case frequently 
proves quite complicated.

5. Communication interfaces can be divided in two groups: one supporting system scaling, and the 
second interacting with the external control unit. The first group includes IEEE1394 physical layer 
drivers (four per board),  supporting 400Mbps wire rates and a 3-connector interface each. The 
choice of PHY-only drivers was dictated by the necessity of latency minimization and the fact that 
the  full  link  layer  functionality  would  introduce  an  unwanted  overhead  increasing  the  logic 
requirements on the FPGA side. Since IEEE1394 has point-to-point connectivity, a large variety of 
interconnect topologies can be built, ranging from a simple ring to trees of hypercubes. The control 
unit  (PC)  link  relies  on  the  standard  IEEE1394  LLC  from  Fujitsu  (also  400Mbps)  driving  two 
connectors, which allow easy daisy-chaining of multiple boards without the need for multiple control 
units to supervise the stack of PIM emulators.

6. Auxiliary circuits, not shown in the diagram, perform less prominent, yet essential functions. They 
include  programmable  clock  generators  (configured  by  the  board  supervisor),  reset  sequence 
generator, FPGA die temperature monitor, regulated power supplies delivering 5V, 3.3V, 2.5V and 
1.8V used by board components, logic level shifters, and JTAG interface.

3 Status
The current prototype board, shown in Figure 2, is a second revision (beta) of the original design. This 
iteration addressed a significant number of the shortcomings of the alpha board, which effectively made 
it  hard  to  use  and  inflexible.  Available  funding  and  PCB fabrication  errors  limited  the  number  of 
assembled boards to four from the intended sixteen; all of them passed verification and testing, and 
already run valid experiments.

To  facilitate  the  testbed  use,  an  integrated  configuration  and  deployment  software  package  was 
developed. This application, running on MS Windows-compatible machines, provides a menu-driven 
GUI invoking a number of tasks, including board bootstrap and connection to the supervisor, download 
of  MCU  firmware  extension,  change  of  settings  of  the  selected  board  components  (FPGA  clock 
frequency,  the value of  critical  FPGA core temperature,  etc.),  selection of  the  FPGA configuration 
bitstreams, FPGA configuration and configuration reset, node logic reset,  start and interpretation of 
various  system  tests  (memory,  on-board  interconnect  and  IEEE1394  drivers),  and  finally  the 
initialization of an interactive session with the supervisor.

The configuration data implementing the logic structures on the FPGAs are generated using a standard 
Foundation software from Xilinx, which supports both VHDL and Verilog (including mixed-language 
designs). The component descriptions are validated prior their testing on the FPGAs using ModelSim 
package.

4 Initial Experiments
The FPGA testbed has been successfully used to verify the implementation of two components of the 
PIM  node:  parcel  handler  and  IEEE754-compliant  floating-point  unit.  Both  experiment  sets  were 



performed on a  single board.  The first  test  focused on the elementary  functionality  of  the  parcel2 
handler,.  The sequence of  inspected operations included parcel reception from the controlling PC, 
accumulation  in  an  internal  buffer,  extraction  of  arguments  and  operation  type,  invocation  of  the 
operation in a primitive integer ALU, creation of the return parcel containing the result and its emission 
to the PC. The objective was to verify that parcel receive and transmit pipes are working correctly, and 
the parcels can be properly decomposed, interpreted, used to modify the node's state, and assembled 
for transmission.

The second experiment involved a 4-stage FPU performing additions and multiplies on the full range of 
double precision floating-point numbers (including infinities, NaNs and denormalized numbers). A script 
in Python was generating random pairs of arguments, which were then passed through the control GUI 
to  the  FPGA logic.  The output  stream containing the  results  was piped back  to  the  script,  which 
compared the outcomes with the results computed locally. The test run continuously over several days 
with no errors detected.

Figure 2. Assembled FPGA board

5 Proposed Work
The developed testbed will continue to be used in a variety of further experiments. The primary goal is 
the verification in hardware of the Verilog implementation of the remaining components of the PIM 
node. Its most prominent elements include: message-driven dispatch unit, multi-threaded scheduler, 
distributed memory management and wide ALU.

Another  planned  application  of  the  FPGA  testbed  is  a  small-scale  emulation  of  the  Continuum 
Computing  Architecture  [3],  which  essentially  models  interactions  in  advanced  cellular  automata 
network as a foundation for highly scalable parallel computer. The FPGAs lend themselves naturally to 
this project, as they offer interconnect-rich topology and support easy replication of small structures.

2 Parcel is a parallel control element, an atomic communication unit capable of carrying data between 
the nodes and triggering actions at remote sites.



Finally, the boards will provide the basis for the new architecture laboratory being established at the 
Center for Computation and Technology at the LSU. The authors hope that this new facility will help 
attract the students to the exciting area of computer architecture and provide hands-on experience, 
perfectly complementing the theoretical coursework.
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